JP6489089B2 - Method for producing hot rolled coil and non-oriented electrical steel sheet - Google Patents

Method for producing hot rolled coil and non-oriented electrical steel sheet Download PDF

Info

Publication number
JP6489089B2
JP6489089B2 JP2016177416A JP2016177416A JP6489089B2 JP 6489089 B2 JP6489089 B2 JP 6489089B2 JP 2016177416 A JP2016177416 A JP 2016177416A JP 2016177416 A JP2016177416 A JP 2016177416A JP 6489089 B2 JP6489089 B2 JP 6489089B2
Authority
JP
Japan
Prior art keywords
coil
mass
hot
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016177416A
Other languages
Japanese (ja)
Other versions
JP2018043247A (en
Inventor
小林 弘和
弘和 小林
中西 匡
匡 中西
智幸 大久保
智幸 大久保
尾田 善彦
善彦 尾田
光孝 松浦
光孝 松浦
英介 住田
英介 住田
富田 浩樹
浩樹 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016177416A priority Critical patent/JP6489089B2/en
Publication of JP2018043247A publication Critical patent/JP2018043247A/en
Application granted granted Critical
Publication of JP6489089B2 publication Critical patent/JP6489089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、熱間圧延コイルおよび無方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a hot rolled coil and a non-oriented electrical steel sheet.

従来、冷間圧延における板厚の制御方法はスタンドの前方及び後方、またはその一方に板厚計を設けて、板厚が一定となるよう各スタンドの圧下位置(圧延荷重)、スタンド間張力などをフィードバック、フィードフォワード制御でコントロールするのが一般的である。しかし変動が発生してから、前段スタンドの情報をフィードフォワードで後段スタンドに入力、またはフィードバックして前段スタンドに入力したとしても、短周期で急峻な変動に対して十分に板厚変動を修正することが困難であるといった問題がある。   Conventionally, the thickness control method in cold rolling has been provided with thickness gauges at the front and rear of the stand, or one of them, so that the reduction position of each stand (rolling load), tension between the stands, etc. Is generally controlled by feedback and feedforward control. However, even if fluctuations occur, even if information on the front stage is input to the rear stage by feedforward or fed back and input to the front stage, the plate thickness fluctuations are corrected sufficiently for short period and steep fluctuations. There is a problem that it is difficult.

上記短周期で急峻な変動として、熱間圧延コイル(以下、熱延コイルともいう)の巻きピッチの変動がある。   As the short period and steep fluctuation, there is a fluctuation in the winding pitch of a hot rolled coil (hereinafter also referred to as a hot rolled coil).

冷間圧延前の熱延コイルの製造において、熱延コイル保管時の再結晶を促進させるため、熱延での巻取り温度を高くした場合、熱延コイルの置き方、つまりは保管方法によって、コイルの周方向の温度分布が発生する場合がある。例えば大気と接するコイルの表面は空冷されて冷えるが、他の熱いコイルと接触している箇所では保温され、前記空冷されたコイルの表面と保温された箇所との間で温度分布が生じる。そして、この温度分布に起因する組織変化によって、前記空冷されたコイルの表面と保温された箇所との硬度差、摩擦係数差が大きくなる。また例えば他の冷たいコイルと接触している箇所や、地面または固定のためのスキッドに接触する箇所は、急激に冷却されるため、前記空冷されたコイルの表面との間で温度分布が生じ、同様の組織変化が起こる。   In the production of hot-rolled coils before cold rolling, in order to promote recrystallization during hot-rolled coil storage, when the coiling temperature in hot-rolling is increased, depending on how the hot-rolled coil is placed, that is, by the storage method, A temperature distribution in the circumferential direction of the coil may occur. For example, the surface of the coil that is in contact with the air is cooled by air cooling, but is kept warm at a location where it is in contact with another hot coil, and a temperature distribution is generated between the surface of the air cooled coil and the location where the temperature is kept. Due to the change in structure caused by this temperature distribution, the difference in hardness and friction coefficient between the surface of the coil that has been air-cooled and the location where the heat is retained increases. In addition, for example, a location in contact with another cold coil, or a location in contact with the ground or the skid for fixing is rapidly cooled, so that a temperature distribution occurs between the surface of the air-cooled coil, Similar organizational changes occur.

このような熱延コイルの周方向の組織変化は、後の冷間圧延における板厚変動の原因になる。特許文献1には、熱延コイルの周方向の組織変化に起因する冷間圧延での板厚変動を抑制するため、コイルを所定温度まで徐冷する方法が開示されている。しかし単に徐冷しただけでは、コイルの外周(鋼板面)が接する地面からの抜熱とその他空冷部との熱伝達係数の差異により、地面に接する箇所と空冷された箇所との間で温度差が発生し、組織変化が生じ、後の冷間圧延時の板厚変動を十分に抑制できないといった問題が発生する。また、特許文献2には、コイルを転倒する装置が開示されている。特許文献3には、コイルをアップエンドの状態で載置する際に用いる冷却用対流板が開示されている。しかし、これらの文献には、鋼の成分組成やコイルの巻取り温度等に関する記載はない。また、特許文献3に開示された冷却用対流板は擦り疵防止のため開孔の面積を内周側と外周側で変化させるものであるが、コイルが載置される面(載置面)の面積に対する開孔の総面積の割合(開口率)に関する記載はない。   Such a structure change in the circumferential direction of the hot-rolled coil causes a plate thickness variation in the subsequent cold rolling. Patent Document 1 discloses a method of gradually cooling a coil to a predetermined temperature in order to suppress sheet thickness fluctuations in cold rolling caused by a structure change in the circumferential direction of the hot rolled coil. However, the temperature difference between the part that is in contact with the ground and the part that is air-cooled due to the difference in heat transfer coefficient between the heat removal from the ground where the outer periphery (steel plate surface) of the coil contacts and the other air-cooled part is only by slow cooling. Occurs, the structure changes, and the problem that the thickness variation at the time of subsequent cold rolling cannot be sufficiently suppressed occurs. Patent Document 2 discloses a device for overturning a coil. Patent Document 3 discloses a cooling convection plate that is used when a coil is placed in an up-end state. However, these documents do not describe the composition of steel, coil winding temperature, and the like. In addition, the cooling convection plate disclosed in Patent Document 3 changes the area of the opening between the inner peripheral side and the outer peripheral side to prevent scuffing, but the surface on which the coil is mounted (mounting surface) There is no description regarding the ratio (opening ratio) of the total area of the apertures to the area of.

特公平1−18129号公報Japanese Patent Publication No. 1-18129 特許第3783397号公報Japanese Patent No. 378397 特公平7−816号公報Japanese Patent Publication No. 7-816

高温での巻取りが必要となる熱延コイルでは鋼板面を重力方向に置く方式(ダウンエンドの状態で置く方式、すなわちコイルの軸方向を水平にして置く方式)であると、地面や置台等にコイルを載置した際に、地面や置台等に接触する箇所と、接触しない箇所との温度差が増加するため、コイルの周方向、つまりは鋼帯の長手方向に周期的な特性変動が発生してしまう。その場合、その後の製造工程で冷間圧延を行う際、周期的な硬度変動や摩擦係数変動により、板厚変動を生じるといった課題が発生する。   For hot-rolled coils that require winding at a high temperature, the steel plate surface is placed in the direction of gravity (the method of placing it in the down-end state, that is, the method of placing the coil in the horizontal direction), the ground, the table, etc. When the coil is placed on the coil, the temperature difference between the part that contacts the ground or the pedestal and the part that does not contact increases, so that there are periodic characteristic fluctuations in the circumferential direction of the coil, that is, in the longitudinal direction of the steel strip. Will occur. In that case, when cold rolling is performed in the subsequent manufacturing process, there arises a problem that the plate thickness varies due to periodic hardness variation and friction coefficient variation.

そこで、本発明は、前記の課題を解決し、高温巻取りしたコイルに対し、コイルの周方向の特性変動を抑制でき、冷間圧延時の板厚変動が抑制され、安定的に冷間圧延を実施可能な熱間圧延コイルの製造方法を提供することを目的とする。   Therefore, the present invention solves the above-mentioned problems, and can suppress fluctuations in the circumferential characteristics of the coil with respect to the coil wound at high temperature, suppresses fluctuations in the sheet thickness during cold rolling, and stably performs cold rolling. It aims at providing the manufacturing method of the hot rolling coil which can implement.

上記課題を解決する本発明の手段は次の通りである。
[1]C:0.01mass%以下、Si:5.0mass%以下、Mn:0.05〜3.0mass%、sol.Al:0.0050mass%以下もしくは0.2〜2.0mass%、P:0.20mass%以下、S:0.010mass%以下およびN:0.010mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼を熱間圧延したのち、温度550℃以上でコイル状に巻取りコイルとした後に、前記コイルをアップエンドの状態で載置することを特徴とする熱間圧延コイルの製造方法。
ただし、前記成分組成において、Siが1.5mass%以上の場合はsol.Alは0.0050mass%以下であり、Siが1.5mass%未満の場合はsol.Alは0.2〜2.0mass%である。
[2]前記コイル状に巻取ったコイルを、巻取り完了から30分以内にアップエンドの状態で載置し、当該状態での載置を前記コイルの外周の表面温度が300℃以下になるまで継続することを特徴とする[1]に記載の熱間圧延コイルの製造方法。
[3]前記アップエンドの状態で載置したコイルの上下の側面の位置を入れ替えるように前記コイルを転倒することを特徴とする[1]または[2]に記載の熱間圧延コイルの製造方法。
[4]前記コイルを0.3以上の開口率を有する置台に載置することを特徴とする[1]〜[3]のいずれかに記載の熱間圧延コイルの製造方法。
[5][1]〜[4]のいずれかに記載の熱間圧延コイルの製造方法により得られた熱間圧延コイルから払い出した鋼帯を冷間圧延および焼鈍することを特徴とする無方向性電磁鋼板の製造方法。
Means of the present invention for solving the above problems are as follows.
[1] C: 0.01 mass% or less, Si: 5.0 mass% or less, Mn: 0.05 to 3.0 mass%, sol. Al: 0.0050 mass% or less or 0.2 to 2.0 mass%, P: 0.20 mass% or less, S: 0.010 mass% or less and N: 0.010 mass% or less, with the balance being Fe and inevitable A hot-rolled coil comprising hot rolling a steel having a component composition composed of impurities, forming a coiled coil at a temperature of 550 ° C. or higher, and then placing the coil in an up-end state Manufacturing method.
However, in the component composition, when Si is 1.5 mass% or more, sol. Al is 0.0050 mass% or less, and when Si is less than 1.5 mass%, sol. Al is 0.2 to 2.0 mass%.
[2] The coil wound in the coil shape is placed in an up-end state within 30 minutes from the completion of winding, and the surface temperature of the outer periphery of the coil is 300 ° C. or less in the state of the placement. The method for producing a hot-rolled coil according to [1], wherein
[3] The method for manufacturing a hot-rolled coil according to [1] or [2], wherein the coil is overturned so that positions of upper and lower side surfaces of the coil placed in the up-end state are switched. .
[4] The method for manufacturing a hot-rolled coil according to any one of [1] to [3], wherein the coil is mounted on a mounting table having an aperture ratio of 0.3 or more.
[5] A non-direction characterized by cold-rolling and annealing a steel strip delivered from a hot-rolled coil obtained by the method for producing a hot-rolled coil according to any one of [1] to [4] Method for producing an electrical steel sheet.

本発明によれば、高温巻取りしたコイルに対し、コイルの周方向の特性変動を抑制でき、冷間圧延時の板厚変動が抑制され、安定的に冷間圧延を実施可能な熱間圧延コイルを製造できる。   According to the present invention, hot rolling that can suppress the characteristic fluctuation in the circumferential direction of the coil with respect to the coil wound at high temperature, suppress the fluctuation of the plate thickness at the time of cold rolling, and can stably perform the cold rolling. Coil can be manufactured.

図1はコイルをアップエンドの状態にする方法の一例を説明する側面図である。FIG. 1 is a side view for explaining an example of a method for bringing a coil into an up-end state. 図2は本発明にかかるコイルの載置状態の一例を示す側面図である。FIG. 2 is a side view showing an example of a mounting state of the coil according to the present invention. 図3は本発明にかかる置台の一例を示す上面図である。FIG. 3 is a top view showing an example of a mounting table according to the present invention.

本発明は、C:0.01mass%以下、Si:5.0mass%以下、Mn:0.05〜3.0mass%、sol.Al:0.0050mass%以下もしくは0.2〜2.0mass%、P:0.20mass%以下、S:0.010mass%以下およびN:0.010mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼を熱間圧延したのち、温度550℃以上でコイル状に巻取りコイルとした後に、前記コイルをアップエンドの状態で載置する熱間圧延コイルの製造方法である。ただし、前記成分組成において、Siが1.5mass%以上の場合はsol.Alは0.0050mass%以下であり、Siが1.5mass%未満の場合はsol.Alは0.2〜2.0mass%である。   In the present invention, C: 0.01 mass% or less, Si: 5.0 mass% or less, Mn: 0.05 to 3.0 mass%, sol. Al: 0.0050 mass% or less or 0.2 to 2.0 mass%, P: 0.20 mass% or less, S: 0.010 mass% or less and N: 0.010 mass% or less, with the balance being Fe and inevitable This is a method for producing a hot-rolled coil in which a steel having a component composition consisting of impurities is hot-rolled and then coiled into a coil at a temperature of 550 ° C. or higher, and then the coil is placed in an up-end state. . However, in the component composition, when Si is 1.5 mass% or more, sol. Al is 0.0050 mass% or less, and when Si is less than 1.5 mass%, sol. Al is 0.2 to 2.0 mass%.

図1を用いて説明すると、前記コイル状に巻取られたコイル10は、コイル転倒装置20に移された後、コイル10の一方の側面12aで自重を支えるようにコイル転倒装置20により転倒されて(図1(a))、アップエンドの状態、すなわちコイルの軸方向が重力方向に沿うような状態にされて(図1(b))、地面や置台等(以下、単に「置台等」という)に載置される。その際、コイル10は、図2に示すように、コイル置台30に載置されることが好ましい。また、コイル10は、コイル10の外周14(鋼板表面)に、転倒装置等の構造物や、他のコイル等の任意の構造物40が接触しないように載置されることが好ましい。さらに、コイル10と任意の構造物40との距離Lは100mm以上確保されることが好ましい。そうすることでコイル10の外周14と任意の構造物40との接触による保温、抜熱の影響を小さくし、コイル10の周方向の温度ムラをより低減できる。また、前記距離Lを100mm以上確保することにより輻射による保温効果をさらに小さくし、コイル10の周方向の温度ムラをさらに低減できる。また、応用例として、アップエンドの状態で載置したコイル10の周方向に断熱材等を巻きつけてもよい。そうすることで、コイル10の温度ムラをよりいっそう低減できるとともに、均一な保熱効果によりコイル10の温度を高い状態に保ち再結晶を促進することができる。   Referring to FIG. 1, the coil 10 wound into the coil shape is transferred to the coil overturning device 20 and then overturned by the coil overturning device 20 so as to support its own weight on one side surface 12a of the coil 10. (FIG. 1 (a)), an up-end state, that is, a state in which the axial direction of the coil is along the direction of gravity (FIG. 1 (b)), the ground, a table (hereinafter simply referred to as “table, etc.”) ). At that time, the coil 10 is preferably placed on a coil mount 30 as shown in FIG. Moreover, it is preferable that the coil 10 is mounted so that structures, such as a fall apparatus, and arbitrary structures 40, such as another coil, may not contact the outer periphery 14 (steel plate surface) of the coil 10. FIG. Furthermore, it is preferable that the distance L between the coil 10 and the arbitrary structure 40 is 100 mm or more. By doing so, the influence of the heat retention and heat removal by contact with the outer periphery 14 of the coil 10 and the arbitrary structures 40 can be reduced, and the temperature unevenness in the circumferential direction of the coil 10 can be further reduced. Further, by securing the distance L to 100 mm or more, the heat retention effect due to radiation can be further reduced, and the temperature unevenness in the circumferential direction of the coil 10 can be further reduced. As an application example, a heat insulating material or the like may be wound around the circumferential direction of the coil 10 placed in an up-end state. By doing so, the temperature unevenness of the coil 10 can be further reduced, and the recrystallization can be promoted by keeping the temperature of the coil 10 high by a uniform heat retention effect.

次に、本発明の熱延コイルを使用した最終製品板(無方向性電磁鋼板)の特性と成分組成の関係について説明する。   Next, the relationship between the characteristics of the final product plate (non-oriented electrical steel sheet) using the hot rolled coil of the present invention and the component composition will be described.

Cは、磁気時効を起こして鉄損を増加させる元素であり、特に、0.01mass%を超えると、鉄損の増加が顕著となることから、0.01mass%以下に制限する。好ましくは0.0050mass%以下である。なお、下限については、少ないほど好ましいので、特に規定しない。   C is an element that causes magnetic aging and increases iron loss. Particularly, when C exceeds 0.01 mass%, an increase in iron loss becomes remarkable, so that it is limited to 0.01 mass% or less. Preferably it is 0.0050 mass% or less. In addition, about a minimum, since it is so preferable that there is little, it does not prescribe | regulate.

Siは、鋼の電気抵抗を高めて鉄損を低減するのに有効な元素である。そのため添加することが好ましい。Siと同じ効果を有するAlを低減する場合、Siは1.5mass%以上添加することが好ましい。しかし、Siが5.0mass%を超えると、磁束密度が低下するだけでなく、鋼が脆化し、冷間圧延中に亀裂を生じる等、製造性を大きく低下させる。よって、上限は5.0mass%とする。好ましくは0.2〜3.8mass%の範囲である。   Si is an element effective for increasing the electric resistance of steel and reducing iron loss. Therefore, it is preferable to add. When reducing Al having the same effect as Si, Si is preferably added in an amount of 1.5 mass% or more. However, if Si exceeds 5.0 mass%, not only the magnetic flux density is lowered, but also the steel becomes brittle and cracks are generated during cold rolling, resulting in a significant reduction in manufacturability. Therefore, the upper limit is set to 5.0 mass%. Preferably it is the range of 0.2-3.8 mass%.

Mnは、Sと結合してMnSを形成し、FeSによる熱間脆性を防止する効果を有する。また、Siと同様、鋼の電気抵抗を高めて鉄損を低減するのに有効な元素でもある。そこで、本発明では、Mnを0.05mass%以上含有させる。一方、3.0mass%を超えると、磁束密度が低下するため、上限は3.0mass%とする。好ましくは、0.25〜1.5mass%の範囲である。   Mn combines with S to form MnS and has the effect of preventing hot brittleness due to FeS. Moreover, like Si, it is an element effective in increasing the electrical resistance of steel and reducing iron loss. Therefore, in the present invention, 0.05 mass% or more of Mn is contained. On the other hand, since magnetic flux density will fall if it exceeds 3.0 mass%, an upper limit shall be 3.0 mass%. Preferably, it is the range of 0.25-1.5 mass%.

Alは、Siと同様、鋼の電気抵抗を高めて鉄損を低減するのに有効な元素である。しかしスクラップを鋳物銑の原料としてリサイクルする観点から、Alは0.05mass%未満であることが望まれており、Alの含有量は少ないほど好ましい。本発明では、集合組織を改善し、磁束密度を高めるため、Alの含有量をさらに低減し、sol.Al(酸可溶Al)で0.0050mass%以下に制限する。sol.Alは、より好ましくは、0.0020mass%以下である。sol.Alを0.0050mass%以下に制限する場合、Siの含有量は1.5mass%以上とされる。また、Si添加量を抑制する場合(Siの含有量が1.5mass%未満)は、Siと同じ効果を有するAlをsol.Al(酸可溶Al)で0.2〜2.0mass%含有させる。   Al, like Si, is an element that is effective in increasing the electrical resistance of steel and reducing iron loss. However, from the viewpoint of recycling scrap as a raw material for cast iron, Al is desired to be less than 0.05 mass%, and the smaller the Al content, the better. In the present invention, in order to improve the texture and increase the magnetic flux density, the content of Al is further reduced. It is limited to 0.0050 mass% or less with Al (acid-soluble Al). sol. Al is more preferably 0.0020 mass% or less. sol. When Al is limited to 0.0050 mass% or less, the Si content is set to 1.5 mass% or more. Moreover, when suppressing Si addition amount (Si content is less than 1.5 mass%), Al having the same effect as Si is sol. Al (acid-soluble Al) is contained in an amount of 0.2 to 2.0 mass%.

Pは、微量の添加で鋼の硬さを高める効果が大きい有用な元素であり、要求される硬さに応じて適宜添加する。しかし、Pの過剰な添加は、冷間圧延性の低下をもたらすので、上限は0.20mass%とする。好ましくは、0.040mass%〜0.15mass%の範囲である。   P is a useful element that has a large effect of increasing the hardness of steel with a small amount of addition, and is appropriately added according to the required hardness. However, excessive addition of P causes a decrease in cold rollability, so the upper limit is made 0.20 mass%. Preferably, it is the range of 0.040 mass%-0.15 mass%.

Sは、硫化物となって析出物や介在物を形成し、製造性(熱間圧延性)や最終製品板の磁気特性を低下させるので、Sの含有量は少ないほど好ましい。最終製品板の磁気特性を重視する場合には0.010mass%以下とするのが好ましい。なお、Sは少ないほど好ましいので、下限は特に規定しない。   Since S becomes sulfides and forms precipitates and inclusions, and deteriorates manufacturability (hot rollability) and magnetic properties of the final product plate, the smaller the S content, the better. In the case where importance is attached to the magnetic properties of the final product plate, it is preferably 0.010 mass% or less. In addition, since it is so preferable that there is little S, a minimum in particular is not prescribed | regulated.

Nは、前述したCと同様、磁気特性を劣化させる元素であり、特に、低Al材では、上記悪影響は顕著となるので、0.010mass%以下に制限する。好ましくは0.0040mass%以下である。なお、下限については、少ないほど好ましいので、特に規定しない。   N is an element that deteriorates the magnetic properties, as in the case of C described above. In particular, in the case of a low Al material, the above-described adverse effect becomes significant, so that it is limited to 0.010 mass% or less. Preferably it is 0.0040 mass% or less. In addition, about a minimum, since it is so preferable that there is little, it does not prescribe | regulate.

上記に加えて、特性改善のため公知の元素を利用してもよい。磁束密度向上のためにはSb、Snから選んだ1種もしくは2種を合計で0.01〜0.2mass%含有することが好適である。粒成長性を改善し鉄損を低減するためには硫化物形成元素であるCa、REM、Mgから選んだ1種もしくは2種以上を合計で0.001〜0.02mass%含有することが好適である。いずれも下限未満では効果が得られず、上限を超えると効果が飽和する。   In addition to the above, a known element may be used for improving characteristics. In order to improve the magnetic flux density, it is preferable to contain a total of 0.01 to 0.2 mass% of one or two selected from Sb and Sn. In order to improve grain growth and reduce iron loss, it is preferable to contain one or more selected from the sulfide forming elements Ca, REM and Mg in a total amount of 0.001 to 0.02 mass%. It is. In either case, the effect is not obtained if the amount is less than the lower limit, and the effect is saturated if the upper limit is exceeded.

このような成分系において製造された熱延鋼板は、低い温度で巻き取ると、コイル保管中に再結晶が十分に起こらず、伸長粒と呼ばれる未再結晶部が残り、圧延方向に長い結晶粒が残存してしまう。そのようなコイルから払い出した鋼帯を後に冷間圧延すると縦スジ状の外観欠陥が発生してしまう。また最終製品板において、磁束密度の低下など磁気特性低下の原因となる。すなわち、安定的に冷間圧延を実施できない。そのため巻取り温度を550℃以上とする。巻取り温度は600℃以上とすることが好ましい。しかしコイルの巻取り温度の上昇は、コイル保管時の温度ムラの拡大に繋がってしまう。そこで、コイル10の外周14(鋼板表面)が置台等と接触するような置き方ではなく、熱延コイルの側面12aが置台等と接触するように載置・保管することでコイルの周方向の温度変化、つまりはコイルの周方向での組織変化や特性変動を発生させることなく、再結晶を完了させ、冷間圧延時に板厚変動の小さい鋼板を製造することが可能となる。なお、コイルの側面12aを置台等と接触させることでコイル幅方向(鋼板の幅方向)の温度差は拡大するが、コイルの周方向の急激な特性変動とは異なり、冷間圧延において鋼板の両端に作用させる圧延荷重等を調整することで鋼板の幅方向の板厚調整を行うことができるため、十分に板厚を制御することが可能である。   When the hot-rolled steel sheet produced in such a component system is wound at a low temperature, recrystallization does not occur sufficiently during coil storage, and unrecrystallized parts called elongated grains remain, and crystal grains that are long in the rolling direction Will remain. If a steel strip paid out from such a coil is cold-rolled later, a vertical streak-like appearance defect will occur. Further, in the final product plate, it causes a decrease in magnetic properties such as a decrease in magnetic flux density. That is, cold rolling cannot be stably performed. Therefore, the winding temperature is set to 550 ° C. or higher. The winding temperature is preferably 600 ° C. or higher. However, an increase in coil winding temperature leads to an increase in temperature unevenness during coil storage. Therefore, it is not the way of placing the outer periphery 14 (steel plate surface) of the coil 10 in contact with the pedestal or the like, but by placing and storing the side surface 12a of the hot rolled coil in contact with the pedestal or the like in the circumferential direction of the coil. Recrystallization can be completed without causing temperature changes, i.e., structural changes or characteristic fluctuations in the circumferential direction of the coil, and it becomes possible to produce a steel sheet with small sheet thickness fluctuations during cold rolling. Although the temperature difference in the coil width direction (steel plate width direction) is enlarged by bringing the coil side surface 12a into contact with the pedestal or the like, unlike the rapid characteristic fluctuation in the coil circumferential direction, Since the thickness adjustment in the width direction of the steel sheet can be performed by adjusting the rolling load applied to both ends, it is possible to sufficiently control the thickness.

また、コイル状に巻取ったコイル10を、巻取り完了からアップエンドの状態で載置するまでの時間は、30分以内が好ましく、15分以内がさらに好ましい。これはコイルの周方向の温度差が発生する状態でコイル10が長時間保持されないことが好ましいためであり、前記コイル10をアップエンドの状態にするまでの時間は短いほど良い。前記コイル10をアップエンドの状態で載置するまでの時間が巻取り完了から30分を超えると、コイルの周方向の温度差が大きくなり、鋼板の組織変化に差異が生じ、硬度や摩擦係数等が変化して、冷間圧延時の板厚変動に繋がるおそれがある。   Further, the time from when the coil 10 wound in the coil shape is placed in the up-end state after the completion of winding is preferably within 30 minutes, and more preferably within 15 minutes. This is because it is preferable that the coil 10 is not held for a long time in a state where a temperature difference occurs in the circumferential direction of the coil, and the shorter the time until the coil 10 is in the up-end state, the better. If the time until the coil 10 is placed in an up-end state exceeds 30 minutes from the completion of winding, the temperature difference in the circumferential direction of the coil increases, resulting in a difference in the structural change of the steel sheet, and the hardness and friction coefficient Etc. may change, leading to fluctuations in sheet thickness during cold rolling.

また、コイル10をアップエンドの状態で載置した後、前記状態での載置を、前記コイルの外周14の表面温度が300℃以下になるまで継続することが好ましい。すなわち、コイル10をアップエンドの状態で載置した後、前記コイル10の外周14の表面温度が300℃以下になるまで、前記コイル10の外周14が置台等と接触する状態(ダウンエンドの状態)に戻さないことが好ましい。なお、コイル10のハンドリング等で短時間であれば、ダウンエンドの状態に戻してもコイル周方向の温度分布が付かず、それほど問題とはならない。そのため、本発明では、コイル10の保管期間中にダウンエンドの状態となる時間が一回当たり15分以内であれば、アップエンドの状態での載置が継続していたものとする。しかし長い時間、例えば15分を超えて、ダウンエンドの状態となり、コイル10の外周14が置台等と接触する状態で保持されるとコイル10の周方向の温度ムラが発生し、コイル10をアップエンドの状態で載置した効果が薄れてしまう。またコイル10の外周14の表面温度が300℃より高い温度でコイル10をダウンエンドの状態に戻し、その状態を継続した場合、コイル周方向で温度差が付き、組織変化に差が生じてしまう。コイル10の外周14の表面温度が300℃以下であれば、組織変化が進行しにくくなるため、コイル10をダウンエンドの状態に戻しても、コイル10をアップエンドの状態で載置した効果が維持される。   Moreover, after mounting the coil 10 in an up-end state, it is preferable to continue the mounting in the state until the surface temperature of the outer periphery 14 of the coil becomes 300 ° C. or less. That is, after the coil 10 is placed in an up-end state, the outer periphery 14 of the coil 10 is in contact with a table or the like (down-end state) until the surface temperature of the outer periphery 14 of the coil 10 is 300 ° C. or lower. It is preferable not to return to). If the coil 10 is handled for a short time, the temperature distribution in the circumferential direction of the coil is not obtained even when the coil 10 is returned to the down-end state, which is not a problem. Therefore, in the present invention, if the time for the coil 10 to be in the down-end state is within 15 minutes per time, the mounting in the up-end state is assumed to have continued. However, if the coil 10 is held in a down-end state over a long time, for example, 15 minutes, and the outer periphery 14 of the coil 10 is held in contact with a table or the like, temperature unevenness in the circumferential direction of the coil 10 occurs, and the coil 10 is raised. The effect placed in the end state will fade. Moreover, when the surface temperature of the outer periphery 14 of the coil 10 is returned to the down-end state at a temperature higher than 300 ° C. and the state is continued, a temperature difference is caused in the coil circumferential direction, resulting in a difference in tissue change. . If the surface temperature of the outer periphery 14 of the coil 10 is 300 ° C. or less, it is difficult for the tissue change to proceed. Therefore, even if the coil 10 is returned to the down-end state, the effect of placing the coil 10 in the up-end state is effective. Maintained.

また、コイル10をアップエンドの状態で載置した後、コイル10の上下の側面の位置を入れ替えるような転倒を行ってもよい。すなわち、図2において、コイル10の下側の側面12aが上側となり、コイル10の上側の側面12bが下側となる(コイル10の側面12bがコイル置台30に接触する)ような転倒を行ってもよい。このような転倒を行うことで、コイル10の一方の側面のみが置台等と接触することで生じるコイル幅方向の温度差が拡大するのを抑制できる。そのためコイル幅方向の硬度、摩擦係数等の特性変化をより抑えることができる。さらに、上記のような転倒を複数回行っても良い。上記のような転倒を複数回行うことで、コイル幅方向の温度差が拡大するのをより抑制でき、コイル幅方向の硬度、摩擦係数等の特性変化をより抑制することができる。   Further, after placing the coil 10 in the up-end state, the coil 10 may be turned over so as to change the positions of the upper and lower side surfaces. That is, in FIG. 2, the coil 10 is turned over such that the lower side surface 12a is the upper side and the upper side surface 12b of the coil 10 is the lower side (the side surface 12b of the coil 10 is in contact with the coil mount 30). Also good. By performing such overturning, it is possible to suppress an increase in the temperature difference in the coil width direction that occurs when only one side surface of the coil 10 is in contact with the mounting table or the like. Therefore, changes in characteristics such as hardness in the coil width direction and friction coefficient can be further suppressed. Furthermore, the above-mentioned overturn may be performed a plurality of times. By performing the above-described overturning a plurality of times, it is possible to further suppress an increase in the temperature difference in the coil width direction, and to further suppress changes in characteristics such as hardness and friction coefficient in the coil width direction.

また、上記のような転倒は、コイル10をアップエンドの状態で載置した後、一定時間経過ごとに行われることが好ましく、例えば、コイル10をアップエンドの状態で載置した後、1〜2時間経過するごとに行われることが好ましく、0.5〜1.0時間経過するごとに行われることがより好ましい。また、上記のような転倒は、コイル10をアップエンドの状態で載置した後、コイル10の外周14の表面温度が一定温度低下するごとに行われることが好ましく、例えば、コイル10をアップエンドの状態で載置した後、コイル10の外周14の表面温度が、50〜100℃低下するごとに行われることが好ましく、10〜50℃低下するごとに行われることがより好ましい。   Moreover, it is preferable that the above-described overturn is performed every time a certain time has elapsed after the coil 10 is placed in the up-end state. For example, after the coil 10 is placed in the up-end state, It is preferably performed every 2 hours, and more preferably every 0.5 to 1.0 hours. Further, the above-mentioned overturn is preferably performed every time the surface temperature of the outer periphery 14 of the coil 10 is lowered by a certain temperature after the coil 10 is placed in the up-end state. After the mounting in the state, it is preferably performed every time the surface temperature of the outer periphery 14 of the coil 10 decreases by 50 to 100 ° C., and more preferably every time the surface temperature decreases by 10 to 50 ° C.

また、コイル10は、地面に載置されてもよいが、コイル幅方向の組織変動差をより低減できる点等から、置台に載置されることが好ましい。前記置台としては、図3に示すような開口を備えるコイル置台30が好ましい。コイル置台30は、コイル10の載置面(コイル10が載置される面)に、複数の開口部32を備える。コイル置台30の開口率(開口部の総面積/載置面の面積)は0.3以上であることが好ましい。ここで、前記載置面の面積は、図3において、載置面の縦の長さXと横の長さYとの積で求められる面積である。なお、図3において、コイル置台30の開口部32の形状は平面視略正方形とされているが、これに限定されない。例えば、コイル置台30の開口部の平面視形状を、長方形、菱形、円形等としてもよいし、三角形や五角形以上の多角形としてもよい。   Moreover, although the coil 10 may be mounted on the ground, it is preferable to be mounted on a mounting stand from the point etc. which can reduce the tissue fluctuation | variation difference of a coil width direction more. As the mounting base, a coil mounting base 30 having an opening as shown in FIG. 3 is preferable. The coil mounting table 30 includes a plurality of openings 32 on the mounting surface of the coil 10 (the surface on which the coil 10 is mounted). The aperture ratio (total area of the opening / area of the mounting surface) of the coil mount 30 is preferably 0.3 or more. Here, the area of the mounting surface described above is an area obtained by the product of the vertical length X and the horizontal length Y of the mounting surface in FIG. In addition, in FIG. 3, although the shape of the opening part 32 of the coil mounting base 30 is made into the substantially square shape in planar view, it is not limited to this. For example, the planar view shape of the opening of the coil mount 30 may be a rectangle, a rhombus, a circle, or the like, or a triangle or a polygon that is a pentagon or more.

さらに、コイル10の下側の側面12aと、開口のない面(例えば、地面等のコイル置台30が載置された面)との距離を100mm以上確保することが好ましい。前記距離は、例えば、コイル置台30において、コイル置台30の厚さを100mm以上とするとともに、開口部32を、コイル10の載置面からコイル置台30の厚さ方向に100mm以上の長さ(深さ)で形成することで容易に確保できる。コイル10をこのような置台に載置して保管することで、コイル10の下側の側面12aの冷却効率を上側の側面12bに近づけ、輻射による保熱の影響を小さくし、鋼板幅方向の温度差をより低減、つまりは鋼板幅方向の組織変動差をより低減することができる。その結果、冷間圧延時の鋼板幅方向の板厚精度をより向上させることができる。なお、コイル置台30の開口率が0.3未満であると、コイル置台30と接触するコイルの下側の側面12aが空冷される面積が十分でなく、コイル10の下側の側面12aと上側の側面12b間の温度差が拡大し、コイル幅方向の特性、つまりは冷間圧延時の鋼板幅方向の板厚精度が悪化するおそれがある。また、コイル10の下側の側面12aと、前記開口のない面との間の距離が短いと、輻射の影響でコイル10の下側の側面12aが高温に保持されるため、コイル10の両側面(12a、12b)の温度差が拡大するおそれがある。   Furthermore, it is preferable to secure a distance of 100 mm or more between the lower side surface 12a of the coil 10 and a surface without an opening (for example, a surface on which the coil mount 30 such as the ground is placed). For example, in the coil mount 30, the distance is set such that the thickness of the coil mount 30 is 100 mm or more, and the opening 32 is made to have a length of 100 mm or more in the thickness direction of the coil mount 30 from the mounting surface of the coil 10 ( It can be easily secured by forming at a depth. By placing the coil 10 on such a table and storing it, the cooling efficiency of the lower side surface 12a of the coil 10 is made closer to the upper side surface 12b, the influence of heat retention due to radiation is reduced, and the steel plate width direction is reduced. The temperature difference can be further reduced, that is, the difference in structure variation in the steel plate width direction can be further reduced. As a result, the plate thickness accuracy in the steel plate width direction during cold rolling can be further improved. If the opening ratio of the coil mount 30 is less than 0.3, the area where the lower side surface 12a of the coil in contact with the coil mount 30 is air-cooled is not sufficient, and the lower side surface 12a and the upper side of the coil 10 are on the upper side. There is a possibility that the temperature difference between the side surfaces 12b of the steel sheet increases, and the characteristics in the coil width direction, that is, the thickness accuracy in the steel sheet width direction during cold rolling may deteriorate. Further, if the distance between the lower side surface 12a of the coil 10 and the surface without the opening is short, the lower side surface 12a of the coil 10 is kept at a high temperature due to the influence of radiation. There is a concern that the temperature difference between the surfaces (12a, 12b) may increase.

本発明を以下の実施例、及び比較例により詳細に説明する。   The present invention will be described in detail with reference to the following examples and comparative examples.

板厚2.0mm、板幅1230mmの熱延鋼板を、表1に記載した条件でコイル状に巻取ってコイルとし、載置・保管した。その後、前記載置・保管後の熱延コイルから払い出した鋼帯を酸洗し、板厚0.5mmまで冷間圧延を施して冷延鋼板とし、前記鋼板の長手方向及び幅方向の板厚変動値を測定し、相対評価を行った。熱延コイルの重量は20ton、内径は30インチとした。板厚変動値は、熱延コイル外巻き側20〜50m部分の冷間圧延後の板厚変動値(最大板厚−最小板厚)である。冷間圧延は、5台の圧延機が連続的に並ぶタンデム冷間圧延機を用いた。また、上記冷延鋼板を均熱温度1000℃で仕上げ焼鈍した後、絶縁被膜を形成し、最終製品板(無方向性電磁鋼板)とした。   A hot-rolled steel sheet having a plate thickness of 2.0 mm and a plate width of 1230 mm was wound into a coil shape under the conditions described in Table 1, and placed and stored. Thereafter, the steel strip discharged from the hot-rolled coil after placement and storage described above is pickled, cold-rolled to a thickness of 0.5 mm to obtain a cold-rolled steel sheet, and the thickness of the steel sheet in the longitudinal and width directions The variation value was measured and relative evaluation was performed. The hot rolled coil had a weight of 20 tons and an inner diameter of 30 inches. The plate thickness variation value is a plate thickness variation value (maximum plate thickness-minimum plate thickness) after cold rolling of the hot rolled coil outer winding side 20 to 50 m portion. For cold rolling, a tandem cold rolling mill in which five rolling mills were continuously arranged was used. Moreover, after the said cold-rolled steel plate was finish-annealed at a soaking temperature of 1000 ° C., an insulating coating was formed to obtain a final product plate (non-oriented electrical steel plate).

上記熱延鋼板は、C:0.003mass%、Si:1.6mass%、Mn:0.4mass%、sol.Al:0.0021mass%、P:0.12mass%、S:0.002mass%、N:0.002mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼を溶製し、連続鋳造法でスラブとし、次いで、前記スラブを1050〜1130℃の温度に再加熱した後、熱間圧延して得た。   The hot-rolled steel sheet has C: 0.003 mass%, Si: 1.6 mass%, Mn: 0.4 mass%, sol. Al: 0.0021 mass%, P: 0.12 mass%, S: 0.002 mass%, N: 0.002 mass%, the remainder is melted steel having a component composition consisting of Fe and inevitable impurities, The slab was obtained by continuous casting, and then the slab was reheated to a temperature of 1050 to 1130 ° C. and then hot-rolled.

なお、磁気特性は、最終製品板の圧延方向(L)および圧延直角方向(C)からエプスタイン試験片を切り出して、磁束密度B50(磁化力5000A/mにおける磁束密度)および鉄損W15/50(磁束密度1.5T、周波数50Hzで励磁したときの鉄損)をJIS C2552に準拠して測定、評価した。 The magnetic properties were obtained by cutting an Epstein test piece from the rolling direction (L) and the perpendicular direction (C) of the final product plate to obtain magnetic flux density B 50 (magnetic flux density at a magnetizing force of 5000 A / m) and iron loss W 15 / 50 (iron loss when excited at a magnetic flux density of 1.5 T and a frequency of 50 Hz) was measured and evaluated according to JIS C2552.

Figure 0006489089
Figure 0006489089

表1に示すように本発明例1〜18では、熱延鋼板を550℃以上の高温巻取りした条件において、板厚変動を抑制できた。また最終製品板の鉄損W15/50、磁束密度B50が良好な鋼板(無方向性電磁鋼板)を製造できた。巻取り温度550℃では、巻取り温度600℃と比較し、若干の磁気特性の劣化がみられた。更に低い巻取り温度500℃では、板厚変動は小さかったが、熱延コイル保管時の再結晶が不十分で未再結晶粒が多く残り、外観不良及び大幅な磁性劣化が発生した(比較例1)。またコイル置台の開口率を小さくした条件では、鋼板幅方向に若干の板厚変動が認められた。 As shown in Table 1, in Examples 1 to 18 of the present invention, fluctuations in the plate thickness could be suppressed under conditions where the hot-rolled steel sheet was wound at a high temperature of 550 ° C or higher. Moreover, the steel plate (non-oriented electrical steel plate) with favorable iron loss W15 / 50 and magnetic flux density B50 of the final product board was able to be manufactured. At a winding temperature of 550 ° C., a slight deterioration in magnetic properties was observed compared to a winding temperature of 600 ° C. At a lower coiling temperature of 500 ° C., the plate thickness variation was small, but recrystallization during hot rolling coil storage was insufficient and many unrecrystallized grains remained, resulting in poor appearance and significant magnetic deterioration (Comparative Example). 1). Further, under the condition that the opening ratio of the coil mount was reduced, a slight thickness variation was observed in the steel plate width direction.

比較例として、コイルを高温巻取り後、転倒しない条件では、10μmを超える大きな板厚変動が発生した(比較例2〜5)。   As a comparative example, after the coil was wound at a high temperature, a large plate thickness variation exceeding 10 μm occurred under the condition that the coil did not fall (Comparative Examples 2 to 5).

ここで発明例として、上記鋼の成分組成でSiとAlのみをSi:1.0mass%、sol.Al:0.5mass%としたもの(本発明例19)、SiとAlのみをSi:1.0mass%、sol.Al:1.5mass%としたもの(本発明例20)、SiのみをSi:2.0mass%としたもの(本発明例21)、SiのみをSi:2.5mass%としたもの(本発明例22)について、本発明例5と同様の条件でコイル状に巻取ってコイルとし載置・保管した後、冷間圧延を施したところ、板厚変動が小さく、最終製品板の磁気特性も良好であった。   Here, as an example of the invention, only Si and Al in the above-described steel component composition were changed to Si: 1.0 mass%, sol. Al: 0.5 mass% (Example 19 of the present invention), Si and Al alone were added to Si: 1.0 mass%, sol. Al: 1.5 mass% (Invention Example 20), Si only Si: 2.0 mass% (Invention Example 21), Si only Si: 2.5 mass% (Invention) As for Example 22), after winding in a coil shape under the same conditions as Example 5 of the present invention and placing and storing it as a coil, cold rolling was performed. It was good.

なお、上記鋼の成分組成でSiのみSi:5.2mass%としたもの(比較例6)、PのみP:0.22mass%としたもの(比較例7)については、本発明例5と同様の条件でコイル状に巻取ってコイルとし載置・保管した後、冷間圧延を施した際に、冷間圧延中に割れが生じたため、その後の工程は中止し、最終製品板の製造はできなかった。またMnのみMn:0.03%としたもの(比較例8)についても、熱間圧延中に割れが生じたため、その後の工程は中止し、最終製品板の製造はできなかった。またAlのみsol.Al:0.0060mass%としたもの(比較例9)、SのみS:0.012mass%としたもの(比較例10)、およびSiとAlのみをSi:1.0mass%、sol.Al:2.5mass%としたもの(比較例11)については、本発明例5と同様の条件でコイル状に巻取ってコイルとし載置・保管した後、冷間圧延を施した際に大きな板厚変動は発生しなかったが、最終製品板の磁気特性が大幅に悪化した。   In the steel composition, only Si with Si: 5.2 mass% (Comparative Example 6) and P only with P: 0.22 mass% (Comparative Example 7) are the same as in Invention Example 5. After winding in the shape of a coil under the conditions of the above and placing and storing as a coil, when cold rolling, cracks occurred during cold rolling, so the subsequent process was stopped, and the final product plate was manufactured could not. Moreover, since only Mn was Mn: 0.03% (Comparative Example 8), cracks were generated during hot rolling, so the subsequent steps were stopped and the final product plate could not be produced. Moreover, only Al is sol. Al: 0.0060 mass% (Comparative Example 9), S alone S: 0.012 mass% (Comparative Example 10), and Si and Al alone were Si: 1.0 mass%, sol. For Al (2.5% by mass) (Comparative Example 11), it was large when cold-rolled after being wound in the shape of a coil under the same conditions as in Example 5 and placed and stored as a coil. Although the plate thickness variation did not occur, the magnetic properties of the final product plate were greatly deteriorated.

なお、前記実施例では相対比較のため、板厚、板幅、仕上げ焼鈍温度など、一定の条件で実施したが、本発明はこれに限定されるものではなく、その他の板厚、板幅、コイル重量、焼鈍温度等においても適用されるものである。   In the above examples, for relative comparison, the plate thickness, the plate width, the finish annealing temperature and the like were carried out under certain conditions, but the present invention is not limited to this, and other plate thicknesses, plate widths, It is also applied to coil weight, annealing temperature, and the like.

10 コイル
20 コイル転倒装置
30 コイル置台
40 任意の構造物
DESCRIPTION OF SYMBOLS 10 Coil 20 Coil overturn apparatus 30 Coil mount 40 Arbitrary structures

Claims (5)

C:0.01mass%以下、Si:5.0mass%以下、Mn:0.05〜3.0mass%、sol.Al:0.0050mass%以下もしくは0.2〜2.0mass%、P:0.20mass%以下、S:0.010mass%以下およびN:0.010mass%以下、を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼を熱間圧延したのち、温度600℃以上でコイル状に巻取りコイルとした後に、前記コイル状に巻取ったコイルを、巻取り完了から30分以内にアップエンドの状態で載置することを特徴とする熱間圧延コイルの製造方法。
ただし、前記成分組成において、Siが1.5mass%以上の場合はsol.Alは0.0050mass%以下であり、Siが1.5mass%未満の場合はsol.Alは0.2〜2.0mass%である。
C: 0.01 mass% or less, Si: 5.0 mass% or less, Mn: 0.05 to 3.0 mass%, sol. Al: 0.0050 mass% or less or 0.2 to 2.0 mass%, P: 0.20 mass% or less, S: 0.010 mass% or less and N: 0.010 mass% or less, with the balance being Fe and inevitable After hot-rolling steel having a component composition consisting of mechanical impurities into a coiled coil at a temperature of 600 ° C. or higher, the coil wound up in 30 minutes after the winding is completed A method for manufacturing a hot rolled coil, wherein the hot rolled coil is placed in an end state.
However, in the component composition, when Si is 1.5 mass% or more, sol. Al is 0.0050 mass% or less, and when Si is less than 1.5 mass%, sol. Al is 0.2 to 2.0 mass%.
前記アップエンドの状態での載置を前記コイルの外周の表面温度が300℃以下になるまで継続することを特徴とする請求項1に記載の熱間圧延コイルの製造方法。 The method for producing a hot-rolled coil according to claim 1, wherein the mounting in the up-end state is continued until the surface temperature of the outer periphery of the coil becomes 300 ° C or lower. 前記アップエンドの状態で載置したコイルの上下の側面の位置を入れ替えるように前記コイルを転倒することを特徴とする請求項1または2に記載の熱間圧延コイルの製造方法。   The method for manufacturing a hot-rolled coil according to claim 1 or 2, wherein the coil is overturned so that positions of upper and lower side surfaces of the coil placed in the up-end state are switched. 前記コイルを0.3以上の開口率を有する置台に載置することを特徴とする請求項1〜3のいずれかに記載の熱間圧延コイルの製造方法。   The method for producing a hot-rolled coil according to any one of claims 1 to 3, wherein the coil is placed on a table having an aperture ratio of 0.3 or more. 請求項1〜4のいずれかに記載の熱間圧延コイルの製造方法により得られた熱間圧延コイルから払い出した鋼帯を冷間圧延および焼鈍することを特徴とする無方向性電磁鋼板の製造方法。   Manufacturing the non-oriented electrical steel sheet characterized by cold-rolling and annealing the steel strip paid out from the hot-rolling coil obtained by the manufacturing method of the hot-rolling coil in any one of Claims 1-4 Method.
JP2016177416A 2016-09-12 2016-09-12 Method for producing hot rolled coil and non-oriented electrical steel sheet Active JP6489089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016177416A JP6489089B2 (en) 2016-09-12 2016-09-12 Method for producing hot rolled coil and non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016177416A JP6489089B2 (en) 2016-09-12 2016-09-12 Method for producing hot rolled coil and non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2018043247A JP2018043247A (en) 2018-03-22
JP6489089B2 true JP6489089B2 (en) 2019-03-27

Family

ID=61692665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016177416A Active JP6489089B2 (en) 2016-09-12 2016-09-12 Method for producing hot rolled coil and non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6489089B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114427023B (en) * 2022-01-13 2023-08-25 武汉钢铁有限公司 Method for improving performance uniformity of low-grade non-oriented silicon steel in conventional process

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237383A (en) * 1985-08-12 1987-02-18 Nippon Steel Corp Method for suppressing scale of hot coil
JPS62249816A (en) * 1986-04-22 1987-10-30 Daido Kogyo Co Ltd Upender device for placing skid for coil
JPH0790376A (en) * 1993-06-30 1995-04-04 Nkk Corp Production of high magnetic flux density nonoriented silicon steel sheet excellent in blanking property
JPH11244939A (en) * 1998-03-04 1999-09-14 Nkk Corp Edge breakdown preventing method of hot rolled coil
JP2000126815A (en) * 1998-10-23 2000-05-09 Sumitomo Metal Ind Ltd Method and device for correcting coiled shape of coil, and method and device for judging coiled shape of coil
JP2000297326A (en) * 1999-04-13 2000-10-24 Nippon Steel Corp Manufacture of nonoriented silicon steel sheet with uniform magnetic property
JP2001172718A (en) * 1999-12-13 2001-06-26 Nippon Steel Corp Method for producing nonoriented silicon steel sheet uniform in magnetic property
JP4604370B2 (en) * 2001-03-09 2011-01-05 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP3835227B2 (en) * 2001-09-21 2006-10-18 住友金属工業株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP2006263770A (en) * 2005-03-24 2006-10-05 Jfe Steel Kk Method for manufacturing hot-rolled steel sheet excellent in scale removability by brushing
JP6024922B2 (en) * 2013-12-19 2016-11-16 Jfeスチール株式会社 Coil cooling method after finish annealing
JP6020863B2 (en) * 2015-01-07 2016-11-02 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP6269970B2 (en) * 2015-01-08 2018-01-31 Jfeスチール株式会社 Non-oriented electrical steel sheet excellent in recyclability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018043247A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
US10214791B2 (en) Non-oriented electrical steel sheet
RU2519691C2 (en) Production of texture sheets from electrical steel
US20130098507A1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP6260513B2 (en) Method for producing grain-oriented electrical steel sheet
KR102566590B1 (en) Manufacturing method of non-oriented electrical steel sheet
JP6855894B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP6443355B2 (en) Method for producing grain-oriented electrical steel sheet
JP6620522B2 (en) Hot rolled steel strip for non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
JP6489089B2 (en) Method for producing hot rolled coil and non-oriented electrical steel sheet
JP5644154B2 (en) Method for producing grain-oriented electrical steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JP6432671B2 (en) Method for producing grain-oriented electrical steel sheet
JP6879341B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP6146582B2 (en) Method for producing non-oriented electrical steel sheet
JP4337159B2 (en) Manufacturing method of silicon steel sheet and hot rolled steel strip material for silicon steel sheet
KR20200098691A (en) Grain-oriented electrical steel sheet
JPH06228645A (en) Production of silicon steel sheet for compact stationary device
JP2006241554A (en) Method for manufacturing non-oriented electromagnetic steel sheet having high magnetic flux density
JP2020015947A (en) Method for manufacturing hot-rolled coil and method for manufacturing non-oriented electromagnetic steel sheet
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
JP6676952B2 (en) Hot rolled sheet for unidirectional magnetic steel sheet, method for producing the same, and method for producing the same
JP7276502B2 (en) Manufacturing method and equipment for grain oriented electrical steel sheet
JP7081725B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7211532B2 (en) Method for manufacturing non-oriented electrical steel sheet
JP2002115034A (en) Nonoriented silicon steel sheet, stock for cold rolling therefor and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180419

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190211

R150 Certificate of patent or registration of utility model

Ref document number: 6489089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250