JP2020033640A - Production method of non-oriented electromagnetic steel sheet - Google Patents

Production method of non-oriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2020033640A
JP2020033640A JP2019141125A JP2019141125A JP2020033640A JP 2020033640 A JP2020033640 A JP 2020033640A JP 2019141125 A JP2019141125 A JP 2019141125A JP 2019141125 A JP2019141125 A JP 2019141125A JP 2020033640 A JP2020033640 A JP 2020033640A
Authority
JP
Japan
Prior art keywords
mass
rolling
less
hot
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019141125A
Other languages
Japanese (ja)
Other versions
JP6879341B2 (en
Inventor
智幸 大久保
Tomoyuki Okubo
智幸 大久保
正憲 上坂
Masanori Kamisaka
正憲 上坂
尾田 善彦
Yoshihiko Oda
善彦 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2020033640A publication Critical patent/JP2020033640A/en
Application granted granted Critical
Publication of JP6879341B2 publication Critical patent/JP6879341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide a production method of a high-level non-oriented electromagnetic steel sheet having excellent magnetic properties and no ridging without performing hot-rolled sheet annealing at high temperatures or without performing hot-rolled sheet annealing.SOLUTION: The non-oriented electromagnetic steel sheet is manufactured by hot rolling a slab containing C: 0.0050% or less, Si: 2.0-5.0%, Mn: 3.0% or less, P: 0.20% or less, S: 0.0050% or less, Al: 3.0% or less, N: 0.0050% or less, and O: 0.010% or less, and performing hot-rolled sheet annealing at a soaking temperature of 900°C or lower, a soaking time period of 5 min or shorter, or alternatively cold rolling and finish rolling without performing hot-rolling sheet annealing. In this manufacturing method, an entry temperature FET (°C) of a first pass of the finish rolling in the hot rolling is set to 970°C or higher, and the first pass of the finish rolling is performed under a condition that α defined by the following formula: α=FET+43.4×ln(SR) (where SR: the strain rate (s) of the first pass of the finish rolling) is 1070 or more.SELECTED DRAWING: Figure 1

Description

本発明は、無方向性電磁鋼板の製造方法に関し、具体的には、高温の熱延板焼鈍を施すことなく、優れた磁気特性と表面性状を有する高級無方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a non-oriented electrical steel sheet, specifically, a method for producing a high-grade non-oriented electrical steel sheet having excellent magnetic properties and surface properties without performing high-temperature hot-rolled sheet annealing. It is.

近年、地球環境を保護する観点から省エネルギー化が指向され、それに伴い、電気機器は高効率化や小型化が積極的に推進されている。そのため、電気機器の鉄心材料として広く使用されている無方向性電磁鋼板には、高磁束密度化や低鉄損化が強く要求されるようになってきている。また、占積率の向上やコアの寸法精度向上の観点から、リジングと呼ばれる鋼板表面のうねりを抑制することも求められている。   In recent years, energy conservation has been pursued from the viewpoint of protecting the global environment, and accordingly, the efficiency and size of electric devices have been actively promoted. For this reason, non-oriented electrical steel sheets that are widely used as iron core materials for electrical equipment have been strongly required to have high magnetic flux density and low iron loss. In addition, from the viewpoint of improving the space factor and improving the dimensional accuracy of the core, it is also required to suppress undulation of the steel sheet surface, which is called ridging.

Siを3mass%程度含有する高級無方向性電磁鋼板の製造においては、熱間圧延後の鋼板(熱延板)に、1000℃程度の高温で熱延板焼鈍を施すことが一般的に行われている。これは、Siを3mass%程度含有する鋼は、フェライト単相鋼であり、熱間圧延時に変態が生じないため、熱延後の鋼板組織は未再結晶組織が主となり、熱延板焼鈍を施して再結晶組織化しなければ、磁気特性の低下やリジングの発生を招くからである。しかし、熱延板焼鈍を施すことは、必然的に、工程増加による製造能力の低下や、工程管理の負荷増大等による製造コストの上昇を招く。   In the production of high-grade non-oriented electrical steel sheets containing about 3 mass% of Si, hot-rolled steel sheets (hot-rolled sheets) are generally subjected to hot-rolled sheet annealing at a high temperature of about 1000 ° C. ing. This is because a steel containing about 3 mass% of Si is a ferritic single-phase steel and does not undergo transformation during hot rolling. If the recrystallization is not performed to form a recrystallized structure, the magnetic properties are reduced and ridging is caused. However, performing hot-rolled sheet annealing inevitably causes a decrease in manufacturing capacity due to an increase in the number of steps and an increase in manufacturing cost due to an increase in the load of step management.

そこで、熱延板焼鈍を省略する方法として、特許文献1や特許文献2には、熱間圧延における仕上圧延終了温度を高温化して、自己焼鈍により再結晶を促進する技術が提案されている。   Therefore, as a method of omitting hot-rolled sheet annealing, Patent Literature 1 and Patent Literature 2 propose a technique of increasing the finish rolling end temperature in hot rolling to promote recrystallization by self-annealing.

特開昭62−054023号公報JP-A-62-054023 特開2007−154271号公報JP 2007-154271 A

しかしながら、上記特許文献1および2の技術は、主としてSiを2mass%程度含有する鋼を対象としてしか検討がなされていない。そのため、Si含有量がさらに高い高級鋼では、再結晶がより進み難いため、リジングの抑制効果が安定して得られないという問題がある。また、熱間圧延の仕上圧延終了温度を高温化すると、熱延板の形状を制御することが難しくなるという問題もある。   However, the techniques disclosed in Patent Documents 1 and 2 are mainly studied only for steel containing about 2 mass% of Si. Therefore, in a high-grade steel having a higher Si content, recrystallization is more difficult to progress, and there is a problem that the effect of suppressing ridging cannot be stably obtained. Further, when the finish rolling end temperature of the hot rolling is increased, there is a problem that it becomes difficult to control the shape of the hot rolled sheet.

本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、高温での熱延板焼鈍を施すことなく、あるいは、熱延板焼鈍を施すことなく、磁気特性に優れかつリジングの発生のない高級無方向性電磁鋼板の製造方法を提案することにある。   The present invention has been made in view of the above-mentioned problems of the related art, and has as its object to perform magnetic properties without performing hot-rolled sheet annealing at a high temperature or without performing hot-rolled sheet annealing. An object of the present invention is to propose a method for manufacturing a high-grade non-oriented electrical steel sheet which is excellent in ridging and excellent in ridging.

発明者らは、上記課題を達成するため、熱間圧延の仕上圧延条件に着目して鋭意検討を重ねた。その結果、熱間圧延の仕上圧延における1パス目の圧延条件を適正化することで、高温での熱延板焼鈍を施すことなく、あるいは、熱延板焼鈍を施すことなく、磁気特性に優れかつリジングの発生のない高級無方向性電磁鋼板を製造することができることを見出し、本発明を完成させた。   In order to achieve the above-mentioned subject, the inventors focused on finishing rolling conditions of hot rolling and made intensive studies. As a result, by optimizing the rolling conditions in the first pass in the finish rolling of the hot rolling, the magnetic properties are excellent without performing the hot-rolled sheet annealing at a high temperature or without performing the hot-rolled sheet annealing. The inventors have found that a high-grade non-oriented electrical steel sheet free of ridging can be manufactured, and have completed the present invention.

すなわち、本発明は、C:0.0050mass%以下、Si:2.0〜5.0mass%、Mn:3.0mass%以下、P:0.20mass%以下、S:0.0050mass%以下、Al:3.0mass%以下、N:0.0050mass%以下およびO:0.010mass%以下を含有し、残部がFeおよび不可避不純物からなる成分組成を有するスラブを熱間圧延し、均熱温度900℃以下、均熱時間5min以下で熱延板焼鈍を施しあるいは熱延板焼鈍を施すことなく、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を行い、仕上焼鈍する無方向性電磁鋼板の製造方法において、
上記熱間圧延における仕上圧延1パス目の入側温度FETを970℃以上とし、かつ、
上記仕上圧延1パス目を下記(1)式;
α=FET+43.4×ln(SR) ・・・(1)
ここで、FET:仕上圧延1パス目の入側温度(℃)
SR:仕上圧延1パス目の歪速度(s−1
で定義されるαが1070以上となる条件で圧延することを特徴とする無方向性電磁鋼板の製造方法を提案する。
That is, in the present invention, C: 0.0050 mass% or less, Si: 2.0 to 5.0 mass%, Mn: 3.0 mass% or less, P: 0.20 mass% or less, S: 0.0050 mass% or less, Al : 3.0 mass% or less, N: 0.0050 mass% or less, and O: 0.010 mass% or less, and the remainder is a hot rolled slab having a component composition of Fe and unavoidable impurities, and a soaking temperature of 900 ° C. Hereinafter, without subjecting the hot-rolled sheet annealing or hot-rolled sheet annealing to a soaking time of 5 min or less, the non-oriented electrical steel sheet is subjected to one or two or more cold rolling steps including intermediate annealing to finish annealing. In the manufacturing method,
The entry side temperature FET of the first pass of the finish rolling in the hot rolling is set to 970 ° C. or higher, and
The first pass of the finish rolling is represented by the following formula (1):
α = FET + 43.4 × ln (SR) (1)
Here, FET: entry temperature (° C.) in the first pass of finish rolling
SR: strain rate in the first pass of finish rolling (s -1 )
The present invention proposes a method for producing a non-oriented electrical steel sheet, characterized in that rolling is performed under the condition that α defined by (1) is 1070 or more.

本発明の無方向性電磁鋼板の製造方法は、上記熱間圧延の仕上圧延前に、鋼板を再加熱することを特徴とする。   The method for producing a non-oriented electrical steel sheet according to the present invention is characterized in that the steel sheet is reheated before the finish rolling in the hot rolling.

また、本発明の無方向性電磁鋼板の製造方法は、上記熱間圧延における仕上圧延終了温度FDTを900℃以上、コイル巻取温度CTを700℃以下とすることを特徴とする。   Further, the method for producing a non-oriented electrical steel sheet according to the present invention is characterized in that the finish rolling end temperature FDT in the hot rolling is 900 ° C or higher and the coil winding temperature CT is 700 ° C or lower.

また、本発明の無方向性電磁鋼板の製造方法に用いる上記スラブは、上記成分組成に加えてさらに、Sn:0.005〜0.20mass%およびSb:0.005〜0.20mass%のうちから選ばれる1種または2種を含有することを特徴とする。   Further, the slab used in the method for producing a non-oriented electrical steel sheet of the present invention further includes Sn: 0.005 to 0.20 mass% and Sb: 0.005 to 0.20 mass% in addition to the above component composition. Characterized by containing one or two selected from the group consisting of:

また、本発明の無方向性電磁鋼板の製造方法に用いる上記スラブは、上記成分組成に加えてさらに、Ca:0.0005〜0.020mass%、Mg:0.0005〜0.020mass%およびREM:0.0005〜0.020mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   The slab used in the method for producing a non-oriented electrical steel sheet according to the present invention further comprises Ca: 0.0005 to 0.020 mass%, Mg: 0.0005 to 0.020 mass%, and REM, in addition to the above component composition. : Characterized by containing one or more selected from 0.0005 to 0.020 mass%.

本発明によれば、高温での熱延板焼鈍を施すことなく、あるいは、熱延板焼鈍を施すことなく、磁気特性に優れかつリジングの発生のない高級無方向性電磁鋼板を製造することができるので、製造工程の短縮あるいは削減が可能となるだけでなく、製品品質の向上、製造コストの低減にも大いに寄与する。   According to the present invention, it is possible to produce a high-grade non-oriented electrical steel sheet having excellent magnetic properties and no ridging without hot-rolled sheet annealing at a high temperature or without hot-rolled sheet annealing. This not only shortens or reduces the number of manufacturing steps, but also greatly contributes to improving product quality and reducing manufacturing costs.

仕上圧延1パス目の入側温度FETと歪速度SRがリジングに及ぼす影響を示すグラフである。It is a graph which shows the influence which entrance temperature FET of the 1st pass of finish rolling and strain rate SR have on ridging.

まず、本発明を開発する契機となった実験について説明する。
C:0.0016mass%、Si:3.11mass%、Mn:0.46mass%、P:0.01mass%、S:0.0015mass%、Al:1.12mass%、N:0.0017mass%、Ni:0.01mass%、Cr:0.01mass%、Ti:0.0005mass%、Nb:0.0001mass%およびO:0.0028mass%を含有し、残部がFeおよび不可避不純物からなる成分組成の鋼を真空溶解炉で溶製し、50kgの鋳塊とした。
First, an experiment that triggered the development of the present invention will be described.
C: 0.0016 mass%, Si: 3.11 mass%, Mn: 0.46 mass%, P: 0.01 mass%, S: 0.0015 mass%, Al: 1.12 mass%, N: 0.0017 mass%, Ni : 0.01 mass%, Cr: 0.01 mass%, Ti: 0.0005 mass%, Nb: 0.0001 mass%, and O: 0.0028 mass%, the balance being steel having a component composition of Fe and unavoidable impurities. It was melted in a vacuum melting furnace to form a 50 kg ingot.

次いで、上記鋳塊を1150℃の温度に30分間再加熱した後、粗圧延して、厚さが50mmのシートバーとした。次いで、上記シートバーを室温まで冷却した後、1150℃の温度に再加熱して30分間保持した後、ワークロール径が300mmφの5スタンドの熱間圧延機を用いて、実機の仕上圧延を模擬した熱間圧延(仕上圧延)を行い、板厚が2.3mmの熱延板とした。この際、5スタンドの圧延機出側の鋼板温度、即ち、仕上圧延終了温度FDTは840℃(一定)とし、仕上圧延1パス目の入側温度FETと歪速度SRを種々に変化させて圧延を行った。
次いで、上記熱間圧延後の鋼板(熱延板)を酸洗し、冷間圧延して最終板厚0.3mmの冷延板とした後、980℃×10sの仕上焼鈍を施した。
斯くして得た仕上焼鈍後の鋼板表面を目視で観察し、リジングの発生状況を評価した。
Next, the ingot was reheated to a temperature of 1150 ° C. for 30 minutes, and then roughly rolled to obtain a sheet bar having a thickness of 50 mm. Next, the sheet bar was cooled to room temperature, reheated to a temperature of 1150 ° C., held for 30 minutes, and simulated finish rolling of an actual machine using a 5-stand hot roll mill having a work roll diameter of 300 mmφ. Hot rolling (finish rolling) was performed to obtain a hot-rolled sheet having a sheet thickness of 2.3 mm. At this time, the temperature of the steel sheet on the exit side of the five-stand rolling mill, that is, the finish rolling end temperature FDT is 840 ° C. (constant), and the entrance temperature FET and the strain rate SR in the first pass of finish rolling are variously changed to perform rolling. Was done.
Next, the steel sheet (hot-rolled sheet) after the hot rolling was pickled, cold-rolled to a cold-rolled sheet having a final thickness of 0.3 mm, and then subjected to finish annealing at 980 ° C. × 10 s.
The surface of the steel sheet after the finish annealing thus obtained was visually observed to evaluate the occurrence of ridging.

上記実験の結果を、図1に示した。この図から、熱間圧延の仕上圧延1パス目の入側温度FETを970℃以上とし、かつ、上記仕上圧延1パス目を下記(1)式;
α=FET+43.4×ln(SR) ・・・(1)
ここで、FET:仕上圧延1パス目の入側温度(℃)
SR:仕上圧延1パス目の歪速度(s−1
で定義されるαが1070以上となる条件で圧延することで、リジングの発生が抑制されることがわかった。
The results of the above experiment are shown in FIG. From this figure, the entry temperature FET of the first pass of the finish rolling of hot rolling is set to 970 ° C. or higher, and the first pass of the finish rolling is represented by the following formula (1);
α = FET + 43.4 × ln (SR) (1)
Here, FET: entry temperature (° C.) in the first pass of finish rolling
SR: strain rate in the first pass of finish rolling (s -1 )
It has been found that the occurrence of ridging is suppressed by rolling under the condition that α defined by the formula is 1070 or more.

この理由について、発明者らは以下のように考えている。
仕上圧延の1パス目を、高温・高歪速度で圧延を行った場合には、1パス目の圧延後の静的再結晶が促進されるため、集合組織のランダム化と組織の微細化が達成される。さらに、1パス目の圧延後に再結晶して微細化した組織は、2パス目以降でも再結晶が促進されるため、さらに集合組織のランダム化が進行し、リジングが抑制される。
For this reason, the inventors consider as follows.
When the first pass of finish rolling is performed at a high temperature and a high strain rate, static recrystallization after the first pass of rolling is promoted, so that the texture is randomized and the structure is refined. Achieved. Further, the microstructure recrystallized and refined after rolling in the first pass promotes recrystallization in the second and subsequent passes, so that the texture is further randomized and ridging is suppressed.

また、本実験で得られた全ての熱延板は、表層部を除いて未再結晶組織(加工組織)であった。これから、リジングを抑制するためには、必ずしも熱延後の熱延板組織を再結晶した状態にする必要はなく、上記した熱延の仕上圧延途中の再結晶で集合組織をランダム化すればよいこと、また、その場合には、熱延終了後の鋼板組織は未再結晶組織でもよいことがわかった。したがって、仕上圧延機入側の鋼板温度、すなわち、仕上圧延1パス目の圧延条件を適正化すれば、仕上圧延終了温度FDTを不必要に高温化することなく、リジングを抑制することが可能であることがわかった。
本発明は、上記の新たな知見に基き、開発したものである。
All the hot rolled sheets obtained in this experiment had an unrecrystallized structure (processed structure) except for the surface layer. From this, in order to suppress the ridging, it is not always necessary to make the hot-rolled sheet structure after hot rolling into a recrystallized state, and it is only necessary to randomize the texture by recrystallization during the finish rolling of the above-mentioned hot rolling. In that case, it was also found that the steel sheet structure after the completion of hot rolling may be an unrecrystallized structure. Therefore, by optimizing the temperature of the steel sheet on the entrance side of the finishing mill, that is, the rolling conditions in the first pass of the finishing rolling, it is possible to suppress ridging without unnecessarily increasing the finishing rolling end temperature FDT. I found it.
The present invention has been developed based on the above new findings.

次に、本発明の無方向性電磁鋼板の製造に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.0050mass%以下
Cは、製品板において磁気時効を起こして炭化物を形成し、鉄損を劣化させる有害元素である。よって、本発明では、上記磁気時効を抑制するため、Cの含有量を0.0050mass%以下に制限する。好ましくは0.0030mass%以下である。
Next, the component composition of the steel material (slab) used for manufacturing the non-oriented electrical steel sheet of the present invention will be described.
C: 0.0050 mass% or less C is a harmful element that causes magnetic aging in a product plate to form carbides and deteriorate iron loss. Therefore, in the present invention, in order to suppress the magnetic aging, the content of C is limited to 0.0050 mass% or less. Preferably it is 0.0030 mass% or less.

Si:2.0〜5.0mass%
Siは、鋼の比抵抗を高めて鉄損を低減するのに有効な成分である。しかし、Siが2.0mass%未満では上記効果は小さく、一方、5.0mass%を超えると、圧延することが困難になる。よって、Siの含有量は2.0〜5.0mass%の範囲とする。なお、本発明は、再結晶が起こり難い、高級鋼を対象としていることから、本発明の効果が顕著となるSi:2.5mass%以上の鋼に適用するのが好ましい。また、Siの上限は、製造性を考慮し、4.5mass%以下が好ましい。
Si: 2.0 to 5.0 mass%
Si is an effective component for increasing the specific resistance of steel and reducing iron loss. However, when the content of Si is less than 2.0 mass%, the above effect is small. On the other hand, when the content of Si exceeds 5.0 mass%, it becomes difficult to perform rolling. Therefore, the content of Si is set in the range of 2.0 to 5.0 mass%. In addition, since the present invention is intended for high-grade steel in which recrystallization is unlikely to occur, it is preferable to apply the present invention to steel of 2.5 mass% or more of Si in which the effect of the present invention is remarkable. Further, the upper limit of Si is preferably 4.5 mass% or less in consideration of manufacturability.

Mn:3.0mass%以下
Mnは、SをMnSとして固定することで、熱間加工性を改善する効果がある他、微細硫化物を低減し、粒成長性を改善して鉄損を低減する効果がある。さらに、Mnを多く添加することで、MnSの固溶温度が上昇して再固溶やそれに伴う微細析出が抑制されるので、後述するスラブ加熱温度の高温化による鉄損特性の悪化を抑制することもできる。しかし、Mn含有量が3.0mass%を超えると、Mn炭窒化物が析出し、却って鉄損が悪化するようになる。よって、Mnの含有量は3.0mass%以下とする。なお、上記鉄損低減効果を得るためには、0.4mass%以上添加するのが好ましい。また、Mnの上限は、好ましくは2.0mass%である。
Mn: 3.0 mass% or less Mn has an effect of improving hot workability by fixing S as MnS, and also reduces fine sulfides, improves grain growth, and reduces iron loss. effective. Further, by adding a large amount of Mn, the solid solution temperature of MnS is increased, and re-solid solution and accompanying fine precipitation are suppressed, so that deterioration of iron loss characteristics due to a higher slab heating temperature described later is suppressed. You can also. However, if the Mn content exceeds 3.0 mass%, Mn carbonitride precipitates and iron loss worsens. Therefore, the content of Mn is set to 3.0 mass% or less. In order to obtain the above-mentioned iron loss reduction effect, it is preferable to add 0.4 mass% or more. Further, the upper limit of Mn is preferably 2.0 mass%.

P:0.20mass%以下
Pは、固溶硬化能が大きいため、鋼の強度調整に用いられる元素であり、適宜、添加することができる。しかし、0.20mass%を超えると、鋼が脆化し、冷間圧延すること困難になるため、Pの上限は0.20mass%とする。好ましくは、0.08mass%以下である。
P: 0.20 mass% or less P is an element used for adjusting the strength of steel because it has a high solid solution hardening ability, and can be added as appropriate. However, if it exceeds 0.20 mass%, the steel becomes brittle and it becomes difficult to perform cold rolling. Therefore, the upper limit of P is set to 0.20 mass%. Preferably, it is 0.08 mass% or less.

S:0.0050mass%以下
Sは、微細な硫化物を形成して粒成長を阻害し、鉄損を増加させる有害元素であるため、極力低減するのが望ましい。特に、Sの含有量が0.0050mass%を超えると、上記の悪影響が顕著になるので、上限を0.0050mass%とする。なお、Sを0.0010mass%以下に低減することで、後述するスラブ加熱温度の高温化による鉄損特性の悪化を抑制することができるので、好ましくは0.0025mass%以下、より好ましくは0.0010mass%以下である。
S: 0.0050 mass% or less S is a harmful element that forms fine sulfides, inhibits grain growth, and increases iron loss. Therefore, it is desirable to reduce S as much as possible. In particular, when the content of S exceeds 0.0050 mass%, the above-mentioned adverse effect becomes remarkable, so the upper limit is made 0.0050 mass%. In addition, by reducing S to 0.0010 mass% or less, deterioration of iron loss characteristics due to an increase in slab heating temperature described later can be suppressed, and therefore preferably 0.0025 mass% or less, more preferably 0.1 mass% or less. 0010 mass% or less.

Al:3.0mass%以下
Alは、Siと同様、鋼の比抵抗を高めて鉄損を低減する効果がある。また、NをAlNとして固定することで、微細なAlNの析出を低減して粒成長性を改善し、鉄損を低減する効果がある。さらに、Alを多く添加することで、AlNの固溶温度が上昇して再固溶やそれに伴う微細析出が抑制されるので、後述するスラブ加熱温度の高温化による鉄損特性の悪化を抑制することもできる。しかし、Alの含有量が3.0mass%を超えると、圧延することが困難になる。よって、Alは3.0mass%以下とする。好ましくは2.0mass%以下である。なお、Al含有量が0.5mass%未満では、上記した鉄損改善効果が小さいため、0.5mass%以上含有するのが好ましい。
Al: 3.0 mass% or less Al has the effect of increasing the specific resistance of steel and reducing iron loss, like Si. Further, by fixing N as AlN, there is an effect that precipitation of fine AlN is reduced, grain growth is improved, and iron loss is reduced. Further, by adding a large amount of Al, the solid solution temperature of AlN is increased and re-solid solution and accompanying fine precipitation are suppressed, so that deterioration of iron loss characteristics due to a higher slab heating temperature described later is suppressed. You can also. However, when the Al content exceeds 3.0 mass%, it becomes difficult to perform rolling. Therefore, Al is set to 3.0 mass% or less. Preferably it is 2.0 mass% or less. If the Al content is less than 0.5 mass%, the effect of improving iron loss described above is small, so that the Al content is preferably 0.5 mass% or more.

なお、Alは、微細なAlNを形成し、粒成長を阻害して鉄損特性に悪影響を及ぼす元素でもある。したがって、Al含有量を極力低減してAlNの析出量を減少することで、粒成長を促進し、鉄損を改善することもできる。この効果を得るためには、Alは0.05mass%以下に低減することが好ましい。より好ましくは0.01mass%以下、さらに好ましくは0.005mass%以下である。なお、Alを低減した場合には、集合組織の改善による磁束密度の向上効果も期待できるので、熱延板焼鈍の省略によって磁束密度が低下しやすい高級鋼を対象とする本発明には特に好適である。   Note that Al is also an element that forms fine AlN, inhibits grain growth, and adversely affects iron loss characteristics. Therefore, by reducing the Al content as much as possible to reduce the amount of AlN precipitated, it is possible to promote grain growth and improve iron loss. In order to obtain this effect, it is preferable to reduce Al to 0.05 mass% or less. More preferably, it is 0.01 mass% or less, and still more preferably 0.005 mass% or less. In addition, when Al is reduced, the effect of improving the magnetic flux density by improving the texture can also be expected, so that the present invention is particularly suitable for the present invention, which is intended for high-grade steel whose magnetic flux density is easily reduced by omitting the hot-rolled sheet annealing. It is.

N:0.0050mass%以下
Nは、微細な窒化物を形成し、粒成長を阻害して鉄損を高める有害元素である。特に、N含有量が0.0050mass%を超えると、上記の悪影響が顕著になるため、上限は0.0050mass%とする。なお、Nを0.0010mass%以下に低減することで、後述するスラブ加熱温度の高温化による鉄損特性の悪化を抑制することができるので、より好ましくは0.0010mass%以下である。
N: 0.0050 mass% or less N is a harmful element that forms fine nitrides, inhibits grain growth, and increases iron loss. In particular, when the N content exceeds 0.0050 mass%, the above-mentioned adverse effects become remarkable, so the upper limit is made 0.0050 mass%. By reducing N to 0.0010 mass% or less, deterioration of iron loss characteristics due to an increase in the slab heating temperature described later can be suppressed. Therefore, it is more preferably 0.0010 mass% or less.

本発明の無方向電磁鋼板の製造に用いる鋼素材は、上記成分に加えてさらに、以下の成分を適宜含有することができる。
Sn:0.005〜0.20mass%、Sb:0.005〜0.20mass%
SnおよびSbは、再結晶集合組織を改善し、磁束密度と鉄損を改善する効果がある。上記効果は、SnおよびSbの含有量がそれぞれ0.005mass%未満では十分に得られない。一方、SnおよびSbをそれぞれ0.20mass%以上添加しても、上記効果は飽和する。よって、SnおよびSbは、それぞれ0.005〜0.20mass%の範囲で添加するのが好ましい。
The steel material used for producing the non-oriented electrical steel sheet of the present invention may further contain the following components in addition to the above components.
Sn: 0.005 to 0.20 mass%, Sb: 0.005 to 0.20 mass%
Sn and Sb have the effect of improving the recrystallization texture and improving the magnetic flux density and iron loss. The above effects cannot be sufficiently obtained when the contents of Sn and Sb are less than 0.005 mass%, respectively. On the other hand, even if Sn and Sb are added in amounts of 0.20 mass% or more, the above effects are saturated. Therefore, Sn and Sb are preferably added in the range of 0.005 to 0.20 mass%, respectively.

Ca:0.0001〜0.020mass%、Mg:0.0001〜0.020mass%、REM:0.0001〜0.020mass%
Ca,MgおよびREMは、安定な硫化物、セレン化物を形成し、粒成長性を改善する効果がある。また、Ca,MgおよびREMは、粒成長を阻害する析出物を形成するSを固定することで、後述するスラブ加熱温度の高温化による鉄損特性の悪化を抑制する効果もある。上記効果は、Ca,MgおよびREMの1種または2種以上の含有量がそれぞれ0.0001mass%未満では十分に得られない。一方、Ca,MgおよびREMの1種または2種以上のそれぞれの含有量が0.020mass%を超えると、介在物(Ca,MgおよびREMの化合物)が増加し、却って鉄損が増加するようになる。よって、Ca,MgおよびREMは、それぞれ0.0001〜0.020mass%の範囲で添加するのが好ましい。より好ましくは、それぞれ0.0005〜0.010mass%の範囲である。
Ca: 0.0001 to 0.020 mass%, Mg: 0.0001 to 0.020 mass%, REM: 0.0001 to 0.020 mass%
Ca, Mg and REM have the effect of forming stable sulfides and selenides and improving grain growth. Ca, Mg and REM also have an effect of suppressing the deterioration of iron loss characteristics due to a higher slab heating temperature, which will be described later, by fixing S which forms a precipitate that inhibits grain growth. The above effects cannot be sufficiently obtained when the content of one or more of Ca, Mg and REM is less than 0.0001 mass%, respectively. On the other hand, when the content of one or more of Ca, Mg, and REM exceeds 0.020 mass%, inclusions (compounds of Ca, Mg, and REM) increase, and iron loss increases. become. Therefore, Ca, Mg, and REM are preferably added in the range of 0.0001 to 0.020 mass%, respectively. More preferably, they are each in the range of 0.0005 to 0.010 mass%.

本発明の無方向電磁鋼板の製造に用いる鋼素材は、上記成分以外の残部は、Feおよび不可避的不純物である。しかし、Cr,NiおよびCuなどの元素は、適正な範囲内であれば、本発明の効果に悪影響を及ぼさずに鉄損や強度を改善する効果があり、適宜添加することができるが、原料コストを低減する観点から、これらの元素は、それぞれ1mass%以下とするのが望ましい。また、Ti,Nb,VおよびZrなどの炭窒化物や硫化物を形成する元素は、磁気特性に有害であることから、これらの元素は可能な限り低減することが望ましく、具体的にはそれぞれ0.002mass%以下とするのが好ましい。   The balance of the steel material used for producing the non-oriented electrical steel sheet of the present invention other than the above components is Fe and inevitable impurities. However, elements such as Cr, Ni and Cu have an effect of improving iron loss and strength without adversely affecting the effects of the present invention within an appropriate range, and can be added as appropriate. From the viewpoint of cost reduction, each of these elements is desirably 1 mass% or less. Elements forming carbonitrides and sulfides, such as Ti, Nb, V, and Zr, are harmful to magnetic properties. Therefore, it is desirable to reduce these elements as much as possible. It is preferably set to 0.002 mass% or less.

次に、本発明の無方向性電磁鋼板の製造方法について説明する。
本発明の無方向性電磁鋼板は、上記した本発明に適合する成分組成の鋼素材(スラブ)を所定の温度に加熱した後、熱間圧延して熱延板とし、該熱延板に熱延板焼鈍を施しあるいは施すことなく、1回または中間焼鈍を挟む2回以上の冷間圧延を行い、最終板厚とした後、仕上焼鈍し、必要に応じて絶縁被膜を被成することで製造することができる。
Next, a method for producing a non-oriented electrical steel sheet according to the present invention will be described.
The non-oriented electrical steel sheet of the present invention is obtained by heating a steel material (slab) having a component composition suitable for the present invention as described above to a predetermined temperature, and then hot-rolling the steel material to form a hot-rolled sheet. By performing cold rolling once or twice or more with or without intermediate annealing, with or without performing rolled sheet annealing, after finishing to the final sheet thickness, finish annealing, and forming an insulating coating as necessary Can be manufactured.

ここで、上記鋼素材(スラブ)は、転炉や真空脱ガス処理等からなる常法の精錬プロセスで本発明に適合する成分組成の鋼を溶製し、常法の連続鋳造法や造塊−分塊圧延法等を用いて製造することができる。なお、連続鋳造と熱延とを直結した薄スラブキャスターを用いて鋼素材としてもよい。   Here, the steel material (slab) is produced by melting a steel having a component composition compatible with the present invention by a conventional refining process including a converter and a vacuum degassing process, and using a conventional continuous casting method or ingot forming method. -It can be manufactured using a slab rolling method or the like. Note that a steel material may be used by using a thin slab caster directly connecting continuous casting and hot rolling.

上記スラブは、所定の温度に加熱した後、熱間圧延に供するが、上記スラブ加熱は必須ではなく、省略してもよい。例えば、連続鋳造後、直ちに熱間圧延する直送圧延HDRの場合や、上記薄スラブの場合である。なお、スラブ加熱を行う場合、その加熱温度は、1000〜1300℃の範囲とするのが好ましい。スラブ加熱温度が1300℃を超えると、AlNやMnSなどの析出物形成元素が鋼中に固溶し、後工程で再析出して粒成長を阻害し、鉄損特性に悪影響を及ぼすようになる。一方、1000℃を下回ると、熱間圧延の負荷が増大するだけでなく、仕上圧延入側温度FETや仕上圧延終了温度FDTを確保できなくなる。   The slab is heated to a predetermined temperature and then subjected to hot rolling. However, the slab heating is not essential and may be omitted. For example, there is a case of direct-feed rolling HDR in which hot rolling is performed immediately after continuous casting, or a case of the thin slab. When slab heating is performed, the heating temperature is preferably in the range of 1000 to 1300 ° C. When the slab heating temperature exceeds 1300 ° C., precipitate-forming elements such as AlN and MnS dissolve in the steel, and re-precipitate in a later process to hinder grain growth and adversely affect iron loss characteristics. . On the other hand, when the temperature is lower than 1000 ° C., not only the load of the hot rolling increases, but also the finish rolling entrance temperature FET and the finish rolling end temperature FDT cannot be secured.

熱間圧延は、複数の単スタンド圧延機で、スラブを所定の板厚のシートバーとする粗圧延と、上記粗圧延に続く、複数のスタンドからなる仕上圧延機で目標板厚まで連続して圧延を行う仕上圧延とから構成されているのが一般的である。粗圧延については、歪速度を制御することが工業的に難しいため、特に条件は規定しない。また、上述した薄スラブキャスターで薄スラブを製造するような場合には、粗圧延を省略してもよい。この場合のスラブ厚は、10〜100mmの範囲とするのが好ましい。   Hot rolling is a plurality of single-stand rolling mills, rough rolling to make the slab a sheet bar of a predetermined thickness, and subsequent to the above-described rough rolling, a finishing rolling mill comprising a plurality of stands and continuously to a target thickness. Generally, it is composed of finish rolling for performing rolling. For the rough rolling, since it is industrially difficult to control the strain rate, no particular conditions are defined. In the case where a thin slab is manufactured using the above-described thin slab caster, rough rolling may be omitted. The slab thickness in this case is preferably in the range of 10 to 100 mm.

粗圧延に続く仕上圧延は、1パス目の入側の鋼板温度、すなわち、仕上圧延入側温度FET(℃)を970℃以上とし、かつ、上記仕上圧延1パス目を下記(1)式;
α=FET+43.4×ln(SR) ・・・(1)
ここで、FET:仕上圧延1パス目の入側温度(℃)
SR:仕上圧延1パス目の歪速度(s−1
で定義されるαが1070以上となる条件で圧延することが重要である。これにより、仕上圧延における静的再結晶が促進され、リジングを抑制することができる。FETが970℃よりも低くなると、現実的な熱延条件の範囲では、歪速度を上げても再結晶を促進することが困難になるので、FETの下限は970℃とする必要がある。なお、好ましいFETは1030℃以上、αは1100以上である。
In the finish rolling following the rough rolling, the temperature of the steel sheet on the entry side of the first pass, that is, the finish-rolling entry-side temperature FET (° C.) is set to 970 ° C. or higher, and the first pass of the finish rolling is represented by the following formula (1);
α = FET + 43.4 × ln (SR) (1)
Here, FET: entry temperature (° C.) in the first pass of finish rolling
SR: strain rate in the first pass of finish rolling (s -1 )
It is important to perform rolling under the condition that α defined by the above is 1070 or more. Thereby, static recrystallization in finish rolling is promoted, and ridging can be suppressed. If the temperature of the FET is lower than 970 ° C., it is difficult to promote recrystallization even if the strain rate is increased within a range of realistic hot rolling conditions. Therefore, the lower limit of the FET needs to be 970 ° C. The preferred FET has a temperature of 1030 ° C. or higher and α is 1100 or higher.

なお、歪速度SR(s−1)については、種々の計算式が提案されているが、本発明においては、Simsの式として知られる下記式を用いる。

Figure 2020033640
Although various calculation formulas have been proposed for the strain rate SR (s -1 ), the present invention uses the following formula known as the Sims formula.
Figure 2020033640

また、熱間圧延の仕上圧延最終パス出側の鋼板温度、すなわち、仕上圧延終了温度FDTは磁気特性を改善する観点から、900℃以上とするのが好ましく、940℃以上とするのがより好ましい。これにより、熱延板の再結晶と粒成長が促進され、磁気特性をより向上することができる。FDTの高温化は、スラブ加熱温度の高温化や、パススケジュールの最適化、熱間圧延途中での再加熱、ストリップクーラント量の調整などで達成できる。一方、FDTがMnSやAlNの固溶温度以上となった場合、析出物が微細化して鉄損が増加するおそれがあるため、FDTは1100℃以下とするのが好ましい。   Further, the temperature of the steel sheet on the exit side of the final rolling final pass of hot rolling, that is, the finish rolling end temperature FDT is preferably 900 ° C. or higher, and more preferably 940 ° C. or higher, from the viewpoint of improving magnetic properties. . Thereby, recrystallization and grain growth of the hot rolled sheet are promoted, and the magnetic properties can be further improved. The increase in the temperature of the FDT can be achieved by increasing the slab heating temperature, optimizing the pass schedule, reheating during hot rolling, adjusting the amount of strip coolant, and the like. On the other hand, when the temperature of FDT is equal to or higher than the solid solution temperature of MnS or AlN, the precipitates may be refined and iron loss may increase. Therefore, the FDT is preferably 1100 ° C. or lower.

ここで、上記熱間圧延途中での再加熱の目的は、仕上圧延における圧延温度を高温化し、仕上熱延中の再結晶を促進することにある。したがって、上記再加熱は、粗圧延後、仕上圧延前のシートバーに対して実施するのが好ましく、また、再加熱する手段としては、例えば、従来公知の誘導加熱方式のシートバーヒータを用いることが好ましい。なお、シートバーを再加熱する場合、その温度は、スラブ加熱温度以下とすることが好ましい。これにより、AlNやMnSなどの析出物の再固溶が抑制されるため、AlNやMnSなどの再析出による粒成長への悪影響、ひいては、鉄損への悪影響を回避することができる。なお、再加熱温度を、スラブ加熱温度以上、あるいは、1150℃以上の高温とする場合は、CaやREM,Mgなどを添加してSを粗大介在物として固定し、微細MnSの生成を抑制することが好ましい。なお、薄スラブキャスター等を用いるなどして、スラブ加熱を省略する場合には、シートバーの再加熱温度は特に制限されないが、やはり、Ca,REM,Mgなどを添加することが好ましい。   Here, the purpose of the reheating during the hot rolling is to increase the rolling temperature in the finish rolling to promote recrystallization during the hot rolling in the finish. Therefore, it is preferable that the reheating is performed on the sheet bar after the rough rolling and before the finish rolling, and as the means for reheating, for example, a conventionally known induction heating type sheet bar heater is used. Is preferred. When the sheet bar is reheated, it is preferable that the temperature be equal to or lower than the slab heating temperature. This suppresses the re-dissolution of precipitates such as AlN and MnS, so that the re-precipitation of AlN and MnS and the like can be prevented from adversely affecting the grain growth and, consequently, the iron loss. When the reheating temperature is higher than the slab heating temperature or higher than 1150 ° C., Ca, REM, Mg or the like is added to fix S as coarse inclusions and suppress the generation of fine MnS. Is preferred. When the slab heating is omitted by using a thin slab caster or the like, the reheating temperature of the sheet bar is not particularly limited, but it is preferable to add Ca, REM, Mg, and the like.

一方、上記FDTは、高温化すると、熱間圧延後の鋼板形状を制御することが難しくなる。そのため磁気特性と鋼板形状を両立するため、FDTの上限は1000℃程度とするのが好ましい。なお、FDTを高温化しない場合、磁束密度が低下する傾向があるが、Alの含有量を極微量に低減した鋼素材を用いたり、Sn,Sb等の粒界偏析元素を微量添加した鋼素材を用いたりすることで、上記弊害を軽減することができる。   On the other hand, when the FDT is heated to a high temperature, it becomes difficult to control the shape of the steel sheet after hot rolling. Therefore, the upper limit of the FDT is preferably set to about 1000 ° C. in order to achieve both the magnetic characteristics and the shape of the steel sheet. When the temperature of the FDT is not increased, the magnetic flux density tends to decrease. However, a steel material in which the Al content is reduced to an extremely small amount or a steel material in which a small amount of grain boundary segregation elements such as Sn and Sb are added. Or the like can reduce the above adverse effects.

また、熱間圧延後のコイル巻取温度CTは、700℃を超えると、脱スケール性が悪化するため、700℃以下とするのが好ましい。   Further, if the coil winding temperature CT after hot rolling exceeds 700 ° C., the descaling property deteriorates. Therefore, the coil winding temperature CT is preferably set to 700 ° C. or less.

上記熱間圧延後の鋼板(熱延板)は、熱延板焼鈍を施すことなく冷間圧延に供することができるが、磁気特性および表面性状のさらなる向上を目的として熱延板焼鈍を施してもよい。ただし、熱延板焼鈍を施す場合、本発明では、熱間圧延条件の適正化によりリジングを抑止することができるので、低温短時間の焼鈍条件、具体的には、均熱温度が900℃以下、均熱時間が5min以下の焼鈍条件でも、優れた磁気特性と表面性状を得ることができる。   The hot-rolled steel sheet (hot-rolled sheet) can be subjected to cold rolling without performing hot-rolled sheet annealing, but is subjected to hot-rolled sheet annealing for the purpose of further improving magnetic properties and surface properties. Is also good. However, in the case of performing hot-rolled sheet annealing, in the present invention, ridging can be suppressed by optimizing the hot-rolling conditions. Therefore, the annealing conditions at low temperature and short time, specifically, the soaking temperature is 900 ° C or less. Excellent magnetic properties and surface properties can be obtained even under the annealing condition in which the soaking time is 5 minutes or less.

次いで、上記熱間圧延後または熱延板焼鈍後の鋼板は、1回の冷間圧延、もしくは、中間焼鈍を挟む2回以上の冷間圧延により所定の最終板厚(製品板厚)とした後、仕上焼鈍を施す。上記仕上焼鈍は、鉄損低減およびピックアップによる不良低減の観点から、焼鈍温度は900〜1100℃の範囲とすることが望ましい。また、仕上焼鈍の雰囲気は、非酸化性雰囲気もしくは還元性雰囲気とするのが好ましく、例えば、乾燥N雰囲気もしくは酸素ポテンシャルPH2O/PH2が0.1以下のH-N混合雰囲気とするのが好ましい。また、仕上焼鈍の後、必要に応じて絶縁被膜を被成してもよく、目的に応じて、公知の有機、無機、有機・無機混合被膜を適用することができる。 Next, the steel sheet after the hot rolling or the hot-rolled sheet annealing has a predetermined final sheet thickness (product sheet thickness) by one cold rolling or two or more cold rollings sandwiching the intermediate annealing. Then, finish annealing is performed. In the finish annealing, the annealing temperature is desirably in the range of 900 to 1100 ° C. from the viewpoint of reducing iron loss and reducing defects due to pickup. The atmosphere for the finish annealing is preferably a non-oxidizing atmosphere or a reducing atmosphere. For example, a dry N 2 atmosphere or an H 2 —N 2 mixed atmosphere having an oxygen potential P H2O / P H2 of 0.1 or less may be used. Is preferred. After the finish annealing, an insulating film may be formed as necessary, and a known organic, inorganic, or mixed organic / inorganic film can be applied according to the purpose.

C:0.0013〜0.0025mass%、Si:2.8mass%、Mn:0.4mass%、P:0.01mass%、S:0.0009〜0.0015mass%、Al:0.9mass%、N:0.0012〜0.0017mass%、Ni:0.01mass%、Cr:0.01mass%、Ti:0.0005mass%以下、Nb:0.0002mass%以下およびO:0.0011〜0.0023mass%を含有し、さらに、表1に示したその他の元素を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼を、転炉、真空脱ガス装置等からなる常法の精錬プロセスで溶製した後、連続鋳造法で厚さ200mmの鋼素材(スラブ)とした。次いで、上記スラブを、表1に示したように、種々のスラブ加熱温度に加熱し、30min間均熱した後、表1に示した仕上圧延終了温度FDTで熱間圧延して、板厚2.0mmの熱延板とした後、コイル巻取温度590℃で巻き取った。この際、上記熱間圧延における仕上圧延の1パス目は、直径800mmφのワークロールを用い、仕上圧延1パス目の入側厚(シートバー厚)、ロール周速(圧延速度)および圧下率を変化させることで、仕上圧延1パス目の歪速度SRを種々に変化させた。また、一部の条件では、粗圧延後のシートバーを、仕上圧延機の前に設置した誘導加熱方式のシートバーヒータで表1に示した温度に再加熱してから仕上圧延を行った。
次いで、上記の熱延板に対して、同じく表1に示した温度で30sec間保持する熱延板焼鈍を施した後、あるいは施さずに、酸洗して脱スケールした後、冷間圧延して最終板厚0.3mmの冷延板とした。
次いで、上記冷延板を、vol%比でH:N=25:75の乾燥雰囲気下で、均熱温度990℃×均熱時間10secの仕上焼鈍を施した後、絶縁被膜を塗布して製品板とした。
C: 0.0013 to 0.0025 mass%, Si: 2.8 mass%, Mn: 0.4 mass%, P: 0.01 mass%, S: 0.0009 to 0.0015 mass%, Al: 0.9 mass%, N: 0.0012 to 0.0017 mass%, Ni: 0.01 mass%, Cr: 0.01 mass%, Ti: 0.0005 mass% or less, Nb: 0.0002 mass% or less, and O: 0.0011 to 0.0023 mass %, And further containing other elements shown in Table 1, the balance being Fe and a component composition consisting of unavoidable impurities, by a conventional refining process comprising a converter, a vacuum degassing apparatus, and the like. After smelting, a steel material (slab) having a thickness of 200 mm was formed by a continuous casting method. Next, as shown in Table 1, the slab was heated to various slab heating temperatures, soaked for 30 minutes, and then hot-rolled at the finish rolling end temperature FDT shown in Table 1 to obtain a sheet thickness 2. After forming a hot-rolled sheet having a thickness of 0.0 mm, the sheet was wound at a coil winding temperature of 590 ° C. At this time, in the first pass of the finish rolling in the hot rolling, a work roll having a diameter of 800 mm was used, and the entry side thickness (sheet bar thickness), roll peripheral speed (rolling speed) and rolling reduction in the first pass of the finish rolling were determined. By changing the strain rate, the strain rate SR in the first pass of finish rolling was variously changed. Further, under some conditions, the sheet bar after the rough rolling was reheated to the temperature shown in Table 1 by a sheet bar heater of the induction heating type installed in front of the finishing mill, and then the finish rolling was performed.
Next, the hot-rolled sheet was subjected to hot-rolled sheet annealing at the same temperature shown in Table 1 for 30 seconds, or without pickling, descaling by pickling, and then cold rolling. Thus, a cold-rolled sheet having a final sheet thickness of 0.3 mm was obtained.
Next, the cold-rolled sheet is subjected to finish annealing at a soaking temperature of 990 ° C. × soaking time of 10 sec in a dry atmosphere of H 2 : N 2 = 25: 75 at a vol% ratio, and then an insulating film is applied. To make a product plate.

斯くして得た製品板の圧延方向と板幅方向とから、幅:30mm×長さ:280mmの試験片を採取し、JIS C 2550−1(2011)に準拠したエプスタイン試験を行い、磁束密度B50と鉄損W10/400を測定した。また、目視で、リジングの有無とレベルを評価した。
上記の結果を、製造条件とともに表1に示した。なお、1000℃で熱延板焼鈍を施した鋼板No.3は、従来技術を示す参考例である。この結果から、本発明に適合する条件で熱間圧延した鋼板は、いずれも熱延板焼鈍を施さずとも、熱延板焼鈍を施した鋼板と同等レベルの優れた表面性状と磁気特性が得られていることがわかる。
また、磁束密度B50は、熱延板焼鈍を施さない場合は、施した場合よりも若干劣る傾向があるが、FDTの高温化や、Sn、Sbの添加により改善できること、また、FETやFDTの高温化のためにスラブ加熱温度を高温化した場合は、鉄損が増加する傾向があるが、CaやREM,Mgの添加により鉄損上昇を抑制できることがわかる。
From the rolling direction and the sheet width direction of the product sheet thus obtained, a test piece having a width of 30 mm × length: 280 mm was sampled and subjected to an Epstein test in accordance with JIS C 2550-1 (2011), and a magnetic flux density was obtained. the B 50 and iron loss W 10/400 was measured. The presence and level of ridging were visually evaluated.
The above results are shown in Table 1 together with the manufacturing conditions. In addition, the steel sheet No. which performed the hot-rolled sheet annealing at 1000 degreeC. Reference numeral 3 is a reference example showing the prior art. From these results, the steel sheets hot-rolled under the conditions suitable for the present invention can obtain the same excellent surface properties and magnetic properties as the steel sheets subjected to the hot-rolled sheet annealing without any hot-rolled sheet annealing. You can see that it is done.
The magnetic flux density B 50 tends to be slightly inferior to the case where the hot-rolled sheet annealing is not performed, but it can be improved by increasing the temperature of the FDT or adding Sn and Sb. When the slab heating temperature is increased to increase the temperature of iron, the iron loss tends to increase, but it can be seen that the increase in iron loss can be suppressed by adding Ca, REM, and Mg.

Figure 2020033640
Figure 2020033640

表2に示したA〜Eの成分組成を有する鋼を常法の精錬プロセスで溶製し、連続鋳造法で厚さが240mmの鋼素材(スラブ)とした後、均熱炉で表3に示した温度に加熱し、40min間均熱した後、表3に示した仕上圧延終了温度FDTで熱間圧延して、板厚2.3mmの熱延板とした後、コイル巻取温度560℃で巻き取った。この際、仕上圧延1パス目は、600mmφのワークロール径を用い、仕上圧延1パス目の入側厚(シートバー厚)、ロール周速(圧延速度)および圧下率を変化させて1パス目の歪速度SRを種々に変化させた。また、一部の条件では、粗圧延後のシートバーを、仕上圧延機前に設置した誘導加熱方式のシートバーヒータで、表3に示した温度に再加熱してから仕上圧延を行った。
次いで、上記の熱延板に対して、同じく表3に示した温度に30sec間保持する熱延板焼鈍を施した後、あるいは施さずに、酸洗して脱スケールした後、冷間圧延して最終板厚0.3mmの冷延板とした。
次いで、上記冷延板を、vol%比でH:N=20:80の乾燥雰囲気下で、均熱温度1010℃×均熱時間20secの仕上焼鈍を施した後、絶縁被膜を塗布して製品板とした。
Steels having the component compositions of A to E shown in Table 2 were smelted by a conventional refining process and made into a steel material (slab) having a thickness of 240 mm by a continuous casting method. After heating to the indicated temperature and soaking for 40 minutes, hot rolling was performed at the finish rolling end temperature FDT shown in Table 3 to obtain a hot-rolled sheet having a thickness of 2.3 mm, and a coil winding temperature of 560 ° C. Rolled up. At this time, in the first pass of the finish rolling, a work roll diameter of 600 mmφ is used, and the thickness on the entry side (sheet bar thickness), the peripheral speed of the roll (rolling speed), and the rolling reduction in the first pass of the finish rolling are changed, and the first pass is performed. Was varied in various ways. Further, under some conditions, the sheet bar after the rough rolling was reheated to the temperature shown in Table 3 by an induction heating type sheet bar heater installed before the finishing mill, and then the finish rolling was performed.
Then, the hot-rolled sheet was subjected to pickling and descaling after or after being subjected to hot-rolled sheet annealing maintained at the same temperature shown in Table 3 for 30 seconds, and then cold-rolled. Thus, a cold-rolled sheet having a final sheet thickness of 0.3 mm was obtained.
Next, the cold-rolled sheet is subjected to finish annealing at a soaking temperature of 1010 ° C. × soaking time of 20 sec in a dry atmosphere of H 2 : N 2 = 20: 80 at a vol% ratio, and then an insulating film is applied. To make a product plate.

Figure 2020033640
Figure 2020033640

斯くして得た製品板の圧延方向と板幅方向とから、幅:30mm×長さ:280mmの試験片を採取し、JIS C 2550−1(2011)に準拠したエプスタイン試験を行い、磁束密度B50と鉄損W10/400を測定した。また、目視で、リジングの有無とレベルを評価した。 From the rolling direction and the sheet width direction of the product sheet thus obtained, a test piece having a width of 30 mm × length: 280 mm was sampled and subjected to an Epstein test in accordance with JIS C 2550-1 (2011), and a magnetic flux density was obtained. the B 50 and iron loss W 10/400 was measured. The presence and level of ridging were visually evaluated.

上記の結果を、製造条件とともに表3に示した。なお、980℃以上で熱延板焼鈍を施した鋼板No.1,5,9,13および17は、従来技術を示す参考例である。この結果から、本発明に適合する条件で熱間圧延した鋼板は、いずれも熱延板焼鈍を施さずとも、熱延板焼鈍を施した鋼板と同等レベルに優れた表面性状が得られているだけでなく、磁気特性にも優れていることがわかる。また、Al含有量が低い鋼Aは、Al含有量が高い鋼Bに対して、スラブ加熱温度を高くしたときの鉄損増加が大きく、Al含有量を高くすることが有利であることがわかる。また、逆にAl含有量が非常に少ない鋼Cも、スラブ加熱温度を高くしたときの鉄損増加が小さい。また、Si含有量が低い鋼Dは、熱間圧延中に変態を起こす、いわゆる変態鋼であるが、本発明の製造条件を満たすことで、優れた表面性状と磁気特性が得られている。   The above results are shown in Table 3 together with the production conditions. In addition, the steel sheet No. Reference numerals 1, 5, 9, 13 and 17 are reference examples showing the prior art. From these results, the steel sheet hot-rolled under the conditions suitable for the present invention has excellent surface properties equivalent to that of the steel sheet annealed with hot rolled sheet without any hot-rolled sheet annealing. Not only that, but also the magnetic properties are excellent. In addition, it can be seen that steel A having a low Al content has a large increase in iron loss when the slab heating temperature is increased, as compared with steel B having a high Al content, and it is advantageous to increase the Al content. . Conversely, steel C having a very low Al content also has a small increase in iron loss when the slab heating temperature is increased. Steel D having a low Si content is a so-called transformed steel that undergoes transformation during hot rolling, but excellent surface properties and magnetic properties are obtained by satisfying the production conditions of the present invention.

Figure 2020033640
Figure 2020033640

Claims (5)

C:0.0050mass%以下、Si:2.0〜5.0mass%、Mn:3.0mass%以下、P:0.20mass%以下、S:0.0050mass%以下、Al:3.0mass%以下、N:0.0050mass%以下およびO:0.010mass%以下を含有し、残部がFeおよび不可避不純物からなる成分組成を有するスラブを熱間圧延し、均熱温度900℃以下、均熱時間5min以下で熱延板焼鈍を施しあるいは熱延板焼鈍を施すことなく、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を行い、仕上焼鈍する無方向性電磁鋼板の製造方法において、
上記熱間圧延における仕上圧延1パス目の入側温度FETを970℃以上とし、かつ、
仕上圧延1パス目を下記(1)式で定義されるαが1070以上となる条件で圧延することを特徴とする無方向性電磁鋼板の製造方法。

α=FET+43.4×ln(SR) ・・・(1)
ここで、FET:仕上圧延1パス目の入側温度(℃)
SR:仕上圧延1パス目の歪速度(s−1
C: 0.0050 mass% or less, Si: 2.0 to 5.0 mass%, Mn: 3.0 mass% or less, P: 0.20 mass% or less, S: 0.0050 mass% or less, Al: 3.0 mass% or less , N: 0.0050 mass% or less and O: 0.010 mass% or less, and a slab having a component composition consisting of Fe and inevitable impurities is hot-rolled, soaking temperature 900 ° C or less, soaking time 5 min. In the method for producing a non-oriented electrical steel sheet to be subjected to hot rolling sheet annealing or hot rolling sheet annealing without being subjected to one or two or more cold rollings sandwiching intermediate annealing, and finish annealing,
The entry side temperature FET of the first pass of the finish rolling in the hot rolling is set to 970 ° C. or higher, and
A method for producing a non-oriented electrical steel sheet, wherein the first pass of finish rolling is rolled under conditions where α defined by the following equation (1) is 1070 or more.
Note that α = FET + 43.4 × ln (SR) (1)
Here, FET: entry temperature (° C.) in the first pass of finish rolling
SR: strain rate in the first pass of finish rolling (s -1 )
上記熱間圧延の仕上圧延前に、鋼板を再加熱することを特徴とする請求項1に記載の無方向性電磁鋼板の製造方法。 The method for producing a non-oriented electrical steel sheet according to claim 1, wherein the steel sheet is reheated before finish rolling in the hot rolling. 上記熱間圧延における仕上圧延終了温度FDTを900℃以上、コイル巻取温度CTを700℃以下とすることを特徴とする請求項1または2に記載の無方向性電磁鋼板の製造方法。 The method for producing a non-oriented electrical steel sheet according to claim 1, wherein the finish rolling end temperature FDT in the hot rolling is 900 ° C. or more and the coil winding temperature CT is 700 ° C. or less. 上記スラブは、上記成分組成に加えてさらに、Sn:0.005〜0.20mass%およびSb:0.005〜0.20mass%のうちから選ばれる1種または2種を含有することを特徴とする請求項1〜3のいずれか1項に記載の無方向性電磁鋼板の製造方法。 The slab further comprises one or two selected from Sn: 0.005 to 0.20 mass% and Sb: 0.005 to 0.20 mass%, in addition to the component composition. The method for producing a non-oriented electrical steel sheet according to any one of claims 1 to 3. 上記スラブは、上記成分組成に加えてさらに、Ca:0.0001〜0.020mass%、Mg:0.0001〜0.020mass%およびREM:0.0001〜0.020mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1〜4のいずれか1項に記載の無方向性電磁鋼板の製造方法。 The slab is one selected from Ca: 0.0001 to 0.020 mass%, Mg: 0.0001 to 0.020 mass%, and REM: 0.0001 to 0.020 mass% in addition to the above component composition. The method for producing a non-oriented electrical steel sheet according to any one of claims 1 to 4, wherein the method comprises one or more kinds.
JP2019141125A 2018-08-23 2019-07-31 Manufacturing method of non-oriented electrical steel sheet Active JP6879341B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018156574 2018-08-23
JP2018156574 2018-08-23

Publications (2)

Publication Number Publication Date
JP2020033640A true JP2020033640A (en) 2020-03-05
JP6879341B2 JP6879341B2 (en) 2021-06-02

Family

ID=69667263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019141125A Active JP6879341B2 (en) 2018-08-23 2019-07-31 Manufacturing method of non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6879341B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349861A (en) * 2020-03-24 2020-06-30 包头钢铁(集团)有限责任公司 High-magnetic-induction non-oriented silicon steel for EI sheets in CSP process and production method thereof
CN114774789A (en) * 2022-04-29 2022-07-22 鞍钢股份有限公司 Electrical pure iron hot rolled plate with excellent plate shape and wide width and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254023A (en) * 1985-08-31 1987-03-09 Nippon Steel Corp Manufacture of high-grade nonoriented electrical steel sheet
JPH06220537A (en) * 1993-01-26 1994-08-09 Kawasaki Steel Corp Production of non-oriented silicon steel sheet
JP2007154271A (en) * 2005-12-06 2007-06-21 Nippon Steel Corp Method for producing nonoriented magnetic steel sheet
JP2010047785A (en) * 2008-08-19 2010-03-04 Nippon Steel Corp Method for producing non-oriented electrical steel sheet high in magnetic-flux density
CN103388106A (en) * 2013-06-27 2013-11-13 宝山钢铁股份有限公司 Non-oriented electrical steel plate with high magnetic induction and low iron loss, and manufacturing method thereof
JP2016141881A (en) * 2015-02-05 2016-08-08 新日鐵住金株式会社 Magnetic steel sheet and method for producing the same and claw pole motor
WO2016175121A1 (en) * 2015-04-27 2016-11-03 新日鐵住金株式会社 Non-oriented magnetic steel sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254023A (en) * 1985-08-31 1987-03-09 Nippon Steel Corp Manufacture of high-grade nonoriented electrical steel sheet
JPH06220537A (en) * 1993-01-26 1994-08-09 Kawasaki Steel Corp Production of non-oriented silicon steel sheet
JP2007154271A (en) * 2005-12-06 2007-06-21 Nippon Steel Corp Method for producing nonoriented magnetic steel sheet
JP2010047785A (en) * 2008-08-19 2010-03-04 Nippon Steel Corp Method for producing non-oriented electrical steel sheet high in magnetic-flux density
CN103388106A (en) * 2013-06-27 2013-11-13 宝山钢铁股份有限公司 Non-oriented electrical steel plate with high magnetic induction and low iron loss, and manufacturing method thereof
JP2016141881A (en) * 2015-02-05 2016-08-08 新日鐵住金株式会社 Magnetic steel sheet and method for producing the same and claw pole motor
WO2016175121A1 (en) * 2015-04-27 2016-11-03 新日鐵住金株式会社 Non-oriented magnetic steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349861A (en) * 2020-03-24 2020-06-30 包头钢铁(集团)有限责任公司 High-magnetic-induction non-oriented silicon steel for EI sheets in CSP process and production method thereof
CN114774789A (en) * 2022-04-29 2022-07-22 鞍钢股份有限公司 Electrical pure iron hot rolled plate with excellent plate shape and wide width and manufacturing method thereof

Also Published As

Publication number Publication date
JP6879341B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP5854233B2 (en) Method for producing grain-oriented electrical steel sheet
US9831020B2 (en) Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof
US20080121314A1 (en) Non-Oriented Electrical Steel Sheets with Excellent Magnetic Properties and Method for Manufacturing the Same
US8936687B2 (en) Method for manufacturing grain oriented electrical steel sheets
JP6132103B2 (en) Method for producing grain-oriented electrical steel sheet
WO2017086036A1 (en) Process for producing non-oriented electromagnetic steel sheet
KR102244171B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2013139629A (en) Method for producing low iron loss grain-oriented magnetic steel sheet
JP4705463B2 (en) Method for producing non-oriented electrical steel sheet
PL194747B1 (en) Method of producing non-grain-oriented electrical sheet
TWI732507B (en) Method for manufacturing non-oriented electrical steel sheet
KR20200076517A (en) Grain oriented electrical steel sheet and method for manufacturing therof
JP6879341B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP6721135B1 (en) Method for producing grain-oriented electrical steel sheet and cold rolling equipment
JP3674183B2 (en) Method for producing grain-oriented electrical steel sheet
US11649532B2 (en) Non-oriented electrical steel sheet and method of producing same
US5667598A (en) Production method for grain oriented silicion steel sheet having excellent magnetic characteristics
JP6146582B2 (en) Method for producing non-oriented electrical steel sheet
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JPH1161257A (en) Production of non-oriented silicon steel sheet having low iron loss and low magnetic anisotropy
JP2019178377A (en) Manufacturing method of oriented electromagnetic steel sheet
TWI832561B (en) Manufacturing method of hot-rolled steel plate for non-oriented electromagnetic steel plate and manufacturing method of non-oriented electromagnetic steel plate
JP7392849B2 (en) Method for producing grain-oriented electrical steel sheets and rolling equipment for producing electrical steel sheets
US20230250506A1 (en) Method of manufacturing grain-oriented electrical steel sheet
WO2023277169A1 (en) Method for manufacturing oriented electromagnetic steel sheet and rolling equipment for manufacturing oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210412

R150 Certificate of patent or registration of utility model

Ref document number: 6879341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150