JP6502573B2 - 熱式流量計 - Google Patents

熱式流量計 Download PDF

Info

Publication number
JP6502573B2
JP6502573B2 JP2018241279A JP2018241279A JP6502573B2 JP 6502573 B2 JP6502573 B2 JP 6502573B2 JP 2018241279 A JP2018241279 A JP 2018241279A JP 2018241279 A JP2018241279 A JP 2018241279A JP 6502573 B2 JP6502573 B2 JP 6502573B2
Authority
JP
Japan
Prior art keywords
housing
outlet
passage
gas
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018241279A
Other languages
English (en)
Other versions
JP2019045515A (ja
Inventor
毅 森野
毅 森野
忍 田代
忍 田代
暁 上ノ段
暁 上ノ段
斉藤 友明
友明 斉藤
征史 深谷
征史 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of JP2019045515A publication Critical patent/JP2019045515A/ja
Application granted granted Critical
Publication of JP6502573B2 publication Critical patent/JP6502573B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明は熱式流量計に関する。
従来から、被計測気体が流れる主通路にハウジングが配置され、ハウジングに設けられた副通路に主通路から被計測気体を取り込み、副通路内に配置された流量検出部により被計測気体の流量を計測する熱式流量計が、種々提案されている。
特許文献1には、副通路が主通路の流れ方向に沿った第1通路と、第1通路の途中で分岐する第2通路を有しており、第2通路に流量検出部が配置され、流量検出部を通過した被計測気体が再び第1通路に合流して、第1通路の出口から排出される構造が示されている。
US2013/061684
特許文献1に示す構造のように、第1通路の出口が下流に向かって開口していると、第1通路の出口から排出された被計測気体と、ハウジングの下流に発生する渦とが干渉して、被計測気体の出口からの円滑な排出が阻害されるおそれがある。また、渦強度の変化によって定常時と脈動時の流速分布差が大きくなり脈動誤差が発生する。
本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、渦強度を小さく且つ一定にして、被計測気体の出口からの円滑な排出を確保し、脈動誤差の発生を抑制できる構造の熱式流量計を得ることである。
上記課題を解決する本発明の熱式流量計は、主通路に配置されるハウジングと、該ハウジングに設けられた副通路とを備える熱式流量計であって、前記ハウジングは、該ハウジングの下流端部に前記副通路の出口が設けられており、該出口の近傍に傾斜面が設けられていることを特徴とする。
本発明によれば、排出口及び主出口の下流にできる渦の大きさを小さくすることができる。したがって、過渡時に渦によって排出口及び主出口が遮蔽されるのを防ぐことができ、定常時と脈動時の流速分布差を小さくし、脈動誤差の発生を抑制できる。
内燃機関制御システムに本発明に係る熱式流量計を使用した一実施例を示すシステム図である。 本発明に係る熱式流量計の外観を示す正面図。 本発明に係る熱式流量計の外観を示す左側面図。 本発明に係る熱式流量計の外観を示す背面図。 本発明に係る熱式流量計の外観を示す右側面図。 本発明に係る熱式流量計から表カバーおよび裏カバーを取り外したハウジングの状態を示す正面図。 本発明に係る熱式流量計から表カバーおよび裏カバーを取り外したハウジングの状態を示す背面図。 表カバーの背面図。 図4AのB−B線断面図。 裏カバーの背面図。 図5AのB−B線断面図。 実施例1における熱式流量計の外観斜視図。 実施例1における熱式流量計の要部を拡大して示す図。 実施例1における熱式流量計の要部を拡大して示す図。 実施例1における熱式流量計の要部を拡大して示す図。 湾曲面部の構成を説明する概念図。 傾斜面の構成を説明する概念図。 実施例2における熱式流量計の外観斜視図。 実施例2における熱式流量計の底面図。 実施例2における熱式流量計の要部を拡大して示す図。 実施例2における熱式流量計の要部を拡大して示す図。 実施例2における熱式流量計の要部を拡大して示す図。 実施例3における熱式流量計の外観斜視図。 実施例3における熱式流量計の底面図。 実施例3における熱式流量計の要部を拡大して示す図。 実施例3における熱式流量計の要部を拡大して示す図。 実施例3における熱式流量計の要部を拡大して示す図。
次に、本発明の実施の形態について図面を用いて説明する。
<実施例1>
図1は、電子燃料噴射方式の内燃機関制御システムに、本発明に係る熱式流量計を使用した一実施例を示すシステム図である。エンジンシリンダ112とエンジンピストン114を備える内燃機関110の動作に基づき、吸入空気が被計測気体30としてエアクリーナ122から吸入され、主通路124である例えば吸気管、スロットルボディ126、吸気マニホールド128を介してエンジンシリンダ112の燃焼室に導かれる。前記燃焼室に導かれる吸入空気である被計測気体30の流量は本発明に係る熱式流量計300で計測され、計測された流量に基づいて燃料噴射弁152より燃料が供給され、吸入空気である被計測気体30と共に混合気の状態で燃焼室に導かれる。なお、本実施例では、燃料噴射弁152は内燃機関の吸気ポートに設けられ、吸気ポートに噴射された燃料が吸入空気である被計測気体30と共に混合気を成形し、吸気弁116を介して燃焼室に導かれ、燃焼して機械エネルギを発生する。
燃焼室に導かれた燃料および空気は、燃料と空気の混合状態を成しており、点火プラグ154の火花着火により、爆発的に燃焼し、機械エネルギを発生する。燃焼後の気体は排気弁118から排気管に導かれ、排気24として排気管から車外に排出される。前記燃焼室に導かれる吸入空気である被計測気体30の流量は、アクセルペダルの操作に基づいてその開度が変化するスロットルバルブ132により制御される。前記燃焼室に導かれる吸入空気の流量に基づいて燃料供給量が制御され、運転者はスロットルバルブ132の開度を制御して前記燃焼室に導かれる吸入空気の流量を制御することにより、内燃機関が発生する機械エネルギを制御することができる。
エアクリーナ122から取り込まれ主通路124を流れる吸入空気である被計測気体30の流量および温度が、熱式流量計300により計測され、熱式流量計300から吸入空気の流量および温度を表す電気信号が制御装置200に入力される。また、スロットルバルブ132の開度を計測するスロットル角度センサ144の出力が制御装置200に入力され、さらに内燃機関のエンジンピストン114や吸気弁116や排気弁118の位置や状態、さらに内燃機関の回転速度を計測するために、回転角度センサ146の出力が、制御装置200に入力される。排気24の状態から燃料量と空気量との混合比の状態を計測するために、酸素センサ148の出力が制御装置200に入力される。
制御装置200は、熱式流量計300の出力である吸入空気の流量、および回転角度センサ146の出力に基づき計測された内燃機関の回転速度、に基づいて燃料噴射量や点火時期を演算する。これら演算結果に基づいて、燃料噴射弁152から供給される燃料量、また点火プラグ154により点火される点火時期が制御される。燃料供給量や点火時期は、実際にはさらに熱式流量計300で計測される吸気温度やスロットル角度の変化状態、エンジン回転速度の変化状態、酸素センサ148で計測された空燃比の状態に基づいて、きめ細かく制御されている。制御装置200はさらに内燃機関のアイドル運転状態において、スロットルバルブ132をバイパスする空気量をアイドルエアコントロールバルブ156により制御し、アイドル運転状態での内燃機関の回転速度を制御する。
図2は、熱式流量計300の外観を示している。図2Aは熱式流量計300の正面図、図2Bは左側面図、図2Cは背面図、図2Dは右側面図である。熱式流量計300は、ハウジング302を備えている。ハウジング302は、吸気管に側方から挿入されて主通路124(図1を参照)に配置される。ハウジング302の基端部には、吸気管に固定するためのフランジ305と、吸気管外部に露出する外部接続部306が設けられている。
ハウジング302は、フランジ305を吸気管に固定することにより片持ち状に支持され、主通路124を流れる被計測気体の主流れ方向に交差する垂直な方向に沿って延在するように配置される。ハウジング302には、主通路124を流れる被計測気体30を取り込むための副通路307(図3A、図3Bを参照)が設けられており、その副通路307内に被計測気体30の流量を検出するための流量検出部602(図3A、図3Bを参照)が配置されている。
ハウジング302の先端側でかつ主流れ方向上流側に配置される上流端部には、吸入空気などの被計測気体30の一部を副通路307に取り込むための入口311が設けられている。そして、ハウジング302の先端側でかつ主流れ方向下流側に配置される下流端部には、副通路307から被計測気体30を主通路124に戻すための第1出口312(排出口)と第2出口(主出口)313という、2つの出口が設けられている。第1出口312と第2出口313は、図2Dに示すように、ハウジング302の厚み方向に横並びに配置されている。すなわち、第1出口312と第2出口313は、主流れ方向に垂直な方向に並んで配置される。
入口311が、ハウジング302の先端側に設けられることにより、主通路の内壁面から離れた中央部に近い部分の気体を副通路307に取り込むことができる。したがって、主通路の内壁面の温度の影響を受け難くなり、気体の流量や温度の計測精度の低下を抑制できる。
主通路の内壁面近傍では流体抵抗が大きく、主通路の平均的な流速に比べ、流速が低くなるが、本実施例の熱式流量計300では、フランジ305から主通路の中央に向かって延びる薄くて長いハウジング302の先端側に入口311が設けられているので、主通路中央部の流速の速い気体を副通路307に取り込むことができる。また、副通路307の第1出口312と第2出口313もハウジング302の先端側に設けられているので、副通路307内を流れた気体を流速の速い主通路中央部に戻すことができる。
ハウジング302は、正面に略長方形の幅広面を有するのに対して、側面が狭い(厚さが薄い)形状を成している。ハウジング302は、主通路を流れる被計測気体30の主流れ方向に沿って正面と背面が配置され、主流れ方向に対向するように側面が配置される。これにより、熱式流量計300は、被計測気体30に対しては流体抵抗を小さくして、十分な長さの副通路307を備えることができる。
すなわち、本実施例の熱式流量計は、主通路124を流れる被計測気体30の流れ方向と直交する直交面に投影されるハウジングの形状が、前記の直交面上で第1の方向50に定義される長さ寸法と、前記の直交面上で第1の方向50(図2B参照)に対して垂直な第2の方向51に定義される厚み寸法とを有し、厚み寸法が長さ寸法よりも小さい形状を成している。
ハウジング302には、被計測気体30の温度を計測するための温度検出部452が設けられている。ハウジング302は、長手方向中央部で且つ上流端部において、下流端部側に向かって窪んだ形状を有しており、温度検出部452は、その窪んだ位置に設けられている。温度検出部452は、ハウジング302の窪んだ部分から主流れ方向に沿って突出する形状を成している。
図3は熱式流量計300から表カバー303および裏カバー304を取り外したハウジング302の状態を示している。図3Aはハウジング302の正面図、図3Bは背面図である。
ハウジング302の上流端部315は、基端部315a、中間部315b、先端部315cを有している。基端部315aと中間部315bと先端部315cは、それぞれ被計測気体30の主流れ方向に対して垂直な平坦面により構成されている。基端部315aと中間部315bとの間には、上流端部315側から下流端部316側に向かって移行するにしたがってハウジング302の厚さ幅方向に互いに離間する方向に広がるテーパ面322が設けられている。そして、テーパ面322と中間部315bとの間には、下流端部316側に窪んだ窪み部が設けられており、温度検出部452が配置されている。そして、先端部315cには、入口311が設けられている。
ハウジング302の下流端部316は、基端部316a、中間部316b、先端部316cを有している。基端部316aと中間部316bと先端部316cは、被計測気体30の主流れ方向に対して垂直な平坦面により構成されている。基端部316aと中間部316bとの間には、上流端部315側から下流端部316側に向かって移行するにしたがってハウジング302の厚さ幅方向に互いに接近する方向に狭くなるテーパ面323が設けられている。そして、先端部315cには、第1出口312と第2出口313が設けられている。第1出口312と第2出口313は、ハウジング302の厚さ幅方向に並んで配置されており、本実施例では、厚さ幅方向中央から互いに離間する位置に配置されている。
ハウジング302の内部には、主通路124を流れる被計測気体30の流量を計測するための流量検出部602や、主通路124を流れる被計測気体30の温度を計測するための温度検出部452を備える回路パッケージ400が一体にモールド成形されている。
そして、ハウジング302には、副通路307を成形するための副通路溝が形成されている。本実施例では、ハウジング302の表裏両面に副通路溝が凹設されており、表カバー303及び裏カバー304をハウジング302の表面及び裏面にかぶせることにより、副通路307が完成する構成になっている。かかる構造とすることで、ハウジング302の成形時(樹脂モールド工程)にハウジング302の両面に設けられる金型を使用して、表側副通路溝330と裏側副通路溝331の両方をハウジング302の一部として全てを成形することが可能となる。
副通路溝は、ハウジング302の裏面に形成された裏側副通路溝331と、ハウジング302の表面に形成された表側副通路溝330とからなる。裏側副通路溝331は、第1溝部332と、第1溝部332の途中で分岐する第2溝部333を有している。
第1溝部332は、ハウジング302の先端部で被計測気体30の主流れ方向に沿うように上流端部315から下流端部316に亘って一直線状に延在して、ハウジング302の入口311に一端が連通し、ハウジング302の出口312に他端が連通している。第1溝部332は、入口311から略一定の断面形状で延在する直線部332Aと、直線部332Aから出口312に向かって移行するに従って溝幅が漸次狭くなる絞り部332Bとを有している。
第1溝部332の直線部332Aの底壁面332bには、複数の凸条部335が設けられている。凸条部335は、第1溝部332の直線部332Aの底壁面332bにおいて、第1溝部332の溝幅方向に所定間隔をおいて複数が並ぶように設けられており、直線部332Aに沿って入口311から絞り部332Bまでの間に亘って延在している。凸条部335は、断面が台形形状を有しており、両側の側面が斜めに傾いている。したがって、水滴が付着した場合に、水滴の接触角を大きくして水滴の高さを低くすることができ、濡れ性を高くして、上流側から下流側に向かって素早く流すことができる。したがって、水滴が第2通路に流れ込むのを効果的に防ぐことができ、外部に迅速に排出させることができる。
第2溝部333は、第1溝部332の直線部332Aから分岐してカーブしながらハウジング302の基端側に向かって進み、ハウジング302の長手方向中央部に設けられている計測用流路341に連通する。第2溝部333は、第1溝部332を構成する一対の側壁面のうち、ハウジング302の基端側に位置する側壁面332aに入口が連通しており、底壁面333aが第1溝部332の直線部332Aの底壁面332bと面一に連続している。第2溝部333の内周側の側壁面333bには、凹部333eが設けられている。
主通路124を流れる被計測気体30は、熱式流量計300に衝突すると、被計測気体30の流れ方向に対向して障害物となる外側壁面によって動圧を受け、外側壁面に対向する上流側の圧力が上昇する。一方、被計測気体30の主流れ方向と平行あるいは略平行な壁面における被計測気体30は、壁面の上流部分において壁面からの剥離を生じ、剥離部(周辺)は負圧となる。被計測気体30は、剥離を生じた部分から下流方向に向かうに従いやがて熱式流量計300壁面に沿う流れへと変化する。凹部333eには、第2溝部333近傍に水が停滞し、裏カバー304において凹部333eを閉塞する位置に穿設されている排水孔376を設置すると、熱式流量計300の剥離部(周辺)で生ずる負圧により、副通路307内の凹部333eから排水孔376を介して副通路307の外部、すなわち、主通路124に排出させることができる。
計測用流路341は、ハウジング302を厚さ方向に貫通して形成されており、回路パッケージ400の流路露出部430が突出して配置されている。第2溝部333は、回路パッケージ400の流路露出部430よりも副通路上流側で計測用流路341に連通している。
第2溝部333は、計測用流路341に向かって進むにつれて溝深さが深くなる形状を有しており、特に計測用流路341の手前で急激に深くなる急傾斜部333dを有している。急傾斜部333dは、計測用流路341において、回路パッケージ400の流路露出部430が有する表面431と裏面432のうち、流量検出部602が設けられている表面431側に被計測気体30の気体を通過させ、裏面432側には被計測気体30に含まれる塵埃などの異物を通過させる。
被計測気体30は、裏側副通路溝331内を流れるにつれてハウジング302の表側(図3Bで図の奥側)の方向に徐々に移動する。そして、質量の小さい空気の一部は、急傾斜部333dに沿って移動し、計測用流路341において流路露出部430の表面431の方を流れる。一方、質量の大きい異物は遠心力によって急激な進路変更が困難なため、急傾斜部333dに沿って流れることができず、計測用流路341において流路露出部430の裏面432の方を流れる。
流量検出部602は、回路パッケージ400の流路露出部430の表面431に設けられている。流量検出部602では、流路露出部430の表面431の方に流れた被計測気体30との間で熱伝達が行われ、流量が計測される。
被計測気体30は、回路パッケージ400の流路露出部430の表面431側と裏面432側を通過すると、計測用流路341の副通路下流側から表側副通路溝330に流れ込み、表側副通路溝330内を流れて第2出口313から主通路124に排出される。
表側副通路溝330は、図3Aに示すように、計測用流路341の副通路下流側に一端が連通し、ハウジング302の先端側の下流端部316に形成された出口313に他端が連通する。表側副通路溝330は、計測用流路341からハウジング302の先端側に移行するに従って漸次下流端部316に向かって進むようにカーブし、ハウジング302の先端部で被計測気体30の主流れ方向下流側に向かって直線上に延びて、第2出口313に向かって溝幅が漸次狭くなる形状を有している。
この実施例では、裏側副通路溝331で構成される流路は曲線を描きながらハウジング302の先端側からフランジ305側である基端側に向かい、最もフランジ305に接近した位置では、副通路307を流れる被計測気体30は主通路124の主流れ方向に対して逆方向の流れとなり、この逆方向の流れの部分でハウジング302の裏面側に設けられた裏側副通路が、表面側に設けられた表側副通路につながる。
計測用流路341は、回路パッケージ400の流路露出部430によって、表面431側の空間と裏面432側の空間に分けられており、ハウジング302によって分けられてはいない。即ち、計測用流路341は、ハウジング302の表面と裏面とを貫通して形成されており、この一つの空間に回路パッケージ400が片持ち状に突出して配置されている。このような構成とすることで、1回の樹脂モールド工程でハウジング302の表裏両面に副通路溝を成形でき、また両面の副通路溝を繋ぐ構造を合わせて成形することが可能となる。尚、回路パッケージ400はハウジング302の固定部351、352、353に樹脂モールドにより埋設して固定されている。
また、上記した構成によれば、ハウジング302の樹脂モールド成形と同時に、回路パッケージ400をハウジング302にインサートして実装することができる。なお、回路パッケージ400よりも上流側の通路上流側と下流側の通路下流側のどちらか一方をハウジング302の幅方向に貫通した構成とすることで、裏側副通路溝331と表側副通路溝330とをつなぐ副通路形状を1回の樹脂モールド工程で成形することも可能である。
ハウジング302の表側副通路は、表側副通路溝330を構成する一対の側壁面の溝高さ方向上側の側壁上端部と表カバー303の対向面とが密着することによって形成される。そして、ハウジング302の裏側副通路は、裏側副通路溝331を構成する一対の側壁面の溝高さ方向上側の側壁上端部と裏カバー304の対向面とが密着することによって形成される。
図3A及び図3Bに示すように、ハウジング302には、フランジ305と副通路溝が形成された部分との間に空洞部342が形成されている。空洞部342は、ハウジング302を厚さ方向に貫通することによって形成されている。この空洞部342の中に、回路パッケージ400の接続端子412と外部接続部306の外部端子の内端306aとを接続する端子接続部320が露出して配置されている。接続端子412と内端306aとは、スポット溶接あるいはレーザ溶接などにより、電気的に接続される。空洞部342は、表カバー303と裏カバー304をハウジング302に取り付けることによって閉塞され、空洞部342の周囲が表カバー303と裏カバー304とレーザ溶接されて密封される。
図4Aは、表カバーの裏面を示す図、図4Bは、図4AのB−B線断面図である。図5Aは、裏カバーの裏面を示す図、図5Bは、裏カバーの側面を示す図である。
表カバー303と裏カバー304は、薄い板状であり、広い冷却面を備える形状を成している。このため熱式流量計300は、空気抵抗が低減され、さらに主通路124を流れる被計測気体により冷却されやすい効果を有している。
表カバー303は、ハウジング302の表面を覆う大きさを有している。表カバー303の対向面には、ハウジング302の表側副通路溝330を閉塞する第5領域361と、ハウジング302の計測用流路341の表側を閉塞する第6領域362と、空洞部342の表側を閉塞する第7領域363が形成されている。そして、第5領域361と第6領域362の幅方向両側には、ハウジング302の表側副通路溝330の側壁上端部が入り込む凹部361aが凹設されている。また、第7領域363の周囲には、空洞部342の表側外周端部が入り込む凹部363aが凹設されている。
そして、表カバー303の対向面には、回路パッケージ400の流路露出部430の先端とハウジング302の計測用流路341との間の隙間に挿入される凸部364が設けられている。また、回路パッケージ400の流路露出部430の表面431に対向する位置には、インサート成形により金属プレート501が設けられている。
裏カバー304は、ハウジング302の裏面を覆う大きさを有している。裏カバー304の対向面には、ハウジング302の裏側副通路溝331の第1溝部332を閉塞する第1領域371Aと、第2溝部333を閉塞する第2領域371Bと、ハウジング302の計測用流路341の裏側を閉塞する第3領域372と、空洞部342の裏側を閉塞する第4領域373が形成されている。そして、第1領域371A、第2領域371B、第3領域372の幅方向両側には、ハウジング302の裏側副通路溝331の側壁上端部が入り込む凹部371aが凹設されている。また、第4領域373の周囲には、空洞部342の裏側外周端部が入り込む凹部373aが凹設されている。
裏カバー304の第1領域371Aには、凸条部377が設けられている。凸条部377は、裏カバー304の第1領域371Aにおいて、長手方向に沿って延在し、短手方向に所定間隔をおいて複数が並ぶように設けられている。凸条部377は、断面が台形形状を有しており、両側の側面が斜めに傾いている。したがって、水滴が付着した場合に、水滴の接触角を大きくして水滴の高さを低くすることができ、濡れ性を高くして、付着した水滴を上流側から下流側に向かって素早く流すことができる。したがって、水滴が第2通路に流れ込むのを効果的に防ぐことができ、外部に迅速に排出させることができる。
裏カバー304には、副通路307に連通する排水孔376が穿設されている。排水孔376は、ハウジング302に裏カバー304を取り付けた状態でハウジング302の凹部333eを閉塞する位置に貫通して形成されており、副通路307内で第2溝部333の凹部333eに取り込まれた水を外部に排出させることができる。
裏カバー304の対向面には、回路パッケージ400の流路露出部430の先端とハウジング302の計測用流路341との間の隙間に挿入される凸部374が設けられている。凸部374は、表カバー303の凸部364と協働して、回路パッケージ400の流路露出部430の先端とハウジング302の計測用流路341との間の隙間を埋める。
表カバー303と裏カバー304は、ハウジング302の表面と裏面にそれぞれ取り付けられて表側副通路溝330及び裏側副通路溝331との協働により副通路307を形成する。
図6は、実施例1における熱式流量計の外観斜視図、図7Aから図7Cは、実施例1における熱式流量計の要部を拡大して示す図、図7Dは、湾曲面部の構成を説明する概念図、図7Eは、傾斜面の構成を説明する概念図である。
図6に示すように、ハウジング302の下流端部316には、湾曲面部317が設けられている。湾曲面部317は、第1出口312と第2出口313の近傍に設けられており、本実施例では、下流端部316の中間部316bと先端部316cとの間の位置に配置されている。湾曲面部317は、ハウジング302が延在する長手方向を軸中心とする曲面形状を有しており、具体的には、断面が凸円弧曲線となる流線形状を有している。湾曲面部317は、図7Dに示すように、法線ベクトルと被計測気体30の主流れ方向とのなす角が0度<α<90度の角度範囲となる傾斜面であって、被計測気体30の主流れ方向上流側から下流側に移行するにしたがって法線ベクトルと被計測気体30の主流れ方向とのなす角が漸次減少する湾曲面317R、317Lを有する。
湾曲面部317の湾曲面317R、317Lは、少なくとも1つ以上の曲率半径の曲面が円滑に連続する形状を有しており、中間部316bと先端部316cとの間に亘って略一定の断面形状を有している。そして、下流端がハウジング302の下流端部316の中間部316b及び先端部316cと面一となるように形成されている。
湾曲面部317は、図7Bに示すように、ハウジング302の厚さ幅方向一方側の湾曲面317Rの少なくとも一部が第2出口313の厚さ幅WRの範囲内に位置するように配置され、ハウジング302の厚さ幅方向他方側の湾曲面317Lの少なくとも一部が第1出口312の厚さ幅WLの範囲内に位置するように配置されている。
例えば、本実施例のように汚損物を排出するために副通路307の一部が分岐された構造を有する物理量測定装置の場合、流速及び排出効果を高めて測定精度を確保する必要がある。(a)排出口が主流れ方向下流側に向かって開口していないと、曲がり角に汚損物が溜まる可能性がある。(b)分岐通路は、極力大回りでないと流れが曲がりきれず、剥離渦が拡大して定常流と脈動流での流速分布差が大きくなるために脈動誤差が拡大する。(c)分岐部よりも主流れ方向上流側に主出口を配置すると、過渡的な流量変化時において流量検出部602周辺の流れはオーバーシュートもしくはアンダーシュートを起こし、正確な流量変化の測定が難しい。これら(a)、(b)、(c)の理由から、排出口(第1出口312に相当)と主出口(第2出口313に相当)は、分岐部よりも主流れ方向下流側でかつハウジングの下流端部に配置することが望ましい。
しかしながら、ハウジングが吸気管(主通路)内に配置されることで、ハウジングの下流端部周辺には、カルマン渦と呼ばれるハウジングの延在方向に平行な軸を持つ縦渦が発生し、また、翼端渦と呼ばれるハウジングの延在方向に垂直な軸を持つ横渦も発生する。したがって、これらの渦が排出口と主出口から排出される被計測気体30と干渉して、円滑な排出が阻害されるおそれがある。また、これらの渦は、吸気通路内における脈動流等の過渡現象において渦強度が変化するため、ハウジングの下流端部に配置されている排出口と主出口が渦によって遮蔽される度合いが変化し、その変化の程度に応じて定常時と脈動時の流速分布差が大きくなり脈動誤差が発生する。
これに対し、本実施例では第1出口312と第2出口313の近傍に、軸中心がハウジング302の延在方向に沿った湾曲面を有する湾曲面部317を設けているので、ハウジング302の第1出口312と第2出口313の下流側に発生する渦の大きさを小さくすることができ、特に縦渦(カルマン渦)の大きさを小さくすることができる。したがって、第1出口312と第2出口313から排出される被計測気体30に対して渦によって与えられる影響を小さくすることができ、脈動時と定常時の流速分布差を小さくして脈動誤差の発生を抑制し、測定精度を向上させることができる。
なお、本実施例では、第1出口312と第2出口313の近傍に湾曲面部317を設けた構成を例に説明したが、ハウジング302の周囲に形成される被計測気体30の渦が第1出口312と第2出口313から排出される被計測気体30の排出を阻害しないように、渦の大きさを小さくすることができるものであればよい。したがって、例えば図7Eに示すように、被計測気体30の主流れ方向に対して一定の傾斜角度αを有する傾斜面318を下流端部316に設けてもよい。また、本実施例では、湾曲面部317は、断面がハウジング302の延在方向に一定である構成の場合を例に説明したが、かかる構成に限定されるものではなく、延在方向に断面が変化する形状としてもよい。
本実施例では、湾曲面部317の湾曲面317Rの少なくとも一部が第2出口313の厚さ幅WRの範囲内に位置するように配置され、湾曲面317Lの少なくとも一部が第1出口312の厚さ幅WLの範囲内に位置するように配置されているので、ハウジング302の第1出口312と第2出口313の下流側に発生する渦の大きさを小さくしかつ渦の発生位置をハウジング302の下流側により大きく離間させることができる。したがって、第1出口312と第2出口313から排出される被計測気体30が渦の影響を受けにくくし、円滑な排出を促し、精度の高い流量検出を行うことができる。
<実施例2>
次に、本発明の実施例2について図8、図9、図10A、図10B、及び図10Cを用いて以下に説明する。
図8は、実施例2における熱式流量計の外観斜視図、図9は、実施例2における熱式流量計の底面図、図10Aから図10Cは、実施例2における熱式流量計の要部を拡大して示す図である。なお、実施例1と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
本実施例において特徴的なことは、実施例1の構成に加えて、ハウジング302の挿入方向先端側の先端面314に先端翼336を設けたことである。先端翼336は、先端面314に突出して設けられており、ハウジング302の下流端部側に偏位した位置に配置されている。先端翼336は、ハウジング302に一体に形成されているが、別体に設けてねじや接着剤等の固定手段により後で固定してもよい。先端翼336は、図9に示すように、先端面314から突出する断面が楕円状の略円柱形状を有しており、先端側に移行するに応じて先細りとなるように漸次断面が小さくなるテーパーコーン状の外周面336aと、先端部分に先端面314と平行となる平坦な頭頂面336bを備えている。
先端翼336は、断面楕円の長軸がハウジング302の上流端部側から下流端部側に沿うように配置されており、上流側の円弧の方が下流側の円弧よりも半径が小さい、流線形状を有している。そして、図10A、図10Bに示すように、外周面336aの上流面部は、先端翼336の先端側に移行するにしたがって漸次下流側に移行するように斜めに形成されている。
上記構成を有する熱式流量計300によれば、主通路124内で先端面314に沿って流れてきた被計測気体30を先端翼336によって円滑に下流側に導いて、ハウジング302の第1出口312と第2出口313の下流側に発生する渦のうち、特に横渦(翼端渦)の大きさを小さくすることができる。したがって、実施例1の作用効果に加えて、第1出口312と第2出口313から排出される被計測気体30に対して渦の影響を更に小さくすることができ、脈動誤差の発生を効果的に抑制して、測定精度を飛躍的に向上させることができる。
<実施例3>
次に、本発明の実施例3について図11、図12、図13A、図13B、及び図13Cを用いて以下に説明する。
図11は、実施例3における熱式流量計の外観斜視図、図12は、実施例3における熱式流量計の底面図、図13Aから図13Cは、実施例3における熱式流量計の要部を拡大して示す図である。なお、実施例1、2と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
本実施例において特徴的なことは、実施例2における下流端部316の先端部316cの代わりに、湾曲面部317を先端面314まで延長して、湾曲面部317に第1出口312と第2出口313を設けたことである。
湾曲面部317は、ハウジング302の下流端部316の中間部316bから先端面314までの間に亘って設けられている。第1出口312は、湾曲面部317の湾曲面317Lに形成されており、主流れ方向下流側に向かって開口している。そして、第2出口313は、湾曲面部317の湾曲面317Rに形成されており、主流れ方向下流側に向かって開口している。
本実施例では、平坦面を有する先端部316cの代わりに、湾曲面部317を設けているので、第1出口312と第2出口313の周辺に縦渦が発生するのを更に抑制することができる。したがって、実施例2と比較して、渦の影響を更に小さくすることができ、脈動誤差の発生を更に効果的に抑制して、測定精度を飛躍的に向上させることができる。
以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
300 熱式流量計
302 ハウジング
303 表カバー
304 裏カバー
307 副通路
312 第1出口(出口)
313 第2出口(出口)
317 湾曲面部
602 流量検出部

Claims (10)

  1. 固定部を有し、該固定部で被計測気体が流れる主通路に先端部を片持ち状に支持されるハウジングと、該ハウジングに設けられた副通路とを備え、前記副通路に前記主通路から被計測気体を取り込み、前記副通路内に配置された流量検出部により被計測気体の流量を計測する熱式流量計であって、
    前記ハウジングは、前記被計測気体の主流れ方向に交差する方向に延在し、
    前記ハウジングは、該ハウジングの下流端部の先端部に前記副通路の出口が設けられており、
    前記副通路の出口は、前記ハウジングの厚さ幅方向に並んで配置され、前記被計測気体の主流れ方向の下流に向けて開口する第1出口と第2出口を有し、
    前記ハウジングには、前記第1出口と第2出口が配置された部位と前記固定部との間に傾斜面が設けられており、
    前記傾斜面は、前記ハウジングの厚さ幅方向に湾曲面を構成し、前記ハウジングの厚さ幅方向一方側の湾曲面の少なくとも一部が前記第1出口の厚さ幅の範囲内に位置するように配置され、前記ハウジングの厚さ幅方向他方側の湾曲面の少なくとも一部が前記第2出口の厚さ幅の範囲内に位置するように配置されていることを特徴とする熱式流量計。
  2. 前記傾斜面は、該傾斜面の法線ベクトルと前記主通路を流れる前記被計測気体の主流れ方向とのなす角が0度<α<90度の角度範囲となることを特徴とする請求項1に記載の熱式流量計。
  3. 前記傾斜面は、前記被計測気体の主流れ方向上流側から下流側に移行するにしたがって前記法線ベクトルと前記被計測気体の主流れ方向とのなす角が漸次減少する湾曲面を有することを特徴とする請求項2に記載の熱式流量計。
  4. 前記湾曲面を有する湾曲面部が前記ハウジングの先端部と中間部との間に設けられていることを特徴とする請求項1に記載の熱式流量計。
  5. 前記ハウジングの下流端部の先端部は平坦面を有し、前記第1出口と前記第2出口は前記平坦面に設けられていることを特徴とする請求項1に記載の熱式流量計。
  6. 前記湾曲面を有する湾曲面部に前記副通路の前記第1出口と前記第2出口が設けられていることを特徴とする請求項3に記載の熱式流量計。
  7. 前記ハウジングは、該ハウジングの先端面に先端翼が設けられていることを特徴とする請求項1から請求項6のいずれか一項に記載の熱式流量計。
  8. 前記先端翼は、基端から先端に移行するにしたがって先細りになる形状を有していることを特徴とする請求項7に記載の熱式流量計。
  9. 前記湾曲面は、前記ハウジングの厚さ幅方向に対をなして対称な2つの面から構成されていることを特徴とする請求項1に記載の熱式流量計。
  10. 前記第1の出口または前記第2の出口は、いずれか一方の出口が他方の出口よりも大きいことを特徴とする請求項1に記載の熱式流量計。
JP2018241279A 2015-10-28 2018-12-25 熱式流量計 Active JP6502573B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015211399 2015-10-28
JP2015211399 2015-10-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017547702A Division JPWO2017073276A1 (ja) 2015-10-28 2016-10-05 熱式流量計

Publications (2)

Publication Number Publication Date
JP2019045515A JP2019045515A (ja) 2019-03-22
JP6502573B2 true JP6502573B2 (ja) 2019-04-17

Family

ID=58631425

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017547702A Pending JPWO2017073276A1 (ja) 2015-10-28 2016-10-05 熱式流量計
JP2018241279A Active JP6502573B2 (ja) 2015-10-28 2018-12-25 熱式流量計

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017547702A Pending JPWO2017073276A1 (ja) 2015-10-28 2016-10-05 熱式流量計

Country Status (5)

Country Link
US (1) US10928231B2 (ja)
JP (2) JPWO2017073276A1 (ja)
CN (1) CN108139247B (ja)
DE (1) DE112016004975B4 (ja)
WO (1) WO2017073276A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020024152A (ja) 2018-08-08 2020-02-13 株式会社Soken 流量計測装置
JP7204370B2 (ja) * 2018-08-08 2023-01-16 株式会社Soken 流量計測装置
JP7068095B2 (ja) 2018-08-14 2022-05-16 株式会社Soken 流量測定装置
JP2021039027A (ja) * 2019-09-04 2021-03-11 株式会社デンソー 空気流量測定装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307906A (ja) * 1993-04-28 1994-11-04 Hitachi Ltd 空気流量測定装置
DE19815656A1 (de) * 1998-04-08 1999-10-14 Bosch Gmbh Robert Meßvorrichtung zum Messen der Masse eines strömenden Mediums
US6701781B1 (en) * 2000-11-22 2004-03-09 Visteon Global Technologies, Inc. Mass air flow sensor bypass housing
JP3709373B2 (ja) * 2001-12-19 2005-10-26 株式会社日立製作所 流量計測装置
JP3671399B2 (ja) * 2002-09-20 2005-07-13 三菱電機株式会社 流量センサ
JP4957081B2 (ja) * 2005-09-15 2012-06-20 株式会社デンソー 流量測定装置
JP5073949B2 (ja) * 2006-02-02 2012-11-14 日立オートモティブシステムズ株式会社 流量測定装置
DE102006045656A1 (de) 2006-09-27 2008-04-03 Robert Bosch Gmbh Strömungsdynamisch verbesserter Steckfühler
JP4488031B2 (ja) 2007-06-14 2010-06-23 株式会社デンソー 空気流量測定装置
JP5273024B2 (ja) 2009-11-27 2013-08-28 株式会社デンソー 空気流量測定装置
DE102010020264A1 (de) 2010-05-28 2011-12-01 Continental Automotive Gmbh Luftmassenmesser
JP5338864B2 (ja) * 2011-07-07 2013-11-13 株式会社デンソー 空気流量測定装置
JP5397425B2 (ja) 2011-07-16 2014-01-22 株式会社デンソー 空気流量測定装置
JP5675705B2 (ja) * 2012-06-15 2015-02-25 日立オートモティブシステムズ株式会社 熱式流量計
JP5758850B2 (ja) * 2012-06-15 2015-08-05 日立オートモティブシステムズ株式会社 熱式流量計
CN103954326A (zh) * 2014-05-14 2014-07-30 威海市天罡仪表股份有限公司 双声道n形反射式超声波式流量传感器

Also Published As

Publication number Publication date
DE112016004975B4 (de) 2022-08-04
DE112016004975T5 (de) 2018-07-19
CN108139247B (zh) 2020-02-07
WO2017073276A1 (ja) 2017-05-04
US10928231B2 (en) 2021-02-23
CN108139247A (zh) 2018-06-08
US20190120674A1 (en) 2019-04-25
JP2019045515A (ja) 2019-03-22
JPWO2017073276A1 (ja) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6502573B2 (ja) 熱式流量計
WO2015045435A1 (ja) 熱式流量計
CN107076590B (zh) 热式流量计
JP6114673B2 (ja) 熱式流量計
JP6463245B2 (ja) 熱式流量計
JP6114674B2 (ja) 熱式流量計
CN108139248B (zh) 热式流量计
JP6723075B2 (ja) 熱式流量計
WO2020202722A1 (ja) 物理量検出装置
JP6433408B2 (ja) 熱式流量計
JP6438707B2 (ja) 熱式流量計
JP6686126B2 (ja) 熱式流量計
JP6641010B2 (ja) 熱式流量計
JP2017083319A (ja) 熱式流量計
JP6654239B2 (ja) 熱式流量計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190320

R150 Certificate of patent or registration of utility model

Ref document number: 6502573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250