JP6484182B2 - 電解加工装置、電解加工方法および工具電極 - Google Patents

電解加工装置、電解加工方法および工具電極 Download PDF

Info

Publication number
JP6484182B2
JP6484182B2 JP2015562707A JP2015562707A JP6484182B2 JP 6484182 B2 JP6484182 B2 JP 6484182B2 JP 2015562707 A JP2015562707 A JP 2015562707A JP 2015562707 A JP2015562707 A JP 2015562707A JP 6484182 B2 JP6484182 B2 JP 6484182B2
Authority
JP
Japan
Prior art keywords
tool electrode
hole
insertion direction
changes along
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015562707A
Other languages
English (en)
Other versions
JPWO2015122103A1 (ja
Inventor
恒 夏
恒 夏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Publication of JPWO2015122103A1 publication Critical patent/JPWO2015122103A1/ja
Application granted granted Critical
Publication of JP6484182B2 publication Critical patent/JP6484182B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/04Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

本発明は、電解加工装置、電解加工方法および工具電極に関する。
予め穿孔した下孔に、加工したい異形孔の形状に合わせて形成した電極を挿通して異形孔を形成する電解加工方法が知られている(例えば、特許文献1)。
[先行技術文献]
[特許文献]
[特許文献1]特開平6−190640号公報
ストレート孔でない異形孔を形成したい場合には、特殊形状の電極を異形孔の形状ごとに用意する必要があった。特に、径が小さな異形孔を形成することが非常に困難であった。また、電解加工に限らず、孔の奥側に向かって断面積が大きくなる、いわゆる逆テーパ形状の異形孔を形成することが難しかった。
本発明の第1の態様における電解加工装置は、工作物に設けられた孔に挿通する工具電極と、孔の内壁と工具電極の表面との間に流す電流を制御する制御部とを備え、表面における単位面積あたりの電気抵抗が挿通方向に沿って連続的に変化するように表面加工が施された工具電極により、孔の内壁面に流れる電流の電流密度を工具電極の挿通方向に沿って変化させる。
本発明の第2の態様における電解加工方法は、工作物に孔を形成する孔形成工程と、孔に工具電極を挿通する挿通工程と、孔の内壁と工具電極の表面との間に流れる電流の電流密度が工具電極の挿通方向に沿って変化するように通電する通電工程とを有する。
本発明の第3の態様における電解加工装置に用いる工具電極は、表面における単位面積あたりの電気抵抗が挿通方向に沿って連続的に変化するように表面加工が施されている。
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
加工対象物であるノズル本体と加工前後の様子を示す模式図である。 本実実施例に係る電解加工装置の全体構成を説明する模式図である。 テーパ加工中における工具電極近傍の部分拡大図である。 第1実施例に係る工具電極の外観模式図である。 第2実施例に係る工具電極の外観模式図である。 第3実施例に係る工具電極の外観模式図である。 第4実施例に係る工具電極の断面模式図である。 第1実施例に係る工具電極を用いた場合のシミュレーションデータである。 第5実施例に係る矩形孔を加工する例を説明する模式図である。 工具電極の電気抵抗の変化を説明する模式図である。 第6実施例に係る工具電極の外観模式図である。 第7実施例に係るワーク断面を説明する模式図である。 第8実施例に係る工具電極とワークを示す模式図である。 第9実施例に係る工具電極の外観模式図である。 第9実施例に係る工具電極を用いた場合の孔形状を説明する図である。 第10実施例に係る工具電極の外観模式図である。 第10実施例に係る工具電極を用いた場合の孔形状を説明する図である。 第11実施例に係るワーク断面を説明する模式図である。 第12実施例に係る工具電極の作成方法を説明する模式図である。 孔の目標形状の断面プロファイルを説明する図である。 第12実施例に係る工具電極における導電部の螺旋ピッチの設定を説明する図である。 第12実施例に係る工具電極を用いた場合のシミュレーションデータである。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、加工対象物であるノズル本体500と、その加工前後の様子を示す模式図である。本実施形態における第1実施例では、ノズル本体500を電解加工による加工対象物の例として説明する。図1(a)は、ノズル本体500の斜視図である。ノズル本体500は、ディーゼルエンジンのインジェクターを構成する部品であり、燃料を噴出させる噴孔511を複数有する。ノズル本体500は、ロート状の先端部510と円筒状のシリンダー部520とが一体的に形成されて成る。その内部は、燃料が充填される空洞空間になっており、先端部510に形成された噴孔511により外部と連通する。インジェクターの組み立て時には、この空洞空間に弁針が配置される。本実施例におけるノズル本体500は、例えばステンレス鋼、ステライトを素材とする。
ディーゼルエンジンに用いられるインジェクターの噴孔の直径は、従来120μm程度であったが、NOxおよびPM等の排出量を大幅に低減するために、100μm以下にすると良いことがわかってきた。しかも、超高圧により円滑な燃料の噴出を行うために、噴孔は、燃料の入口直径よりも出口直径の方が小さい逆テーパ孔であることが好ましい。
しかし、工作物であるワークに対して、例えばドリルの進入側の径が大きな順テーパ孔であれば加工としては比較的容易であるものの、逆テーパ孔をドリルで形成することは難しい。ましてや、100μmのオーダーでドリル加工を行うことは事実上不可能である。特に、ノズル本体500の空洞空間のように、内部側から加工を施すことが難しい形状であると、レーザ加工等の他の加工方法によっても逆テーパ形状を形成することができなかった。
本実施例においては、図1(a)の噴孔511近傍の加工前の拡大断面図である図1(b)のような下孔516を、電解加工により、同じく加工後の拡大図である図1(c)のような完成孔517に加工する。図1(b)に示すように、下孔516は、先端部510の肉厚である噴孔長分の長さを有するストレート孔である。下孔516は、例えば放電加工、レーザ加工により予め形成される。図1(c)に示すように、完成孔517は、ノズル本体500の空洞空間側である噴孔入口513の入口直径が、ノズル本体500の外側空間側である噴孔出口512の出口直径よりも大きい逆テーパ孔である。なお、本実施例においては、噴孔出口512から噴孔入口513へ向かう奥行きに比例して連続的に直径が大きくなる逆テーパ孔を例に説明するが、逆テーパ形状はこれに限らない。例えば、噴孔出口512から噴孔入口513へ向かう奥行きの二乗に比例して直径が大きくなる形状であっても良いし、連続的ではなく段階的に直径が大きくなる形状であっても良い。
図1(b)の加工前の状態から図1(c)の加工後の状態へ加工する加工装置と加工手順について説明する。図2は、本実実施例に係る電解加工装置100の全体構成を説明する模式図である。電解加工装置100は、基台120と、基台120に支えられ、重力方向であるz軸に直交するxy方向に移動するステージ140と、ステージ140の移動を妨げない位置に配置され、基台120からz軸方向へ伸びる支柱130を備える。支柱130は、z軸方向へ移動できるようにヘッド110を支持し、ヘッド110は、工具電極210をz軸周りに回転可能に支持する。ステージ140の水平移動、ヘッド110の垂直移動および工具電極210の回転移動は、それぞれに設けられたアクチュエータによって行われる。これらアクチュエータの駆動は、制御ユニット190によって、駆動ユニット180を介して実行される。
ステージ140上には、電解液槽150が載置される。電解液槽150は、電解液310を満たしている。本実施例においては、電解液310としてNaNOの10重量%溶液を用いる。電解液310は、濃度が一定に保たれるように外部の貯蔵槽および排水槽との間で循環させても良い。
電解液槽150は、対象とする工作物であるノズル本体500が電解液310に沈む程度の大きさを有する。また、ノズル本体500を一定の姿勢に保って固定する固定具160を備える。具体的には、固定具160は、例えばチャック161によりシリンダー部520を挟み込み加工対象となる下孔516がz軸方向に沿う姿勢で、ノズル本体500を電解液310の中で固定する。駆動ユニット180は、下孔516が工具電極210の直下に位置するようにステージ140を移動する。
工具電極210は、詳しくは後述するが、下孔516に挿通される円柱形状を成す。工具電極210は、交換可能にヘッド110に装着される。ヘッド110は、電源ユニット170とグランド線172によって接続され、工具電極210は、ヘッド110を介して接地電位に保たれる。一方、固定具160は、電源ユニット170と電力線171によって接続され、ノズル本体500は、固定具160を介して正電位の印加制御を受ける。制御ユニット190は、電源ユニット170を介して、電力供給のオン/オフ、オン時の電位、パルス制御を行う場合にはデューティ比等を制御する。
制御ユニット190は、駆動ユニット180を介してヘッド110をz軸方向に押し下げ、工具電極210を矢印方向に移動させて下孔516に挿通させる。そして、電源ユニット170を介して電力供給をオンすることにより、電解加工によるテーパ加工を開始させる。
図3は、テーパ加工中における工具電極210近傍の部分拡大図である。制御ユニット190は、電力供給を開始させると共に、工具電極210のz軸周りの回転を開始させる。具体的な構造は後述するが、工具電極210は、下孔516への挿通方向に沿ってその単位面積当たりの電気抵抗が変化するように表面加工が施されている。特に、逆テーパ孔を形成すべく、先端へ向かうほど電気抵抗が小さくなるように加工されている。ここで、単位面積当たりの電気抵抗とは、工具電極表面の単位面積において単位時間当たりに授受できる電荷量の逆数に比例する値である。すなわち、当該表面領域における電解反応のおこりにくさを表す。本実施形態における各実施例の工具電極では、導電領域の面積と絶縁領域の面積あるいは絶縁性素材の厚さを調整し、見かけ上の単位面積あたりの電気抵抗を調整する。
このような表面加工により、噴孔入口513近傍では、工具電極210とノズル本体500との間で比較的大きな電流が流れて電解反応が速くなる。一方、噴孔出口512近傍では、工具電極210とノズル本体500との間で比較的小さな電流が流れて電解反応が遅くなる。つまり、単位面積あたりの電流量である電流密度が、噴孔入口513近傍では大きく、噴孔出口512近傍では小さい。したがって、工具電極210の挿通方向に沿って逆テーパ孔が形成される。すなわち、下孔516は、工具電極210の挿通方向に直交する断面の断面積が、工具電極210の先端へ向かうほど大きくなるように拡張される。
制御ユニット190は、点線で示す完成孔517の形状となるまで、ノズル本体500と工具電極210との間の通電を制御する。そして、ヘッド110を引き上げて工具電極210を電解液310から退避させて加工を終了する。
次に、工具電極210の具体的な構造について説明する。図4は、第1実施例に係る工具電極210の外観模式図である。工具電極210は、基材として例えばタングステンが用いられる。タングステン以外にも超硬合金等を採用し得る。導電部211は、基材としてのタングステンが露出した部分であり、電解液310との間でイオン交換が許容される領域である。絶縁部212は、基材としてのタングステンを絶縁材が覆う部分であり、電解液310との間のイオン交換が遮断される領域である。
導電部211および絶縁部212は、工具電極210の表面を軸周りに螺旋状に形成されている。より具体的には、ヘッド110に装着される側を基端側とし、反対側を先端側とすると、導電部211の線幅Wが一定で、軸方向における先端側のピッチPよりも基端側のピッチPの方が大きくなっている。このような螺旋構造を採用することにより、工具電極210の表面における単位面積あたりの電気抵抗を、先端側で小さく、基端側で大きくしている。
表面に導電部211および絶縁部212を形成する表面加工は、さまざまな手法を採用し得る。例えば、基材としてのタングステン柱のうち加工に利用する軸部表面を加熱して酸化タングステン膜を形成する。酸化タングステン膜は、絶縁膜として機能する。そして、微細放電加工機の電極を周方向から近接させつつ、タングステン柱を軸周りに一定速度で回転しながら軸方向には徐々に速度を速めて送ると、螺旋状に酸化タングステン膜が除去されて基材のタングステンが再び露出し、上述の導電部211が形成される。酸化タングステン膜が残った部分は、絶縁部212となる。酸化タングステン膜の除去は、放電加工によらず、レーザ加工、エッチング加工等の他の加工方法も採用し得る。また、基材を酸化して絶縁膜を形成する場合に限らず、例えば絶縁素材を塗布して形成しても良い。また、絶縁膜を除去して基材を再露出させることにより導電部211を形成する場合に限らず、絶縁部212を直接的に螺旋状に形成することもできる。例えば、上述の送り操作を行いながら、周方向から絶縁塗料をインクジェット方式により吹き付けることにより形成することができる。
工具電極表面における単位面積あたりの電気抵抗が軸方向に沿って変化する構造およびその表面加工方法は、さまざまなバリエーションが存在する。以下にいくつかの実施例を説明する。
まず、導電部211と絶縁部212の割合により軸方向に電気抵抗を変化させるバリエーションについて説明する。図5は、第2実施例に係る工具電極220の外観模式図である。工具電極220は、工具電極210の派生構造である。工具電極210では、導電部211の線幅Wを一定にして螺旋のピッチPを変化させたが、工具電極220では、導電部211の螺旋のピッチPを一定にして線幅Wを変化させている。具体的には、先端側の線幅Wよりも基端側の線幅Wの方を小さくしている。このような螺旋構造を採用しても、工具電極210の表面における単位面積あたりの電気抵抗を、先端側で小さく、基端側で大きくできる。
工具電極220の製造方法も、工具電極210の製造方法とほぼ同様である。例えば微細放電加工に依る場合には、タングステン柱を軸周りに一定速度で回転しながら軸方向にも一定速度で送りつつ、近接させる電極の有効面積を徐々に小さくして導電部211を形成すれば良い。
工具電極210、220は、導電部211を螺旋形状として形成した。導電部211を比較的大きなピッチによる螺旋形状として形成した場合には、工作物側に螺旋パターンが転写される恐れがあるので、テーパ面を滑らかに形成すべく、図3を用いて説明したように、工具電極を回転させる。工具電極を回転させることにより、周方向に対する電解反応のむらを解消する。
工具電極表面の導電部211と絶縁部212のパターンとしての偏りを実質的に無くすことによっても、周方向に対する電解反応のむらを解消できる。図6は、第3実施例に係る工具電極230の外観模式図である。
工具電極230は、導電部211を微細なドットパターンとして有する。具体的には、単位面積あたりのドットの個数を先端側で多くし、基端側で少なくすることにより、工具電極230の表面における単位面積あたりの電気抵抗を、先端側で小さく、基端側で大きくしている。なお、図においては模式的にドットを大きく示しているが、単位面積当たりのドットの個数をドット密度とした場合に、先端側から基端側へ向かってドット密度が連続的に小さくなるようにドットを形成すると良い。導電部211としてのドットは、例えば、基材としてのタングステン柱の表面に酸化タングステン膜を形成した後に、タングステン柱を軸周りに一定速度で回転しながら軸方向には徐々に速度を速めて送りつつ、スポットレーザを間欠的に照射して酸化タングステン膜を除去することにより形成する。もちろん、上述のエッチング加工等の他の加工方法も採用し得る。
また、単位面積あたりの電気抵抗を変化させるという観点においては、ドットの個数を変化させる場合に限らず、ドットの大きさを軸方向に徐々に変化させても良い。具体的には、先端側でドットの大きさを大きくし、基端側で小さくすれば、工具電極230の表面における単位面積あたりの電気抵抗を、先端側で小さく、基端側で大きくできる。加工寸法に対して十分小さなドットを採用すれば、実質的に導電部211と絶縁部212の境界が電解反応のむらを生じさせる原因とはならなくなるので、工具電極230を回転させなくても滑らかなテーパ面を形成することができる。
工具電極210,220,230は、導電部211と絶縁部212の割合により軸方向の電気抵抗を変化させた。すなわち、電解液310との間でイオン交換を許容する領域と遮断する領域の割合で電気抵抗を変化させた。軸方向の電気抵抗を変化させる方法はこれに限らず、電解液310との間でイオン交換を段階的に制限する方法もある。図7は、第4実施例に係る工具電極240の、中心軸を含む断面による断面模式図である。工具電極240では、イオン交換を完全に遮断する絶縁部を表面に形成するのではなく、工作物との間に同じ電位差があってもイオン交換される割合が軸方向に沿って変化するように、絶縁性膜242を導電性の軸部241上に、軸方向に沿って厚さを変化させて形成する。絶縁性膜242は、イオン交換を完全に遮断するのではなく、厚さによってイオン交換量が変化する高抵抗材料の膜である。具体的には、膜厚を先端側で薄くし、基端側で厚くすることにより、工具電極230の表面における単位面積あたりの電気抵抗を、先端側で小さく、基端側で大きくしている。
絶縁性膜242は、例えば、基材としてのタングステン柱のうち加工に利用する軸部表面を加熱する場合に、先端側より基端側へ向かって徐々に加熱温度を上げて形成する。加熱温度が高いほど酸化が進行するので、基端側に向かってより厚い酸化タングステン膜が形成される。また、加熱温度を一定にしても、基端側へ向かうほど加熱時間を長くすれば、同様に基端側に向かってより厚い酸化タングステン膜が形成される。もちろん、基端側へ向かうほど絶縁材を厚く塗布する加工も採用し得る。
なお、絶縁性膜242の厚さを変化させる変化領域243に隣接させて、厚さを一定とする一定領域244を基端側に設けることが好ましい。このように一定領域244を形成することにより、工作物のうち加工対象外(下孔部の壁面以外)の部分との導通を制限することができる。
次に、シミュレーション結果について説明する。図8は、第1実施例に係る工具電極210を用いて行ったシミュレーションのデータである。工作物として直径140μmのストレート孔を設けた1mm厚の鉄板を用い、電解液としてNaNOの10重量%溶液を用い、Ti基材の直径100μmの工具電極を20rpmで回転しつつ工作物との間に5Vの電位差を与える条件によりシミュレートした。横軸は、拡張した径の大きさを表し(単位はmm)、縦軸は、下孔の奥行を表す(単位はmmで、0が工具電極210の先端側に対応する)。
また、実線が加工前の形状を表し、細かい点線が20秒間加工を継続した場合の形状を表し、粗い点線が40秒間加工を継続した場合の形状を表す。加工が進むにつれ、逆テーパが形成され、径が拡張する様子がわかる。
以上の各実施例においては、円柱形状の工具電極を用いて、工具電極の挿通方向に直交する断面形状が円である円孔を形成する場合を説明した。しかし、電解加工における一つの利点は、円柱以外にもさまざまな形状の工具電極を用いることができ、当該形状を工作物に転写できることである。そこで、円孔加工以外の例として角柱電極を用いて矩形孔を加工する例を以下に説明する。
図9は、第5実施例に係る矩形孔を加工する例を説明する模式図である。図9(a)に示すように、工作物としてのワーク600には、予め矩形の下孔616が設けられている。下孔616は、貫通方向に直交する断面が矩形である。
角柱形状の工具電極250は、電解加工装置100のヘッド110に装着され、図2を用いて説明した例と同様に位置決めされて、下孔616に挿通される。そして、電解加工が実行されると、下孔616は、図9(b)に示すように、工具電極250の挿通側の開口である第1口612が反対側の開口である第2口613よりも狭い、逆テーパを有する完成孔617に仕上げられる。なお、図2の例においては、工具電極210をz軸周りに回転させたが、本実施例においては工具電極250を回転させない。
図10は、工具電極250の電気抵抗の変化を説明する模式図である。工具電極250も、以上の実施例で説明した各工具電極と同様に、表面における単位面積あたりの電気抵抗が先端側で小さく、基端側で大きくなるように表面加工を施している。電気抵抗を変化させる具体的な構造は、以上の実施例で説明した各工具電極のいずれをも採用し得る。
ここで、軸方向に直交する周方向における単位面積当たりの電気抵抗が一様であると、図10(a)に示すように、孔の軸方向に直交する断面形状は、シャープな矩形にはならない場合がある。すなわち、矩形の四隅である角部621は工具電極250との距離が大きく、一方で四辺である辺部622は工具電極250との距離が小さいので、角部621よりも辺部622の方が相対的に加工の進行が速い。すると、断面形状が次第に丸みを帯びてくることになる。
そこで、本実施例においては、軸方向のみならず、周方向においても単位面積当たりの電気抵抗を変化させる。具体的には、角部621側が辺部622側よりも加工が進みやすいように、図10(b)の断面図で示すように、工具電極250の四隅側の電気抵抗を低くし、辺の中央側の電気抵抗を高くする。このように表面加工された工具電極250によれば、図10(c)に示すように、孔の断面形状は、よりまっすぐな辺部622とより直角な角部621に仕上がる。
これまでの各実施例においては、下孔の加工を別の加工機を用いて行うことを前提に説明した。しかし、下孔の加工も電解加工装置100で行っても良い。すなわち、工具電極を用いて下孔を電解加工により形成する。この場合、工具電極の交換作業を省くべく、以下のような工具電極を採用することができる。図11は、第6実施例に係る工具電極260の外観模式図である。
工具電極260は、これまで説明したテーパ加工を行うテーパ加工部261と、下孔加工を行う下孔加工部262と、この間を接続する接続部263とが一続きに構成されている。テーパ加工部261は、以上に説明した各工具電極のいずれとも置換し得る。接続部263の表面は絶縁加工が施されている。
下孔加工部262は、先端部においてワークと対向し、ワーク溶出の進行とともに軸方向に送られることにより、穴加工を実現する。したがって、下孔加工部262の表面は、全体が導電部である。また、下孔加工部262は、下孔加工における消耗を考慮して、テーパ加工部261よりも相対的に軸方向に長く作られている。
下孔加工部262が下孔を完成させると、当該下孔の壁面にテーパ加工部261の表面が対向するように、工具電極260の全体が押し下げられる。そして、連続的に逆テーパ孔の加工が開始される。このとき、表面が絶縁加工された接続部263が存在するので、下孔加工部262が工作物の加工対象でない部分と導通することを制限することができる。
また、電解加工装置100が、電解液310と加工油とを置き換える機能を有し、加工油中の工作物に対してアーク放電を発生させる放電加工装置としての機能も有する構成であれば、工具電極260の下孔加工部262を用いて放電加工により下孔を形成することもできる。また、工具電極260の下孔加工部262がドリルとして形成されていれば、ヘッド110が工具電極260をz軸周りに回転させて、ドリル加工により下孔を形成することができる。いずれの加工方法を採用し得るかは、加工する孔のサイズ、ワークの材質等による。
図12は、第7実施例に係るワーク断面を説明する模式図である。以上で説明した各実施例においては、工具電極の表面における単位面積当たりの電気抵抗を軸方向に沿って変化させることにより、下孔の内壁と工具電極の表面との間に流す電流の電流密度を工具電極の挿通方向に沿って変化させた。しかし、工具電極の表面を加工する限りではなく、工作物側を加工することにより、当該電流密度を工具電極の挿通方向に沿って変化させても良い。具体的には、単位面積あたりの電気抵抗が工具電極の挿通方向に沿って変化するように、下孔の内壁に絶縁性膜を形成する。
図12は、図1(c)に対応する図である。ノズル本体500の導電部である先端部510に設けられた下孔516の内壁表面は、穿孔直後において導電性を有する。そこへ、ヘッド110に装着された円柱状の加熱工具810をゆっくり挿通する。そして、あらかじめ定められた時間の経過後に引き抜く。加熱工具は、工作物表面を酸化させる程度に熱せられている。すると、下孔516のうち加熱工具810の進入側ほど加熱工具810と対向している時間が長くなるので、進入側ほど厚い絶縁性膜518が下孔516の内壁に形成される。
このように下処理された下孔516に対して電解加工を施すと、表面が一様に導電性を有する従来の工具電極を用いても、逆テーパ孔である完成孔517を形成することができる。つまり、本実施例は、図7を用いて説明した第4実施例における工具電極240と下孔516の関係が、絶縁性膜を形成する観点において逆転したものである。なお、下処理として形成するのは絶縁性膜518に限らず、絶縁部と導電部をパターンで区分する例でも構わない。例えば、下孔の内壁を部分的にマスクして絶縁塗料を塗布する加工を施すことができる。
なお、以上では電解加工装置100が下孔516の内壁の表面加工を行うものとして説明したが、もちろん他の装置で当該表面加工を行っても良い。また、下孔516の穿孔時に加熱して絶縁性膜518を同時進行で形成しても良い。具体的には、例えばレーザ加工におけるレーザ出力を深さ方向に徐々で変化させて熱量を調整する。
以上の各実施例においては、ヘッド110に一本の工具電極が装着される場合について説明したが、ヘッド110に装着される工具電極は、一本に限らない。図13は、第8実施例に係る工具電極270とワーク700を示す模式図である。例えば、インクジェットプリンタのノズルヘッドのように、噴射孔がマトリックス状に複数配列されている加工対象物があり得る。この場合、一度の電解加工工程で多数の逆テーパ孔を形成できれば、生産性向上に寄与する。
そこで、工具電極270は、ヘッド110に装着されるベース部271が複数の電極部272を支持している。ヘッド110が押し下げられて各電極部272が対応する下孔717にそれぞれ挿通され、通電されて電解加工が一定時間継続される工程は、上記の各実施例と同様である。また、それぞれの電極部272の表面に、下孔717への挿通方向に沿ってその単位面積当たりの電気抵抗が変化するように表面加工が施されている、あるいは第7実施例のように下孔717が予め下処理されている点も同様である。このような工具電極によれば、一度の電解加工工程で多数の逆テーパ孔を形成することができる。
以上各実施例を説明したが、本実施形態に係る加工対象は逆テーパ孔の形成に留まらず、ストレート孔以外のさまざまな孔の形成に適用し得る。例えば、孔の中ほどの直径が両端の入口の直径よりも広い孔または狭い孔を形成することもできる。すなわち、本実施形態の大きな特徴のひとつは、孔の内壁と工具電極の表面との間に流す電流の電流密度を工具電極の挿通方向に沿って変化させることにより、挿通方向に直交する断面の大きさを所望の大きさに調整する点にある。
図14から図17を用いて、逆テーパ以外の複雑な形状の孔を加工する場合の実施例について説明する。特に、孔形状の一例として、上述した孔の中ほどの直径が両端の入口の直径よりも広い孔または狭い孔について説明する。なお、孔の中ほどの直径が両端の入口の直径よりも広い孔を樽型、孔の中ほどの直径が両端の入口の直径よりも狭い孔を鼓型と記して説明する。なお、重複した記載を避けるべく、既に説明した内容については記載を省略する。
まず、図14および図15を用いて、加工する孔形状が樽型である実施例について説明する。図14は、第9実施例に係る工具電極280の外観模式図である。工具電極280は、第1実施例と同様に基材としてタングステンが用いられている。また、工具電極280は、基材表面に螺旋状に形成された導電部211、絶縁部212を有する。
工具電極280は、樽型の孔を形成すべく、下孔516の両端の入り口から孔の中ほどへ向かうほど電気抵抗が小さくなるように加工されている。具体的には、工具電極280の表面において、螺旋状に形成された導電部211の螺旋ピッチは、B領域のピッチPよりも、A領域およびC領域のピッチPの方が大きくなっている。更に詳細には、工具電極280のA領域からC領域に向かう方向において、導電部211の螺旋ピッチは、B領域におけるピッチPを最小ピッチとし、A領域およびC領域におけるピッチPを最大ピッチとするような分布をもつ。このような螺旋構造を採用することにより、工具電極280の表面における単位面積あたりの電気抵抗を、B領域で小さく、A領域およびC領域で大きくしている。
図15は、第9実施例に係る工具電極を用いた場合の孔の形成を説明する図である。図15(a)のように、ヘッド110に装着された工具電極280を、予め穿孔された下孔516へ挿通する。下孔516の長さLとした場合に、工具電極280のB領域がL/2の位置に位置するように配置する。
そして、図15(b)のように、工具電極280を軸周りに回転させながら予め定められた時間通電を行う。工具電極280のB領域近傍、すなわち下孔516の中ほどでは、対向する下孔516の内壁との間で比較的大きな電流が流れて電解反応が速くなる。一方、A領域およびC領域近傍、すなわち下孔516の両端の入り口付近では、工具電極280と対向する下孔516の内壁との間で比較的小さな電流が流れて電解反応が遅くなる。つまり、単位面積あたりの電流量である電流密度が下孔516の中ほどでは大きく、下孔516の両端の入り口近傍では小さい。したがって、工具電極280の挿通方向に沿って樽型の完成孔521が形成される。すなわち、工具電極280の挿通方向に直交する断面の断面積が、下孔516の中ほどへ向かうほど大きくなるように加工される。
次に、図16および図17を用いて、加工する孔形状が鼓型である実施例について説明する。なお、図14および図15における説明と重複する記載は省略する。
図16は、第10実施例に係る工具電極290の外観模式図である。工具電極290は、A領域およびC領域のピッチPよりも、B領域のピッチPの方が大きくなっている。更に詳細には、工具電極290は、A領域からC領域に向かう方向における螺旋ピッチの分布が、B領域におけるピッチPを最大ピッチとし、A領域およびC領域におけるピッチPを最小ピッチとするような分布をもつ。このような螺旋構造を採用することにより、工具電極290の表面における単位面積あたりの電気抵抗を、A領域およびC領域で小さく、B領域で大きくしている。
図17は、第10実施例に係る工具電極を用いた場合の孔形状を説明する図である。図17(a)のように、ヘッド110に装着された工具電極290を、予め穿孔された下孔516へ挿通する。下孔516の長さLとした場合に、工具電極290のB領域がL/2の位置に位置するように配置する。
そして、図17(b)のように、工具電極290を軸周りに回転させながら予め定められた時間通電を行う。工具電極290のB領域近傍、すなわち下孔516の中ほどでは、対向する下孔516の内壁との間で比較的小さな電流が流れて電解反応が遅くなる。一方、A領域およびC領域近傍、すなわち下孔516の両端の入り口付近では、工具電極290と対向する下孔516の内壁との間で比較的大きな電流が流れて電解反応が速くなる。つまり、単位面積あたりの電流量である電流密度が下孔516の中ほどでは小さく、下孔516の両端の入り口近傍では大きい。したがって、工具電極290の挿通方向に沿って鼓型の完成孔522が形成される。すなわち、工具電極290の挿通方向に直交する断面の断面積が、下孔516の両端の入り口から中ほどへ向かうほど小さくなるように加工される。
図14から図17における第9実施例および第10実施例では、図4で説明した第1実施例と同様の手法を用いて製造した工具電極について説明したが、製造方法はこれに限定されない。すなわち、図5から図7で説明した実施例2から実施例4と同様の手法にて製造してもよい。
図14から図17において、工具電極の表面を加工して、樽型および鼓型の孔形状を形成する例を紹介した。しかし、図12に示した第7実施例で説明したように、工作物側を加工することによっても、これらの孔形状を形成することができる。図18および図19を用いて、孔形状が樽型および鼓型の形状である実施例について説明する。
図18は、第11実施例に係るワーク断面を説明する模式図である。本実施例では、図12の第7実施例で説明したように、工作物側を加工することにより、当該電流密度を工具電極の挿通方向に沿って変化させて逆テーパ以外の形状の孔を加工することについて説明する。特に、本実施例においては、孔形状が樽型である場合について説明する。
本実施例では、穿孔された直後の下孔516にヘッド110に装着された円柱状の加熱工具812を挿通して、下孔516の内壁表面に絶縁性膜518を形成させる。図18に示すように、加熱工具812は、その長さ方向において狭い加熱領域814を有する。
本実施例においては、加熱工具812を挿通する速度を制御することによって、下孔516の挿通方向において絶縁性膜518の厚みを連続的に変化させる。例えば、加熱工具812を、A領域ではゆっくり、B領域では速く、そしてC領域ではゆっくりと挿通する。そして、あらかじめ定められた時間の経過後に引き抜く。
更に詳細には、A領域からB領域に向かって徐々に加熱工具812の挿通速度を速めていく。続いて、B領域からC領域に向かって徐々に加熱工具812の挿通速度を緩めていく。すると、A領域およびC領域よりもB領域において、加熱工具812と対向している時間が短くなるので、図18に示すように、B領域に近づくほど薄い絶縁性膜518が下孔516の内壁に形成される。このように下処理された下孔516に対して、表面が一様に導電性を有する工具電極を用いて電解加工を施すと、点線に示すような樽型の孔形状である完成孔524を形成することができる。
このように、加熱工具812の挿通速度を調整することによっても、複雑な形状の孔を加工することができる。例えば、鼓型の孔を加工したい場合には、加熱工具812を、A領域では速く、B領域ではゆっくり、そしてC領域では速く挿通する。更に詳細には、A領域からB領域に向かって徐々に挿通速度を緩めていく。続いて、B領域からC領域に向かって徐々に挿通速度を速めていく。すると、A領域およびC領域よりもB領域において、加熱工具812と対向している時間が長くなるので、B領域に近づくほど厚い絶縁性膜518が下孔516の内壁に形成される。このように下処理された下孔516に対して、表面が一様に導電性を有する工具電極を用いて電解加工を施すと、鼓型の孔形状を形成することができる。
なお、本実施形態においては、下孔516に対して、加熱工具812を挿通させる時に挿通速度を調整することによって、下孔516の内壁に形成される絶縁性膜518の厚みを挿通方向において連続的に変化させた。しかし、下孔516への挿通時には、素早く加熱工具812を挿通させて、引き抜き時に加熱工具812の引き抜き速度を調整することによって、下孔516の内壁に形成される絶縁性膜518の厚みを挿通方向において連続的に変化させてもよい。
これまで説明してきた実施例では、工具電極の基材として導電性のあるタングステンを使用し、基材表面における絶縁部212と導電部211との面積比を変化させることによって、単位面積当たりの電気抵抗を調節した。しかしながら、工具電極の基材として絶縁性の部材を使用して、当該基材表面に線状の導電性部材を配置することにより構成してもよい。このように構成する工具電極の製造方法について、図19を用いて説明する。
図19は、第13実施例に係る工具電極300の作成方法を説明する模式図である。本実施例では、工具電極300の基材として絶縁性のある部材を使用する。本実施例においては、絶縁性基材320には、例えば、絶縁性の合成樹脂を使用することができる。また、本実施例においては、導電性部材322には、例えば、黄銅線を使用することができる。
図19(a)に示すように、工具電極300の絶縁性基材320の表面には、導電性部材322が嵌合する螺旋状の嵌合溝324が形成されている。そして、絶縁性基材320の先端部には、導電性部材322の一方の端部を係合して固定する孔部326が形成されている。螺旋ピッチPは、所望の孔形状を形成するために、基材表面において予め定められた電流密度分布となるように設定されている。
本実施例に係る工具電極300の絶縁性基材320の作成方法としては、絶縁性の合成樹脂の円筒形の棒材に対して、切削加工機により、表面に嵌合溝324を切削形成する方法が考えられる。例えば、切削加工機のバイトを絶縁性基材320に押し当てて、絶縁性基材320を軸周りに一定の速度で回転させつつ、軸方向に送り出すことによって一定の幅をもつ螺旋状の嵌合溝324を絶縁性基材320の表面に形成することができる。また、絶縁性基材320の送り出し速度を制御することにより、嵌合溝324の螺旋ピッチPを変化させることもできる。
なお、絶縁性基材320の作成方法としては、上記に限定されない。例えば、別の基材の作成方法として、3次元物体を造形する3Dプリンターを使用して作成する方法もある。
次に、図19(b)に示すように、絶縁性基材320の端部に設けられた孔部326に、導電性部材322の一方の端部を係合させる。そして、絶縁性基材320の表面に形成された嵌合溝324に導電性部材322を嵌合させ固定する。固定方法としては、例えば、接着剤による固定する方法、嵌合時に溝部に熱を加えて基材を一部溶かし、導電性部材322を埋め込んで固定する方法などが挙げられる。しかしながら、使用に際して、導電性部材322が嵌合溝324より剥離しない限りにおいて、これらの方法に限定されない。工具電極300の使用に際しては、導電性部材322の他方の端部を、例えば、図2で示した電源ユニット170と電気的に接続する。
本実施例において、導電性部材322の端部を係合する孔部326は、絶縁性基材320の先端側における嵌合溝324の端に形成されている。しかしながら、孔部326は、絶縁性基材320の円筒面上ではなく、底面部328に設けてもよい。孔部326を絶縁性基材320の底面部328に設けることによって、工具電極300の端部における単位面積当たりの電気抵抗の滑らかな変化を実現しやすい。
次に、図20から図22を用いて、第13実施例に係る工具電極300を用いた場合のシミュレーション結果を示す。特に、工具電極300を用いて樽型の孔形状を加工する場合を示す。工作物として直径5.3mmのストレート孔を設けた5mm厚の鉄板を用い、電解液としてNaNOの10重量%溶液を用い、直径5mmの合成樹脂基材に直径0.5mmのワイヤを巻きつけた工具電極を20rpmで回転しつつ工作物との間に5Vの電位差を与える条件により加工した。
図20は、孔の目標形状の断面プロファイルを説明する図である。横軸は、孔の挿通方向に対する垂直断面における径の大きさを表し(単位はmm)、縦軸は、下孔の奥行を表す(単位はmmで、0が工具電極300の先端側に対応する)。実際の孔の形状は、図21に示したプロファイルを縦軸周りに360°回転させた樽型の形状となる。
図21は、第13実施例に係る工具電極における導電部の螺旋ピッチの設定を説明する図である。横軸は、導電部の螺旋ピッチを表し(単位はmm)、縦軸は、工具電極300の軸方向の位置を表す(単位はmmで、0が工具電極300の先端側に対応する)。図21に示した断面プロファイルと対応するように、孔の挿通方向における中心部において螺旋ピッチが最大となるように設定されていることがわかる。すなわち、孔の中心部に位置する工具電極300の表面において、電流密度が最大となるように設定されている。
図22は、第13実施例に係る工具電極を用いた場合のシミュレーションデータである。横軸は、拡張した孔の径の大きさを(単位はmm)、縦軸は、下孔の奥行を表す(単位はmmで、0が工具電極300の先端側に対応する)。また、実線が加工前の形状を表し、細かい点線が15秒間加工を継続した場合の形状を表し、粗い点線が30秒間加工を継続した場合の形状を表す。また、太い実線が目標形状を表す。時間の経過とともに加工が進み、目標形状である樽型の孔が形成される様子がわかる。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。また、各実施例を組み合わせた実施形態も本発明の技術的範囲に含まれ得る。
請求の範囲、明細書、および図面中において示した装置、システム、および方法における動作、手順、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。
100 電解加工装置、110 ヘッド、120 基台、130 支柱、140 ステージ、150 電解液槽、160 固定具、161 チャック、170 電源ユニット、171 電力線、172 グランド線、180 駆動ユニット、190 制御ユニット、210、220、230、240、250、260、270、280、290、300 工具電極、211 導電部、212 絶縁部、241 軸部、242 絶縁性膜、243 変化領域、244 一定領域、261 テーパ加工部、262 下孔加工部、263 接続部、271 ベース部、272 電極部、310 電解液、320 絶縁性基材、322 導電性部材、324 嵌合溝、326 孔部、328 底面部、500 ノズル本体、510 先端部、511 噴孔、512 噴孔出口、513 噴孔入口、516 下孔、517、521、522,524 完成孔、518 絶縁性膜、520 シリンダー部、600、700 ワーク、612 第1口、613 第2口、616 下孔、617 完成孔、621 角部、622 辺部、717 下孔、810、812 加熱工具、814 加熱領域

Claims (25)

  1. 工作物に設けられた孔に挿通する工具電極と、
    前記孔の内壁と前記工具電極の表面との間に流す電流を制御する制御部と
    を備え、
    前記表面における単位面積あたりの電気抵抗が前記挿通方向に沿って連続的に変化するように表面加工が施された前記工具電極により、前記孔の内壁面に流れる前記電流の電流密度を前記工具電極の挿通方向に沿って変化させる電解加工装置。
  2. 前記工具電極は、前記表面に形成された絶縁部と導電部の割合により、前記電気抵抗が前記挿通方向に沿って連続的に変化する請求項1に記載の電解加工装置。
  3. 前記工具電極は、前記表面に螺旋状に設けられた前記導電部の前記挿通方向におけるピッチおよび線幅の少なくともいずれかが変化することにより、前記電気抵抗が前記挿通方向に沿って変化する請求項2に記載の電解加工装置。
  4. 前記工具電極は、前記表面を覆って設けられた絶縁性膜の厚さが前記挿通方向に沿って連続的に変化することにより、前記電気抵抗が前記挿通方向に沿って変化する請求項1に記載の電解加工装置。
  5. 前記工具電極は、前記電気抵抗が前記挿通方向に直交する周方向に沿っても変化するように形成される請求項1から4のいずれか1項に記載の電解加工装置。
  6. 前記工具電極は、前記電気抵抗が前記挿通方向に沿って変化する第1軸部よりも先端側に前記孔を形成する第2軸部を有する請求項1から5のいずれか1項に記載の電解加工装置。
  7. 前記第2軸部を用いて電解加工とは異なる加工により前記孔を形成する請求項6に記載の電解加工装置。
  8. 前記工具電極は、円柱形状であって前記挿通方向の軸周りに回転される請求項1から7のいずれか1項に記載の電解加工装置。
  9. 前記工具電極は、前記挿通方向に直交する断面が円以外の形状である請求項1から7のいずれか1項に記載の電解加工装置。
  10. 前記工具電極は、前記挿通方向における先端側ほど前記電気抵抗が小さい請求項1から9のいずれか1項に記載の電解加工装置。
  11. 単位面積あたりの電気抵抗が前記挿通方向に沿って変化するように前記孔の内壁に絶縁部および絶縁性膜の少なくともいずれかを形成する形成部を備える請求項1から10のいずれか1項に記載の電解加工装置。
  12. 前記工作物に設けられた複数の前記孔に同時に挿通する複数の前記工具電極を備える請求項1から11のいずれか1項に記載の電解加工装置。
  13. 工作物に設けられた孔に挿通する工具電極と、
    前記孔の内壁と前記工具電極の表面との間に流す電流を制御する制御部と、
    単位面積あたりの電気抵抗が前記挿通方向に沿って変化するように前記孔の内壁に絶縁部および絶縁性膜の少なくともいずれかを形成する形成部と
    を備える電解加工装置。
  14. 前記工具電極は、前記表面における単位面積あたりの電気抵抗が前記挿通方向に沿って連続的に変化するように表面加工が施されている請求項13に記載の電解加工装置。
  15. 工作物に孔を形成する孔形成工程と、
    前記孔に工具電極を挿通する挿通工程と、
    前記孔の内壁と前記工具電極の表面との間に流れる電流の電流密度が前記工具電極の挿通方向に沿って変化するように通電する通電工程と
    を有し、
    前記通電工程は、前記表面における単位面積あたりの電気抵抗が前記挿通方向に沿って連続的に変化するように表面加工が施された前記工具電極を用いて行う電解加工方法。
  16. 単位面積あたりの電気抵抗が前記挿通方向に沿って変化するように前記孔の内壁に絶縁部および絶縁性膜の少なくともいずれかを形成する形成工程を有する請求項15に記載の電解加工方法。
  17. 工作物に孔を形成する孔形成工程と、
    単位面積あたりの電気抵抗が工具電極の挿通方向に沿って変化するように前記孔の内壁に絶縁部および絶縁性膜の少なくともいずれかを形成する形成工程と、
    前記孔に前記工具電極を挿通する挿通工程と、
    前記孔の内壁と前記工具電極の表面との間に流れる電流の電流密度が前記工具電極の挿通方向に沿って変化するように通電する通電工程と
    を有する電解加工方法。
  18. 表面における単位面積あたりの電気抵抗が挿通方向に沿って連続的に変化するように表面加工が施された、電解加工装置に装着される工具電極。
  19. 前記表面に形成された絶縁部と導電部の割合により、前記電気抵抗が前記挿通方向に沿って連続的に変化する請求項18に記載の工具電極。
  20. 前記表面に螺旋状に設けられた前記導電部の前記挿通方向におけるピッチおよび線幅の少なくともいずれかが変化することにより、前記電気抵抗が前記挿通方向に沿って変化する請求項19に記載の工具電極。
  21. 前記表面を覆って設けられた絶縁性膜の厚さが前記挿通方向に沿って連続的に変化することにより、前記電気抵抗が前記挿通方向に沿って変化する請求項18に記載の工具電極。
  22. 前記電気抵抗が前記挿通方向に直交する周方向に沿っても変化するように形成される請求項18から21のいずれか1項に記載の工具電極。
  23. 前記電気抵抗が前記挿通方向に沿って変化する第1軸部よりも前記挿通方向における先端側に、工作物に孔を形成するための第2軸部を有する請求項18から22のいずれか1項に記載の工具電極。
  24. 前記挿通方向に直交する断面が円以外の形状である請求項18から23のいずれか1項に記載の工具電極。
  25. 前記挿通方向における先端側ほど前記電気抵抗が小さい請求項18から24のいずれか1項に記載の工具電極。
JP2015562707A 2014-02-17 2014-12-19 電解加工装置、電解加工方法および工具電極 Active JP6484182B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014027395 2014-02-17
JP2014027395 2014-02-17
PCT/JP2014/083732 WO2015122103A1 (ja) 2014-02-17 2014-12-19 電解加工装置、電解加工方法および工具電極

Publications (2)

Publication Number Publication Date
JPWO2015122103A1 JPWO2015122103A1 (ja) 2017-03-30
JP6484182B2 true JP6484182B2 (ja) 2019-03-13

Family

ID=53799857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015562707A Active JP6484182B2 (ja) 2014-02-17 2014-12-19 電解加工装置、電解加工方法および工具電極

Country Status (2)

Country Link
JP (1) JP6484182B2 (ja)
WO (1) WO2015122103A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015219233A1 (de) * 2015-10-06 2017-04-06 Continental Automotive Gmbh Vorrichtung zum Bearbeiten eines Werkstücks für einen Fluidinjektor und Verfahren zum Herstellen eines Düsenkörpers für einen Fluidinjektor
DE102018213392A1 (de) 2018-08-09 2020-02-13 MTU Aero Engines AG Verfahren zur Herstellung von Bohrungen in schwer zu zerspanenden Werkstoffen
FR3092508B1 (fr) * 2019-02-12 2021-09-10 Safran Aircraft Engines Procede de percage d’un trou dans une piece en materiau electroconducteur
JP6637630B1 (ja) * 2019-06-05 2020-01-29 三菱日立パワーシステムズ株式会社 タービン翼およびタービン翼の製造方法並びにガスタービン

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1505065A (en) * 1974-03-23 1978-03-22 Rolls Royce Methods and apparatus for electrically machining a workpiece
JPH04275827A (ja) * 1991-01-14 1992-10-01 I N R Kenkyusho:Kk 放電穿孔装置
JPH06179125A (ja) * 1992-12-16 1994-06-28 Mitsubishi Heavy Ind Ltd 内面異形形状穴加工用特殊電極
US6290461B1 (en) * 1999-08-16 2001-09-18 General Electric Company Method and tool for electrochemical machining
JP4460132B2 (ja) * 2000-09-25 2010-05-12 株式会社放電精密加工研究所 異形穴の電解加工方法
JP4576362B2 (ja) * 2006-08-07 2010-11-04 三菱重工業株式会社 ガスタービン用高温部材の製造方法
JP2013170499A (ja) * 2012-02-21 2013-09-02 Mitsubishi Heavy Ind Ltd 遠心回転機のインペラの製造方法
JP6071742B2 (ja) * 2013-05-16 2017-02-01 三菱重工業株式会社 電解加工工具、電解加工システム、及び孔空き部材の製造方法

Also Published As

Publication number Publication date
JPWO2015122103A1 (ja) 2017-03-30
WO2015122103A1 (ja) 2015-08-20

Similar Documents

Publication Publication Date Title
JP6484182B2 (ja) 電解加工装置、電解加工方法および工具電極
US7572997B2 (en) EDM process for manufacturing reverse tapered holes
US11745279B2 (en) System and method for machining workpiece and article machined therefrom
EP2812145B1 (en) Electrode and method for manufacturing the same
JP5129971B2 (ja) 内燃機関用噴射ノズルの製造方法
US20230219154A1 (en) Electrical discharge machining method for generating variable spray-hole geometry
JP2623296B2 (ja) レーザーと放電加工による穴あけ方法及び装置
DE102004057527B4 (de) Verfahren zum elektro-chemischen Bearbeiten eines Werkstücks und Elektrode für ein solches Verfahren
KR20190020737A (ko) 전해연마 방법 및 장치 그리고 캐소드 제조방법
JP4801155B2 (ja) 放電による表面処理方法及びドレッシング方法
JP2007276062A (ja) 電解加工方法および電解加工装置
TWI492804B (zh) 在工件上形成針點澆口的方法
CN106471252B (zh) 用于螺杆泵的转子或定子的电化学加工方法
EP2468442B1 (de) Verfahren zum Herstellen von Bohrungen
JP4460132B2 (ja) 異形穴の電解加工方法
CN113770463A (zh) 基于电极损耗的微阶梯孔加工方法
Wu et al. Study on machining 3D micro mould cavities using reciprocating micro ECM with queued foil microelectrodes
CN104259599B (zh) 一种电火花加工方法
US20160045968A1 (en) Apparatus for electrochemically machining a metallic workpiece
JP2011110641A (ja) 電解加工装置、電解加工方法および微細工具の機上成形機
Yadav et al. Electro-spark process for microfabrication
米大海 et al. Proposal of machining method for reverse-tapered hole and its verification with simulation
JP2008000834A (ja) ワイヤー電極線によるnc穿孔放電加工方法
CN104259601B (zh) 一种利用电火花加工设备控制系统的加工工艺
RU2669673C2 (ru) Способ и устройство для изготовления профиля в полузакрытом канале детали проволочным электродом-инструментом

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190215

R150 Certificate of patent or registration of utility model

Ref document number: 6484182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250