JP6879341B2 - Manufacturing method of non-oriented electrical steel sheet - Google Patents

Manufacturing method of non-oriented electrical steel sheet Download PDF

Info

Publication number
JP6879341B2
JP6879341B2 JP2019141125A JP2019141125A JP6879341B2 JP 6879341 B2 JP6879341 B2 JP 6879341B2 JP 2019141125 A JP2019141125 A JP 2019141125A JP 2019141125 A JP2019141125 A JP 2019141125A JP 6879341 B2 JP6879341 B2 JP 6879341B2
Authority
JP
Japan
Prior art keywords
mass
rolling
hot
less
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019141125A
Other languages
Japanese (ja)
Other versions
JP2020033640A (en
Inventor
智幸 大久保
智幸 大久保
正憲 上坂
正憲 上坂
尾田 善彦
善彦 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2020033640A publication Critical patent/JP2020033640A/en
Application granted granted Critical
Publication of JP6879341B2 publication Critical patent/JP6879341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、無方向性電磁鋼板の製造方法に関し、具体的には、高温の熱延板焼鈍を施すことなく、優れた磁気特性と表面性状を有する高級無方向性電磁鋼板の製造方法に関するものである。 The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet, specifically, a method for manufacturing a high-grade grain-oriented electrical steel sheet having excellent magnetic properties and surface properties without subjecting high-temperature hot-rolled sheet annealing. Is.

近年、地球環境を保護する観点から省エネルギー化が指向され、それに伴い、電気機器は高効率化や小型化が積極的に推進されている。そのため、電気機器の鉄心材料として広く使用されている無方向性電磁鋼板には、高磁束密度化や低鉄損化が強く要求されるようになってきている。また、占積率の向上やコアの寸法精度向上の観点から、リジングと呼ばれる鋼板表面のうねりを抑制することも求められている。 In recent years, energy saving has been aimed at from the viewpoint of protecting the global environment, and along with this, high efficiency and miniaturization of electrical equipment have been actively promoted. Therefore, non-oriented electrical steel sheets, which are widely used as iron core materials for electrical equipment, are strongly required to have high magnetic flux density and low iron loss. Further, from the viewpoint of improving the space factor and improving the dimensional accuracy of the core, it is also required to suppress the waviness of the steel sheet surface called rigging.

Siを3mass%程度含有する高級無方向性電磁鋼板の製造においては、熱間圧延後の鋼板(熱延板)に、1000℃程度の高温で熱延板焼鈍を施すことが一般的に行われている。これは、Siを3mass%程度含有する鋼は、フェライト単相鋼であり、熱間圧延時に変態が生じないため、熱延後の鋼板組織は未再結晶組織が主となり、熱延板焼鈍を施して再結晶組織化しなければ、磁気特性の低下やリジングの発生を招くからである。しかし、熱延板焼鈍を施すことは、必然的に、工程増加による製造能力の低下や、工程管理の負荷増大等による製造コストの上昇を招く。 In the production of high-grade non-oriented electrical steel sheets containing about 3 mass% of Si, it is common practice to annead the hot-rolled steel sheets (hot-rolled sheets) at a high temperature of about 1000 ° C. ing. This is because the steel containing about 3 mass% of Si is a ferrite single-phase steel, and deformation does not occur during hot rolling. Therefore, the steel sheet structure after hot rolling is mainly unrecrystallized, and hot-rolled sheet annealing is performed. This is because if it is not recrystallized and recrystallized, the magnetic properties will deteriorate and rigging will occur. However, performing hot-rolled sheet annealing inevitably leads to a decrease in manufacturing capacity due to an increase in processes and an increase in manufacturing costs due to an increase in the load of process control.

そこで、熱延板焼鈍を省略する方法として、特許文献1や特許文献2には、熱間圧延における仕上圧延終了温度を高温化して、自己焼鈍により再結晶を促進する技術が提案されている。 Therefore, as a method of omitting hot-rolled sheet annealing, Patent Document 1 and Patent Document 2 propose a technique of raising the finish rolling end temperature in hot rolling to promote recrystallization by self-annealing.

特開昭62−054023号公報Japanese Unexamined Patent Publication No. 62-054023 特開2007−154271号公報Japanese Unexamined Patent Publication No. 2007-154271

しかしながら、上記特許文献1および2の技術は、主としてSiを2mass%程度含有する鋼を対象としてしか検討がなされていない。そのため、Si含有量がさらに高い高級鋼では、再結晶がより進み難いため、リジングの抑制効果が安定して得られないという問題がある。また、熱間圧延の仕上圧延終了温度を高温化すると、熱延板の形状を制御することが難しくなるという問題もある。 However, the techniques of Patent Documents 1 and 2 have been studied only mainly for steels containing about 2 mass% of Si. Therefore, in high-grade steel having a higher Si content, recrystallization is more difficult to proceed, and there is a problem that the effect of suppressing rigging cannot be stably obtained. Further, when the finish rolling end temperature of hot rolling is raised, there is a problem that it becomes difficult to control the shape of the hot rolled plate.

本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、高温での熱延板焼鈍を施すことなく、あるいは、熱延板焼鈍を施すことなく、磁気特性に優れかつリジングの発生のない高級無方向性電磁鋼板の製造方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to obtain magnetic properties without performing hot-rolled sheet annealing at a high temperature or without performing hot-rolled sheet annealing. The purpose of the present invention is to propose a method for manufacturing a high-grade non-oriented electrical steel sheet which is excellent and does not cause rigging.

発明者らは、上記課題を達成するため、熱間圧延の仕上圧延条件に着目して鋭意検討を重ねた。その結果、熱間圧延の仕上圧延における1パス目の圧延条件を適正化することで、高温での熱延板焼鈍を施すことなく、あるいは、熱延板焼鈍を施すことなく、磁気特性に優れかつリジングの発生のない高級無方向性電磁鋼板を製造することができることを見出し、本発明を完成させた。 In order to achieve the above problems, the inventors have made extensive studies focusing on the finish rolling conditions of hot rolling. As a result, by optimizing the rolling conditions of the first pass in the finish rolling of hot rolling, the magnetic properties are excellent without subjecting hot-rolled sheet annealing at high temperature or without performing hot-rolled sheet annealing. Moreover, they have found that it is possible to manufacture a high-grade non-oriented electrical steel sheet that does not cause rigging, and have completed the present invention.

すなわち、本発明は、C:0.0050mass%以下、Si:2.0〜5.0mass%、Mn:3.0mass%以下、P:0.20mass%以下、S:0.0050mass%以下、Al:3.0mass%以下、N:0.0050mass%以下およびO:0.010mass%以下を含有し、残部がFeおよび不可避不純物からなる成分組成を有するスラブを熱間圧延し、均熱温度900℃以下、均熱時間5min以下で熱延板焼鈍を施しあるいは熱延板焼鈍を施すことなく、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を行い、仕上焼鈍する無方向性電磁鋼板の製造方法において、
上記熱間圧延における仕上圧延1パス目の入側温度FETを970℃以上とし、かつ、
上記仕上圧延1パス目を下記(1)式;
α=FET+43.4×ln(SR) ・・・(1)
ここで、FET:仕上圧延1パス目の入側温度(℃)
SR:仕上圧延1パス目の歪速度(s−1
で定義されるαが1070以上となる条件で圧延することを特徴とする無方向性電磁鋼板の製造方法を提案する。
That is, in the present invention, C: 0.0050 mass% or less, Si: 2.0 to 5.0 mass%, Mn: 3.0 mass% or less, P: 0.20 mass% or less, S: 0.0050 mass% or less, Al. : 3.0 mass% or less, N: 0.0050 mass% or less and O: 0.010 mass% or less, and the balance is hot-rolled with a component composition of Fe and unavoidable impurities, and the soaking temperature is 900 ° C. Hereinafter, a non-directional electromagnetic steel sheet that is subjected to cold rolling once or two or more times with an intermediate annealing sandwiched between them without performing hot-rolled sheet annealing or hot-rolled sheet annealing within a soaking time of 5 min or less to finish annealing. In the manufacturing method
The entry-side temperature FET in the first pass of finish rolling in the hot rolling is set to 970 ° C. or higher, and
The first pass of the finish rolling is the following formula (1);
α = FET + 43.4 × ln (SR) ・ ・ ・ (1)
Here, FET: entry side temperature (° C.) in the first pass of finish rolling.
SR: Strain rate of the first pass of finish rolling (s -1 )
We propose a method for manufacturing non-oriented electrical steel sheets, which is characterized by rolling under the condition that α defined in 1 is 1070 or more.

本発明の無方向性電磁鋼板の製造方法は、上記熱間圧延の仕上圧延前に、鋼板を再加熱することを特徴とする。 The method for producing a non-oriented electrical steel sheet of the present invention is characterized in that the steel sheet is reheated before the finish rolling of the hot rolling.

また、本発明の無方向性電磁鋼板の製造方法は、上記熱間圧延における仕上圧延終了温度FDTを900℃以上、コイル巻取温度CTを700℃以下とすることを特徴とする。 Further, the method for manufacturing a non-oriented electrical steel sheet of the present invention is characterized in that the finish rolling end temperature FDT in the hot rolling is 900 ° C. or higher and the coil winding temperature CT is 700 ° C. or lower.

また、本発明の無方向性電磁鋼板の製造方法に用いる上記スラブは、上記成分組成に加えてさらに、Sn:0.005〜0.20mass%およびSb:0.005〜0.20mass%のうちから選ばれる1種または2種を含有することを特徴とする。 Further, the slab used in the method for producing a non-oriented electrical steel sheet of the present invention has, in addition to the above component composition, Sn: 0.005 to 0.20 mass% and Sb: 0.005 to 0.20 mass%. It is characterized by containing one or two kinds selected from.

また、本発明の無方向性電磁鋼板の製造方法に用いる上記スラブは、上記成分組成に加えてさらに、Ca:0.0005〜0.020mass%、Mg:0.0005〜0.020mass%およびREM:0.0005〜0.020mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。 Further, in the slab used in the method for producing a non-oriented electrical steel sheet of the present invention, in addition to the above component composition, Ca: 0.0005 to 0.020 mass%, Mg: 0.0005 to 0.020 mass% and REM. : It is characterized by containing one or more selected from 0.0005 to 0.020 mass%.

本発明によれば、高温での熱延板焼鈍を施すことなく、あるいは、熱延板焼鈍を施すことなく、磁気特性に優れかつリジングの発生のない高級無方向性電磁鋼板を製造することができるので、製造工程の短縮あるいは削減が可能となるだけでなく、製品品質の向上、製造コストの低減にも大いに寄与する。 According to the present invention, it is possible to manufacture a high-grade non-directional electromagnetic steel plate having excellent magnetic properties and no rigging without subjecting hot-rolled sheet annealing at a high temperature or without subjecting hot-rolled sheet annealing. This not only makes it possible to shorten or reduce the manufacturing process, but also greatly contributes to improving product quality and reducing manufacturing costs.

仕上圧延1パス目の入側温度FETと歪速度SRがリジングに及ぼす影響を示すグラフである。It is a graph which shows the influence which the entry-side temperature FET and the strain rate SR of the 1st pass of finish rolling have on rigging.

まず、本発明を開発する契機となった実験について説明する。
C:0.0016mass%、Si:3.11mass%、Mn:0.46mass%、P:0.01mass%、S:0.0015mass%、Al:1.12mass%、N:0.0017mass%、Ni:0.01mass%、Cr:0.01mass%、Ti:0.0005mass%、Nb:0.0001mass%およびO:0.0028mass%を含有し、残部がFeおよび不可避不純物からなる成分組成の鋼を真空溶解炉で溶製し、50kgの鋳塊とした。
First, the experiment that triggered the development of the present invention will be described.
C: 0.0016 mass%, Si: 3.11 mass%, Mn: 0.46 mass%, P: 0.01 mass%, S: 0.0015 mass%, Al: 1.12 mass%, N: 0.0017 mass%, Ni : 0.01 mass%, Cr: 0.01 mass%, Ti: 0.0005 mass%, Nb: 0.0001 mass% and O: 0.0028 mass%, and the balance is Fe and unavoidable impurities. It was melted in a vacuum melting furnace to obtain a 50 kg ingot.

次いで、上記鋳塊を1150℃の温度に30分間再加熱した後、粗圧延して、厚さが50mmのシートバーとした。次いで、上記シートバーを室温まで冷却した後、1150℃の温度に再加熱して30分間保持した後、ワークロール径が300mmφの5スタンドの熱間圧延機を用いて、実機の仕上圧延を模擬した熱間圧延(仕上圧延)を行い、板厚が2.3mmの熱延板とした。この際、5スタンドの圧延機出側の鋼板温度、即ち、仕上圧延終了温度FDTは840℃(一定)とし、仕上圧延1パス目の入側温度FETと歪速度SRを種々に変化させて圧延を行った。
次いで、上記熱間圧延後の鋼板(熱延板)を酸洗し、冷間圧延して最終板厚0.3mmの冷延板とした後、980℃×10sの仕上焼鈍を施した。
斯くして得た仕上焼鈍後の鋼板表面を目視で観察し、リジングの発生状況を評価した。
Next, the ingot was reheated to a temperature of 1150 ° C. for 30 minutes and then roughly rolled to obtain a sheet bar having a thickness of 50 mm. Next, the sheet bar was cooled to room temperature, reheated to a temperature of 1150 ° C. and held for 30 minutes, and then the finish rolling of the actual machine was simulated using a 5-stand hot rolling mill having a work roll diameter of 300 mmφ. Hot rolling (finish rolling) was carried out to obtain a hot-rolled plate having a plate thickness of 2.3 mm. At this time, the temperature of the steel plate on the exit side of the rolling mill of 5 stands, that is, the finish rolling end temperature FDT is set to 840 ° C. (constant), and the inlet temperature FET and strain rate SR of the first pass of finish rolling are variously changed for rolling. Was done.
Next, the steel sheet (hot-rolled sheet) after the hot-rolling was pickled and cold-rolled to obtain a cold-rolled sheet having a final plate thickness of 0.3 mm, and then finish annealing at 980 ° C. × 10 s was performed.
The surface of the steel sheet after finish annealing thus obtained was visually observed, and the state of occurrence of rigging was evaluated.

上記実験の結果を、図1に示した。この図から、熱間圧延の仕上圧延1パス目の入側温度FETを970℃以上とし、かつ、上記仕上圧延1パス目を下記(1)式;
α=FET+43.4×ln(SR) ・・・(1)
ここで、FET:仕上圧延1パス目の入側温度(℃)
SR:仕上圧延1パス目の歪速度(s−1
で定義されるαが1070以上となる条件で圧延することで、リジングの発生が抑制されることがわかった。
The results of the above experiment are shown in FIG. From this figure, the entry-side temperature FET of the first pass of the finish rolling of hot rolling is set to 970 ° C. or higher, and the first pass of the finish rolling is defined by the following equation (1);
α = FET + 43.4 × ln (SR) ・ ・ ・ (1)
Here, FET: entry side temperature (° C.) in the first pass of finish rolling.
SR: Strain rate of the first pass of finish rolling (s -1 )
It was found that the occurrence of rigging was suppressed by rolling under the condition that α defined in 1 was 1070 or more.

この理由について、発明者らは以下のように考えている。
仕上圧延の1パス目を、高温・高歪速度で圧延を行った場合には、1パス目の圧延後の静的再結晶が促進されるため、集合組織のランダム化と組織の微細化が達成される。さらに、1パス目の圧延後に再結晶して微細化した組織は、2パス目以降でも再結晶が促進されるため、さらに集合組織のランダム化が進行し、リジングが抑制される。
The inventors think of this reason as follows.
When the first pass of finish rolling is rolled at a high temperature and a high strain rate, static recrystallization after the first pass is promoted, so that the texture can be randomized and the structure can be miniaturized. Achieved. Further, since the structure recrystallized and refined after the first pass of rolling is promoted to be recrystallized even after the second pass, the randomization of the texture is further promoted and the rigging is suppressed.

また、本実験で得られた全ての熱延板は、表層部を除いて未再結晶組織(加工組織)であった。これから、リジングを抑制するためには、必ずしも熱延後の熱延板組織を再結晶した状態にする必要はなく、上記した熱延の仕上圧延途中の再結晶で集合組織をランダム化すればよいこと、また、その場合には、熱延終了後の鋼板組織は未再結晶組織でもよいことがわかった。したがって、仕上圧延機入側の鋼板温度、すなわち、仕上圧延1パス目の圧延条件を適正化すれば、仕上圧延終了温度FDTを不必要に高温化することなく、リジングを抑制することが可能であることがわかった。
本発明は、上記の新たな知見に基き、開発したものである。
In addition, all the hot-rolled plates obtained in this experiment had an unrecrystallized structure (processed structure) except for the surface layer portion. From now on, in order to suppress rigging, it is not always necessary to recrystallize the hot-rolled sheet structure after hot-rolling, and the texture may be randomized by the recrystallization during the finish rolling of hot-rolling described above. It was also found that, in that case, the steel sheet structure after the completion of hot rolling may be an unrecrystallized structure. Therefore, if the temperature of the steel sheet on the entry side of the finish rolling mill, that is, the rolling conditions of the first pass of the finish rolling is optimized, rigging can be suppressed without unnecessarily increasing the finish rolling end temperature FDT. It turned out that there was.
The present invention has been developed based on the above new findings.

次に、本発明の無方向性電磁鋼板の製造に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.0050mass%以下
Cは、製品板において磁気時効を起こして炭化物を形成し、鉄損を劣化させる有害元素である。よって、本発明では、上記磁気時効を抑制するため、Cの含有量を0.0050mass%以下に制限する。好ましくは0.0030mass%以下である。
Next, the composition of the steel material (slab) used in the production of the non-oriented electrical steel sheet of the present invention will be described.
C: 0.0050 mass% or less C is a harmful element that causes magnetic aging in the product plate to form carbides and deteriorates iron loss. Therefore, in the present invention, the C content is limited to 0.0050 mass% or less in order to suppress the magnetic aging. It is preferably 0.0030 mass% or less.

Si:2.0〜5.0mass%
Siは、鋼の比抵抗を高めて鉄損を低減するのに有効な成分である。しかし、Siが2.0mass%未満では上記効果は小さく、一方、5.0mass%を超えると、圧延することが困難になる。よって、Siの含有量は2.0〜5.0mass%の範囲とする。なお、本発明は、再結晶が起こり難い、高級鋼を対象としていることから、本発明の効果が顕著となるSi:2.5mass%以上の鋼に適用するのが好ましい。また、Siの上限は、製造性を考慮し、4.5mass%以下が好ましい。
Si: 2.0-5.0 mass%
Si is an effective component for increasing the specific resistance of steel and reducing iron loss. However, if Si is less than 2.0 mass%, the above effect is small, while if it exceeds 5.0 mass%, rolling becomes difficult. Therefore, the Si content is in the range of 2.0 to 5.0 mass%. Since the present invention is intended for high-grade steels that are unlikely to undergo recrystallization, it is preferably applied to steels having a Si: 2.5 mass% or more in which the effects of the present invention are remarkable. Further, the upper limit of Si is preferably 4.5 mass% or less in consideration of manufacturability.

Mn:3.0mass%以下
Mnは、SをMnSとして固定することで、熱間加工性を改善する効果がある他、微細硫化物を低減し、粒成長性を改善して鉄損を低減する効果がある。さらに、Mnを多く添加することで、MnSの固溶温度が上昇して再固溶やそれに伴う微細析出が抑制されるので、後述するスラブ加熱温度の高温化による鉄損特性の悪化を抑制することもできる。しかし、Mn含有量が3.0mass%を超えると、Mn炭窒化物が析出し、却って鉄損が悪化するようになる。よって、Mnの含有量は3.0mass%以下とする。なお、上記鉄損低減効果を得るためには、0.4mass%以上添加するのが好ましい。また、Mnの上限は、好ましくは2.0mass%である。
Mn: 3.0 mass% or less Mn has the effect of improving hot workability by fixing S as MnS, reduces fine sulfides, improves grain growth and reduces iron loss. effective. Furthermore, by adding a large amount of Mn, the solid solution temperature of MnS rises and resolid solution and the accompanying fine precipitation are suppressed, so that deterioration of iron loss characteristics due to an increase in the slab heating temperature, which will be described later, is suppressed. You can also do it. However, when the Mn content exceeds 3.0 mass%, Mn carbonitride is precipitated, and iron loss is worsened. Therefore, the Mn content is set to 3.0 mass% or less. In addition, in order to obtain the above-mentioned iron loss reducing effect, it is preferable to add 0.4 mass% or more. The upper limit of Mn is preferably 2.0 mass%.

P:0.20mass%以下
Pは、固溶硬化能が大きいため、鋼の強度調整に用いられる元素であり、適宜、添加することができる。しかし、0.20mass%を超えると、鋼が脆化し、冷間圧延すること困難になるため、Pの上限は0.20mass%とする。好ましくは、0.08mass%以下である。
P: 0.20 mass% or less P is an element used for adjusting the strength of steel because it has a large solid solution hardening ability, and can be added as appropriate. However, if it exceeds 0.20 mass%, the steel becomes brittle and it becomes difficult to perform cold rolling. Therefore, the upper limit of P is set to 0.20 mass%. Preferably, it is 0.08 mass% or less.

S:0.0050mass%以下
Sは、微細な硫化物を形成して粒成長を阻害し、鉄損を増加させる有害元素であるため、極力低減するのが望ましい。特に、Sの含有量が0.0050mass%を超えると、上記の悪影響が顕著になるので、上限を0.0050mass%とする。なお、Sを0.0010mass%以下に低減することで、後述するスラブ加熱温度の高温化による鉄損特性の悪化を抑制することができるので、好ましくは0.0025mass%以下、より好ましくは0.0010mass%以下である。
S: 0.0050 mass% or less S is a harmful element that forms fine sulfides, inhibits grain growth, and increases iron loss, so it is desirable to reduce it as much as possible. In particular, when the S content exceeds 0.0050 mass%, the above adverse effect becomes remarkable, so the upper limit is set to 0.0050 mass%. By reducing S to 0.0010 mass% or less, deterioration of iron loss characteristics due to an increase in the slab heating temperature, which will be described later, can be suppressed. Therefore, it is preferably 0.0025 mass% or less, more preferably 0. It is 0010 mass% or less.

Al:3.0mass%以下
Alは、Siと同様、鋼の比抵抗を高めて鉄損を低減する効果がある。また、NをAlNとして固定することで、微細なAlNの析出を低減して粒成長性を改善し、鉄損を低減する効果がある。さらに、Alを多く添加することで、AlNの固溶温度が上昇して再固溶やそれに伴う微細析出が抑制されるので、後述するスラブ加熱温度の高温化による鉄損特性の悪化を抑制することもできる。しかし、Alの含有量が3.0mass%を超えると、圧延することが困難になる。よって、Alは3.0mass%以下とする。好ましくは2.0mass%以下である。なお、Al含有量が0.5mass%未満では、上記した鉄損改善効果が小さいため、0.5mass%以上含有するのが好ましい。
Al: 3.0 mass% or less Al has the effect of increasing the specific resistance of steel and reducing iron loss, similar to Si. Further, by fixing N as AlN, there is an effect of reducing the precipitation of fine AlN, improving the grain growth property, and reducing the iron loss. Furthermore, by adding a large amount of Al, the solid solution temperature of AlN rises and resolid solution and the accompanying fine precipitation are suppressed, so that deterioration of iron loss characteristics due to an increase in the slab heating temperature, which will be described later, is suppressed. You can also do it. However, if the Al content exceeds 3.0 mass%, rolling becomes difficult. Therefore, Al is set to 3.0 mass% or less. It is preferably 2.0 mass% or less. If the Al content is less than 0.5 mass%, the above-mentioned iron loss improving effect is small, so that the Al content is preferably 0.5 mass% or more.

なお、Alは、微細なAlNを形成し、粒成長を阻害して鉄損特性に悪影響を及ぼす元素でもある。したがって、Al含有量を極力低減してAlNの析出量を減少することで、粒成長を促進し、鉄損を改善することもできる。この効果を得るためには、Alは0.05mass%以下に低減することが好ましい。より好ましくは0.01mass%以下、さらに好ましくは0.005mass%以下である。なお、Alを低減した場合には、集合組織の改善による磁束密度の向上効果も期待できるので、熱延板焼鈍の省略によって磁束密度が低下しやすい高級鋼を対象とする本発明には特に好適である。 Al is also an element that forms fine AlN, inhibits grain growth, and adversely affects iron loss characteristics. Therefore, by reducing the Al content as much as possible and reducing the amount of AlN precipitated, grain growth can be promoted and iron loss can be improved. In order to obtain this effect, Al is preferably reduced to 0.05 mass% or less. It is more preferably 0.01 mass% or less, still more preferably 0.005 mass% or less. When Al is reduced, the effect of improving the magnetic flux density by improving the texture can be expected, so that it is particularly suitable for the present invention for high-grade steel in which the magnetic flux density tends to decrease due to omission of hot-rolled sheet annealing. Is.

N:0.0050mass%以下
Nは、微細な窒化物を形成し、粒成長を阻害して鉄損を高める有害元素である。特に、N含有量が0.0050mass%を超えると、上記の悪影響が顕著になるため、上限は0.0050mass%とする。なお、Nを0.0010mass%以下に低減することで、後述するスラブ加熱温度の高温化による鉄損特性の悪化を抑制することができるので、より好ましくは0.0010mass%以下である。
N: 0.0050 mass% or less N is a harmful element that forms fine nitrides, inhibits grain growth, and increases iron loss. In particular, when the N content exceeds 0.0050 mass%, the above adverse effect becomes remarkable, so the upper limit is set to 0.0050 mass%. By reducing N to 0.0010 mass% or less, deterioration of iron loss characteristics due to an increase in the slab heating temperature, which will be described later, can be suppressed, so that it is more preferably 0.0010 mass% or less.

本発明の無方向電磁鋼板の製造に用いる鋼素材は、上記成分に加えてさらに、以下の成分を適宜含有することができる。
Sn:0.005〜0.20mass%、Sb:0.005〜0.20mass%
SnおよびSbは、再結晶集合組織を改善し、磁束密度と鉄損を改善する効果がある。上記効果は、SnおよびSbの含有量がそれぞれ0.005mass%未満では十分に得られない。一方、SnおよびSbをそれぞれ0.20mass%以上添加しても、上記効果は飽和する。よって、SnおよびSbは、それぞれ0.005〜0.20mass%の範囲で添加するのが好ましい。
The steel material used for producing the non-oriented electrical steel sheet of the present invention can appropriately contain the following components in addition to the above components.
Sn: 0.005 to 0.20 mass%, Sb: 0.005 to 0.20 mass%
Sn and Sb have the effect of improving the recrystallization texture and improving the magnetic flux density and iron loss. The above effect cannot be sufficiently obtained when the Sn and Sb contents are less than 0.005 mass%, respectively. On the other hand, even if Sn and Sb are added in an amount of 0.20 mass% or more, the above effect is saturated. Therefore, it is preferable to add Sn and Sb in the range of 0.005 to 0.20 mass%, respectively.

Ca:0.0001〜0.020mass%、Mg:0.0001〜0.020mass%、REM:0.0001〜0.020mass%
Ca,MgおよびREMは、安定な硫化物、セレン化物を形成し、粒成長性を改善する効果がある。また、Ca,MgおよびREMは、粒成長を阻害する析出物を形成するSを固定することで、後述するスラブ加熱温度の高温化による鉄損特性の悪化を抑制する効果もある。上記効果は、Ca,MgおよびREMの1種または2種以上の含有量がそれぞれ0.0001mass%未満では十分に得られない。一方、Ca,MgおよびREMの1種または2種以上のそれぞれの含有量が0.020mass%を超えると、介在物(Ca,MgおよびREMの化合物)が増加し、却って鉄損が増加するようになる。よって、Ca,MgおよびREMは、それぞれ0.0001〜0.020mass%の範囲で添加するのが好ましい。より好ましくは、それぞれ0.0005〜0.010mass%の範囲である。
Ca: 0.0001 to 0.020 mass%, Mg: 0.0001 to 0.020 mass%, REM: 0.0001 to 0.020 mass%
Ca, Mg and REM form stable sulfides and selenium compounds and have the effect of improving grain growth. Further, Ca, Mg and REM also have an effect of suppressing deterioration of iron loss characteristics due to an increase in the slab heating temperature, which will be described later, by fixing S that forms a precipitate that inhibits grain growth. The above effect cannot be sufficiently obtained when the content of one or more of Ca, Mg and REM is less than 0.0001 mass%, respectively. On the other hand, when the content of one or more of Ca, Mg and REM exceeds 0.020 mass%, inclusions (compounds of Ca, Mg and REM) increase, and iron loss increases on the contrary. become. Therefore, it is preferable to add Ca, Mg and REM in the range of 0.0001 to 0.020 mass%, respectively. More preferably, they are in the range of 0.0005 to 0.010 mass%, respectively.

本発明の無方向電磁鋼板の製造に用いる鋼素材は、上記成分以外の残部は、Feおよび不可避的不純物である。しかし、Cr,NiおよびCuなどの元素は、適正な範囲内であれば、本発明の効果に悪影響を及ぼさずに鉄損や強度を改善する効果があり、適宜添加することができるが、原料コストを低減する観点から、これらの元素は、それぞれ1mass%以下とするのが望ましい。また、Ti,Nb,VおよびZrなどの炭窒化物や硫化物を形成する元素は、磁気特性に有害であることから、これらの元素は可能な限り低減することが望ましく、具体的にはそれぞれ0.002mass%以下とするのが好ましい。 In the steel material used for producing the non-oriented electrical steel sheet of the present invention, the balance other than the above components is Fe and unavoidable impurities. However, elements such as Cr, Ni and Cu have the effect of improving iron loss and strength without adversely affecting the effects of the present invention as long as they are within an appropriate range, and can be added as appropriate, but they are raw materials. From the viewpoint of cost reduction, it is desirable that each of these elements is 1 mass% or less. Further, since the elements forming carbonitrides and sulfides such as Ti, Nb, V and Zr are harmful to the magnetic properties, it is desirable to reduce these elements as much as possible, and specifically, each of them. It is preferably 0.002 mass% or less.

次に、本発明の無方向性電磁鋼板の製造方法について説明する。
本発明の無方向性電磁鋼板は、上記した本発明に適合する成分組成の鋼素材(スラブ)を所定の温度に加熱した後、熱間圧延して熱延板とし、該熱延板に熱延板焼鈍を施しあるいは施すことなく、1回または中間焼鈍を挟む2回以上の冷間圧延を行い、最終板厚とした後、仕上焼鈍し、必要に応じて絶縁被膜を被成することで製造することができる。
Next, the method for manufacturing the non-oriented electrical steel sheet of the present invention will be described.
The non-directional electromagnetic steel sheet of the present invention is obtained by heating a steel material (slab) having a composition suitable for the present invention to a predetermined temperature and then hot rolling to obtain a hot-rolled plate, and the hot-rolled plate is heated. By performing cold rolling once or two or more times with intermediate annealing sandwiched between them to obtain the final plate thickness, finish annealing, and if necessary, an insulating film is applied, with or without rolling sheet annealing. Can be manufactured.

ここで、上記鋼素材(スラブ)は、転炉や真空脱ガス処理等からなる常法の精錬プロセスで本発明に適合する成分組成の鋼を溶製し、常法の連続鋳造法や造塊−分塊圧延法等を用いて製造することができる。なお、連続鋳造と熱延とを直結した薄スラブキャスターを用いて鋼素材としてもよい。 Here, for the steel material (slab), steel having a component composition suitable for the present invention is melted by a conventional refining process consisting of a converter, vacuum degassing, etc., and a conventional continuous casting method or ingot formation is performed. -Can be manufactured by using a bulk rolling method or the like. A thin slab caster in which continuous casting and hot rolling are directly connected may be used as a steel material.

上記スラブは、所定の温度に加熱した後、熱間圧延に供するが、上記スラブ加熱は必須ではなく、省略してもよい。例えば、連続鋳造後、直ちに熱間圧延する直送圧延HDRの場合や、上記薄スラブの場合である。なお、スラブ加熱を行う場合、その加熱温度は、1000〜1300℃の範囲とするのが好ましい。スラブ加熱温度が1300℃を超えると、AlNやMnSなどの析出物形成元素が鋼中に固溶し、後工程で再析出して粒成長を阻害し、鉄損特性に悪影響を及ぼすようになる。一方、1000℃を下回ると、熱間圧延の負荷が増大するだけでなく、仕上圧延入側温度FETや仕上圧延終了温度FDTを確保できなくなる。 The slab is heated to a predetermined temperature and then subjected to hot rolling, but the slab heating is not essential and may be omitted. For example, in the case of direct rolling HDR in which hot rolling is performed immediately after continuous casting, or in the case of the thin slab. When slab heating is performed, the heating temperature is preferably in the range of 1000 to 1300 ° C. When the slab heating temperature exceeds 1300 ° C., precipitate-forming elements such as AlN and MnS are solid-solved in the steel and reprecipitated in the subsequent process to inhibit grain growth and adversely affect the iron loss characteristics. .. On the other hand, if the temperature is lower than 1000 ° C., not only the load of hot rolling increases, but also the finish rolling inlet side temperature FET and the finish rolling end temperature FDT cannot be secured.

熱間圧延は、複数の単スタンド圧延機で、スラブを所定の板厚のシートバーとする粗圧延と、上記粗圧延に続く、複数のスタンドからなる仕上圧延機で目標板厚まで連続して圧延を行う仕上圧延とから構成されているのが一般的である。粗圧延については、歪速度を制御することが工業的に難しいため、特に条件は規定しない。また、上述した薄スラブキャスターで薄スラブを製造するような場合には、粗圧延を省略してもよい。この場合のスラブ厚は、10〜100mmの範囲とするのが好ましい。 Hot rolling is performed by a plurality of single-stand rolling mills for rough rolling in which a slab is used as a sheet bar having a predetermined plate thickness, and a finishing rolling mill consisting of a plurality of stands following the above-mentioned rough rolling to continuously reach a target plate thickness. It is generally composed of finish rolling, which involves rolling. For rough rolling, it is industrially difficult to control the strain rate, so no particular conditions are specified. Further, in the case of producing a thin slab with the above-mentioned thin slab casters, rough rolling may be omitted. The slab thickness in this case is preferably in the range of 10 to 100 mm.

粗圧延に続く仕上圧延は、1パス目の入側の鋼板温度、すなわち、仕上圧延入側温度FET(℃)を970℃以上とし、かつ、上記仕上圧延1パス目を下記(1)式;
α=FET+43.4×ln(SR) ・・・(1)
ここで、FET:仕上圧延1パス目の入側温度(℃)
SR:仕上圧延1パス目の歪速度(s−1
で定義されるαが1070以上となる条件で圧延することが重要である。これにより、仕上圧延における静的再結晶が促進され、リジングを抑制することができる。FETが970℃よりも低くなると、現実的な熱延条件の範囲では、歪速度を上げても再結晶を促進することが困難になるので、FETの下限は970℃とする必要がある。なお、好ましいFETは1030℃以上、αは1100以上である。
In the finish rolling following the rough rolling, the temperature of the steel plate on the entry side of the first pass, that is, the temperature FET (° C.) on the entry side of the finish rolling is set to 970 ° C. or higher, and the first pass of the finish rolling is defined by the following equation (1);
α = FET + 43.4 × ln (SR) ・ ・ ・ (1)
Here, FET: entry side temperature (° C.) in the first pass of finish rolling.
SR: Strain rate of the first pass of finish rolling (s -1 )
It is important to roll under the condition that α defined in is 1070 or more. As a result, static recrystallization in finish rolling is promoted, and rigging can be suppressed. If the FET is lower than 970 ° C., it becomes difficult to promote recrystallization even if the strain rate is increased within a range of realistic hot rolling conditions. Therefore, the lower limit of the FET needs to be set to 970 ° C. The preferred FET is 1030 ° C. or higher, and α is 1100 or higher.

なお、歪速度SR(s−1)については、種々の計算式が提案されているが、本発明においては、Simsの式として知られる下記式を用いる。

Figure 0006879341
Various calculation formulas have been proposed for the strain rate SR (s -1 ), but in the present invention, the following formula known as the Sims formula is used.
Figure 0006879341

また、熱間圧延の仕上圧延最終パス出側の鋼板温度、すなわち、仕上圧延終了温度FDTは磁気特性を改善する観点から、900℃以上とするのが好ましく、940℃以上とするのがより好ましい。これにより、熱延板の再結晶と粒成長が促進され、磁気特性をより向上することができる。FDTの高温化は、スラブ加熱温度の高温化や、パススケジュールの最適化、熱間圧延途中での再加熱、ストリップクーラント量の調整などで達成できる。一方、FDTがMnSやAlNの固溶温度以上となった場合、析出物が微細化して鉄損が増加するおそれがあるため、FDTは1100℃以下とするのが好ましい。 Further, the temperature of the steel sheet on the side of the final pass of the finish rolling of hot rolling, that is, the finish rolling end temperature FDT is preferably 900 ° C. or higher, more preferably 940 ° C. or higher, from the viewpoint of improving the magnetic characteristics. .. As a result, the recrystallization and grain growth of the hot-rolled sheet are promoted, and the magnetic properties can be further improved. The high temperature of the FDT can be achieved by raising the slab heating temperature, optimizing the path schedule, reheating during hot rolling, adjusting the amount of strip coolant, and the like. On the other hand, when the FDT becomes equal to or higher than the solid solution temperature of MnS or AlN, the precipitate may become finer and the iron loss may increase. Therefore, the FDT is preferably set to 1100 ° C. or lower.

ここで、上記熱間圧延途中での再加熱の目的は、仕上圧延における圧延温度を高温化し、仕上熱延中の再結晶を促進することにある。したがって、上記再加熱は、粗圧延後、仕上圧延前のシートバーに対して実施するのが好ましく、また、再加熱する手段としては、例えば、従来公知の誘導加熱方式のシートバーヒータを用いることが好ましい。なお、シートバーを再加熱する場合、その温度は、スラブ加熱温度以下とすることが好ましい。これにより、AlNやMnSなどの析出物の再固溶が抑制されるため、AlNやMnSなどの再析出による粒成長への悪影響、ひいては、鉄損への悪影響を回避することができる。なお、再加熱温度を、スラブ加熱温度以上、あるいは、1150℃以上の高温とする場合は、CaやREM,Mgなどを添加してSを粗大介在物として固定し、微細MnSの生成を抑制することが好ましい。なお、薄スラブキャスター等を用いるなどして、スラブ加熱を省略する場合には、シートバーの再加熱温度は特に制限されないが、やはり、Ca,REM,Mgなどを添加することが好ましい。 Here, the purpose of reheating during the hot rolling is to raise the rolling temperature in the finish rolling and promote recrystallization during the hot rolling of the finish. Therefore, the reheating is preferably performed on the seat bar after rough rolling and before finish rolling, and as a means for reheating, for example, a conventionally known induction heating type seat bar heater is used. Is preferable. When the seat bar is reheated, the temperature is preferably equal to or lower than the slab heating temperature. As a result, the resolidification of precipitates such as AlN and MnS is suppressed, so that adverse effects on grain growth due to reprecipitation of AlN and MnS, and thus adverse effects on iron loss can be avoided. When the reheating temperature is higher than the slab heating temperature or 1150 ° C. or higher, Ca, REM, Mg, etc. are added to fix S as a coarse inclusion and suppress the formation of fine MnS. Is preferable. When slab heating is omitted by using a thin slab caster or the like, the reheating temperature of the seat bar is not particularly limited, but it is still preferable to add Ca, REM, Mg or the like.

一方、上記FDTは、高温化すると、熱間圧延後の鋼板形状を制御することが難しくなる。そのため磁気特性と鋼板形状を両立するため、FDTの上限は1000℃程度とするのが好ましい。なお、FDTを高温化しない場合、磁束密度が低下する傾向があるが、Alの含有量を極微量に低減した鋼素材を用いたり、Sn,Sb等の粒界偏析元素を微量添加した鋼素材を用いたりすることで、上記弊害を軽減することができる。 On the other hand, when the temperature of the FDT is increased, it becomes difficult to control the shape of the steel sheet after hot rolling. Therefore, in order to achieve both magnetic properties and steel plate shape, the upper limit of FDT is preferably about 1000 ° C. If the temperature of the FDT is not increased, the magnetic flux density tends to decrease, but a steel material in which the Al content is reduced to a very small amount is used, or a steel material to which a small amount of grain boundary segregation elements such as Sn and Sb are added. The above-mentioned adverse effects can be alleviated by using.

また、熱間圧延後のコイル巻取温度CTは、700℃を超えると、脱スケール性が悪化するため、700℃以下とするのが好ましい。 Further, the coil winding temperature CT after hot rolling is preferably 700 ° C. or lower because the descalability deteriorates when it exceeds 700 ° C.

上記熱間圧延後の鋼板(熱延板)は、熱延板焼鈍を施すことなく冷間圧延に供することができるが、磁気特性および表面性状のさらなる向上を目的として熱延板焼鈍を施してもよい。ただし、熱延板焼鈍を施す場合、本発明では、熱間圧延条件の適正化によりリジングを抑止することができるので、低温短時間の焼鈍条件、具体的には、均熱温度が900℃以下、均熱時間が5min以下の焼鈍条件でも、優れた磁気特性と表面性状を得ることができる。 The steel sheet (hot-rolled sheet) after the hot-rolling can be subjected to cold-rolling without subjecting the hot-rolled sheet to annealing, but the hot-rolled sheet is annealed for the purpose of further improving the magnetic properties and surface properties. May be good. However, when hot-rolled sheet is annealed, in the present invention, rigging can be suppressed by optimizing the hot rolling conditions, so that the annealing conditions at low temperature for a short time, specifically, the soaking temperature is 900 ° C. or less. Even under annealing conditions where the soaking time is 5 min or less, excellent magnetic properties and surface properties can be obtained.

次いで、上記熱間圧延後または熱延板焼鈍後の鋼板は、1回の冷間圧延、もしくは、中間焼鈍を挟む2回以上の冷間圧延により所定の最終板厚(製品板厚)とした後、仕上焼鈍を施す。上記仕上焼鈍は、鉄損低減およびピックアップによる不良低減の観点から、焼鈍温度は900〜1100℃の範囲とすることが望ましい。また、仕上焼鈍の雰囲気は、非酸化性雰囲気もしくは還元性雰囲気とするのが好ましく、例えば、乾燥N雰囲気もしくは酸素ポテンシャルPH2O/PH2が0.1以下のH-N混合雰囲気とするのが好ましい。また、仕上焼鈍の後、必要に応じて絶縁被膜を被成してもよく、目的に応じて、公知の有機、無機、有機・無機混合被膜を適用することができる。 Next, the steel sheet after the hot rolling or hot rolling sheet annealing was subjected to one cold rolling or two or more cold rollings sandwiching the intermediate annealing to obtain a predetermined final sheet thickness (product sheet thickness). After that, finish annealing is performed. In the finish annealing, the annealing temperature is preferably in the range of 900 to 1100 ° C. from the viewpoint of reducing iron loss and reducing defects by pickup. The finish annealing atmosphere is preferably a non-oxidizing atmosphere or a reducing atmosphere, for example, a dry N 2 atmosphere or an H 2- N 2 mixed atmosphere having an oxygen potential PH2O / PH2 of 0.1 or less. It is preferable to do so. Further, after finish annealing, an insulating film may be applied if necessary, and a known organic, inorganic, or organic / inorganic mixed film can be applied depending on the purpose.

C:0.0013〜0.0025mass%、Si:2.8mass%、Mn:0.4mass%、P:0.01mass%、S:0.0009〜0.0015mass%、Al:0.9mass%、N:0.0012〜0.0017mass%、Ni:0.01mass%、Cr:0.01mass%、Ti:0.0005mass%以下、Nb:0.0002mass%以下およびO:0.0011〜0.0023mass%を含有し、さらに、表1に示したその他の元素を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼を、転炉、真空脱ガス装置等からなる常法の精錬プロセスで溶製した後、連続鋳造法で厚さ200mmの鋼素材(スラブ)とした。次いで、上記スラブを、表1に示したように、種々のスラブ加熱温度に加熱し、30min間均熱した後、表1に示した仕上圧延終了温度FDTで熱間圧延して、板厚2.0mmの熱延板とした後、コイル巻取温度590℃で巻き取った。この際、上記熱間圧延における仕上圧延の1パス目は、直径800mmφのワークロールを用い、仕上圧延1パス目の入側厚(シートバー厚)、ロール周速(圧延速度)および圧下率を変化させることで、仕上圧延1パス目の歪速度SRを種々に変化させた。また、一部の条件では、粗圧延後のシートバーを、仕上圧延機の前に設置した誘導加熱方式のシートバーヒータで表1に示した温度に再加熱してから仕上圧延を行った。
次いで、上記の熱延板に対して、同じく表1に示した温度で30sec間保持する熱延板焼鈍を施した後、あるいは施さずに、酸洗して脱スケールした後、冷間圧延して最終板厚0.3mmの冷延板とした。
次いで、上記冷延板を、vol%比でH:N=25:75の乾燥雰囲気下で、均熱温度990℃×均熱時間10secの仕上焼鈍を施した後、絶縁被膜を塗布して製品板とした。
C: 0.0013 to 0.0025 mass%, Si: 2.8 mass%, Mn: 0.4 mass%, P: 0.01 mass%, S: 0.0009 to 0.0015 mass%, Al: 0.9 mass%, N: 0.0012 to 0.0017 mass%, Ni: 0.01 mass%, Cr: 0.01 mass%, Ti: 0.0005 mass% or less, Nb: 0.0002 mass% or less and O: 0.0011 to 0.0023 mass %, Further, other elements shown in Table 1, and a steel having a component composition in which the balance is composed of Fe and unavoidable impurities, by a conventional refining process consisting of a converter, a vacuum degassing device, etc. After melting, a steel material (slab) having a thickness of 200 mm was obtained by a continuous casting method. Next, as shown in Table 1, the slab was heated to various slab heating temperatures, soaked for 30 minutes, and then hot-rolled at the finish rolling end temperature FDT shown in Table 1 to obtain a plate thickness of 2. After forming a 0.0 mm hot-rolled plate, the coil was wound at a coil winding temperature of 590 ° C. At this time, in the first pass of the finish rolling in the hot rolling, a work roll having a diameter of 800 mmφ is used, and the entry side thickness (sheet bar thickness), the roll peripheral speed (rolling speed) and the rolling reduction of the first pass of the finish rolling are determined. By changing the strain rate SR in the first pass of finish rolling, the strain rate SR was changed in various ways. Further, under some conditions, the sheet bar after rough rolling was reheated to the temperature shown in Table 1 by an induction heating type sheet bar heater installed in front of the finish rolling mill, and then finish rolling was performed.
Next, the hot-rolled sheet is subjected to hot-rolled sheet annealing, which is held at the same temperature shown in Table 1 for 30 seconds, or without being pickled, descaled, and then cold-rolled. A cold rolled plate with a final plate thickness of 0.3 mm was used.
Next, the cold-rolled sheet was subjected to finish annealing at a soaking temperature of 990 ° C. and a soaking time of 10 sec in a dry atmosphere of H 2 : N 2 = 25: 75 in a vol% ratio, and then an insulating film was applied. It was made into a product board.

斯くして得た製品板の圧延方向と板幅方向とから、幅:30mm×長さ:280mmの試験片を採取し、JIS C 2550−1(2011)に準拠したエプスタイン試験を行い、磁束密度B50と鉄損W10/400を測定した。また、目視で、リジングの有無とレベルを評価した。
上記の結果を、製造条件とともに表1に示した。なお、1000℃で熱延板焼鈍を施した鋼板No.3は、従来技術を示す参考例である。この結果から、本発明に適合する条件で熱間圧延した鋼板は、いずれも熱延板焼鈍を施さずとも、熱延板焼鈍を施した鋼板と同等レベルの優れた表面性状と磁気特性が得られていることがわかる。
また、磁束密度B50は、熱延板焼鈍を施さない場合は、施した場合よりも若干劣る傾向があるが、FDTの高温化や、Sn、Sbの添加により改善できること、また、FETやFDTの高温化のためにスラブ加熱温度を高温化した場合は、鉄損が増加する傾向があるが、CaやREM,Mgの添加により鉄損上昇を抑制できることがわかる。
From the rolling direction and the plate width direction of the product plate thus obtained, a test piece having a width of 30 mm and a length of 280 mm was collected and subjected to an Epstein test in accordance with JIS C 2550-1 (2011) to obtain a magnetic flux density. B 50 and iron loss W 10/400 were measured. In addition, the presence or absence of rigging and the level were visually evaluated.
The above results are shown in Table 1 together with the manufacturing conditions. The steel sheet No. which was annealed by hot rolling at 1000 ° C. Reference numeral 3 denotes a reference example showing the prior art. From this result, the steel sheets hot-rolled under the conditions suitable for the present invention can obtain excellent surface properties and magnetic properties at the same level as the steel sheets subjected to hot-rolled sheet annealing without subjecting hot-rolled sheet annealing. You can see that it has been rolled.
Further, the magnetic flux density B 50 tends to be slightly inferior to that when the hot-rolled plate is not annealed, but can be improved by increasing the temperature of the FDT and adding Sn and Sb, and also the FET and FDT. When the slab heating temperature is raised to increase the temperature of the slab, the iron loss tends to increase, but it can be seen that the increase in iron loss can be suppressed by adding Ca, REM, and Mg.

Figure 0006879341
Figure 0006879341

表2に示したA〜Eの成分組成を有する鋼を常法の精錬プロセスで溶製し、連続鋳造法で厚さが240mmの鋼素材(スラブ)とした後、均熱炉で表3に示した温度に加熱し、40min間均熱した後、表3に示した仕上圧延終了温度FDTで熱間圧延して、板厚2.3mmの熱延板とした後、コイル巻取温度560℃で巻き取った。この際、仕上圧延1パス目は、600mmφのワークロール径を用い、仕上圧延1パス目の入側厚(シートバー厚)、ロール周速(圧延速度)および圧下率を変化させて1パス目の歪速度SRを種々に変化させた。また、一部の条件では、粗圧延後のシートバーを、仕上圧延機前に設置した誘導加熱方式のシートバーヒータで、表3に示した温度に再加熱してから仕上圧延を行った。
次いで、上記の熱延板に対して、同じく表3に示した温度に30sec間保持する熱延板焼鈍を施した後、あるいは施さずに、酸洗して脱スケールした後、冷間圧延して最終板厚0.3mmの冷延板とした。
次いで、上記冷延板を、vol%比でH:N=20:80の乾燥雰囲気下で、均熱温度1010℃×均熱時間20secの仕上焼鈍を施した後、絶縁被膜を塗布して製品板とした。
Steels having the composition of A to E shown in Table 2 are melted by a conventional refining process to obtain a steel material (slab) having a thickness of 240 mm by a continuous casting method, and then shown in Table 3 in a soaking furnace. After heating to the indicated temperature and soaking for 40 minutes, hot rolling is performed at the finish rolling end temperature FDT shown in Table 3 to obtain a hot-rolled plate having a plate thickness of 2.3 mm, and then a coil winding temperature of 560 ° C. I rolled it up with. At this time, for the first pass of the finish rolling, a work roll diameter of 600 mmφ is used, and the entry side thickness (seat bar thickness), the roll peripheral speed (rolling speed) and the rolling rate of the first pass of the finish rolling are changed to change the first pass. The strain rate SR of was changed in various ways. Further, under some conditions, the sheet bar after rough rolling was reheated to the temperature shown in Table 3 by an induction heating type sheet bar heater installed in front of the finish rolling mill, and then finish rolling was performed.
Next, the hot-rolled sheet is subjected to hot-rolled sheet annealing, which is also maintained at the temperature shown in Table 3 for 30 seconds, or without being pickled, descaled, and then cold-rolled. A cold rolled plate with a final plate thickness of 0.3 mm was used.
Next, the cold-rolled sheet is subjected to finish annealing at a soaking temperature of 1010 ° C. and a soaking time of 20 sec in a dry atmosphere of H 2 : N 2 = 20: 80 in a vol% ratio, and then an insulating film is applied. It was made into a product board.

Figure 0006879341
Figure 0006879341

斯くして得た製品板の圧延方向と板幅方向とから、幅:30mm×長さ:280mmの試験片を採取し、JIS C 2550−1(2011)に準拠したエプスタイン試験を行い、磁束密度B50と鉄損W10/400を測定した。また、目視で、リジングの有無とレベルを評価した。 From the rolling direction and the plate width direction of the product plate thus obtained, a test piece having a width of 30 mm and a length of 280 mm was collected and subjected to an Epstein test in accordance with JIS C 2550-1 (2011) to obtain a magnetic flux density. B 50 and iron loss W 10/400 were measured. In addition, the presence or absence of rigging and the level were visually evaluated.

上記の結果を、製造条件とともに表3に示した。なお、980℃以上で熱延板焼鈍を施した鋼板No.1,5,9,13および17は、従来技術を示す参考例である。この結果から、本発明に適合する条件で熱間圧延した鋼板は、いずれも熱延板焼鈍を施さずとも、熱延板焼鈍を施した鋼板と同等レベルに優れた表面性状が得られているだけでなく、磁気特性にも優れていることがわかる。また、Al含有量が低い鋼Aは、Al含有量が高い鋼Bに対して、スラブ加熱温度を高くしたときの鉄損増加が大きく、Al含有量を高くすることが有利であることがわかる。また、逆にAl含有量が非常に少ない鋼Cも、スラブ加熱温度を高くしたときの鉄損増加が小さい。また、Si含有量が低い鋼Dは、熱間圧延中に変態を起こす、いわゆる変態鋼であるが、本発明の製造条件を満たすことで、優れた表面性状と磁気特性が得られている。 The above results are shown in Table 3 together with the manufacturing conditions. The steel sheet No. which was annealed by hot rolling at 980 ° C. or higher. 1, 5, 9, 13 and 17 are reference examples showing the prior art. From this result, all of the hot-rolled steel sheets under the conditions suitable for the present invention have excellent surface properties equivalent to those of the hot-rolled sheet annealed steel sheets, even if they are not hot-rolled sheet annealed. It can be seen that not only is it excellent in magnetic properties. Further, it can be seen that the steel A having a low Al content has a larger increase in iron loss when the slab heating temperature is raised than the steel B having a high Al content, and it is advantageous to increase the Al content. .. On the contrary, steel C having a very low Al content also has a small increase in iron loss when the slab heating temperature is raised. Further, the steel D having a low Si content is a so-called transformed steel that undergoes transformation during hot rolling, but excellent surface properties and magnetic properties are obtained by satisfying the production conditions of the present invention.

Figure 0006879341
Figure 0006879341

Claims (5)

C:0.0050mass%以下、Si:2.0〜5.0mass%、Mn:3.0mass%以下、P:0.20mass%以下、S:0.0050mass%以下、Al:3.0mass%以下、N:0.0050mass%以下およびO:0.010mass%以下を含有し、残部がFeおよび不可避不純物からなる成分組成を有するスラブを熱間圧延し、均熱温度900℃以下、均熱時間5min以下で熱延板焼鈍を施しあるいは熱延板焼鈍を施すことなく、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を行い、仕上焼鈍する無方向性電磁鋼板の製造方法において、
上記熱間圧延における仕上圧延1パス目の入側温度FETを970℃以上1040℃以下とし、かつ、
仕上圧延1パス目を下記(1)式で定義されるαが1070以上となる条件で圧延することを特徴とする無方向性電磁鋼板の製造方法。

α=FET+43.4×ln(SR) ・・・(1)
ここで、FET:仕上圧延1パス目の入側温度(℃)
SR:仕上圧延1パス目の歪速度(s−1
C: 0.0050 mass% or less, Si: 2.0 to 5.0 mass%, Mn: 3.0 mass% or less, P: 0.20 mass% or less, S: 0.0050 mass% or less, Al: 3.0 mass% or less , N: 0.0050 mass% or less and O: 0.010 mass% or less, and the balance is composed of Fe and unavoidable impurities. In the method for producing a non-directional electromagnetic steel sheet, which is subjected to one cold rolling or two or more times of cold rolling with an intermediate annealing sandwiched in between, and finish annealing without subjecting hot-rolled sheet annealing or hot-rolled sheet annealing below.
The entry-side temperature FET in the first pass of finish rolling in the hot rolling is set to 970 ° C. or higher and 1040 ° C. or lower , and
A method for producing a non-oriented electrical steel sheet, which comprises rolling the first pass of finish rolling under the condition that α defined by the following equation (1) is 1070 or more.
Description α = FET + 43.4 × ln (SR) ・ ・ ・ (1)
Here, FET: entry side temperature (° C.) in the first pass of finish rolling.
SR: Strain rate of the first pass of finish rolling (s -1 )
上記熱間圧延の仕上圧延前に、鋼板を再加熱することを特徴とする請求項1に記載の無方向性電磁鋼板の製造方法。 The method for manufacturing a non-oriented electrical steel sheet according to claim 1, wherein the steel sheet is reheated before the finish rolling of the hot rolling. 上記熱間圧延における仕上圧延終了温度FDTを900℃以上、コイル巻取温度CTを700℃以下とすることを特徴とする請求項1または2に記載の無方向性電磁鋼板の製造方法。 The method for manufacturing a non-oriented electrical steel sheet according to claim 1 or 2, wherein the finish rolling end temperature FDT in the hot rolling is 900 ° C. or higher, and the coil winding temperature CT is 700 ° C. or lower. 上記スラブは、上記成分組成に加えてさらに、Sn:0.005〜0.20mass%およびSb:0.005〜0.20mass%のうちから選ばれる1種または2種を含有することを特徴とする請求項1〜3のいずれか1項に記載の無方向性電磁鋼板の製造方法。 The slab is characterized by further containing one or two selected from Sn: 0.005 to 0.20 mass% and Sb: 0.005 to 0.20 mass% in addition to the component composition. The method for manufacturing a non-oriented electrical steel sheet according to any one of claims 1 to 3. 上記スラブは、上記成分組成に加えてさらに、Ca:0.0001〜0.020mass%、Mg:0.0001〜0.020mass%およびREM:0.0001〜0.020mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1〜4のいずれか1項に記載の無方向性電磁鋼板の製造方法。 The slab is further selected from Ca: 0.0001 to 0.020 mass%, Mg: 0.0001 to 0.020 mass% and REM: 0.0001 to 0.020 mass% in addition to the above component composition1 The method for producing a non-oriented electrical steel sheet according to any one of claims 1 to 4, which comprises seeds or two or more kinds.
JP2019141125A 2018-08-23 2019-07-31 Manufacturing method of non-oriented electrical steel sheet Active JP6879341B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018156574 2018-08-23
JP2018156574 2018-08-23

Publications (2)

Publication Number Publication Date
JP2020033640A JP2020033640A (en) 2020-03-05
JP6879341B2 true JP6879341B2 (en) 2021-06-02

Family

ID=69667263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019141125A Active JP6879341B2 (en) 2018-08-23 2019-07-31 Manufacturing method of non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6879341B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349861A (en) * 2020-03-24 2020-06-30 包头钢铁(集团)有限责任公司 High-magnetic-induction non-oriented silicon steel for EI sheets in CSP process and production method thereof
CN114774789B (en) * 2022-04-29 2023-04-14 鞍钢股份有限公司 Electrical pure iron hot rolled plate with excellent plate shape and wide width and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254023A (en) * 1985-08-31 1987-03-09 Nippon Steel Corp Manufacture of high-grade nonoriented electrical steel sheet
JP3375998B2 (en) * 1993-01-26 2003-02-10 川崎製鉄株式会社 Manufacturing method of non-oriented electrical steel sheet
JP4705463B2 (en) * 2005-12-06 2011-06-22 新日本製鐵株式会社 Method for producing non-oriented electrical steel sheet
JP5388506B2 (en) * 2008-08-19 2014-01-15 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet with high magnetic flux density
CN103388106A (en) * 2013-06-27 2013-11-13 宝山钢铁股份有限公司 Non-oriented electrical steel plate with high magnetic induction and low iron loss, and manufacturing method thereof
JP6554805B2 (en) * 2015-02-05 2019-08-07 日本製鉄株式会社 Electromagnetic steel sheet, manufacturing method thereof and claw pole motor
BR112017021976B1 (en) * 2015-04-27 2021-12-28 Nippon Steel Corporation NON-ORIENTED MAGNETIC STEEL SHEET

Also Published As

Publication number Publication date
JP2020033640A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP6402865B2 (en) Method for producing non-oriented electrical steel sheet
EP0837149B1 (en) Grain-oriented electromagnetic steel sheet and process for producing the same
JP5712491B2 (en) Method for producing grain-oriented electrical steel sheet
JP2017222898A (en) Production method of grain oriented magnetic steel sheet
WO2017086036A1 (en) Process for producing non-oriented electromagnetic steel sheet
WO2014049770A1 (en) Process for producing grain-oriented electromagnetic steel sheet
JP6079726B2 (en) Manufacturing method of high-strength steel sheet
JP4705463B2 (en) Method for producing non-oriented electrical steel sheet
KR20200076517A (en) Grain oriented electrical steel sheet and method for manufacturing therof
JP6879341B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2001181798A (en) Hot rolled ferritic stainless steel sheet excellent in bendability, its manufacturing method, and method of manufacturing for cold rolled steel sheet
JP6721135B1 (en) Method for producing grain-oriented electrical steel sheet and cold rolling equipment
JP4715496B2 (en) Method for producing cold-rolled steel sheets with excellent strain aging resistance and small in-plane anisotropy
JP5644154B2 (en) Method for producing grain-oriented electrical steel sheet
JP6950723B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6146582B2 (en) Method for producing non-oriented electrical steel sheet
JP4337159B2 (en) Manufacturing method of silicon steel sheet and hot rolled steel strip material for silicon steel sheet
US20240038423A1 (en) Non-oriented electrical steel sheet, and method for manufacturing same
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP7081725B1 (en) Manufacturing method of grain-oriented electrical steel sheet
TWI832561B (en) Manufacturing method of hot-rolled steel plate for non-oriented electromagnetic steel plate and manufacturing method of non-oriented electromagnetic steel plate
TWI779692B (en) Manufacturing method and equipment row of grain-oriented electrical steel sheet
KR20240093169A (en) Manufacturing method of non-oriented electrical steel sheet
KR20240069316A (en) Manufacturing method of non-oriented electrical steel sheet
JPH06184640A (en) Production of high magnetic flux density grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210412

R150 Certificate of patent or registration of utility model

Ref document number: 6879341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250