JP6494212B2 - 光走査装置及びそれを備える画像形成装置 - Google Patents

光走査装置及びそれを備える画像形成装置 Download PDF

Info

Publication number
JP6494212B2
JP6494212B2 JP2014163209A JP2014163209A JP6494212B2 JP 6494212 B2 JP6494212 B2 JP 6494212B2 JP 2014163209 A JP2014163209 A JP 2014163209A JP 2014163209 A JP2014163209 A JP 2014163209A JP 6494212 B2 JP6494212 B2 JP 6494212B2
Authority
JP
Japan
Prior art keywords
optical
scanned
imaging
mirror
scanning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014163209A
Other languages
English (en)
Other versions
JP2016038523A (ja
JP2016038523A5 (ja
Inventor
雄一 富岡
雄一 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014163209A priority Critical patent/JP6494212B2/ja
Priority to US14/818,189 priority patent/US9500981B2/en
Publication of JP2016038523A publication Critical patent/JP2016038523A/ja
Publication of JP2016038523A5 publication Critical patent/JP2016038523A5/ja
Application granted granted Critical
Publication of JP6494212B2 publication Critical patent/JP6494212B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、レーザービームプリンタ(LBP)やデジタル複写機、マルチファンクションプリンタ(MFP)等の画像形成装置が備える光走査装置に関する。
画像形成装置が備える光走査装置として、1つの偏向器により複数の感光体の感光面(被走査面)を同時に光走査することができるものが知られている。特許文献1には、偏向器から各被走査面に至る光路の夫々にミラーを配置することにより、各光路を折り曲げて小型化を図った光走査装置が記載されている。また、特許文献2には、複数のレンズ面を副走査方向に重ねて一体化した多段レンズを採用することで、レンズ枚数を削減した光操作装置が記載されている。さらに、特許文献3には、多段レンズを通過した後の光束を折り返すミラーの配置を工夫することにより、ミラー枚数を削減した光走査装置が記載されている。
特開2013−64857号公報 特開2014−48563号公報 特開2007−155838号公報
しかしながら、特許文献1乃至3に記載の光走査装置は、各被走査面に対する光路長が互いに等しい構成であるため、各光学部品の配置自由度が小さく、装置全体を小型化しつつ光束と結像レンズとの干渉を回避することが困難となる。
特許文献1に記載の光走査装置では、偏向器に近い側の感光体に対応する光路において2枚のミラーの間に結像レンズが配置されているため、光束との干渉を避けるように各部材を配置すると、装置全体の更なる薄型化が困難となってしまう。また、特許文献2に記載の光走査装置では、偏向器に近い側の感光体に対応する光路において、多段レンズと光束との干渉を避けるために3枚のミラーが配置されているため、装置全体での部品点数の削減が困難である。さらに、特許文献3に記載の光走査装置では、偏向器に近い側の感光体に対応する光路において、多段レンズと光束との干渉を避けるためにミラーの反射角度が大きく設定されているため、2枚のミラー同士の間隔が大きくなり装置が大型化してしまう。
本発明の目的は、部品点数を削減しつつ、副走査方向の高さを十分に低減した光走査装置及びそれを備える画像形成装置を提供することである。
上記目的を達成するための、本発明の一側面としての光走査装置は、第1及び第2の光源と、該第1及び第2の光源から出射した第1及び第2の光束の夫々を第1の偏向面で偏向して第1及び第2の被走査面を主走査方向に走査する偏向器と、該偏向器により偏向された前記第1及び第2の光束の夫々を前記第1及び第2の被走査面に集光する第1及び第2の結像光学系とを備え、前記第1及び第2の結像光学系は、前記第1及び第2の光束の夫々が入射する副走査方向に配列された第1及び第2の光学面を含む共通の多段レンズを有し、前記第2の被走査面は、前記第1の被走査面よりも前記偏向器に近い位置に配置されており、前記第1の偏向面から前記第1の被走査面に至る第1の光路長よりも、前記第1の偏向面から前記第2の被走査面に至る第2の光路長の方が長く、前記第2の光学面を通過した前記第2の光束を反射する第1のミラーと、該第1のミラーにより反射された前記第2の光束を反射する第2のミラーとを備え、前記第1の偏向面から前記第2の被走査面に至る光路において、前記第2の光束が反射される回数は2回であり、前記第2の光束の前記第1のミラーにおける第1の反射点及び前記第2のミラーにおける第2の反射点は、副走査方向において前記多段レンズの外形中心位置に対して同じ側に位置することを特徴とする。
本発明によれば、部品点数を削減しつつ、副走査方向の高さを十分に低減した光走査装置及びそれを備える画像形成装置を提供することができる。
本発明の実施例1に係る光走査装置の要部概略図(副走査断面図) 本発明の実施例1に係る光走査装置の要部概略図(主走査断面図) 本発明の実施例1に係る入射光学系の要部概略図(副走査断面図) 本発明の実施例1に係る主走査方向及び副走査方向の像面湾曲を示す図 本発明の実施例1に係るfθ特性を示す図 本発明の実施例1に係る走査線曲がりを示す図 本発明の実施例1に係る各像高におけるスポット形状を示す図 本発明の実施例1に係る主走査ジッターを示す図 本発明の実施例1に係る多段レンズの多段レンズ面の模式図 本発明の実施例1に係る結像レンズ7の形状を示す図 本発明の実施例2に係る光走査装置の要部概略図(副走査断面図) 本発明の実施例2に係る光走査装置の要部概略図(主走査断面図) 本発明の実施例2に係る入射光学系の要部概略図(副走査断面図) 本発明の実施例2に係る主走査方向及び副走査方向の像面湾曲を示す図 本発明の実施例2に係るfθ特性を示す図 本発明の実施例2に係る走査線曲がりを示す図 本発明の実施例2に係る各像高におけるスポット形状を示す図 本発明の実施例2に係る主走査ジッターを示す図 本発明の実施例2に係る結像レンズ7の形状を示す図 本発明の実施例3に係る光走査装置の要部概略図(副走査断面図) 本発明の実施形態に係る画像形成装置の要部概略図(副走査断面図)
以下、本発明の好ましい実施形態について図面を参照しながら説明する。なお、各図面は、便宜的に実際とは異なる縮尺で描かれている場合がある。また、各図面において、同一の部材については同一の参照番号を付し、重複する説明を省略する。以下の説明において、主走査方向(Y方向)とは、偏向器の回転軸(又は揺動軸)と光軸方向(X方向)とに垂直な方向(偏向器により被走査面が走査される方向)であり、副走査方向(Z方向)とは、偏向器の回転軸(又は揺動軸)に平行な方向である。また、主走査断面(XY断面)とは、副走査方向に垂直な断面(主走査方向と光軸とを含む断面)であり、副走査断面(ZX断面)とは、主走査方向に垂直な断面(副走査方向と光軸とを含む断面)である。
[実施例1]
図1〜図3は、本発明の実施例1に係る光走査装置100の要部概略図であり、図1はZX断面図(副走査断面図)を、図2はXY断面図(主走査断面図)を、図3はYZ断面図を、夫々示している。なお、図2では、ミラーにより折り返された光路を展開し、ミラーを省略している。また、各図では、光走査装置100の要部を拡大して示しており、その他の部材を省略している。
本実施例に係る光走査装置100は、4つの異なる色相(K,C,M,Y)に対応する画像情報を、4つの異なる被走査面(感光面)8A〜8Dの夫々に同時に記録するタンデム型の光走査装置である。光走査装置100は、光源1A〜1Dと、入射光学系LA〜LDと、偏向器5と、結像光学系SR,SLと、ミラーM1〜M´3と、を備える。本実施形態において、光走査装置100を構成する各部材は、偏向器5を挟んで左右に対称的に配置されており、左右の構成及び光学的作用は互いに同じであるため、以下、偏向器5の右側(+X側)の構成(走査ユニット)を中心に説明する。
図3に示すように、第1の光源1Aから出射した第1の光束Ra及び第2の光源1Bから出射した第2の光束Rbは、入射光学系LA,LBにより偏向器5に導光される。このとき、光束Ra,Rbは、偏向器5が有する複数の偏向面のうちの1つの偏向面(第1の偏向面)5aにて偏向される。ここで、図中のC0は、軸上光束の主光線が偏向されるときの偏向点(基準点)であり、P0は、偏向点C0を通り偏向器5の回転軸に垂直な面(基準面)である。偏向面5aに入射した光束Ra,Rbは、副走査断面内で偏向点C0にて交差して偏向される。以下、偏向点C0から各被走査面に至る光路の長さを、偏向面5aから各被走査面に至る光路長とする。
図1に示すように、結像光学系SRは結像レンズ6,7を有しており、夫々が光束Ra,Rbに対して共用されている。本実施例において、光路中で偏向器5に最も近い結像レンズ6は、基準面P0に対して副走査方向に対称な形状(光束Ra,Rbに対して同一形状)となっている。一方で、光路中で被走査面に最も近い結像レンズ7は、基準面P0に対して副走査方向に非対称な形状であり、基準面P0に対する上側の形状と下側の形状とが主走査断面内及び副走査断面内の両方で異なっている。
具体的に、結像レンズ7は、第1の光学面を含む第1の結像部7Aと第2の光学面を含む第2の結像部とが副走査方向に配列されて成る多段レンズである。このような多段レンズを採用することで、結像光学系SRを構成する結像レンズの枚数を削減し、光走査装置100の小型化とローコスト化を達成している。以下、結像光学系SRのうち光束Raに対応する部分を第1の結像光学系SAとし、光束Rbに対応する部分を第2の結像光学系SBとする。
偏向器5により偏向された光束Raは、結像レンズ6及び第1の結像部7Aにより集光され、ミラーM3により折り返されて第1の被走査面8A(K)に導かれる。また、偏向器5により偏向された光束Rbは、結像レンズ6及び第2の結像部7Bにより集光され、ミラーM1(第1のミラー)及びミラーM2(第2のミラー)により折り返されて第2の被走査面8B(C)に導かれる。本実施例では、偏向面5aから被走査面8Bに至る光路において、第1及び第2のミラー以外(ミラーM1及びミラーM2以外)のミラーが配置されていない。
また、本実施例では、結像光学系SRの光路中において、最も被走査面に近い結像レンズ7を全てのミラーよりも偏向器5側に配置している。言い換えると、光路中で結像レンズ7よりも被走査面側には他の結像レンズが配置されておらず、かつ最も偏向器5に近いミラーM1よりも被走査面側には結像レンズが配置されていない構成を採っている。これにより、結像レンズ7の主走査方向の長さを短くすることができ、光走査装置100の小型化が可能になる。
本実施例のように、全てのミラーを全ての結像レンズの後に配置し、全ての結像レンズを通過した後に光束を折り返す構成を採る場合は、折り返された各光束と各結像レンズとの干渉を回避する必要がある。しかし、上述した先行技術文献においては、各被走査面に対する光路長が互いに等しい構成であるため、装置全体の大型化及びミラー枚数の増加が問題となっていた。
そこで、本実施例においては、偏向器5から空間的に最も遠い被走査面8Aまでの第1の光路長よりも、偏向器5から空間的に最も近い被走査面8Bまでの第2の光路長の方が長くなるように、光走査装置100を構成している。これにより、各光路長が同一である場合と比較して、各結像レンズと各光束との干渉を回避するために必要なミラーM1の反射角度(ミラーM1により反射された光束Rbと基準面P0とのなす角度)を小さくすることができる。よって、本実施例では、結像レンズ7からの光束Rbを、各結像レンズとの干渉を避けつつミラーM1及びミラーM2のみで被走査面8Bに導光することができ、光走査装置100を構成する部品点数を削減することが可能になる。
また、図1に示すように、本実施例に係るミラーM1は、副走査方向において結像レンズ7の外形中心位置に対して上方に配置されており、結像レンズ7からの光束Rbを結像レンズ7の上方に向けて反射している。さらに、本実施例に係るミラーM2は、副走査方向において結像レンズ7の外形中心位置に対して上方に配置されており、ミラーM1からの光束Rbを、結像レンズ6と結像レンズ7との間を通るように反射して被走査面8Bに導光している。このように、第2の光路長を第1の光路長よりも長くしたことにより、光束RbのミラーM1における第1の反射点とミラーM2における第2の反射点とが、副走査方向において結像レンズ7の外形中心位置に対して同じ側に位置するように構成することができる。よって、ミラーM2をより基準面P0に近い位置に配置することができ、光走査装置100の副走査方向の高さを十分に低減することが可能になる。
なお、本実施例では、ミラーM2により反射された光束Rbが結像レンズ6と結像レンズ7との間を通るように構成されているが、これに限られるものではない。すなわち、偏向器5から結像レンズ7に至る光路とミラーM2から被走査面8Bに至る光路とが、副走査断面内において互いに交差するように構成しさえすれよい。この構成によれば、各結像レンズの下方を通過する光束が存在しなくなるため、各光学部品を保持する光学箱の構成を簡素化することができる。
図2Aは、光源1Aから被走査面8Aに至る光路を展開した主走査断面図であり、図2Bは、光源1Bから被走査面8Bに至る光路を展開した主走査断面図である。これらの図に示すように、本実施例では、結像光学系SA及びSBの夫々に対応する光路長を互いに異ならせることで、各光学部品の配置自由度を高めている。ここで、短い方の光路長をT1、長い方の光路長をT2、とするとき、以下の条件式(1)を満足するように構成することが望ましい。
25≦T2−T1≦65 (1)
条件式(1)の下限値を下回ると、光束Rbと結像レンズ7との干渉を回避しつつ光走査装置100の高さを抑えることが困難になってしまう。また、条件式(1)の上限値を上回ると、結像レンズ7における第1の結像部7Aと第2の結像部7Bとの形状差を大きくすることが必要となり、夫々を一体成型することが困難となってしまう。さらに、部品点数を削減しつつ光走査装置100の高さを抑えるには、以下の条件式(1a)を満足することがより好ましい。
30<T2−T1<50 (1a)
本実施例では、結像光学系SAに対応する光路長Ta=T1=155.733mm、結像光学系SBに対応する光路長をTb=T2=197.000mm、であり、T2−T1=41.267mmとなるため、条件式(1)及び(1a)を満たしている。
このように、各光路長を互いに異ならせつつ、結像レンズ7における第1の結像部7Aと第2の結像部7Bとの形状差を小さくするためには、偏向面5aに入射する各光束の主走査断面内での収束度(結像光学系の収束度)を適切に設定することが望ましい。主走査断面内において、結像光学系の後側主平面から被走査面までの光学的な距離(光路長)をSk(mm)、結像光学系の焦点距離をf(mm)、とするとき、結像光学系の収束度はm=1−Sk/fとして表される。偏向面5aに入射する光束の主走査断面内での状態は、この収束度に応じて異なり、m=0のときは平行光束、m<0のときは発散光束、m>0のときは収束光束、となる。
ここで、短い方の光路に対応する結像光学系の収束度をm1、長い方の光路に対応する結像光学系の収束度をm2、とするとき、以下の条件式(2)を満足するように構成することが望ましい。
0.15<m1−m2<0.50 (2)
条件式(2)の下限値を下回ると、光路長差を生じさせるために第1の結像部7Aと第2の結像部7Bとの形状差を大きくすることが必要となり、夫々を一体成型することが困難となってしまう。また、条件式(2)の上限値を上回ると、収束度m1及びm2のいずれか一方の絶対値が大きくなり、偏向器5が有する各偏向面の面偏心(シフト偏心誤差)に起因する主走査方向のジッター(主走査ジッター)が大きく発生してしまう。さらに、部品点数を削減しつつ光走査装置100の高さを抑えるには、以下の条件式(2a)を満足することがより好ましい。
0.20<m1−m2<0.40 (2a)
ここで、主走査断面内において、結像光学系SAの後側主平面から被走査面8Aまでの光路長をSk1(mm)、結像光学系SAの焦点距離をf1(mm)、とする。また、主走査断面内において、結像光学系SBの後側主平面から被走査面8Bまでの光路長をSk2(mm)、結像光学系SBの焦点距離をf2(mm)、とする。そして、結像光学系SAの第1の収束度をm1=1−Sk1/f1、結像光学系SBの第2の収束度をm2=1−Sk2/f2、と定義する。このとき、本実施例においては、結像光学系SAの収束度ma=m1=0.047、結像光学系SBの収束度mb=m2=−0.254、であり、m1−m2=0.30となるため、条件式(2)及び(2a)を満たしている。また、|m1|及び|m2|のうち大きい方をmとするとき、以下の条件式(3)を満足するように構成することが望ましい。
0.2<m<0.5 (3)
条件式(3)の下限値を下回ると、光路長差を生じさせるために第1の結像部7Aと第2の結像部7Bとの形状差を大きくすることが必要となり、夫々を一体成型することが困難となってしまう。また、条件式(3)の上限値を上回ると、偏向器5が有する各偏向面のシフト偏心誤差に起因する主走査ジッターが大きく発生してしまう。さらに、以下の条件式(3a)を満足することがより好ましい。
0.22<m<0.4 (3a)
本実施例では、m=|m2|=0.254であるため、条件式(3)及び(3a)を満たしている。
また、走査像高をY(mm)、その走査像高Yに対応する走査画角をθ(rad)、とするとき、結像光学系SRの走査特性(Kθ特性)はY=Kθなる式で表される。このとき、走査像高Yに対する走査画角θの比である係数KをKθ係数とする。ここで、短い方の光路に対応する結像光学系のKθ係数をK1、長い方の光路に対応する結像光学系のKθ係数をK2、とするとき、以下の条件式(4)を満足するように構成することが望ましい。
0.65<K1/K2<0.85 (4)
条件式(4)の下限値を下回ると、Kθ特性及び主走査方向の像面湾曲の補正を両立することが困難となってしまう。また、条件式(4)の上限値を上回ると、光路長差を生じさせるために第1の結像部7Aと第2の結像部7Bとの形状差を大きくすることが必要となり、夫々を一体成型することが困難となってしまう。第1の結像部7Aと第2の結像部7Bとの形状差を小さくしつつ、良好な結像性能を得るためには、以下の条件式(4a)を満足することがより好ましい。
0.70<K1/K2<0.83 (4a)
本実施例においては、結像光学系SAのKθ係数Ka=K1=132.0(mm/rad)、結像光学系SBのKθ係数Kb=K2=167.0(mm/rad)、であり、K1/K2=0.79となるため、条件式(4)及び(4a)を満たしている。
図3に示すように、本実施例に係る入射光学系LA,LBの夫々は、開口絞り2A,2Bと、カップリングレンズ3A,3Bと、シリンドリカルレンズ(シリンダレンズ)4A,4Bと、を備えている。入射光学系LA,LBは、副走査断面内において偏向面5aに対して斜め方向から光束Ra,Rbを入射させる副走査斜入射光学系である。このような副走査斜入射光学系を採用することにより。各偏向面の副走査方向におけるサイズの大型化を抑制しつつ、各光束を分離して偏向することが可能になる。
このとき、基準面P0に対する斜入射角が大きすぎると、波面収差の捩れによるスポットの崩れを補正することが困難となり、斜入射角が小さすぎると各光路の分離がし難くなる。そこで、本実施例では、入射光学系LA,LBの斜入射角の夫々をαsA=−3.0°,αsB=3.0°とし、斜入射角の絶対値が両方とも3.0°となるように設定することにより、スポット崩れの補正や各光路の分離を容易にしている。
また、本実施例では、光源として半導体レーザーを採用しているため、光源1A,1Bから出射する光束Ra,Rbは発散光束であり、入射光学系LA,LBは、副走査断面内においては光束Ra,Rbを略平行光に変換している。そして、主走査断面内においては、カップリングレンズ3Aにより光束Raを弱収束光束(m=0.047に設定)に変換し、カップリングレンズ3Bにより光束Rbを弱発散光束(m=−0.254に設定)に変換している。このとき、カップリングレンズ3A,3Bの夫々の出射面をアナモフィック面とし、夫々の主走査断面内での曲率半径を互いに異ならせることで、各収束度を所望の値に設定している。
開口絞り2A,2Bは、夫々に対応する被走査面8A,8B上でのスポット径(スポットのピーク光量の1/eスライス径)が等しくなるように、副走査方向において互いに異なる開口径を有している。また、シリンドリカルレンズ4A,4Bは、開口絞り2A,2Bにより成形され(光量が制限され)、カップリングレンズ3A,3Bにより集光された光束Ra,Rbを、副走査断面内のみにおいて偏向面5aに集光し、主走査方向に長い線像を形成している。このとき、主走査断面内においては、入射光学系LA,LBの光軸(又は偏向面5aに入射する光束Ra,Rbの主光線)と結像光学系SA,SBの光軸とのなす角度がα=90°となっている。
本実施例に係る入射光学系LA,LBの夫々は、開口絞り2A,2Bに設けられた開口の形状及びカップリングレンズ3A,3Bの出射面の形状以外は、互いに同じ構成となっており、光源1A,1Bから偏向面5aまでの各光路長も互いに同じである。このように、入射光学系LA,LBを構成する各光学部品の配置を共通化することにより、各部品を保持する保持部の種類及び組み立て工具の種類を削減し、生産性を向上させることができる。
本実施例に係る偏向器5は、外接円半径20mmの4つの偏向面を有する回転多面鏡(ポリゴンミラー)であり、不図示の駆動部(モータ)が発生させる駆動力により、各図に示す矢印A方向に一定速度で回転している。図2に示すように、偏向器5の回転により、被走査面8A,8Bの夫々を矢印B方向に光走査することができる。なお、図1に示したように、偏向器5の偏向面5aにより光束Ra,Rbが偏向されているとき、偏向器5に対して左側(−X側)の走査ユニットの光源1C,1Dから出射した光束R´a,R´bは、偏向面5aとは異なる偏向面により偏向される。そして、上述した結像光学系SRと同じ光学的作用を有する結像光学系SLにより、被走査面8C(M),8D(Y)に導かれる。この構成により、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(Bk)の4色の画像を同時に形成することが可能になる。
次に、結像光学系の構成について詳細に説明する。なお、結像レンズ7以外については、結像光学系SBの構成は結像光学系SAと同様であるため、以下では結像光学系SAを中心に説明する。結像光学系SAは、偏向器5によって偏向された光束Raを被走査面8A上に集光し、スポット像を形成している。また、結像光学系SAは、副走査断面内において、偏向面5aと被走査面8Aとが光学的に共役関係となるように構成されている。すなわち、結像光学系SAは、副走査断面内における各偏向面の倒れ角の相違(面倒れ)による影響の補正(面倒れ補正)を行う面倒れ補正光学系を成している。
以下の表1〜4に、本実施例に係る光走査装置100の諸元値、光学配置、及び各結像レンズの面形状を示す。表1は、入射光学系LA及び結像光学系SAの諸元値及びレンズ配置を示し、表2は、入射光学系LA及び結像光学系SAのレンズ形状を示している。また、表3は、入射光学系LB及び結像光学系SBの諸元値及びレンズ配置を示し、表4は入射光学系LB及び結像光学系SBのレンズ形状を示している。なお、表1及び表3の光学配置の欄では、被走査面における主走査方向での画像中心(軸上像高)に向かう光束Ra,Rbの各ミラーでの反射点の座標を示している。
Figure 0006494212
Figure 0006494212
Figure 0006494212
Figure 0006494212
ここで、結像光学系SRの光軸方向において、被走査面8Bから第1のミラーM1の反射点までの距離をLD1、被走査面8Aから第1のミラーM1の反射点までの距離をLD2、とする。このとき、本実施例ではLD1>LD2なる条件を満足するように、具体的にはLD1=46.886(mm),LD2=20.114(mm)となるように各部材を配置している。
特許文献1乃至3に記載の光走査装置では、各被走査面に対する光路長を互いに等しくするために、LD1<LD2となるように各部材を配置する必要があったため、光束Rbと結像レンズ7との干渉を回避しつつ装置全体を小型化することが困難であった。対して、本実施例では、結像光学系SBに対応する光路長を結像光学系SAに対応する光路長よりも長くすることで、LD1>LD2となるように構成することができる。すなわち、第1のミラーM1での光束Rbの反射点を、被走査面8Bよりも被走査面8Aに近づけることができるため、上記課題を解決することができる。
また、結像光学系SRの光軸方向において、結像レンズ7の出射面から第1のミラーM1の反射点までの距離をLM1、第1のミラーM1の反射点から被走査面8Aまでの距離をLM2、とする。このとき、本実施例ではLM1>LM2なる条件を満足するように、具体的にはLM1=30.503(mm),LM2=20.114(mm)となるように各部材を配置している。これにより、第1ミラーの反射点を結像レンズ7の出射面よりも被走査面8Aに近づけることができるため、結像レンズ7と光束Rbとの干渉を回避しつつ、装置全体を小型化することが可能になる。
なお、本実施例に係るシリンドリカルレンズ4A,4Bの出射面は、回折格子が形成された回折面となっている。シリンドリカルレンズ4,4Bは、プラスチック材料を用いた射出成型により形成されており、環境変動に起因する屈折パワーの変化を半導体レーザーの波長変化に起因する回折パワーの変化により補償する温度補償光学系となっている。ここで、回折次数をM、設計波長をλ、とするとき、シリンドリカルレンズ4A,4Bの回折面は位相関数φ=2πM/λ(C3Z)により定義される。なお、本実施例では1次回折光を用いているため回折次数M=1であり、設計波長λ=790nmであり、Zは図3におけるZ方向の位置、C3は係数である。
本実施例に係る結像レンズ6,7A,7Bの入射面及び出射面の母線形状(主走査断面内での形状)は、いずれも12次までの関数で表される非球面形状となっている。ここで、各レンズ面(光学面)と各光軸との交点を原点とし、光軸方向の軸をX軸、主走査断面内においてX軸と直交する軸をY軸、とするとき、母線形状Xは以下の式で表される。
Figure 0006494212
但し、Rは主走査断面内での曲率半径(母線曲率半径)であり、K,B4,B6,B8,B10,B12は非球面係数である。なお、非球面係数B4,B6,B8,B10,B12は、光走査装置100における光軸に対して光源とは反対側(図2における+Y側)と光源側(図2における−Y側)とにおいて、互いに数値を異ならせてもよい。これにより、母線形状を光軸に対して主走査方向に非対称な形状とすることができる。表2及び4では、光軸に対して光源とは反対側での数値をB4U,B6U,B8U,B10U,B12Uとし、光軸に対して光源側での数値をB4L,B6L,B8L,B10L,B12Lとし、互いに同じ値に設定している。
また、本実施例に係る結像レンズ6,7A,7Bの入射面及び出射面の子線形状(副走査断面内での形状)は、以下の式で表される。
Figure 0006494212
なお、子線形状Sは、主走査方向における各位置(各像高)での母線上の面法線を含む主走査断面に垂直な断面内での面形状を示しており、式におけるMj_kは非球面係数である。また、r´は、主走査方向において光軸からYだけ離れた位置における副走査断面内での曲率半径(子線曲率半径)を示しており、以下の式で表される。
Figure 0006494212
但し、rは光軸上での子線曲率半径であり、E2,E4,E6,E8,E10は子線変化係数である。なお、非球面係数E2〜E10を光軸に対して光源側とその反対側とで異ならせることで、子線形状の非球面量を主走査方向において非対称に設定することができる。また、子線形状Sの式におけるZの1次の項は、副走査断面内でのレンズ面のチルト量(子線チルト量)に寄与する項である。よって、非球面係数M0_1〜M16_1を、光軸に対して光源とは反対側での数値M0_1U〜M16_1Uと光軸に対して光源側での数値M0_1L〜M16_1Lとで異ならせることで、子線チルト量を主走査方向において非対称に変化させることができる。
本実施例に係る結像レンズ7については、表2及び4に示したように、母線形状及び子線形状(子線曲率及び子線チルト量)を、第1の結像部7Aと第2の結像部とで異ならせている。このように、結像レンズ7が有する多段レンズ面を構成する第1の光学面と第2の光学面とに係る非球面係数を互いに異ならせ、それぞれの面形状を最適化することで、光路長が互いに異なる結像光学系SA,SBの光学特性の夫々を補正することができる。
本実施例では、第1の結像部7Aが含む第1の光学面と第2の結像部7Bが含む第2の光学面とを、表2及び表4に示すように互いに異なる表現式で表される面形状とすることで、結像光学系SA,SBの夫々において良好な結像性能を得ている。ただし、互いに異なる光路長の夫々に対応させるために、第1の結像部7Aと第2の結像部との形状差が大きくし過ぎると、夫々を一体成型することが困難になってしまう。
そこで、本実施例では、母線曲率半径R及び非球面係数Kの値を、第1の結像部7Aと第2の結像部7Bとについて等しくすることで、光軸近傍(光軸上及びその近傍)における主走査方向の形状が同一となるように構成している。これにより、第1の結像部7A及び第2の結像部7Bの形状差を低減しつつ、上述した条件式(2)及び(2a)を満たすように構成することができ、良好な結像性能を得ることができる。なお、厳密には光軸近傍における主走査方向の形状を同一としなくてもよく、略同一となるように構成すれば同様の効果を得ることができる。また、本実施例では、各レンズ面の形状を上記の表現式(函数)によりを定義しているが、これに限らず、他の表現式によって定義してもよい。
図4は、本実施例に係る主走査方向及び副走査方向における像面湾曲(デフォーカス特性)を表すグラフであり、図4(a)は光束Raに対応し、図4(b)は光束bに対応している。なお、本実施例では、画像の有効幅(被走査面における有効走査領域の幅)はW=210mmである。図4(a)に示すように、結像光学系SAに係る主走査方向の像面湾曲はdm=1.8mm、副走査方向の像面湾曲はds=1.1mmである。また、図4(b)に示すように、結像光学系SBに係る主走査方向の像面湾曲はdm=2.0mm、副走査方向の像面湾曲はds=1.6mmである。これより、結像光学系SA,SBの両方について像面湾曲が良好に補正されていることが分かる。
図5は、本実施例に係るfθ特性dy1を表すグラフであり、図5(a)は光束Raに対応し、図5(b)は光束bに対応している。ここでのfθ特性dy1は、被走査面において実際に光束が到達する位置(像高)とその設計値(理想像高)との差分を示している。図5(a)に示すように、結像光学系SAについては最大で0.23mmのズレが生じており、図5(b)に示すように、結像光学系SBについては最大で0.26mmのズレが生じている。そこで、本実施例では、画像クロック(光源の発光タイミング)を各像高に合わせて変化させることにより、fθ特性dy1のズレを低減し、主走査方向の色ずれを抑制している。なお、fθ特性の補正不足は画像クロックの変更により電気的に補正が可能ではあるが、fθ特性のズレが大きくなりすぎると、主走査方向のスポット径自体が変化してしまう。しかし、図5に示したように、本実施例ではスポット径自体を大きく変化させてしまうほどのfθ特性のズレは発生していないため、画像の濃度ムラの発生を抑制することができている。
図6は、本実施例に係る走査線曲がりdzを表すグラフであり、図6(a)は光束Raに対応し、図6(b)は光束bに対応している。ここでの走査線曲がりdzは、各像高での副走査方向の結像位置と画像中心(軸上像高)での副走査方向の結像位置との差分を示している。図6(a)に示すように、結像光学系SAについては最大で7μmのズレが発生しており、図6(b)に示すように、結像光学系SBについては最大で6μmのズレが発生しているが、いずれも形成画像に影響を与えるレベルのものではない。
図7は、本実施例に係る各像高におけるスポットの断面形状を示した図であり、図7(a)は光束Raに対応し、図7(b)は光束bに対応している。図7では、各像高Yにおいて、スポットのピーク光量の2%、5%、10%、13.5%、36.8%、50%の夫々でスライスした断面でのスポット形状を示している。通常、副走査斜入射光学系を採用した光走査装置では、波面収差の捩れによりスポットが崩れる現象が見られる。しかし、本実施例においては、各レンズ面のパワー配置や結像レンズ7の入射面及び出射面の子線チルト量などを最適化することで、走査線曲がり及び波面収差の捩れの補正を両立している。
これにより、図7に示すように、全像高に渡って崩れの少ない良好なスポット形状を得ることができる。ただし、本実施例では、結像部7Aと結像部7Bとの面形状の差を小さく抑えるために、軸外像高でのコマ収差の発生を画像に対する影響がない範囲で許容している。そのため、図7(b)に示すように、像高Y=−105,−50,50,105では、主走査方向のサイドローブが大きくなっている。しかし、結像光学系SBに対応する被走査面(感光ドラム)の色相はシアンであるため、ブラックの感光ドラムに対応する結像光学系SAと比較して画像への影響が小さくなっている。
図8は、偏向面のシフト偏心誤差が10μmであるとしたときの主走査ジッターdy2を表した図であり、図8(a)は光束Raに対応し、図8(b)は光束bに対応している。図8(a)に示すように、結像光学系SAについての主走査ジッターは最大でも0.8μmであり、図8(b)に示すように、結像光学系SBについての主走査ジッターは最大でも5.1μmであるため、問題のないレベルまで抑えることができている。
本実施例に係る結像レンズ7は、副走査方向の外形中心位置が基準面P0面に一致するよう配置されており、その外形中心位置が第1の結像部7Aと第2の結像部7Bとの境界部となるよう構成されている。また、第1の結像部7Aの光軸を基準面P0に対して副走査方向下方に2.24mmだけシフトさせた位置に設定し、第2の結像部7Bの光軸を基準面P0に対して副走査方向上方に2.24mmだけシフトさせた位置に設定している。この構成により、第1及び第2の光学面を定義する表現式の基準となる各光軸の位置を、光束Ra,Rbの入射位置の近傍に配置することができるため、面形状及び結像性能の対応がとりやすくなり、成型時の面形状の評価を容易にすることができる。
ここで、第1の結像部7A及び第2の結像部7Bにおいて、各光軸との交点を面頂点とする。このとき、表1及び表3に示したように、第1の結像部7Aの入射面及び出射面の各面頂点の位置と第2の結像部7Bの入射面及び出射面の各面頂点の位置とは、主走査方向及び光軸方向において互いに一致している。この構成により、第1の結像部7Aと第2の結像部7Bとの光軸近傍における形状差を最小限に抑えることができる。なお、ここでの一致とは、略一致を含んでおり、厳密な一致でなくてもこの同様の効果を得ることができる。
図9は、結像レンズ7の出射面(多段レンズ面)における境界部について説明するための模式図(副走査断面図)である。なお、図9では、説明を分かりやすくするために、実際の縮尺や形状とは異なるもの(拡大及び強調したもの)を示している。本実施例においては、副走査断面内において、第1の結像部7Aが含む第1の光学面及び第2の結像部7Bが含む第2の光学面の形状(副走査断面内での曲率及び子線チルト量)が、主走査方向における有効領域の全域で互いに異なっている。よって、主走査方向における各像高での副走査断面内において、境界部における第1の光学面及び第2の光学面の出入り量は互いに異なり、夫々の境界部は不連続点となる。すなわち、図9に示すように、第1の光学面と第2の光学面とは、境界部において互いに光軸方向(X方向)にずれており、段差が生じている。
図10(a)は、結像レンズ7が有する第1の光学面の母線形状と第2の光学面の母線形状との差を示した図である。図10(a)において、縦軸は母線形状差を表しており、この形状差の符号が正のときは、光軸方向において第1の結像部7Aよりも第2の結像部7Bの方が偏向器から遠い位置にあることを示している。また、形状差の符号が負のときは、第1の結像部7Aよりも第2の結像部7Bの方が偏向器に近い位置にあることを示している。本実施例では、結像レンズ7の入射面及び出射面を、光軸上及びその近傍において結像部7Aと結像部7Bとの母線形状の差がゼロとなるように、夫々の配置及び面形状を設定している。また、主走査方向において光軸から端部に向かうに従って、光路長が短い側の第1の光学面に対して、光路長が長い側の第2の光学面の母線形状が偏向器5から離れていくように変化させている。
具体的には、第1の結像部7A及び第2の結像部7Bの光軸上での形状差をX(0)とするとき、入射面の形状差X(0)=0(mm)、出射面の形状差X(0)=0(mm)となるように構成している。次に、主走査方向において光軸から離れた軸外の座標として、例えば−40,−30,+30,40(mm)を考えると、各座標での第1の結像部7A及び第2の結像部7Bの形状差は次に示すようになる。すなわち、入射面の各座標での形状差は、X(−40)=900(mm),X(−30)=245(mm),X(+30)=245(mm),X(+40)=825(mm)となる。また、出射面の各座標での形状差は、X(−40)=1189(mm),X(−30)=362(mm),X(+30)=362(mm),X(+40)=1110(mm)となる。
上述したように、本実施例では、光軸上での形状差よりも軸外での形状差の方が大きくなるように、第1の結像部7A及び第2の結像部7Bの形状を設定している。このように母線形状の差を変化させることで、光路長の異なる結像光学系SA,SBの両方について良好な光学性能を得るための母線形状差を最小限に留めることができ、結像レンズ7の成型を容易にしている。なお、厳密には光軸近傍における母線形状の差をゼロとしなくてもよく、略ゼロとなるように構成すれば同様の効果を得ることができる。
ここで、結像レンズ7の光線使用領域(有効領域)の全域において、第1の光学面と第2の光学面との面形状差の最大値をXmax(mm)とするとき、以下の条件式(5)を満足するように構成することが望ましい。
0.1≦|Xmax|≦5.0 (5)
条件式(5)の上限値を上回ると、射出成形時に結像レンズ7が副走査断面内において反ってしまい、走査線湾曲や波面収差が劣化してしまう。また、条件式(5)の下限値を下回ると、結像光学系SAと結像光学系SBとの主走査像面やfθ特性などの結像性能を両立することが困難になる。さらに、以下の条件式(5a)を満足することがより好ましい。
0.2≦|Xmax|≦3.0 (5a)
本実施例では、入射面のXmax=0.90(mm),出射面のXmax=1.19(mm)であるため、いずれも条件式(5)及び(5a)を満たしている。なお、上述したように、結像部7A,7Bの光軸近傍での形状を主走査断面内において略一致させた場合でも、被走査面上にピントを合わせられるように、結像光学系SAの収束度maと結像光学系SBの収束度mbとを互いに異ならせている。
図10(b)は、第1の結像部7Aの肉厚と第2の結像部7Bの肉厚との差を示した図である。ここでの肉厚とは、結像レンズ7の主走査方向の各位置(各像高)での入射面から出射面までの間隔を示している。本実施例では、図10(b)に示すように、光軸近傍での肉厚差はゼロであり、主走査方向において光軸上から端部に向かうに従って、結像部7Aの肉厚よりも結像部7Bの肉厚の方が厚くなっている。このように肉厚差を変化させることで、主走査方向において光軸上から端部に向かうに従い、結像部7Bの負のパワーを結像部7Aに対して相対的に強くする効果を得ている。この効果により、最小限の形状差を付けるだけで、光路長の異なる結像光学系SA,SBの両方について主走査方向の像面湾曲を良好に補正することができる。なお、厳密には光軸近傍での肉厚差をゼロとしなくてもよく、略ゼロとなるように構成すれば同様の効果を得ることができる。
また、結像レンズ7の有効領域の全域において、結像部7Aと結像部7Bとの肉厚差の最大値をdmax(mm)とするとき、以下の条件式(6)を満足するように構成することが望ましい。
0.05≦|dmax|≦5.0 (6)
条件式(6)の上限値を上回ると、射出成形時に結像レンズ7が副走査断面内において反ってしまい、走査線湾曲や波面収差が劣化してしまう。また、条件式(6)の下限値を下回ると、結像光学系SAと結像光学系SBとの主走査像面やfθ特性などの結像性能を両立することが困難になる。さらに、以下の条件式(6a)を満足することがより好ましい。
0.1≦|dmax|≦4.0 (6a)
本実施例では、dmax=0.29(mm)であるため、いずれも条件式(6)及び(6a)を満たしている。
図10(c)は、結像部7Aと結像部7Bとの境界部における段差を示した図である。図10(c)において、縦軸は境界部における段差、すなわち境界部における第1の光学面と第2の光学面との光軸方向でのズレ(出入り量の差)を示している。この段差の符号が正のときは、光軸方向において第1の結像部7Aよりも第2の結像部7Bの方が偏向器から遠い位置にあることを示している。また、段差の符号が負のときは、第1の結像部7Aよりも第2の結像部7Bの方が偏向器に近い位置にあることを示している。図10(c)に示すように、結像レンズ7の光線使用領域の全域において段差は1400μm以下となっている。よって、結像レンズ7の射出成形時において段差に起因して生じる、段差近傍での熱変形応力によるレンズ面の変形及びクセの発生を、問題のないレベルに抑えることが可能となる。
さらに、本実施例において、長い方の光路に対応する結像光学系の副走査断面内での結像倍率をβsとするとき、以下の条件式(7)を満足するように構成することが望ましい。
2.5<|βs|<5.0 (7)
条件式(7)の上限値を上回ると、面倒れによるピッチムラの劣化や波面収差の補正不足が発生してしまう。また、条件式(7)の下限値を下回ると、光路中で被走査面に最も近い結像レンズ7が被走査面に近づき過ぎてしまう。よって、結像光学系SAと結像光学系SBとに対応する光路長を互いに異ならせても、光束Rbと結像レンズ7との干渉を回避するのが困難になってしまう。さらに、以下の条件式(7a)を満足することがより好ましい。
2.7<|βs|<4.0 (7a)
本実施例では、結像光学系SAの副走査断面内での結像倍率βa=−2.29(倍),結像光学系SBの副走査断面内での結像倍率βb=−3.07(倍)であり、βs=βbであるため、いずれも条件式(7)及び(7a)を満たしている。
以上、本実施例に係る光走査装置100によれば、部品点数を削減しつつ、副走査方向の高さを十分に低減することができる。
[実施例2]
図11〜図13は、本発明の実施例2に係る光走査装置200の要部概略図であり、図11はZX断面図(副走査断面図)を、図12はXY断面図(主走査断面図)を、図13はYZ断面図を、夫々示している。前述した実施例1に係る光走査装置100では、偏向器5により基準面P0よりも上側(+Z側)に偏向反射された光束Rbを被走査面8Bに導光していた。対して、本実施例に係る光走査装置200では、偏向器5により基準面P0よりも下側(−Z側)に偏向反射された光束Rbを被走査面8Bに導光している点で、実施例1に係る光走査装置100とは異なる。
すなわち、本実施例では、図11に示すように、副走査方向において結像レンズ7の外形中心位置に対して下方に配置されたミラーM1により、結像レンズ7からの光束Rbを結像レンズ7の下方に向けて反射している。さらに、副走査方向において結像レンズ7の外形中心位置に対して下方に配置されたミラーM2により、ミラーM1からの光束Rbを反射して被走査面8Bに導光している。この構成により、本実施例では、結像光学系SAと結像光学系SBとの光路長の差を、実施例1よりも小さくしつつ、光束Rbと結像レンズ7との干渉の回避及び装置の小型化を両立することができる。
本実施例では、結像光学系SAに対応する光路長Ta=T1=161.114mm、結像光学系SBに対応する光路長をTb=T2=197.000mm、であり、T2−T1=35.886mmとなるため、条件式(1)及び(1a)を満たしている。また、結像光学系SAの収束度ma=m1=0.008、結像光学系SBの収束度mb=m2=−0.254、であり、m1−m2=0.26となるため、条件式(2)及び(2a)を満たしている。
このように、本実施例では、実施例1と比較して光路長の差が小さいため、収束度の差についても実施例1と比較して小さくすることができる。これにより、結像光学系SAの収束度を0に近い小さな値(ma=0.008≒0)とした場合にも、偏向器5に入射する光束を主走査断面内において略平行光束にすることができる。よって、本実施例に係る結像光学系SAによれば、大きな収束度を有することに起因して生じる主走査ジッターを抑制することができる。
また、本実施例では、m=|m2|=|mb|=0.254であるため、条件式(3)及び(3a)を満たしている。さらに、結像光学系SAのKθ係数Ka=K1=136.5(mm/rad)、結像光学系SBのKθ係数Kb=K2=167.0(mm/rad)、であり、K1/K2=0.82となるため、条件式(4)及び(4a)を満たしている。
実施例1と同様に、以下の表5〜8に、本実施例に係る光走査装置200の諸元値、光学配置、及び各結像レンズの面形状を示す。
Figure 0006494212
Figure 0006494212
Figure 0006494212
Figure 0006494212
本実施例においても、実施例1と同様に、LD1>LD2なる条件を満足するように、具体的にはLD1=58.873(mm),LD2=8.127(mm)となるように各部材を配置している。また、LM1>LM2なる条件を満足するように、具体的にはLM1=42.490(mm),LM2=8.127(mm)となるように各部材を配置している。さらに、表6及び表8に示すように、実施例1と同様に本実施例においても、第1の結像部7Aと第2の結像部7Bとの面形状に対応する非球面係数を互いに異ならせている。
ここで、本実施例においては、光路長差が実施例1と比較して小さいため、結像レンズ7における第1の結像部7Aと第2の結像部7Bとの形状差を、実施例1よりも低減することができる。また、実施例1では、第1の結像部7Aと第2の結像部7Bとの光軸近傍における主走査方向の形状を略同一としているのに対して、本実施例では、光軸近傍における副走査方向の形状についても、境界部を挟んで略上下対称形状としている。具体的には、母線曲率半径R、非球面係数K、及び入射面の子線曲率半径rの夫々の値を、第1の結像部7Aと第2の結像部7Bとについて等しくしている。さらに、光軸上での子線チルト量を示す非球面係数m0_1を、第1の結像部7Aと第2の結像部7Bとについて絶対値が等しくかつ符号を反転させた値としている。
図14(a)は、本実施例に係る主走査方向及び副走査方向における像面湾曲を表すグラフである。図14(a)に示すように、結像光学系SAに係る主走査方向の像面湾曲はdm=1.9mm、副走査方向の像面湾曲はds=1.6mmである。また、図14(b)に示すように、結像光学系SBに係る主走査方向の像面湾曲はdm=2.0mm、副走査方向の像面湾曲はds=1.6mmである。これより、結像光学系SA,SBの両方について像面湾曲が良好に補正されていることが分かる。
図15は、本実施例に係るfθ特性dy1を表すグラフである。図15(a)に示すように、結像光学系SAについては最大で0.16mmのズレが生じており、図15(b)に示すように、結像光学系SBについては最大で0.26mmのズレが生じている。本実施例においても、スポット径自体を大きく変化させてしまうほどのfθ特性のズレは発生していないため、画像の濃度ムラの発生を抑制することができる。
図16は、本実施例に係る走査線曲がりdzを表すグラフである。図16(a)に示すように、結像光学系SAについては最大で7μmのズレが発生しており、図16(b)に示すように、結像光学系SBについては最大で6μmのズレが発生しているが、いずれも形成画像に影響を与えるレベルのものではない。
図17は、本実施例に係る各像高におけるスポットの断面形状を示した図である。本実施例においても、各レンズ面のパワー配置や結像レンズ7の入射面及び出射面の子線チルト量などを最適化することで、走査線曲がり及び波面収差の捩れの補正を両立している。これにより、全像高に渡って崩れの少ない良好なスポット形状を得ることができる。
図18は、偏向面のシフト偏心誤差が10μmであるとしたときの主走査ジッターdy2を表した図である。図18(a)に示すように、結像光学系SAについての主走査ジッターは最大でも0.8μmであり、図18(b)に示すように、結像光学系SBについての主走査ジッターは最大でも5.1μmであるため、問題のないレベルまで抑えることができている。
図19(a)は、結像レンズ7が有する第1の光学面の母線形状と第2の光学面の母線形状との差を示した図である。本実施例においても、結像レンズ7の入射面及び出射面を、光軸上及びその近傍において結像部7Aと結像部7Bとの母線形状の差が略無い状態となるように、夫々の配置及び面形状を設定している。また、主走査方向において光軸から端部に向かうに従って、光路長が短い側の第1の光学面に対して、光路長が長い側の第2の光学面の母線形状が偏向器5から離れていくように変化させている。また、本実施例では、入射面のXmax=0.28(mm),出射面のXmax=0.44(mm)であるため、いずれも条件式(5)及び(5a)を満たしている。
図19(b)は、第1の結像部7Aの肉厚と第2の結像部7Bの肉厚との差を示した図である。本実施例においても、光軸近傍での肉厚差は略ゼロであり、主走査方向において光軸上から端部に向かうに従って、結像部7Aの肉厚よりも結像部7Bの肉厚の方が厚くなっている。また、本実施例では、dmax=0.17(mm)であるため、いずれも条件式(6)及び(6a)を満たしている。
図19(c)は、結像部7Aと結像部7Bとの境界部における段差を示した図であり、結像レンズ7の光線使用領域の全域において段差は600μm以下となっている。また、本実施例では、結像光学系SAの副走査断面内での結像倍率βa=−2.36(倍),結像光学系SBの副走査断面内での結像倍率βb=−3.07(倍)であり、βs=βbであるため、いずれも条件式(7)及び(7a)を満たしている。
以上、本実施例に係る光走査装置200によれば、結像光学系SAと結像光学系SBとに対応する光路長の差を実施例1よりも小さく設定したことにより、良好な光学性能を得るために必要な結像部7Aと結像部7Bとの形状差をより小さくすることができる。そして、図19に示したように、主走査方向の形状差、肉厚差、境界部の段差の夫々を、実施例1よりも小さくすることができるため、結像レンズ7の形状の上下非対称性に起因するレンズの反りなどの射出成形時の課題をより改善することができる。
[実施例3]
図20は、本発明の実施例3に係る光走査装置300のZX断面図(副走査断面図)である。本実施例に係る光走査装置300は、偏向器5として、各偏向面が上下2つに分かれた多段ポリゴンミラーを採用している点で、実施例1に係る光走査装置100とは異なる。偏向器5として多段ポリゴンミラーを採用することで、各光源から出射した光束を副走査断面内において角度を付けずに偏向面5aに入射させることができ、副走査斜入射系を採用した実施例1と比較して、結像レンズ7の面形状を簡素に構成することができる。具体的には、副走査斜入射系に起因する走査線湾曲及び波面収差の捩れを補正するための子線チルトを用いずに、結像レンズ7を設計することが可能である。
[画像形成装置]
図21は、本発明の実施形態に係る画像形成装置60の要部概略図(ZX断面図)である。画像形成装置60は、上述した各実施例のいずれかに係る光走査装置100を備え、4つの感光ドラムの感光面上に並行して画像情報を記録する、タンデムタイプのカラー画像形成装置である。
図21に示すように、パーソナルコンピュータ等の外部機器52からは、R(レッド),G(グリーン),B(ブルー)の各色信号が出力される。これらの色信号は、装置内のプリンタコントローラ53によって、Y(イエロー),M(マゼンタ),C(シアン),K(ブラック)の各画像データ(ドットデータ)に変換され、光走査装置100に入力される。なお、プリンタコントローラ53は、前述したデータの変換だけでなく、後述するモータなどの画像形成装置60内の各部の制御を行う。
そして、光走査装置100は、各画像データに応じて変調された光束41〜44により、像担持体としての感光ドラム(感光体)21〜24の感光面(被走査面)を主走査方向(Y方向)に走査する。感光ドラム21〜24の夫々は、不図示のモータによって時計廻りに回転させられ、この回転に伴って、各感光ドラムの感光面が光束41〜44に対して副走査方向(Z方向)に移動する。光束41〜44の夫々により、不図示の帯電ローラにより帯電させられた各感光ドラムの各感光面が露光されることで、各感光面上に静電潜像が形成される。
その後、感光ドラム21〜24の感光面上に形成された各色の静電潜像は、現像器31〜34の夫々によって各色のトナー像として現像される。そして、各色のトナー像は、不図示の転写器によって、搬送ベルト51により搬送されてきた被転写材に多重転写された後、定着器70によって定着させられる。以上の工程により、1枚のフルカラー画像が形成される。
なお、例えばCCDセンサやCMOSセンサ等のラインセンサを備えたカラー画像読取装置を、外部機器52として画像形成装置60に接続することにより、カラーデジタル複写機を構成してもよい。
[変形例]
以上、本発明の好ましい実施形態及び実施例について説明したが、本発明はこれらの実施形態及び実施例に限定されず、その要旨の範囲内で種々の組合せ、変形及び変更が可能である。
例えば、上述した各実施例においては、偏向器として複数の偏向面を有するポリゴンミラーを採用しているが、これに限らず、揺動軸を中心に1つの偏向面を往復振動させることにより光束を偏向する共振型の偏向器を採用してもよい。この共振型の偏向器を用いることで、前述した面倒れに起因するピッチムラや面偏心に起因する主走査ジッターなどの発生を抑制することができる。なお、実施例2に係る光走査装置200における偏向器5を、実施例3に示したような多段ポリゴンミラーとしてもよい。
また、各実施例では、結像レンズ7の多段レンズ面を、第1の光学面と第2の光学面とが境界部で不連続となるように、かつ段差を有するように形成しているが、これに限られるものではない。例えば、境界部付近の領域をスプライン形状で表現(第1の光学面と第2の光学面とをスプライン関数で接続)して連続性を持った境界部を形成してもよいし、多段レンズ面の全域を主走査方向及び副走査方向の冪多項式で表現してもよい。
さらに、各実施例では、結像光学系を2枚の結像レンズにより構成しているが、これに限らず、3枚以上若しくは単一の結像レンズにより構成しても良い。また、各光源の夫々を、複数の発光点を有するモノリシックマルチビームレーザとしてもよい。
5 偏向器
7 結像レンズ(多段レンズ)
8A 第1の被走査面
8B 第2の被走査面
SA 第1の結像光学系
SB 第2の結像光学系
M1 第1のミラー
M2 第2のミラー
100 光走査装置

Claims (28)

  1. 第1及び第2の光源と、該第1及び第2の光源から出射した第1及び第2の光束の夫々を第1の偏向面で偏向して第1及び第2の被走査面を主走査方向に走査する偏向器と、該偏向器により偏向された前記第1及び第2の光束の夫々を前記第1及び第2の被走査面に集光する第1及び第2の結像光学系とを備える光走査装置であって、
    前記第1及び第2の結像光学系は、前記第1及び第2の光束の夫々が入射する副走査方向に配列された第1及び第2の光学面を含む共通の多段レンズを有し、
    前記第2の被走査面は、前記第1の被走査面よりも前記偏向器に近い位置に配置されており、
    前記第1の偏向面から前記第1の被走査面に至る第1の光路長よりも、前記第1の偏向面から前記第2の被走査面に至る第2の光路長の方が長く、
    前記第2の光学面を通過した前記第2の光束を反射する第1のミラーと、該第1のミラーにより反射された前記第2の光束を反射する第2のミラーとを備え、
    前記第1の偏向面から前記第2の被走査面に至る光路において、前記第2の光束が反射される回数は2回であり、
    前記第2の光束の前記第1のミラーにおける第1の反射点及び前記第2のミラーにおける第2の反射点は、副走査方向において前記多段レンズの外形中心位置に対して同じ側に位置することを特徴とする光走査装置。
  2. 光軸方向において、前記第1の反射点から前記第2の被走査面までの距離は、前記第1の反射点から前記第1の被走査面までの距離よりも長いことを特徴とする請求項1に記載の光走査装置。
  3. 第1及び第2の光源と、該第1及び第2の光源から出射した第1及び第2の光束の夫々を第1の偏向面で偏向して第1及び第2の被走査面を主走査方向に走査する偏向器と、該偏向器により偏向された前記第1及び第2の光束の夫々を前記第1及び第2の被走査面に集光する第1及び第2の結像光学系とを備える光走査装置であって、
    前記第1及び第2の結像光学系は、前記第1及び第2の光束の夫々が入射する副走査方向に配列された第1及び第2の光学面を含む共通の多段レンズを有し、
    前記第2の被走査面は、前記第1の被走査面よりも前記偏向器に近い位置に配置されており、
    前記第1の偏向面から前記第1の被走査面に至る第1の光路長よりも、前記第1の偏向面から前記第2の被走査面に至る第2の光路長の方が長く、
    前記第2の光学面を通過した前記第2の光束を反射する第1のミラーと、該第1のミラーにより反射された前記第2の光束を反射する第2のミラーとを備え、
    前記第2の光束の前記第1のミラーにおける第1の反射点及び前記第2のミラーにおける第2の反射点は、副走査方向において前記多段レンズの外形中心位置に対して同じ側に位置しており、
    光軸方向において、前記第1の反射点から前記第2の被走査面までの距離は、前記第1の反射点から前記第1の被走査面までの距離よりも長いことを特徴とする光走査装置。
  4. 前記第1及び第2の光学面の形状は、副走査方向において互いに非対称であることを特徴とする請求項1乃至3の何れか1項に記載の光走査装置。
  5. 前記第1及び第2の結像光学系は、前記偏向器と前記多段レンズとの間に配置され、前記第1及び第2の光束が入射する共通の光学素子を有することを特徴とする請求項1乃至4の何れか1項に記載の光走査装置。
  6. 光軸方向において、前記多段レンズの出射面から前記第1の反射点までの距離は、前記第1の反射点から前記第1の被走査面までの距離よりも長いことを特徴とする請求項1乃至の何れか1項に記載の光走査装置。
  7. 副走査方向において、前記第2の反射点は前記多段レンズよりも前記第2の被走査面から遠い位置に存在することを特徴とする請求項1乃至の何れか1項に記載の光走査装置。
  8. 前記偏向器から前記多段レンズに至る光路と前記第2のミラーから前記第2の被走査面に至る光路とは、副走査断面内において互いに交差していることを特徴とする請求項1乃至の何れか1項に記載の光走査装置。
  9. 前記第1のミラーから前記第2のミラーに至る光路には、レンズが配置されていないことを特徴とする請求項1乃至8の何れか1項に記載の光走査装置。
  10. 前記多段レンズから前記第2のミラーに至る光路には、レンズが配置されていないことを特徴とする請求項1乃至9の何れか1項に記載の光走査装置。
  11. 前記第1の光路長をT1(mm)、前記第2の光路長をT2(mm)とするとき、
    25≦T2−T1≦65
    なる条件を満足することを特徴とする請求項1乃至10の何れか1項に記載の光走査装置。
  12. 主走査断面内において、前記第1の結像光学系の後側主平面から前記第1の被走査面までの光路長をSk1、前記第1の結像光学系の焦点距離をf1、前記第2の結像光学系の後側主平面から前記第2の被走査面までの光路長をSk2、前記第2の結像光学系の焦点距離をf2と、m1=1−Sk1/f1、m2=1−Sk2/f2とするとき、
    0.15<|m1−m2|<0.50
    なる条件を満足することを特徴とする請求項1乃至11の何れか1項に記載の光走査装置。
  13. 主走査断面内において、前記第1の結像光学系の後側主平面から前記第1の被走査面までの光路長をSk1、前記第1の結像光学系の焦点距離をf1、前記第2の結像光学系の後側主平面から前記第2の被走査面までの光路長をSk2、前記第2の結像光学系の焦点距離をf2と、m1=1−Sk1/f1、m2=1−Sk2/f2とし、該m1及びm2のうち絶対値が大きい方をmとするとき、
    0.2<m<0.5
    なる条件を満足することを特徴とする請求項1乃至12の何れか1項に記載の光走査装置。
  14. 前記第1の結像光学系のKθ係数をK1、前記第2の結像光学系のKθ係数をK2とするとき、
    0.65≦K1/K2≦0.85
    なる条件を満足することを特徴とする請求項1乃至13の何れか1項に記載の光走査装置。
  15. 前記第1及び第2の光学面の光軸上における形状は、主走査方向において同一であることを特徴とする請求項1乃至14の何れか1項に記載の光走査装置。
  16. 前記第1の光学面に対する前記第2の光学面の形は、主走査方向において光軸上から端部に向かうに従って前記偏向器から離れる方向に増加することを特徴とする請求項1乃至15の何れか1項に記載の光走査装置。
  17. 前記第1の光学面と前記第2の光学面との形状差の最大値をXmax(mm)とするとき、
    0.1≦|Xmax|≦5.0
    なる条件を満足することを特徴とする請求項1乃至16の何れか1項に記載の光走査装置。
  18. 前記第1及び第2の光学面は、境界部において互いに光軸方向にずれて配置されていることを特徴とする請求項1乃至17の何れか1項に記載の光走査装置。
  19. 前記境界部における前記第1の光学面に対する前記第2の光学面の形は、主走査方向において光軸上から端部に向かうに従って前記偏向器から離れる方向に増加することを特徴とする請求項18に記載の光走査装置。
  20. 前記多段レンズにおける前記第1の光学面に対応する第1の肉厚と前記第2の光学面に対応する第2の肉厚との差は、主走査方向において光軸上から端部に向かうに従って大きくなることを特徴とする請求項1乃至19の何れか1項に記載の光走査装置。
  21. 前記多段レンズにおける前記第1の光学面に対応する第1の肉厚と前記第2の光学面に対応する第2の肉厚との差の最大値をdmax(mm)とするとき、
    0.05≦|dmax|≦5.0
    なる条件を満足することを特徴とする請求項1乃至20の何れか1項に記載の光走査装置。
  22. 前記第2の結像光学系の副走査断面内での倍率をβsとするとき、
    2.5≦|βs|<5.0
    なる条件を満足することを特徴とする請求項1乃至21の何れか1項に記載の光走査装置。
  23. 前記第1及び第2の光学面の面頂点の位置は、主走査方向及び光軸方向において一致していることを特徴とする請求項1乃至22の何れか1項に記載の光走査装置。
  24. 第1及び第2の光源と、該第1及び第2の光源から出射した第1及び第2の光束の夫々を第1の偏向面で偏向して第1及び第2の被走査面を主走査方向に走査する偏向器と、該偏向器により偏向された前記第1及び第2の光束の夫々を前記第1及び第2の被走査面に集光する第1及び第2の結像光学系とを備える光走査装置であって、
    前記第1及び第2の結像光学系は、前記第1及び第2の光束の夫々が入射する副走査方向に配列された第1及び第2の光学面を含む共通の多段レンズを有し、
    前記第2の被走査面は、前記第1の被走査面よりも前記偏向器に近い位置に配置されており、
    前記第1の偏向面から前記第1の被走査面に至る第1の光路長よりも、前記第1の偏向面から前記第2の被走査面に至る第2の光路長の方が長く、
    前記第2の光学面を通過した前記第2の光束を反射する第1のミラーと、該第1のミラーにより反射された前記第2の光束を反射する第2のミラーとを備え、
    前記第2の光束の前記第1のミラーにおける第1の反射点及び前記第2のミラーにおける第2の反射点は、副走査方向において前記多段レンズの外形中心位置に対して同じ側に位置しており、
    前記第1の結像光学系のKθ係数をK1、前記第2の結像光学系のKθ係数をK2とするとき、
    0.65≦K1/K2≦0.85
    なる条件を満足することを特徴とする光走査装置。
  25. 第1及び第2の光源と、該第1及び第2の光源から出射した第1及び第2の光束の夫々を第1の偏向面で偏向して第1及び第2の被走査面を主走査方向に走査する偏向器と、該偏向器により偏向された前記第1及び第2の光束の夫々を前記第1及び第2の被走査面に集光する第1及び第2の結像光学系とを備える光走査装置であって、
    前記第1及び第2の結像光学系は、前記第1及び第2の光束の夫々が入射する副走査方向に配列された第1及び第2の光学面を含む共通の多段レンズを有し、
    前記第2の被走査面は、前記第1の被走査面よりも前記偏向器に近い位置に配置されており、
    前記第1の偏向面から前記第1の被走査面に至る第1の光路長よりも、前記第1の偏向面から前記第2の被走査面に至る第2の光路長の方が長く、
    前記第2の光学面を通過した前記第2の光束を反射する第1のミラーと、該第1のミラーにより反射された前記第2の光束を反射する第2のミラーとを備え、
    前記第2の光束の前記第1のミラーにおける第1の反射点及び前記第2のミラーにおける第2の反射点は、副走査方向において前記多段レンズの外形中心位置に対して同じ側に位置しており、
    前記第1の光学面と前記第2の光学面との形状差の最大値をXmax(mm)とするとき、
    0.1≦|Xmax|≦5.0
    なる条件を満足することを特徴とする光走査装置。
  26. 第1及び第2の光源と、該第1及び第2の光源から出射した第1及び第2の光束の夫々を第1の偏向面で偏向して第1及び第2の被走査面を主走査方向に走査する偏向器と、該偏向器により偏向された前記第1及び第2の光束の夫々を前記第1及び第2の被走査面に集光する第1及び第2の結像光学系とを備える光走査装置であって、
    前記第1及び第2の結像光学系は、前記第1及び第2の光束の夫々が入射する副走査方向に配列された第1及び第2の光学面を含む共通の多段レンズを有し、
    前記第2の被走査面は、前記第1の被走査面よりも前記偏向器に近い位置に配置されており、
    前記第1の偏向面から前記第1の被走査面に至る第1の光路長よりも、前記第1の偏向面から前記第2の被走査面に至る第2の光路長の方が長く、
    前記第2の光学面を通過した前記第2の光束を反射する第1のミラーと、該第1のミラーにより反射された前記第2の光束を反射する第2のミラーとを備え、
    前記第2の光束の前記第1のミラーにおける第1の反射点及び前記第2のミラーにおける第2の反射点は、副走査方向において前記多段レンズの外形中心位置に対して同じ側に位置しており、
    前記第2の結像光学系の副走査断面内での倍率をβsとするとき、
    2.5≦|βs|<5.0
    なる条件を満足することを特徴とする光走査装置。
  27. 請求項1乃至26の何れか1項に記載の光走査装置と、該光走査装置により前記第1及び第2の被走査面上に形成される静電潜像をトナー像として現像する現像器と、現像された前記トナー像を被転写材に転写する転写器と、転写された前記トナー像を前記被転写材に定着させる定着器とを備えることを特徴とする画像形成装置。
  28. 請求項1乃至26の何れか1項に記載の光走査装置と、外部機器から出力された色信号を互いに異なる色の画像データに変換して前記光走査装置に入力するプリンタコントローラとを有することを特徴とする画像形成装置。
JP2014163209A 2014-08-08 2014-08-08 光走査装置及びそれを備える画像形成装置 Expired - Fee Related JP6494212B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014163209A JP6494212B2 (ja) 2014-08-08 2014-08-08 光走査装置及びそれを備える画像形成装置
US14/818,189 US9500981B2 (en) 2014-08-08 2015-08-04 Optical scanning apparatus and image forming apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014163209A JP6494212B2 (ja) 2014-08-08 2014-08-08 光走査装置及びそれを備える画像形成装置

Publications (3)

Publication Number Publication Date
JP2016038523A JP2016038523A (ja) 2016-03-22
JP2016038523A5 JP2016038523A5 (ja) 2017-09-21
JP6494212B2 true JP6494212B2 (ja) 2019-04-03

Family

ID=55529623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014163209A Expired - Fee Related JP6494212B2 (ja) 2014-08-08 2014-08-08 光走査装置及びそれを備える画像形成装置

Country Status (1)

Country Link
JP (1) JP6494212B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765780B1 (ko) * 2006-05-03 2007-10-12 삼성전자주식회사 광 주사 장치 및 이를 채용한 칼라 레이저 프린터
JP5094318B2 (ja) * 2007-10-09 2012-12-12 キヤノン株式会社 光走査装置及びそれを用いた画像形成装置
JP2010049061A (ja) * 2008-08-22 2010-03-04 Canon Inc 光走査装置及びそれを用いた画像形成装置
JP5441835B2 (ja) * 2010-06-29 2014-03-12 キヤノン株式会社 画像形成装置
JP2014006277A (ja) * 2012-06-21 2014-01-16 Canon Inc 光走査装置および画像形成装置
JP2014016404A (ja) * 2012-07-06 2014-01-30 Canon Inc 光走査装置およびカラー画像形成装置

Also Published As

Publication number Publication date
JP2016038523A (ja) 2016-03-22

Similar Documents

Publication Publication Date Title
JP2008052247A (ja) 光走査装置および画像形成装置
JP6047107B2 (ja) 光走査装置及びそれを有する画像形成装置
JP2010026055A (ja) 光走査装置及びそれを用いた画像形成装置
KR102035380B1 (ko) 광주사 장치 및 광주사 장치를 구비하는 화상 형성 장치
JP6021407B2 (ja) 光走査装置及びそれを備える画像形成装置
JP5950769B2 (ja) 光走査装置及びそれを用いた画像形成装置
JPH1172727A (ja) 走査光学系及び走査光学装置
JP6132701B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP6494212B2 (ja) 光走査装置及びそれを備える画像形成装置
JP6494213B2 (ja) 光走査装置及びそれを備える画像形成装置
US9500981B2 (en) Optical scanning apparatus and image forming apparatus including the same
JP2009015327A (ja) 光走査装置、画像形成装置
US7646519B2 (en) Optical scanner, optical scanning method
JP6381287B2 (ja) 結像光学素子の製造方法及び光走査装置の製造方法並びに画像形成装置
JP4455309B2 (ja) 光走査装置及びそれを用いた画像形成装置
US10025220B2 (en) Optical scanning apparatus
JP4902279B2 (ja) 画像形成装置
JP2014006277A (ja) 光走査装置および画像形成装置
JP2014016404A (ja) 光走査装置およびカラー画像形成装置
JP5882692B2 (ja) 光走査装置および画像形成装置
JP2015052727A (ja) 光走査装置及びそれを用いた画像形成装置
JP6667274B2 (ja) 光走査装置、画像形成装置、及び結像光学素子
JP2017090592A (ja) 光走査装置
JP2014153600A (ja) 光走査装置及びそれを用いたカラー画像形成装置
JP2009204939A (ja) 光走査装置及びそれを用いた画像形成装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190305

R151 Written notification of patent or utility model registration

Ref document number: 6494212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees