JP6024922B2 - Coil cooling method after finish annealing - Google Patents

Coil cooling method after finish annealing Download PDF

Info

Publication number
JP6024922B2
JP6024922B2 JP2013262081A JP2013262081A JP6024922B2 JP 6024922 B2 JP6024922 B2 JP 6024922B2 JP 2013262081 A JP2013262081 A JP 2013262081A JP 2013262081 A JP2013262081 A JP 2013262081A JP 6024922 B2 JP6024922 B2 JP 6024922B2
Authority
JP
Japan
Prior art keywords
coil
cooling
finish annealing
annealing
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013262081A
Other languages
Japanese (ja)
Other versions
JP2015117415A (en
Inventor
智宣 村上
智宣 村上
山口 誠
誠 山口
純一 鳥生
純一 鳥生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013262081A priority Critical patent/JP6024922B2/en
Publication of JP2015117415A publication Critical patent/JP2015117415A/en
Application granted granted Critical
Publication of JP6024922B2 publication Critical patent/JP6024922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、仕上焼鈍後コイルの冷却方法に関し、具体的には、バッチ式焼鈍炉で方向性電磁鋼板に仕上焼鈍を施した後の冷却方法に関するものである。   The present invention relates to a method for cooling a coil after finish annealing, and specifically relates to a cooling method after finish annealing a grain-oriented electrical steel sheet in a batch-type annealing furnace.

方向性電磁鋼板は、Siを7mass%以下含有し、結晶方位が{110}<001>方位に高度に集積した結晶粒で構成された、優れた磁気特性を有する軟磁性材料である。斯かる方向性電磁鋼板における結晶方位の制御は、一般的には、二次再結晶とよばれる高温での粒成長現象を利用することにより行われる。この二次再結晶は、高温、長時間の熱処理が必要であるため、現在のところ、バッチ式焼鈍炉(箱型焼鈍炉)を用いた仕上焼鈍において発現させている。   The grain-oriented electrical steel sheet is a soft magnetic material having excellent magnetic properties, which is composed of crystal grains containing Si at 7 mass% or less and having a crystal orientation highly accumulated in the {110} <001> orientation. Control of the crystal orientation in such a grain-oriented electrical steel sheet is generally performed by utilizing a high-temperature grain growth phenomenon called secondary recrystallization. Since this secondary recrystallization requires heat treatment for a long time at a high temperature, it is currently manifested in finish annealing using a batch annealing furnace (box annealing furnace).

上記バッチ式焼鈍炉を用いた仕上焼鈍は、コイル状に巻き取った鋼板(鋼帯)を、コイルの軸芯が垂直方向(アップエンド)となるよう炉床(ベース)上に載置し、その上にインナーカバーと称する容器を被せ、その内部の雰囲気をNガスやHガス等に制御した上で、さらに、上記インナーカバーの上に炉体を被せて、インナーカバーの外部から加熱することで行っている。 Finish annealing using the batch-type annealing furnace is performed by placing a steel sheet (steel strip) wound in a coil shape on a hearth (base) so that the axis of the coil is in the vertical direction (up-end), A container called an inner cover is placed thereon, the atmosphere inside is controlled by N 2 gas, H 2 gas, etc., and a furnace body is placed on the inner cover, and heated from the outside of the inner cover. It is done by doing.

上記仕上焼鈍で二次再結晶を発現させるためには、800℃以上の温度に加熱・保持する必要がある。また、磁気特性を向上するため、上記二次再結晶を起こさせた後、さらに1100〜1200℃程度の温度まで加熱し、数時間保持してインヒビター成分等を除去する純化処理を施す場合もある。上記仕上焼鈍後のコイルを次工程に送るためには、100〜200℃程度の温度に冷却する必要がある。しかし、上記冷却に要する時間は、仕上焼鈍時間の中で最も長く、生産性を阻害する要因の一つとなっている。   In order to develop secondary recrystallization by the above finish annealing, it is necessary to heat and hold at a temperature of 800 ° C. or higher. In addition, in order to improve the magnetic characteristics, after the secondary recrystallization is caused, the mixture is further heated to a temperature of about 1100 to 1200 ° C. and maintained for several hours to remove the inhibitor component and the like. . In order to send the coil after the finish annealing to the next step, it is necessary to cool to a temperature of about 100 to 200 ° C. However, the time required for the cooling is the longest of the finish annealing times, and is one of the factors that hinder productivity.

そこで、冷却時間を短縮するため、上記仕上焼鈍後コイルを強制冷却する方法が提案されている。例えば、特許文献1には、鋼板をコイル状に巻き取る際、鋼板の層間に波型の挿入板を入れて空間を設け、焼鈍時の雰囲気ガスまたは冷却時の空気(冷却媒体)を通じることで加熱、冷却の焼鈍時間を短縮する技術が、特許文献2には、仕上焼鈍後のコイルを冷却するにあたり、該コイルの内径よりも小さい径で巻き取り機に巻き、コイル層間に空間を生じさせ、該空間にコイル側面から冷却媒体を吹き付けて冷却を行う技術が、特許文献3には、加熱帯、冷却帯を有するバッチ式焼鈍炉の冷却帯に、給排水手段を有するとともに、コイル側面に接触・離間が可能な水冷ボックスで構成した冷却設備を設けた熱処理炉が、また、特許文献4には、炉内に形成されたガス流路中に設置されたコイル支持台の上に、薄板を隙間をあけて粗に巻いたコイルが軸線を鉛直方向に向けて置き、コイル支持台に形成された多数のガス噴出ノズルから噴出する雰囲気ガスによって前記コイルを加熱したり冷却したりするコイル熱処理炉が開示されている。   Therefore, in order to shorten the cooling time, a method for forcibly cooling the coil after the finish annealing has been proposed. For example, in Patent Document 1, when winding a steel sheet in a coil shape, a corrugated insertion plate is provided between the steel sheet layers to provide a space, and the atmosphere gas during annealing or air during cooling (cooling medium) is passed. The technology for shortening the annealing time for heating and cooling is disclosed in Patent Document 2, in which the coil after the finish annealing is cooled with a winding machine having a diameter smaller than the inner diameter of the coil, creating a space between the coil layers. The technique of cooling by blowing a cooling medium from the coil side surface to the space is disclosed in Patent Document 3 in the cooling zone of a batch type annealing furnace having a heating zone and a cooling zone, and having a water supply / drainage means, and on the coil side surface. A heat treatment furnace provided with a cooling facility composed of a water-cooled box capable of contact and separation is disclosed in Patent Document 4, in which a thin plate is placed on a coil support base installed in a gas flow path formed in the furnace. Wound roughly with a gap Yl placed towards the axis in the vertical direction, the coil heat treatment furnace or to cool or heat the coil by the atmosphere gas ejected from the plurality of gas injection nozzles formed in the coil supporting stand is disclosed.

特開昭57−116731号公報JP 57-116731 A 特開2003−328038号公報JP 2003-328038 A 特公昭62−056211号公報Japanese Examined Patent Publication No. 62-056211 特公平07−000814号公報Japanese Patent Publication No. 07-000814

しかしながら、上記特許文献1に開示の技術は、コイルの層間に波型の挿入板を入れてコイルに巻き取ることが難しく、また、挿入物によって鋼板に疵が発生するという問題がある。また、特許文献2に開示の技術は、コイルの層間に空間を作り、その空間にコイル側面から冷却媒体を吹き付けるために焼鈍後コイルを巻き直す必要があるが、高温での巻き直しは、鋼板の形状不良や外観不良を引き起こすという問題がある。また、特許文献3,4に開示の技術は、焼鈍炉内での冷却を効率化するための設備が必要とされ、設備費用やメンテナンス費用が嵩み、製造コストの面で問題がある。   However, the technique disclosed in Patent Document 1 has a problem that it is difficult to wind a coil-shaped insertion plate between coil layers and wind it around the coil, and the insert causes wrinkles on the steel plate. In addition, the technique disclosed in Patent Document 2 requires a coil to be rewinded after annealing in order to create a space between the layers of the coil and to spray a cooling medium from the side of the coil into the space. There is a problem of causing poor shape and appearance. In addition, the techniques disclosed in Patent Documents 3 and 4 require equipment for increasing the efficiency of cooling in the annealing furnace, increasing equipment costs and maintenance costs, and are problematic in terms of manufacturing costs.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、コイルの層間に空間を設けたり、コイルを巻き直したりするような特別な処理を必要とせず、かつ、多大な設備投資をすることなく、コイルを効率よく冷却することができる仕上焼鈍後コイルの冷却方法を提案することにある。   The present invention has been made in view of the above-described problems of the prior art, and the purpose thereof is to provide a space between the layers of the coil, and does not require special processing such as rewinding the coil, and Another object of the present invention is to propose a method for cooling a coil after finish annealing that can efficiently cool the coil without making a large capital investment.

発明者らは、上記課題を解決するべく、鋭意検討を重ねた。その結果、仕上焼鈍後の方向性電磁鋼板は、鋼板表面にフォルステライトからなるガラス質の被膜が形成されているため、一般冷延鋼板よりも高温の500〜600℃程度でインナーカバーを外され、仕上焼鈍炉から取り出されることから、上記残熱による煙突効果を活用すれば、コイルをアップエンドに載置したまま効率よく冷却できることに想到し、本発明を開発するに至った。   Inventors repeated earnest examination in order to solve the said subject. As a result, the grain-oriented electrical steel sheet after finish annealing has a glassy film made of forsterite formed on the steel sheet surface, so the inner cover is removed at a temperature of about 500 to 600 ° C., which is higher than that of a general cold-rolled steel sheet. Since it is taken out from the finish annealing furnace, it has been conceived that if the chimney effect due to the residual heat is utilized, the coil can be efficiently cooled while being placed on the up end, and the present invention has been developed.

すなわち、本発明は、バッチ式焼鈍炉で仕上焼鈍を施した後、インナーカバーを外し、炉外に取り出した後の、鋼板表面にフォルステライト被膜が形成された方向性電磁鋼板用の素材鋼板コイルの冷却方法であって、上記炉外に取り出された300℃以上のコイルを、中央に開口部を有し、床面から離間して敷設されたスペーサ上にアップエンドに載置して冷却することを特徴とする仕上焼鈍後コイルの冷却方法である。
That is, the present invention is a material steel sheet coil for grain-oriented electrical steel sheets in which a forsterite film is formed on the steel sheet surface after finishing the inner annealing in a batch-type annealing furnace, removing the inner cover, and taking it out of the furnace. The coil of 300 ° C. or higher taken out of the furnace is placed on the up end on a spacer having an opening in the center and spaced apart from the floor, and is cooled. It is the cooling method of the coil after finish annealing characterized by this.

本発明の仕上焼鈍後コイルの冷却方法は、上記スペーサの床面との離間距離を50mm以上とすることを特徴とする。   The coil cooling method after finish annealing according to the present invention is characterized in that the distance between the spacer and the floor surface is 50 mm or more.

また、本発明の仕上焼鈍後コイルの冷却方法に用いる上記スペーサは、コイルとの接触部分に空隙部を設けてなることを特徴とする。   Further, the spacer used in the method for cooling a coil after finish annealing according to the present invention is characterized in that a gap is provided in a contact portion with the coil.

また、本発明の仕上焼鈍後コイルの冷却方法に用いる上記スペーサは、コイルとの接触部分に設けた空隙部の空隙率が10%以上であることを特徴とする。   Further, the spacer used in the method for cooling a coil after finish annealing according to the present invention is characterized in that the void ratio of the void portion provided in the contact portion with the coil is 10% or more.

また、本発明の仕上焼鈍後コイルの冷却方法おける上記コイルは、方向性電磁鋼板用の素材鋼板であることを特徴とする。   Moreover, the said coil in the cooling method of the coil after finish annealing of this invention is a raw material steel plate for grain-oriented electrical steel sheets, It is characterized by the above-mentioned.

本発明によれば、特別な処理や設備投資をせずに、仕上焼鈍後のコイルを効率的に冷却することができるので、生産性の向上、製造コストの低減に寄与する。さらに、本発明の冷却方法によれば、冷却中のコイル内径部の圧縮応力が緩和され、かつ、コイル内温度分布が均質化することにより、仕上焼鈍後の形状不良を低減できるという副次的な効果があるので、歩留り向上や製品品質の向上にも寄与することができる。   According to the present invention, the coil after finish annealing can be efficiently cooled without any special treatment or capital investment, which contributes to improvement of productivity and reduction of manufacturing cost. Furthermore, according to the cooling method of the present invention, the compressive stress in the inner diameter portion of the coil during cooling is relaxed, and the temperature distribution in the coil is homogenized, thereby reducing the shape defect after finish annealing. As a result, it can contribute to yield improvement and product quality improvement.

本発明のコイルの冷却方法を模式的に説明する図である。It is a figure which illustrates typically the cooling method of the coil of this invention. スペーサと床面との離間距離が冷却に及ぼす効果を示したグラフである。It is the graph which showed the effect which the separation distance of a spacer and a floor surface has on cooling. 本発明に用いるスペーサを模式的に説明する図である。It is a figure which illustrates the spacer used for this invention typically. 本発明に用いる他のスペーサ例を模式的に説明する図である。It is a figure which illustrates typically the example of another spacer used for this invention.

前述したように、バッチ式焼鈍炉を用いた方向性電磁鋼板の仕上焼鈍においては、コイルの軸芯が垂直方向(アップエンド)となるよう炉床(ベース)上に載置し、その上にインナーカバーを被せ、さらに、上記インナーカバーの上に炉体を被せて加熱している。また、冷却時には、上記炉体を取り外して、インナーカバーを被せたままで所定の温度まで冷却した後、インナーカバーを取り外して、炉外に取り出し、コイルヤード等にアップエンドにして載置し、100〜200℃程度の温度まで冷却している。   As described above, in finish annealing of grain-oriented electrical steel sheets using a batch annealing furnace, the coil core is placed on the hearth (base) so that it is in the vertical direction (up-end), and on that An inner cover is put on, and a furnace body is put on the inner cover and heated. Further, at the time of cooling, the furnace body is removed, and after cooling to a predetermined temperature while covering the inner cover, the inner cover is removed, taken out of the furnace, placed on the coil yard or the like as an up-end, and 100 It is cooled to a temperature of about ~ 200 ° C.

なお、上記のインナーカバーの取り外しは、方向性電磁鋼板の場合、鋼板表面にフォルステライト被膜が形成されているため、一般冷延鋼板よりも高温の500〜600℃の温度で行われている。しかし、上記仕上焼鈍後のコイルを、コイルヤード等に載置して100〜200℃程度の温度まで冷却するには、20〜50hrという長時間を要しており、生産性を阻害する要因の一つとなっている。   In the case of a grain-oriented electrical steel sheet, the inner cover is removed at a temperature of 500 to 600 ° C. higher than that of a general cold-rolled steel sheet because a forsterite film is formed on the surface of the steel sheet. However, it takes a long time of 20 to 50 hours to place the coil after finish annealing on a coil yard or the like and cool it to a temperature of about 100 to 200 ° C., which is a factor that hinders productivity. It has become one.

そこで、本発明は、図1に示したように、床面との間に隙間を設けたコイル置台を設けて、その上に仕上焼鈍後のコイルをアップエンドにして載置することによって、上記コイルが有する高温の残熱により、コイル内径部に空気の流れ(上昇気流)を起こさせて、いわゆる「煙突効果(ドラフト力)」によって、コイルの冷却を促進する。   Therefore, as shown in FIG. 1, the present invention provides a coil mounting table with a gap between the floor surface and a coil after finishing annealing on the coil mounting table. The high-temperature residual heat of the coil causes an air flow (upward airflow) in the inner diameter portion of the coil and promotes cooling of the coil by a so-called “chimney effect (draft force)”.

したがって、上記煙突効果を活用するためには、焼鈍炉から取りだしたコイルの温度は高温であることが望ましく、本発明では、コイル温度(焼鈍炉のベースと接するコイル側面の温度)を300℃以上とする。好ましくは350℃以上である。ただし、300℃以下でも上記煙突効果による冷却促進効果が得られる。なお、コイル温度の上限は、特に制限しないが、大気に曝されることによって磁気特性や品質に悪影響を及ぼさないためには650℃以下とするのが好ましい。   Therefore, in order to utilize the above-described chimney effect, it is desirable that the temperature of the coil taken out from the annealing furnace is high. In the present invention, the coil temperature (the temperature of the coil side surface in contact with the base of the annealing furnace) is 300 ° C. or higher. And Preferably it is 350 degreeC or more. However, the cooling promotion effect by the chimney effect can be obtained even at 300 ° C. or lower. The upper limit of the coil temperature is not particularly limited, but is preferably 650 ° C. or lower so as not to adversely affect the magnetic properties and quality when exposed to the atmosphere.

ここで、図1に示したコイル置台は、H形鋼3を、フランジ部が垂直になるようにして床面2の上に放射状に配置し、その上に、アップエンドにしたコイル1を載せるための、中央に開口部5を有する円板状のスペーサ4を敷設し、上記開口部5を、前述した上昇気流が流れるようにしたものである。なお、この図1のコイル置台は、1つの例であり、アップエンドに載置したコイルと床面との間に空気が流れる隙間を設けられるものであれば、他の形態のコイル置台であってよい。   Here, in the coil mount shown in FIG. 1, the H-shaped steel 3 is radially arranged on the floor surface 2 with the flange portion being vertical, and the coil 1 which is made up-end is placed thereon. For this purpose, a disc-like spacer 4 having an opening 5 at the center is laid, and the above-described ascending airflow flows through the opening 5. Note that the coil mount of FIG. 1 is one example, and any other coil mount can be used as long as a gap through which air flows can be provided between the coil mounted on the up-end and the floor surface. It's okay.

ここで、上記コイル置台のスペーサと床面との間の離間距離、即ち、空気が流れる隙間は50mm以上とするのが好ましい。図2は、上記隙間の大きさが、熱伝達係数比に及ぼす影響を、隙間がない場合を基準(1.00)として比較して示したものである。ここで、上記熱伝達係数は、コイル置台のスペーサと床面との間の離間距離を0mmから300mmまで変化させたときに、コイルが400℃から150℃まで冷却するときの温度変化を実測し、その結果を下記の式;
T(t)=T+(T+T(t))exp(−αAt/CM)
ここで、T:大気の温度(K)
:コイル初期温度(K)
T(t):コイル温度(K)
A,A´:コイル表面積
α:熱伝達係数(W/m・K)
:比熱(J/kg・K)
M:質量(kg)
で表したときのαの値をいう。なお、上記式中のAは、離間距離が0mmのときのコイル表面積(コイル上面の面積と外周面の面積の和)であり、離間距離が0mm超えのときは、上記Aに代えて、上記表面積Aにさらに内周面の面積を加えた面積A´を用いる。
図2から、コイル置台のスペーサと床面との間に50mm以上の隙間を設けることで冷却能を1.3倍以上に高めることができることがわかる。ただし、200mmを超えて高くしても、上記効果は飽和するので、200mm以上であれば十分である。
Here, the separation distance between the spacer of the coil mount and the floor surface, that is, the gap through which air flows is preferably 50 mm or more. FIG. 2 shows the effect of the size of the gap on the heat transfer coefficient ratio as a reference (1.00) when there is no gap. Here, the heat transfer coefficient is measured by measuring the temperature change when the coil is cooled from 400 ° C. to 150 ° C. when the separation distance between the spacer of the coil mount and the floor surface is changed from 0 mm to 300 mm. And the result of the following formula:
T (t) = T a + (T 0 + T (t)) exp (−αAt / C p M)
Here, T a : Air temperature (K)
T 0 : Initial coil temperature (K)
T (t): Coil temperature (K)
A, A ': Coil surface area
α: Heat transfer coefficient (W / m 2 · K)
C p : Specific heat (J / kg · K)
M: Mass (kg)
The value of α when expressed as A in the above formula is the coil surface area (the sum of the area of the coil upper surface and the area of the outer peripheral surface) when the separation distance is 0 mm, and when the separation distance exceeds 0 mm, An area A ′ obtained by adding the area of the inner peripheral surface to the surface area A is used.
From FIG. 2, it can be seen that the cooling capacity can be increased to 1.3 times or more by providing a gap of 50 mm or more between the spacer of the coil mount and the floor surface. However, even if the height exceeds 200 mm, the above effect is saturated, so 200 mm or more is sufficient.

また、上記コイル置台の上に敷設するスペーサは、最大30トン程度のコイルを載置できる大きさと強度を有するとともに、熱伝導性に優れるものであることが好ましく、斯かる観点からは、鋼製または鋳鉄製のものであることが好ましい。例えば、JIS G3101「一般構造用圧延鋼材」に規定された厚鋼板を用いたスペーサであれば、好適に用いることができる。   Further, the spacer laid on the coil mounting base preferably has a size and strength capable of mounting a coil of up to about 30 tons and is excellent in thermal conductivity. Or it is preferable that it is a thing made from cast iron. For example, any spacer using a thick steel plate defined in JIS G3101 “Rolled steel for general structure” can be preferably used.

また、本発明の上記スペーサ4は、図3に示したように、その中央部に、コイル内径部を流れる上昇気流が通る開口部5が形成されていることが必要である。上記開口部の形状と大きさは、冷却媒体である空気がスムーズにかつ均一に流れることができれば特に制限はないが、製造のし易さやその後のメンテナンス上からは、形状は円形とし、その大きさ(内径)は、コイル内径の80%以上コイル内径以下とするのが好ましい。80%未満では、空気の流れが不十分となり、一方、コイル内径より大きくなると、コイル内径部が冷却時の収縮により開口部内に垂下してしまうおそれがあるからである。   Further, as shown in FIG. 3, the spacer 4 of the present invention needs to have an opening 5 through which a rising air current flowing through the inner diameter of the coil passes. The shape and size of the opening are not particularly limited as long as the cooling medium air can flow smoothly and uniformly, but the shape is circular for ease of manufacture and subsequent maintenance. The thickness (inner diameter) is preferably 80% or more of the inner diameter of the coil and not more than the inner diameter of the coil. If it is less than 80%, the air flow becomes insufficient. On the other hand, if it is larger than the inner diameter of the coil, the inner diameter of the coil may hang down into the opening due to contraction during cooling.

また上記スペーサは、コイルからの大気への熱放散を高めるため、コイル側面と接触する部分にも空隙部を設けることが好ましく、例えば、図4(a)のように、スリット状の溝6を放射状に形成したものでも、また、図4(b)のように、円形の空隙部7を分散させて形成したものでもよく、その空隙部の形状や分布には特に制限はない。ただし、上記熱放散を高める効果を発現させるためには、上記空隙部の面積率(空隙率)は10%以上とするのが好ましい。なお、上限については、スペーサの強度が確保できればよく、特に制限はしない。   Further, in order to enhance the heat dissipation from the coil to the atmosphere, the spacer is preferably provided with a gap in the portion that contacts the side surface of the coil. For example, as shown in FIG. It may be formed radially or may be formed by dispersing circular gaps 7 as shown in FIG. 4B, and the shape and distribution of the gaps are not particularly limited. However, in order to express the effect of increasing the heat dissipation, the area ratio (void ratio) of the gap is preferably 10% or more. The upper limit is not particularly limited as long as the strength of the spacer can be secured.

なお、上記のコイル置台を用いて仕上焼鈍後のコイルを冷却した場合には、冷却時間を大幅に短縮する冷却効率の向上効果に加えてさらに、仕上焼鈍後の鋼板の形状を改善し、形状不良率を約1/3以下に低減するという効果が得られる。このような効果が得られる機構については、まだ十分に明らかとなっていないが、コイル置台で冷却する場合には、コイル内周側からの冷却が促進されるため、コイル内径部の残留応力が緩和されたり、冷却中のコイル内の温度分布が均質化されたりするためではないかと考えている。   In addition, when the coil after finish annealing is cooled using the above coil stand, in addition to the improvement effect of the cooling efficiency that significantly shortens the cooling time, the shape of the steel plate after finish annealing is further improved, The effect of reducing the defect rate to about 1/3 or less is obtained. The mechanism that can achieve such an effect has not yet been fully clarified. However, when cooling with a coil mount, cooling from the inner circumference side of the coil is promoted, so the residual stress in the inner diameter part of the coil is reduced. It is thought that this is because the temperature distribution in the coil during cooling is made uniform or it is made uniform.

方向性電磁鋼板用の素材鋼板を内径508mmのコイルに巻き取り、バッチ式の焼鈍炉を用いて、二次再結晶焼鈍した後、さらに1200℃または1150℃の温度で純化焼鈍し、その後、冷却する仕上焼鈍を施した。上記仕上焼鈍の二次再結晶焼鈍および純化焼鈍は、コイルを焼鈍炉のベース上にアップエンドに載置し、インナーカバーを被せ、さらにその上に炉体を被せて加熱することにより行った。一方、冷却は、炉体を取り外して放冷して、焼鈍炉のベースと接するコイル側面温度が550℃または580℃の温度になるまで冷却した後、インナーカバーを取り外して炉外に取り出した。なお、インナーカバー内の雰囲気は、加熱時および冷却時はNガス、二次再結晶焼鈍および純化焼鈍はHガス雰囲気とした。 A raw steel plate for a grain-oriented electrical steel sheet is wound around a coil having an inner diameter of 508 mm, subjected to secondary recrystallization annealing using a batch-type annealing furnace, and further purified and annealed at a temperature of 1200 ° C. or 1150 ° C., and then cooled. Finish annealing was performed. The secondary recrystallization annealing and the purification annealing of the finish annealing were performed by placing the coil on the up end on the base of the annealing furnace, covering the inner cover, and further covering the furnace body and heating it. On the other hand, cooling was performed by removing the furnace body and allowing to cool, and cooling until the coil side surface temperature in contact with the base of the annealing furnace reached a temperature of 550 ° C. or 580 ° C., and then removing the inner cover and taking it out of the furnace. The atmosphere in the inner cover was N 2 gas during heating and cooling, and H 2 gas atmosphere during secondary recrystallization annealing and purification annealing.

上記炉外に取り出したコイルは、下記A〜Dの4条件で冷却し、コイル温度が200℃以下に低下するまでの冷却時間を、各条件について10コイルずつ測定した。なお、コイル温度の測定は、図1に示したように、アップエンドに置いたコイルの上側側面の巻厚中央部で行った。
・条件A:フランジ高さが200mmのH形鋼を、フランジ部が垂直になるようにして放射状に配置し、その上に、図3(a)に示したように、中央に450mmφの開口を有する円板状の鋼製スペーサ(材質:SS400、厚さ:25mm)を敷設したコイル置台を設け、前述した炉外に取り出した550℃のコイルを、図1に示したように、上記鋼製スペーサの上にアップエンドに載置して冷却。
・条件B:フフランジ高さが250mmのH形鋼を、フランジ部が垂直になるようにして放射状に配置し、その上に、図3(b)に示したように、中央に430mmφの開口を有し、かつ、放射状に多数のスリットを形成した(空隙率15%)円板状の鋼製スペーサ(材質:SS400、厚さ:20mm)を敷設したコイル置台を設け、前述した炉外に取り出した580℃のコイルを、図1に示したように、上記鋼製スペーサの上にアップエンドに載置して冷却。
・条件C:前述した550℃まで冷却後、炉外に取りだしたコイルを、厚鋼板(厚さ:20mm)を敷設したコイルヤードの床面上にアップエンドに載置して冷却。
・条件D:前述した580℃まで冷却後、炉外に取りだしたコイルを、厚鋼板(厚さ:20mm)を敷設したコイルヤードの床面上にアップエンドに載置して冷却。
The coil taken out of the furnace was cooled under the following four conditions A to D, and the cooling time until the coil temperature decreased to 200 ° C. or lower was measured for each coil by 10 coils. The coil temperature was measured at the center of the winding thickness on the upper side surface of the coil placed at the up end as shown in FIG.
Condition A: H-shaped steel with a flange height of 200 mm is arranged radially with the flange portion being vertical, and an opening with a diameter of 450 mmφ is formed on the center as shown in FIG. As shown in FIG. 1, the above-described coil of 550 ° C., which is provided with a coil mounting base provided with a disk-shaped steel spacer (material: SS400, thickness: 25 mm) and taken out of the furnace, is made of the above steel. Place on the up end on the spacer to cool.
Condition B: H-shaped steel with a flange height of 250 mm is arranged radially with the flange portion being vertical, and an opening of 430 mmφ is formed on the center as shown in FIG. And a coil pedestal provided with a disk-shaped steel spacer (material: SS400, thickness: 20 mm) in which a large number of slits are formed radially (15% porosity), and is taken out of the furnace described above As shown in FIG. 1, the 580 ° C. coil was placed on the steel spacer on the up end and cooled.
Condition C: After cooling to 550 ° C., the coil taken out of the furnace was placed on the floor of a coil yard where a thick steel plate (thickness: 20 mm) was laid and cooled.
Condition D: After cooling to 580 ° C. as described above, the coil taken out of the furnace was placed on the floor of a coil yard where a thick steel plate (thickness: 20 mm) was laid and cooled.

上記のようにして200℃以下まで冷却したコイルは、その後、平坦化焼鈍を施し、その際、コイル内に発生した形状不良部の長さを測定し、形状不良の発生率を求めた。   The coil cooled to 200 ° C. or less as described above was then subjected to flattening annealing, and the length of the defective shape portion generated in the coil was measured at that time to determine the occurrence rate of the defective shape.

上記測定の結果を、冷却条件および10時間冷却後のコイル温度、200℃以下までの冷却時間と併せて、表1に示した。表1から、コイル置台上で冷却したコイルについては、コイル置台無しに比べて冷却時間が大幅に短縮され、さらに、コイルの形状不良の発生率も約1/3以下に低減していることがわかる。特に、上記効果はスリットを形成したスペーサを用いた場合に大きい。   The results of the above measurements are shown in Table 1 together with the cooling conditions, the coil temperature after cooling for 10 hours, and the cooling time to 200 ° C. or lower. From Table 1, it can be seen that the cooling time for the coil cooled on the coil mount is significantly shortened compared to the case without the coil mount, and the rate of occurrence of coil shape defects is reduced to about 1/3 or less. Recognize. In particular, the above effect is significant when a spacer having a slit is used.

Figure 0006024922
Figure 0006024922

本発明の技術は、方向性電磁鋼板の仕上焼鈍後コイルの冷却方法に限定されるものではなく、一般冷延鋼板等、その他の鋼板や金属板の焼鈍後コイルの冷却にも適用することができる。   The technology of the present invention is not limited to the method of cooling a coil after finish annealing of grain-oriented electrical steel sheets, but can be applied to cooling of coils after annealing of other steel sheets and metal plates such as general cold-rolled steel sheets. it can.

1:コイル
2:床面
3:H形鋼
4:スペーサ
5:開口部
6:スリット状空隙部
7:円形状空隙部
1: Coil 2: Floor surface 3: H-shaped steel 4: Spacer 5: Opening 6: Slit-shaped gap 7: Circular gap

Claims (5)

バッチ式焼鈍炉で仕上焼鈍を施した後、インナーカバーを外し、炉外に取り出した後の、鋼板表面にフォルステライト被膜が形成された方向性電磁鋼板用の素材鋼板コイルの冷却方法であって、
上記炉外に取り出された300℃以上のコイルを、中央に開口部を有し、床面から離間して敷設されたスペーサ上にアップエンドに載置して冷却することを特徴とする仕上焼鈍後コイルの冷却方法。
This is a method of cooling a steel plate coil for grain-oriented electrical steel sheets with a forsterite film formed on the steel sheet surface after finishing the inner annealing in a batch-type annealing furnace and then removing the inner cover and taking it out of the furnace. ,
Finish annealing, characterized in that a coil of 300 ° C. or more taken out of the furnace is cooled by being placed on the up end on a spacer that has an opening in the center and is spaced apart from the floor surface. Cooling method for the rear coil.
上記スペーサの床面との離間距離を50mm以上とすることを特徴とする請求項1に記載の仕上焼鈍後コイルの冷却方法。 The method for cooling a coil after finish annealing according to claim 1, wherein the distance between the spacer and the floor surface is 50 mm or more. 上記スペーサは、コイルとの接触部分に空隙部を設けてなることを特徴とする請求項1または2に記載の仕上焼鈍後コイルの冷却方法。 The method for cooling a coil after finish annealing according to claim 1 or 2, wherein the spacer is provided with a gap in a contact portion with the coil. 上記スペーサは、コイルとの接触部分に設けた空隙部の空隙率が10%以上であることを特徴とする請求項1〜3に記載の仕上焼鈍後コイルの冷却方法。 The method for cooling a coil after finish annealing according to claim 1, wherein the spacer has a void ratio of 10% or more in a gap provided in a contact portion with the coil. 上記仕上焼鈍は、方向性電磁鋼板に二次再結晶を起こさせる焼鈍であることを特徴とする請求項1〜のいずれか1項に記載の仕上焼鈍後コイルの冷却方法。
The method for cooling a coil after finish annealing according to any one of claims 1 to 4 , wherein the finish annealing is annealing that causes secondary recrystallization in the grain-oriented electrical steel sheet.
JP2013262081A 2013-12-19 2013-12-19 Coil cooling method after finish annealing Active JP6024922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262081A JP6024922B2 (en) 2013-12-19 2013-12-19 Coil cooling method after finish annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262081A JP6024922B2 (en) 2013-12-19 2013-12-19 Coil cooling method after finish annealing

Publications (2)

Publication Number Publication Date
JP2015117415A JP2015117415A (en) 2015-06-25
JP6024922B2 true JP6024922B2 (en) 2016-11-16

Family

ID=53530427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262081A Active JP6024922B2 (en) 2013-12-19 2013-12-19 Coil cooling method after finish annealing

Country Status (1)

Country Link
JP (1) JP6024922B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489089B2 (en) * 2016-09-12 2019-03-27 Jfeスチール株式会社 Method for producing hot rolled coil and non-oriented electrical steel sheet
CN113564334B (en) * 2021-07-01 2023-06-30 首钢智新迁安电磁材料有限公司 Steel coil cooling device
CN115927806B (en) * 2022-12-15 2023-10-10 无锡普天铁心股份有限公司 Production process for eliminating horseshoe marks of oriented silicon steel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131915A (en) * 1977-04-22 1978-11-17 Nippon Steel Corp Method of fabricating cold rolled steel plate
JPS5462109A (en) * 1977-10-26 1979-05-18 Nippon Steel Corp Recovering method for heat of annealing coil
JPS5644713A (en) * 1979-09-20 1981-04-24 Kawasaki Steel Corp Annealing furnace
JPS6037864B2 (en) * 1980-08-22 1985-08-28 新日本製鐵株式会社 How to operate the base fan of a box-shaped coil annealing furnace
JPS59173221A (en) * 1983-03-22 1984-10-01 Kawasaki Steel Corp Finish high temperature annealing of single oriented silicon steel sheet
JPS59178359U (en) * 1983-05-13 1984-11-29 川崎製鉄株式会社 Coil spacer for cold rolled coil annealing
JPS60113366U (en) * 1983-12-29 1985-07-31 新日本製鐵株式会社 Coil support stand for finish annealing grain-oriented electrical steel sheets
EP0307474A4 (en) * 1987-03-27 1990-06-05 Mo I Stali I Splavov Method and cover furnace for heat treatment of metal sheet in rolls.
JP2719302B2 (en) * 1993-08-31 1998-02-25 川崎製鉄株式会社 Finish annealing equipment for oriented silicon steel

Also Published As

Publication number Publication date
JP2015117415A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
KR101701191B1 (en) Rapid heating apparatus of continuous annealing line
JP5994981B2 (en) Method for producing grain-oriented electrical steel sheet
JP6024922B2 (en) Coil cooling method after finish annealing
JP2006257486A (en) Method for annealing grain oriented electrical steel sheet, and inner cover for batch annealing of grain oriented electrical steel sheet
JP6210035B2 (en) Batch annealing method for steel sheet coils
JP6083156B2 (en) Rapid heating apparatus and rapid heating method for continuous annealing equipment
JP5803223B2 (en) Inner case for finish annealing of grain-oriented electrical steel sheet and finish annealing method
KR101480501B1 (en) Apparatus for high temperature annealing of electrical steel steet coil
JPS58120733A (en) Continuous annealing method of electromagnetic steel plate
JP5839177B2 (en) Finishing annealing equipment and finishing annealing method for grain-oriented electrical steel sheets
JP5825486B2 (en) Steel plate coil annealing method and annealing equipment
JP5896097B2 (en) Finishing annealing method and finishing annealing equipment for grain-oriented electrical steel sheet
JP4609149B2 (en) Jig for final finish annealing of grain-oriented electrical steel sheet
JP6041110B2 (en) Method for producing grain-oriented electrical steel sheet with excellent iron loss characteristics
JP2005226104A (en) Apparatus and method for annealing metal strip coil
JP5906816B2 (en) Metal strip coil annealing method and annealing furnace
JP2012041605A (en) Manufacturing method of grain-oriented electromagnetic steel sheet
JP6376360B2 (en) Method for producing grain-oriented electrical steel sheet
KR20100009160A (en) An indirect heating equipment for high temperature annealing
JP2003166018A (en) Method for finish annealing grain-oriented electromagnetic steel sheet
JP5810495B2 (en) Coil annealing apparatus and coil annealing method
JP5533419B2 (en) Dehydrogenation method for continuous cast slabs
JP5724255B2 (en) Coil annealing apparatus and coil annealing method
JP5929581B2 (en) Metal strip coil annealing method and metal strip coil manufacturing method
RU2178005C1 (en) Method of heat treatment of anisotropic electrical steel in bell-type furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160927

R150 Certificate of patent or registration of utility model

Ref document number: 6024922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250