JP3375998B2 - Manufacturing method of non-oriented electrical steel sheet - Google Patents

Manufacturing method of non-oriented electrical steel sheet

Info

Publication number
JP3375998B2
JP3375998B2 JP01086093A JP1086093A JP3375998B2 JP 3375998 B2 JP3375998 B2 JP 3375998B2 JP 01086093 A JP01086093 A JP 01086093A JP 1086093 A JP1086093 A JP 1086093A JP 3375998 B2 JP3375998 B2 JP 3375998B2
Authority
JP
Japan
Prior art keywords
rolling
transformation
oriented electrical
hot
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01086093A
Other languages
Japanese (ja)
Other versions
JPH06220537A (en
Inventor
高島  稔
隆史 小原
央修 下向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP01086093A priority Critical patent/JP3375998B2/en
Publication of JPH06220537A publication Critical patent/JPH06220537A/en
Application granted granted Critical
Publication of JP3375998B2 publication Critical patent/JP3375998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、磁気特性及び鋼板形
状が共に優れた無方向性電磁鋼板の製造方法に関するも
のである。 【0002】 【従来の技術】無方向性電磁鋼板は、磁気特性レベルに
よって各種のグレードに分けられ、大型回転器を初めと
して、中型回転機、汎用モーター、家電用モーター、変
圧器及び安定器等の鉄心材料として、広範囲に使用され
ている。近年では、省エネルギー、電気機器の特性向上
及び小型化等に対する要請が殊のほか強くなっているた
め、これら電気機器に使用される鉄心材料の磁気特性の
向上が益々重要となっている。 【0003】また、かような鉄心は、電磁鋼板を所定の
形状に多数打ち抜いた後、それらを積層して製造される
ことが多いため、鋼板の形状とくに板厚精度の向上も磁
気特性と同様、重要視される。というのは、板厚精度の
悪い電磁鋼板では、積層されたときに鉄心の高さにばら
つきが生じたり、また板厚偏差のために鉄心上面が傾斜
するといったトラブルが生じるからである。特に近年で
は、鉄心製造ラインの自動化に伴い、板厚精度の一層の
向上が望まれている。 【0004】無方向性電磁鋼板は、通常、熱間圧延工
程、冷間圧延工程、ついで仕上げ焼鈍工程を経て製造さ
れているので、熱延板における板厚精度不良は、冷間圧
延後まで残り、製品の板厚不良の原因となっている。 【0005】このような熱間圧延板の形状不良がなく、
また磁気特性も良好な無方向性電磁鋼板を得るのに好適
な熱間圧延方法として、特開昭51-74923号公報や特開平
4−180522号公報に開示の技術がある。特開昭51-74923
号公報に開示の技術は、熱間圧延をα単相域で完了する
方法である。この方法は、γ→α変態を仕上げ圧延の前
段で行わせることにより、γ→α変態時の急激な変形抵
抗の減少に起因した圧延の不安定化によって生じる厚み
むらを、α単相となった仕上げ圧延の後段で矯正しよう
とするものである。一方、特開平4−180522号公報に開
示の技術は、スラブ加熱温度を1100℃以下とし、最終ス
タンド出口温度を( 820+80×Si%)〜( 870+80×Si
%)℃に制御することによって磁性を向上させると共
に、冷却装置によりスタンド間でγ→α変態させるもの
である。この方法は、幅方向の温度むらと、γ→α変態
による急激な変形抵抗の減少に起因して生じる局部伸び
を防ぐために、冷却装置によってスタンド間でγ→α変
態させることにより、完全なγ域あるいは完全なα域で
圧延するものである。 【0006】 【発明が解決しようとする課題】しかしながら、特開昭
51-74923号公報に開示されている方法では、熱延板長手
方向にわたる厚みむらは改善されるものの、仕上げ圧延
前段におけるγ→α変態に起因した圧延の不安定化によ
って生じる熱延板幅方向の板厚偏差(クラウン)や板幅
不足といった形状不良は、仕上げ圧延後段においても矯
正することは難しい。また、特開平4−180522号公報に
開示された方法では、熱延板長手方向にはスキッド部な
どの温度がばらつく部分があることから、安定してスタ
ンド間でγ→α変態させることは至難であり、到底実用
的とはいい難い。この発明の目的は、上記の問題を有利
に克服し、熱間圧延を安定させることによって、鋼板形
状及び磁気特性ともに優れた無方向性電磁鋼板の製造方
法を提案するところにある。 【0007】 【課題を解決するための手段】さて発明者らは、上記の
目的を達成すべく、無方向性電磁鋼板の熱間変形挙動
を、熱間圧延工程の諸条件と共に種々検討した結果、以
下の知見を得た。 (1) 特開昭51-74923号公報や特開平4−180522号公報に
示されているとおり、無方向性電磁鋼板ではγ→α変態
に伴う変形抵抗の減少が著しく、γ→α変態後の変形抵
抗は変態前の1/2程度となる。仕上げ圧延時に圧延が
不安定となるのは、熱間圧延板の長手方向の温度不均一
(スキッドなど)に加え、上述のγ→α変態に起因した
変形抵抗の急激な減少により、圧延中に各スタンド間で
変形抵抗が大きく変化するためである。図1に、7スタ
ンド連続仕上げ圧延機にて無方向性電磁鋼板を熱間圧延
したときの第3スタンドにおける変形抵抗の時間変化に
ついて調べた結果を示すが、同図より明らかなように、
変形抵抗は同一コイル内においても大きく変動する。 【0008】(2) しかしながら、γ→α変態に伴う変形
抵抗の変動量は、圧下率及びひずみ速度に強く依存し、
低圧下率、高ひずみ速度とすることにより、変形抵抗の
変動量を著しく低減することができる。 【0009】そこで、上記の実験結果を基に、圧延速
度、ロールギャップ及び冷却条件を制御することによっ
て、仕上げ圧延中にγ→α変態を完了させると共に、こ
の間を低圧下率、高ひずみ速度で連続圧延したところ、
圧延が安定化するだけでなく、磁気特性も向上すること
の知見を得た。この発明は、上記の知見に立脚するもの
である。 【0010】すなわちこの発明は、Si+Al:1.8 wt%
(以下単に%で示す)以下を含有する電磁鋼スラブを、
熱間圧延し、ついで1回又は中間焼鈍を含む2回の冷間
圧延を施したのち、仕上げ焼鈍を施すことによって無方
向性電磁鋼板を製造するに当たり、上記熱間圧延の連続
仕上げ圧延工程において、板温が(γ→α変態開始温度
+20℃)〜(γ→α変態終了温度−20℃)の範囲につい
ては、圧下率:40%以下、相当ひずみ速度:50s-1以上
の条件で圧延を行うことからなる無方向性電磁鋼板の製
造方法である。 【0011】以下、この発明を由来するに至った実験結
果に基づき、この発明を具体的に説明する。図2及び図
3に、C:0.003 %、Si:0.25%、Mn:0.20%、P;0.
07%、S:0.0030%及びAl:0.25%を含む鋼の熱間圧縮
加工時における真応力−真ひずみ曲線の測定結果を示
す。図2はひずみ速度が5s-1(一定)の場合であり、
図3はひずみ速度が50s-1(一定)の場合である。また
加工時の温度は、γ→α変態点直上の 920℃(γ単相)
と、直下の 890℃(α単相)である。図2から明らかな
ように、ひずみ速度が遅い場合(5s-1)には、図中A
→Bに示したように、γ相とα相との間の応力差は非常
に大きい。これに対し、ひずみ速度が速い場合(50
-1)には、真ひずみが大きいと、図3中にC→Dで示
したようにγ相とα相との間における応力差は大きいけ
れども、真ひずみが小さいと、同図中E→Fで示したよ
うに、γ相とα相との間の応力差は著しく小さくなるこ
とが判明した。 【0012】そこで次に、熱間圧延時における圧下率及
びひずみ速度が、変形抵抗に及ぼす影響を調べるため、
C:0.0025%、Si:0.50%、Mn:0.15%、P:0.02%、
S:0.0030%及びAl:0.001 %を含む4mm厚の無方向性
電磁鋼板用粗圧延板を、高速熱間圧延機(ロール径:30
0 mm)にてγ→α変態温度直上の 920℃及びγ→α変態
温度直下の 890℃で、それぞれ1パス圧延を行った。γ
→α変態時における変形抵抗の変化程度は、Kα/Kγ
(ここでKαは890℃での変形抵抗、Kγは 920℃での
変形抵抗を示す)で評価した。得られた結果を図4に示
す。 【0013】同図より明らかなように、高いKα/Kγ
を得るには、低圧下率、高ひずみ速度で圧延することが
肝要で、圧下率:40%以下、相当ひずみ速度:50s-1
上とすることにより、Kα/Kγ≧0.80という優れた値
が得られた。なお、圧下率(r)及び相当ひずみ速度 【数1】 は、次式で示される。 【数2】 【0014】圧下率:40%以下、相当ひずみ速度:50s
-1以上の条件下では、γ→α変態による変形抵抗の変化
が小さくなることが判明したので、実際に、7スタンド
からなる連続仕上げ圧延機で無方向性電磁鋼板を熱間圧
延した。表1に、C:0.003 %、Si:0.25%、Mn:0.20
%、P:0.07%、S:0.0030%及びAl:0.25%を含む無
方向性電磁鋼板を連続仕上げ圧延したときの圧延条件及
び圧延結果を示す。表中、□で囲まれたスタンドが、板
温が、(γ→α変態開始温度+20℃)〜(γ→α変態終
了温度−20℃)の範囲にあるスタンドである。また図5
に、各スタンドでの変形抵抗を示す。 【0015】 【表1】 【0016】同図から明らかなように、この発明に従
い、板温が(γ→α変態開始温度+20℃)〜(γ→α変
態終了温度−20℃)の範囲を、圧下率:40%以下、相当
ひずみ速度:50s-1以上の条件で仕上げ圧延した場合に
は、圧延安定性が極めて良好で、その結果板厚精度に優
れた熱間圧延板を得ることができた。 【0017】 【作用】次に、この発明において、素材の成分組成を前
記の範囲に限定した理由について説明する。 Si+Al:1.8 %以下 Si,Alはいずれも、固有抵抗の増加により鉄損の低減に
有効に寄与する。またSi,Alは、γ→α変態温度を高め
る作用もある。この発明では、熱間仕上げ圧延中にγ→
α変態させる必要があるので、この作用は極めて有用で
ある。しかしながら、含有量があまりに多くなると磁束
密度が低下し、またコスト高ともなるので、上限を 1.8
%とした。 【0018】この発明では、成分組成に関しては、上記
したSi,Al以外は特に限定する必要はないけれども、他
成分の好適組成範囲を掲げると、次のとおりである。 C:0.0050%以下 Cは、時効析出により磁気特性を著しく劣化させるの
で、0.0050%以下とするのが望ましい。 Mn:0.50〜1.5 % Mnは、Sと反応してMnSを形成するが、0.50%未満では
MnSが微細に分散して粒成長性を阻害し、鉄損の劣化を
招く。一方、 1.5%を超えるとコストアップとなるの
で、Mn含有量は0.50〜1.5 %とするのが望ましい。 S:0.0050%以下 Sは、上述したとおり、粒成長を阻害する析出物MnSを
形成するので、その混入は極力低減することが望まし
く、0.0050%以下とするのが好ましい。 P:0.20%以下 Pは、硬度を高め、打抜性の改善に有効に寄与するが、
含有量が多くなると磁気特性が劣化するので、0.20%以
下とするのが望ましい。 【0019】さらに必要に応じて、Cu:0.01〜1.0 %、
Sn:0.02〜0.2 %、Sb:0.010 〜0.30%、B:3〜50 p
pmなどのうちから選んだ1種又は2種以上を含有させる
こともできる。これらの元素は、集合組織を改善し、磁
束密度を高める作用があるが、多量に添加するとコスト
の面で不利であるので、上記の範囲で含有させることが
望ましい。 【0020】次に、この発明に従う熱延条件について述
べる。まず、加熱温度は1200℃以下程度とするのが望ま
しい。というのは、これを超える温度ではMnSが固溶
し、熱延中に微細に析出して、鉄損を劣化させるからで
ある。 【0021】仕上げ圧延については、前述したとおり、
連続仕上げ圧延中にγ→α変態せしめ、かつ板温が(γ
→α変態開始温度+20℃)〜(γ→α変態終了温度−20
℃)の範囲については、圧延温度やロールギャップ、冷
却条件等を制御して、圧下率≦40%、ひずみ速度≧50s
-1の条件で連続圧延することが肝要である。というの
は、上記の温度範囲における圧延条件が、圧下率>40
%であったり、ひずみ速度<50s-1であったりする
と、変態による変態抵抗の変化が大きくなり、圧延が不
安定となるからである。なお、板温範囲を、γ→α変態
温度域に対し±20℃の余裕をもたせたのは、板厚や板幅
方向の温度分布を考慮したからである。また熱延板を焼
鈍することによって磁気特性の一層の向上を図ることが
できるけれども、かかる焼鈍処理はコストアップを伴う
ので必要に応じ行えば良い。 【0022】上記の熱間圧延後、1回又は中間焼鈍を含
む2回冷間圧延を施したのち、仕上げ焼鈍を施す。仕上
げ焼鈍のあと、15%以下の冷間圧延を行う(いわゆるセ
ミプロセス無方向性電磁鋼板)こともできる。 【0023】 【実施例】C:0.0030%、Si:0.35%、Mn:0.25%、
P:0.03%、S:0.0028%、solAl:0.001 %を含有
し、残部は実質的にFeの組成になる溶鋼を溶製したの
ち、連続鋳造によって 230mm厚スラブとし、ついで表
2、表3に示す圧延条件で熱間圧延を行って 2.5mm厚の
熱延板とした。その後、この熱延板に酸洗、脱スケール
処理を施したのち、冷間圧延を施して 0.5mm厚の冷延板
とし、ついで 750℃, 30sの連続焼鈍を施して製品とし
た。かくして得られた無方向性電磁鋼板から30×80mmの
エプスタイン試片を、圧延方向から8枚、圧延方向に対
し直角方向から8枚、計16枚採取し、磁気特性を測定
した。得られた結果を表3に併記する。 【0024】 【表2】 【0025】 【表3】【0026】表3から明らかなように、この発明に従う
条件の下に熱間圧延を行った場合は、圧延が安定し、そ
の結果とりわけ良好な磁気特性及び鋼板形状が得られ
た。 【0027】 【発明の効果】かくしてこの発明に従い、無方向性電磁
鋼板の熱間圧延工程において、板温が(γ→α変態開始
温度+20℃)〜(γ→α変態終了温度−20℃)の範囲
を、圧下率≦40%、ひずみ速度≧50s-1の条件下に連続
圧延することにより、鋼板形状及び磁気特性が共に優れ
た無方向性電磁鋼板を得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having both excellent magnetic properties and excellent steel sheet shape. 2. Description of the Related Art Non-oriented electrical steel sheets are classified into various grades according to their magnetic property levels, and include large-sized rotating machines, medium-sized rotating machines, general-purpose motors, motors for home appliances, transformers and stabilizers. Widely used as iron core material. In recent years, there has been a particularly strong demand for energy saving, improvement of characteristics of electric devices, miniaturization, and the like. Therefore, improvement of magnetic characteristics of iron core materials used for these electric devices has become increasingly important. [0003] In addition, such iron cores are often manufactured by punching a large number of electromagnetic steel sheets into a predetermined shape and then laminating them, so that the improvement of the shape of the steel sheet, especially the accuracy of the thickness, is the same as the magnetic properties. Is considered important. This is because, in the case of electromagnetic steel sheets having poor thickness accuracy, there are problems in that the height of the iron core varies when the steel sheets are laminated, and that the upper surface of the iron core is inclined due to thickness deviation. In particular, in recent years, with the automation of the core manufacturing line, further improvement in the thickness accuracy is desired. [0004] Since non-oriented electrical steel sheets are usually manufactured through a hot rolling step, a cold rolling step, and a finish annealing step, poor sheet thickness accuracy in a hot rolled sheet remains until after cold rolling. , Which is a cause of poor thickness of the product. [0005] There is no such defective shape of the hot rolled sheet.
As a hot rolling method suitable for obtaining a non-oriented electrical steel sheet having good magnetic properties, there are techniques disclosed in JP-A-51-74923 and JP-A-4-180522. JP-A-51-74923
The technique disclosed in Japanese Patent Application Laid-Open Publication No. H11-163,086 is a method in which hot rolling is completed in the α single phase region. In this method, by performing the γ → α transformation at the preceding stage of the finish rolling, the thickness unevenness caused by the instability of the rolling caused by the sudden decrease in the deformation resistance at the time of the γ → α transformation is reduced to an α single phase. This is intended to be corrected in the latter stage of the finish rolling. On the other hand, the technology disclosed in Japanese Patent Application Laid-Open No. 4-180522 discloses that the slab heating temperature is set to 1100 ° C. or less and the final stand outlet temperature is set to (820 + 80 × Si%) to (870 + 80 × Si
%). By controlling the temperature to ° C., the magnetism is improved, and a γ → α transformation is performed between stands by a cooling device. In this method, in order to prevent temperature unevenness in the width direction and local elongation caused by a sudden decrease in deformation resistance due to the γ → α transformation, a γ → α transformation is performed between stands by a cooling device, thereby obtaining a complete γ. Rolling in the area or the complete α area. [0006] However, Japanese Patent Application Laid-Open
In the method disclosed in JP-A-51-74923, although the thickness unevenness in the longitudinal direction of the hot-rolled sheet is improved, the width direction of the hot-rolled sheet caused by the instability of the rolling caused by the γ → α transformation in the final stage of the finish rolling. It is difficult to correct the shape defects such as the thickness deviation (crown) and the insufficient width of the sheet even in the stage after the finish rolling. Further, in the method disclosed in Japanese Patent Application Laid-Open No. 4-180522, it is extremely difficult to stably transform γ → α between stands because there are portions where the temperature varies, such as a skid portion, in the longitudinal direction of the hot-rolled sheet. It is difficult to say that it is practical. An object of the present invention is to propose a method for manufacturing a non-oriented electrical steel sheet which is excellent in both steel sheet shape and magnetic properties by advantageously overcoming the above problems and stabilizing hot rolling. Means for Solving the Problems In order to achieve the above object, the present inventors have conducted various studies on the hot deformation behavior of a non-oriented electrical steel sheet together with various conditions of a hot rolling process. The following findings were obtained. (1) As shown in JP-A-51-74923 and JP-A-4-180522, in non-oriented electrical steel sheets, the decrease in deformation resistance due to γ → α transformation is remarkable, and after γ → α transformation Is about 1/2 that before transformation. The reason that the rolling becomes unstable during the finish rolling is that, in addition to the non-uniform temperature in the longitudinal direction of the hot-rolled sheet (such as skid), the sudden decrease in deformation resistance due to the γ → α transformation described above causes This is because the deformation resistance greatly changes between the stands. FIG. 1 shows the result of examining the time change of the deformation resistance in the third stand when the non-oriented electrical steel sheet is hot-rolled by the seven-stand continuous finishing rolling mill. As shown in FIG.
The deformation resistance varies greatly even within the same coil. (2) However, the amount of change in the deformation resistance due to the γ → α transformation strongly depends on the draft and the strain rate,
By using a low draft and a high strain rate, the amount of change in deformation resistance can be significantly reduced. Therefore, the γ → α transformation is completed during the finish rolling by controlling the rolling speed, the roll gap and the cooling conditions based on the above experimental results, and a low rolling reduction and a high strain rate are applied during this period. After continuous rolling,
It has been found that not only the rolling is stabilized, but also the magnetic properties are improved. The present invention is based on the above findings. [0010] That is, the present invention relates to a Si + Al: 1.8 wt%
An electromagnetic steel slab containing (hereinafter simply indicated by%) containing:
After hot rolling and then cold rolling once or twice including intermediate annealing, and then producing a non-oriented electrical steel sheet by performing finish annealing, in the continuous finishing rolling step of the above hot rolling When the sheet temperature is in the range of (γ → α transformation start temperature + 20 ° C.) to (γ → α transformation end temperature−20 ° C.), rolling is performed under the conditions of a rolling reduction: 40% or less and an equivalent strain rate: 50 s −1 or more. And a method for producing a non-oriented electrical steel sheet. Hereinafter, the present invention will be specifically described based on the experimental results that led to the present invention. 2 and 3, C: 0.003%, Si: 0.25%, Mn: 0.20%, P;
The measurement result of the true stress-true strain curve at the time of hot compression processing of the steel containing 07%, S: 0.0030%, and Al: 0.25% is shown. FIG. 2 shows the case where the strain rate is 5 s -1 (constant),
FIG. 3 shows a case where the strain rate is 50 s -1 (constant). The temperature during processing is 920 ° C just above the γ → α transformation point (γ single phase)
890 ° C (α single phase) immediately below. As is clear from FIG. 2, when the strain rate is low (5 s -1 ), A
→ As shown in B, the stress difference between the γ phase and the α phase is very large. On the other hand, when the strain rate is high (50
s -1 ), when the true strain is large, the stress difference between the γ phase and the α phase is large as shown by C → D in FIG. 3, but when the true strain is small, E → As shown by F, it was found that the stress difference between the γ phase and the α phase was significantly reduced. Then, next, in order to investigate the effects of the rolling reduction and strain rate during hot rolling on the deformation resistance,
C: 0.0025%, Si: 0.50%, Mn: 0.15%, P: 0.02%,
A 4 mm-thick rough rolled sheet for non-oriented electrical steel sheets containing 0.0030% of S and 0.001% of Al was converted to a high-speed hot rolling mill (roll diameter: 30
0 mm), one-pass rolling was performed at 920 ° C just above the γ → α transformation temperature and 890 ° C just below the γ → α transformation temperature. γ
→ The degree of change in deformation resistance during α transformation is Kα / Kγ
(Where Kα indicates the deformation resistance at 890 ° C. and Kγ indicates the deformation resistance at 920 ° C.). FIG. 4 shows the obtained results. As apparent from FIG. 1, a high Kα / Kγ
In order to obtain a low rolling reduction and a high strain rate, it is important to reduce the rolling rate to 40% or less and an equivalent strain rate of 50 s -1 or more to obtain an excellent value of Kα / Kγ ≧ 0.80. Obtained. The rolling reduction (r) and the equivalent strain rate Is represented by the following equation. (Equation 2) Reduction ratio: 40% or less, equivalent strain rate: 50 s
Under the condition of −1 or more, it was found that the change in deformation resistance due to the γ → α transformation was small. Therefore, the non-oriented electrical steel sheet was actually hot-rolled by a continuous finishing rolling mill including seven stands. In Table 1, C: 0.003%, Si: 0.25%, Mn: 0.20
%, P: 0.07%, S: 0.0030%, and Al: 0.25% The rolling conditions and rolling results when the non-oriented electrical steel sheet is continuously finish-rolled are shown. In the table, stands surrounded by squares are those whose sheet temperature is in the range of (γ → α transformation start temperature + 20 ° C.) to (γ → α transformation end temperature−20 ° C.). FIG.
The deformation resistance at each stand is shown below. [Table 1] As is apparent from FIG. 1, according to the present invention, the sheet temperature ranges from (γ → α transformation start temperature + 20 ° C.) to (γ → α transformation end temperature−20 ° C.), and the rolling reduction is 40% or less. When the finish rolling was performed under the conditions of an equivalent strain rate of 50 s −1 or more, the rolling stability was extremely good, and as a result, a hot-rolled sheet having excellent thickness accuracy could be obtained. Next, the reason why the component composition of the raw material in the present invention is limited to the above range will be described. Si + Al: 1.8% or less Both Si and Al effectively contribute to the reduction of iron loss by increasing the specific resistance. Si and Al also have the effect of increasing the γ → α transformation temperature. According to the present invention, γ →
This action is extremely useful because it requires alpha transformation. However, if the content is too large, the magnetic flux density will decrease and the cost will increase.
%. In the present invention, the composition of the components is not particularly limited except for the above-mentioned Si and Al, but the preferred composition range of the other components is as follows. C: 0.0050% or less C significantly deteriorates magnetic properties due to aging precipitation. Mn: 0.50 to 1.5% Mn reacts with S to form MnS.
MnS is finely dispersed and hinders grain growth, resulting in deterioration of iron loss. On the other hand, if the content exceeds 1.5%, the cost increases, so the Mn content is desirably set to 0.50 to 1.5%. S: not more than 0.0050% As described above, S forms precipitates MnS that inhibit grain growth, so that it is desirable to minimize the incorporation of Sn, and preferably not more than 0.0050%. P: 0.20% or less P increases the hardness and effectively contributes to the improvement of punching performance.
If the content increases, the magnetic properties deteriorate. Therefore, the content is preferably set to 0.20% or less. Further, if necessary, Cu: 0.01 to 1.0%,
Sn: 0.02 to 0.2%, Sb: 0.010 to 0.30%, B: 3 to 50 p
One or more selected from pm and the like can be contained. These elements have the effect of improving the texture and increasing the magnetic flux density. However, if they are added in large amounts, it is disadvantageous in terms of cost. Therefore, it is desirable that these elements be contained in the above range. Next, the hot rolling conditions according to the present invention will be described. First, the heating temperature is desirably about 1200 ° C. or less. This is because at temperatures exceeding this, MnS forms a solid solution and precipitates finely during hot rolling, thereby deteriorating iron loss. As for the finish rolling, as described above,
Γ → α transformation during continuous finish rolling and the sheet temperature becomes (γ
→ α transformation start temperature + 20 ° C) ~ (γ → α transformation end temperature -20)
℃) range, controlling the rolling temperature, roll gap, cooling conditions, etc., rolling reduction ≤ 40%, strain rate ≥ 50 s
It is important to perform continuous rolling under the condition of -1 . This is because the rolling conditions in the above temperature range are such that the rolling reduction is> 40.
%, Or when the strain rate is less than 50 s −1 , the change in transformation resistance due to transformation becomes large, and rolling becomes unstable. The reason why the sheet temperature range is given a margin of ± 20 ° C. with respect to the γ → α transformation temperature range is that the sheet thickness and the temperature distribution in the sheet width direction are considered. Further, although the magnetic properties can be further improved by annealing the hot-rolled sheet, such annealing treatment involves an increase in cost, and may be performed as necessary. After the above hot rolling, cold rolling is performed once or twice including intermediate annealing, and then finish annealing is performed. After finish annealing, cold rolling of 15% or less can be performed (so-called semi-process non-oriented electrical steel sheet). EXAMPLES C: 0.0030%, Si: 0.35%, Mn: 0.25%,
P: 0.03%, S: 0.0028%, solAl: 0.001%, the remainder is molten steel substantially having the composition of Fe, and then slab is formed into a 230mm thick slab by continuous casting. Hot rolling was performed under the indicated rolling conditions to obtain a hot-rolled sheet having a thickness of 2.5 mm. Thereafter, the hot-rolled sheet was subjected to pickling and descaling, and then cold-rolled to form a 0.5-mm-thick cold-rolled sheet, followed by continuous annealing at 750 ° C. for 30 seconds to obtain a product. From the non-oriented electrical steel sheet thus obtained, eighty 30 × 80 mm Epstein test pieces were sampled from the rolling direction and eight from the direction perpendicular to the rolling direction, for a total of 16 pieces, and the magnetic properties were measured. Table 3 also shows the obtained results. [Table 2] [Table 3] As is evident from Table 3, when hot rolling was performed under the conditions according to the present invention, the rolling was stabilized, and as a result, particularly good magnetic properties and steel sheet shapes were obtained. Thus, according to the present invention, in the hot rolling step of a non-oriented electrical steel sheet, the sheet temperature is (γ → α transformation start temperature + 20 ° C.) to (γ → α transformation end temperature−20 ° C.) Is continuously rolled under the conditions of a draft of ≦ 40% and a strain rate of ≧ 50 s −1 , it is possible to obtain a non-oriented electrical steel sheet excellent in both steel sheet shape and magnetic properties.

【図面の簡単な説明】 【図1】7スタンド連続仕上げ圧延機にて無方向性電磁
鋼板を熱間圧延したときの第3スタンドにおける変形抵
抗の時間変化を示すグラフである。 【図2】ひずみ速度:5s-1で熱間圧縮加工を行ったと
きの真応力−真ひずみ曲線を示すグラフである。 【図3】ひずみ速度:50s-1で熱間圧縮加工を行ったと
きの真応力−真ひずみ曲線を示すグラフである。 【図4】圧下率及びひずみ速度が、変形抵抗(Kα/K
γ)に及ぼす影響を示す図である。 【図5】熱間圧延における各スタンドでの変形抵抗を示
すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing a time change of deformation resistance in a third stand when a non-oriented electrical steel sheet is hot-rolled by a seven-stand continuous finishing rolling mill. FIG. 2 is a graph showing a true stress-true strain curve when hot compression processing is performed at a strain rate of 5 s −1 . FIG. 3 is a graph showing a true stress-true strain curve when hot compression processing is performed at a strain rate of 50 s −1 . FIG. 4 shows that the rolling reduction and the strain rate are determined by the deformation resistance (Kα / K
It is a figure which shows the influence which affects (gamma). FIG. 5 is a graph showing deformation resistance at each stand in hot rolling.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−264619(JP,A) 特開 平4−107215(JP,A) 特開 昭63−53214(JP,A) 特開 平4−235223(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C21D 9/46 501 B21B 3/02 C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-264619 (JP, A) JP-A-4-107215 (JP, A) JP-A-63-53214 (JP, A) JP-A-4- 235223 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8/12 C21D 9/46 501 B21B 3/02 C22C 38/00-38/60

Claims (1)

(57)【特許請求の範囲】 【請求項1】 Si+Al:1.8 wt%以下を含有する電磁鋼
スラブを、熱間圧延し、ついで1回又は中間焼鈍を含む
2回の冷間圧延を施したのち、仕上げ焼鈍を施すことに
よって無方向性電磁鋼板を製造するに当たり、 上記熱間圧延の連続仕上げ圧延工程において、板温が
(γ→α変態開始温度+20℃)〜(γ→α変態終了温度
−20℃)の範囲については、圧下率:40%以下、相当ひ
ずみ速度:50s-1以上の条件で圧延を行うことを特徴と
する無方向性電磁鋼板の製造方法。
(57) [Claims 1] An electromagnetic steel slab containing 1.8 wt% or less of Si + Al was hot-rolled, and then cold-rolled once or twice including intermediate annealing. Thereafter, in producing a non-oriented electrical steel sheet by performing finish annealing, in the continuous finishing rolling step of the hot rolling, the sheet temperature is (γ → α transformation start temperature + 20 ° C.) to (γ → α transformation end temperature). (-20 [deg.] C.), a method for producing a non-oriented electrical steel sheet, wherein rolling is performed under the conditions of a draft of 40% or less and an equivalent strain rate of 50 s- 1 or more.
JP01086093A 1993-01-26 1993-01-26 Manufacturing method of non-oriented electrical steel sheet Expired - Fee Related JP3375998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01086093A JP3375998B2 (en) 1993-01-26 1993-01-26 Manufacturing method of non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01086093A JP3375998B2 (en) 1993-01-26 1993-01-26 Manufacturing method of non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH06220537A JPH06220537A (en) 1994-08-09
JP3375998B2 true JP3375998B2 (en) 2003-02-10

Family

ID=11762116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01086093A Expired - Fee Related JP3375998B2 (en) 1993-01-26 1993-01-26 Manufacturing method of non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3375998B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930519C1 (en) * 1999-07-05 2000-09-14 Thyssenkrupp Stahl Ag Non-textured electrical steel sheet, useful for cores in rotary electrical machines such as motors and generators, is produced by multi-pass hot rolling mainly in the two-phase austenite-ferrite region
JP3333794B2 (en) * 1994-09-29 2002-10-15 川崎製鉄株式会社 Manufacturing method of non-oriented electrical steel sheet
CN1203635A (en) * 1995-12-05 1998-12-30 新日本制铁株式会社 Process for producing non-oriented electromagnetic steel sheet having high magnetic flux density and low iron loss
TW476790B (en) 1998-05-18 2002-02-21 Kawasaki Steel Co Electrical sheet of excellent magnetic characteristics and its manufacturing method
US6425962B1 (en) 1999-10-13 2002-07-30 Nippon Steel Corporation Non-oriented electrical steel sheet excellent in permeability and method of producing the same
DE10015691C1 (en) * 2000-03-16 2001-07-26 Thyssenkrupp Stahl Ag Production of a non-grain oriented hot-rolled magnetic steel sheet used in the production of engines comprises rolling a pre-material made of an iron alloy and deforming in the mixed austenite/ferrite region
JP6879341B2 (en) * 2018-08-23 2021-06-02 Jfeスチール株式会社 Manufacturing method of non-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH06220537A (en) 1994-08-09

Similar Documents

Publication Publication Date Title
EP3859032B1 (en) Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same
JP2009185386A (en) Method for producing non-grain-oriented electrical steel sheet
JP5265835B2 (en) Method for producing non-oriented electrical steel sheet
JP4218077B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3375998B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2509018B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP6146582B2 (en) Method for producing non-oriented electrical steel sheet
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH04325629A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPH1161257A (en) Production of non-oriented silicon steel sheet having low iron loss and low magnetic anisotropy
JP3379055B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2005002401A (en) Method for producing non-oriented silicon steel sheet
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JP7268803B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPS6333518A (en) Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production
WO2023248861A1 (en) Method for producing electromagnetic steel sheet, and cold-rolled sheet
WO2023282072A1 (en) Non-oriented electrical steel plate and manufacturing method thereof
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JP3294367B2 (en) Non-oriented electrical steel sheet having high magnetic flux density and low iron loss and method of manufacturing the same
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPS62278226A (en) Manufacture of silicon steel plate
JPH046220A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JP3358138B2 (en) Method for producing semi-process non-oriented electrical steel sheet with excellent isotropic magnetic properties
JPS62278227A (en) Manufacture of silicon steel plate
JPH0737651B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees