JP6482451B2 - 直接水集熱式太陽熱利用システム - Google Patents

直接水集熱式太陽熱利用システム Download PDF

Info

Publication number
JP6482451B2
JP6482451B2 JP2015216101A JP2015216101A JP6482451B2 JP 6482451 B2 JP6482451 B2 JP 6482451B2 JP 2015216101 A JP2015216101 A JP 2015216101A JP 2015216101 A JP2015216101 A JP 2015216101A JP 6482451 B2 JP6482451 B2 JP 6482451B2
Authority
JP
Japan
Prior art keywords
water
hot water
valve
air
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015216101A
Other languages
English (en)
Other versions
JP2016085030A (ja
Inventor
勝郎 黒保
勝郎 黒保
尚夫 小泉
尚夫 小泉
Original Assignee
エナテックス株式会社
株式会社東洋ソーラーシステム研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エナテックス株式会社, 株式会社東洋ソーラーシステム研究所 filed Critical エナテックス株式会社
Publication of JP2016085030A publication Critical patent/JP2016085030A/ja
Application granted granted Critical
Publication of JP6482451B2 publication Critical patent/JP6482451B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Description

低コストで、集熱性能の良い太陽熱利用システムは集熱器に直接水を流して集熱する方式であると考えられるが、集熱器の中の水の凍結によって、集熱器が破損することを防ぐため、集熱器には不凍液を流して集熱する方式が広く用いられ、そのためコスト上昇と、集熱効率の低下を招いているが、本発明は集熱器の中および集熱配管の中の水を排水して、凍結防止をすることができる装置を備えた直接水集熱式太陽熱利用システムに関する。
再生可能エネルギー利用の中で太陽熱利用給湯および太陽熱利用暖房システムは比較的低温度のエネルギー利用であり、年間を通して利用される用途なので太陽熱が容易にまた経済性にも適う利用ができるものと期待され、各種の公的助成なども行われてきた。しかし、我が国では1983年ころをピークにその後、太陽熱利用システムの年間販売数は現在に至るまでほぼ減少傾向をたどっている。その原因の一つは太陽集熱の方式が太陽集熱器に直接水を流して集熱する最も単純で、低コストと考えられたシステムが実際に販売施工すると凍結破損事故を無くすることが困難と考えられて、不凍液集熱方式が一般化してコストと性能の両面で不利になったことがあげられる。凍結防止の一般的な方法は凍結しそうな温度条件になったら凍結の恐れのある集熱器および集熱配管の中の水を排水して、凍結破損を防ぐ方法である。温度条件により自動的に排水弁が開く自動凍結防止弁が弁のメーカーで各種のものが開発され、用いられたこともある。しかし、水が完全に抜けるためには排水弁に向かって配管が下り勾配になっていなければならず配管施工管理が行き届かず、凍結破損事故が後を絶たず結局不凍液集熱式が一般化したという歴史がある。
しかし太陽熱システムのメーカーが直接水集熱方式をみんな簡単にあきらめて不凍液方式に移行したわけではなく、直接水集熱方式で凍結破損しないものを何とか作ろうといろいろの試みがなされている。図1は集熱器の中で水が凍結しても破損しない集熱器として開発された集熱板である。薄いステンレス板2枚をシーム溶接で貼りあわせて、そのステンレス板はプレスで絞って通水用の溝が作られており2枚はり合わせて周囲および、通水路の間を1列おきにシーム溶接すると通水路の中で水が凍結膨張しても通水路は薄いステンレスなので通水路が膨れて破損することはない。しかし通水路が膨張して凍結しても破損しないということは水圧が大きい場合は通水路が膨張して破損する恐れがある。つまり水圧がほとんどかからないようなシステムの場合は使えるが一般的な水道圧が作用するようなシステムでは利用できない。したがって、集熱器と同じ高さに解放状態の貯湯槽を設置する自然循環式の温水システムに主に用いられ、集熱器を屋根上に、貯湯槽を地上に置いて、貯湯タンクはタンク下部から水道直結の水圧がかかる強制循環システムには使うことができなかった。
直接水集熱太陽熱温水システムの他の一例を図2に示す。これは貯湯タンクが無圧解放型で、上部に設置されている集熱器にポンプで水を押し上げて集熱器に水を満たし、集熱器内で日射により十分に温度が上昇すると電動3方弁が開き、集熱器内のお湯が落差によって貯湯タンクの上部に落下回収される。この動作を繰り返して集熱する方式である。この方式では集熱器まで、水を押し上げる吐出圧力、並びに流量も大きいポンプが必要であること、およびお湯を出す場合にも出力の大きい出湯ポンプが必要であるなどの欠点が多い。また集熱器への配管が貯湯タンクに向かって完全に下り勾配になっていなくて途中にたるみなどがあると配管のその部分に水が残り凍結する恐れがあるなどの問題もある。
特許5535554号公報 特許2662938号公報
太陽熱利用システムにおける集熱システムは最も単純な水を集熱器に流して集熱する方式は前述のように集熱器内での凍結防止が以外に難しく、現在は集熱媒体として不凍液を用い、温水を作るときは不凍液から熱交換する図3に示すような貯湯槽の中に熱交換器を入れたシステムが多く用いられている。図3に示す従来の一般的な不凍液集熱方式の太陽熱温水システムでは朝、日射が強くなって太陽集熱が始まっても貯湯槽の湯温はすぐには上がってこないので、高い温度のお湯を沸かせるだけの日射強度があるにかかわらず太陽集熱で沸かしたお湯が使えないという不都合がある。この様な不具合がなく朝に集熱が始まるとすぐに太陽熱で温められたお湯が使えるシステムを図4及び図5に示す。図4及び図5において1は太陽集熱器、2は貯湯槽を示し、8は集熱板に取り付けたサーミスタなどの温度センサーで、集熱器に日射が当たり、集熱板温度が上がってセンサー8が所定温度、例えば45℃以上になると5で示す循環ポンプが起動して、貯湯槽の水が貯湯槽底部から循環ポンプ5を経て集熱器に入り、集熱器で暖められたお湯が戻り管用逆止弁120を通り貯湯槽上部に戻る仕組みになっている。循環ポンプ5はセンサー8からの信号で回転数が制御できる回転数可変のポンプであり、貯湯槽上部に戻るお湯の温度は常に所定温度以上、例えば45℃以上になるようにポンプ回転数が制御され、45℃に達しないときは集熱が停止する。この様なポンプ回転数制御をして集熱すると20℃や30℃の水が貯湯槽上部に戻って来て、お湯の層を撹拌して冷やしてしまうことが起こらないので、貯湯槽上部にお湯を層状に溜めることができる。したがって集熱が始まって短時間のうちにお湯を使うことができる。
水直接集熱式において、集熱器における凍結防止のための図1や図2に示すような方式を、図4のシステムのような利点のあるシステムに適用できるかどうかは別の問題である。図4のシステムにおいては集熱器と集熱配管内の凍結防止水抜きのために集熱器への送水管と集熱器からの温水戻り管に排水用電磁弁23が設置され、集熱器の温度が凍結温度に近づいた場合に排水用電磁弁を開くと集熱器と配管から水が排出され、空気抜き弁10から空気が吸入され水と置換されていく。貯湯槽内の水は電磁弁17が閉じており、またタンク上部の配管には逆止弁または電力動作の弁23があるので水は遮断されて貯湯槽の水は排水されない。しかし停電や電気のブレーカが落ちていて電源が遮断されていると凍結温度に達したら排水弁が開かず凍結破損に至る不安は残る。また集熱器への配管が排水弁に向かって完全に下り勾配に配管されているなら配管内の水は完全に排水されるが、逆勾配の箇所があると水が配管内に残って凍結の恐れが排除できない。
前述のように太陽熱直接水集熱システムにおいて、凍結の恐れのないシステムを実現のために種々の試みがなされてきたが、実現は容易ではないことが分かって、不凍液集熱方式が一般化した経緯がある。しかし太陽熱利用の普及のためには性能とコスト両面から考えて直接水集熱方式の利点はやはり大きく、その実現を再検討しなければならない。先ず図4のシステムの電磁排水弁23に代わり、電動モーターで弁が閉じ、電気を遮断するとスプリングで弁が開くようなスプリングリターン電動弁14を用いると電源喪失の時にも弁が開き、万一にも凍結の不安のないシステムにすることができる。ただし、スプリングリターン電動弁は電磁弁よりコストは上がるので、図4に示すような2個の弁を使用せずに図5に示すように、第1分岐管路101にスプリングリターン電動排水弁14は1個だけにして、第2分岐管路102に排水弁側への流れだけを許容する逆止弁22(又は後述する電磁弁または電動弁(以下、同旨))を1個入れて、このスプリングリターン電動弁14を開くと集熱器への水の供給側配管6の水は直接に電動排水弁14から排出され、集熱器からの戻り側配管7内の水は逆止弁22を経て電動排水弁14から排出される。つまり1個のスプリングリターン電動排水弁14によって両側の配管の排水ができる。集熱運転中はポンプに近い集熱器への供給側配管6内の水圧の方が戻り側配管7より高いので、逆止弁を通る流れは遮断され、集熱運転は逆止弁の設置によって不都合が起きることはない。
集熱配管6,7が排水弁に向かって完全に下り勾配に配管されているなら、集熱器と集熱配管6,7の内部の水は完全に排出されるが、逆勾配の箇所が少しでもあれば水が配管内に残る可能性が生ずる。集熱配管6,7が排水弁に向かって完全に下り勾配に配管するように工事管理することは、住宅用のシステムのように規模が小さいシステムがたくさんある場合は工事管理を徹底することが困難で、凍結破損の不安をなくすことが難しい。そのような不安をなくするものとして本提案は配管に多少の逆勾配の箇所が生じても排水ができる方法として、機械的に吸引排水する仕組みを提案するものである。集熱器は日当たりのよい位置に設置しなければならないということから通常は屋根上など比較的高い位置に設置され、貯湯槽は水を蓄える重量が重いものであるから地上に設置することが望ましく、したがって貯湯槽の近くに設置される排水弁に向かって集熱配管はほぼ下り勾配に設置されるわけである。しかし、逆勾配の箇所を完全になくするということになればこれは難しい場合も想定され、排水弁を開いただけでは、配管内に残水が生ずることが懸念される。そこで、配管内の水がほぼ出切るころに 図5に示すように排水弁の先に空気吸引ブロアー15を設置して機械的に吸引排水するものである。排水弁を開いて自然落水の後の配管内は一般的にわずかな残水と大部分は空気が満たされている状態になっている。空気を吸引するブロアーによる気流によって配管内の残水は吸引排水されることになる。ただブロアーは空気を流す機械であり水を吸い込むと壊れる恐れがあるため、水を吸い込まないように排水弁14とブロアー15の間に水を分離するための気水分離タンク16を設けて、ブロアーに水を吸い込まないような対策が必要になる。気水分離タンクに溜まった水はブロアーを停止すると気水分離タンクの底部に設けた排水口から逆止弁18を通って排水される。ブロアー運転中は気水分離タンクの中は大気圧より負圧になっているので逆止弁は閉じて、排水口から空気を吸い込む恐れはない。
配管が排水弁の方向に対して逆勾配になっているか所に残っている水を空気流によって吸引して水を押し流そうとする場合はコップの中の飲み物をストローで吸い上げる場合のように配管が十分に細ければ空気の吸引により水は容易に吸い上げられて排水される。したがって水の吸引排水には配管が十分に細いことが重要である。太陽熱温水システムでは図4に示すように集熱したお湯を貯湯槽上部から層状に溜めるようにすることが太陽熱利用率を高かめるために重要であり、つまり集熱流量は水の1回の集熱器通過で例えば45℃以上に昇温されるように流量が小さいことが望ましいので、配管は必然的に細いものでよく、吸引排水には好都合である。
本発明の太陽熱システムでは集熱性能が良く、コストの低い水直接集熱方式で集熱器凍結破損の不安がないシステムが提供される。しかも貯湯槽には水道が直結される加圧タンクが利用でき、出湯ポンプを用いなくても出湯ができる方式でも集熱器および集熱配管から凍結防止水抜きが可能である。地球環境問題の重要性が一般にも広く認識されている我が国において、容易に自然エネルギー利用が可能である太陽熱給湯が最近伸び悩みというよりむしろ減少傾向にある。以前は諸外国に比べ太陽熱給湯が最も普及していた我が国の最近の減少傾向の要因は高度に自動化された家庭電化製品が受け入れられている我が国においては、使い勝手の良くない太陽熱温水システムでは受け入れられないということである。本発明は水道直結型の非常に単純構成の太陽熱温水システムを可能にするものであり、また集熱器への循環水量を日射強度に応じて制御して貯湯タンクにお湯を層状に溜めるような仕組みもできる。そうすると日射の少ない日の代替熱源としてヒートポンプと組み合わせたシステムにおけるヒートポンプの成績係数を落とすことがなく合理的な組み合わせが可能であり、非常に使い勝手の良い温水システムが提供され、我が国の太陽熱温水システムの普及をふたたび諸外国に負けない水準に押し上げる効果が期待される。
従来の凍結しても破損しない集熱板の構成図 落水式のシステムの太陽熱給湯システム説明図 従来の不凍液集熱式太陽熱給湯システム説明図 本発明の凍結防止排水システムの説明図 本発明の集熱器および集熱配管から強制吸引排水システム構成図 本発明の一実施例のシステム構成図 本発明の集熱器および集熱配管の残水強制吸引ブロアーの一例の構成図 本発明のブロアーに水を吸い込むことを防ぐ気水分離タンクの一例の断面図 本発明の別の実施例のヒートポンプ給湯器と一体化したシステムの構成図
以下図面を以って発明の実施の形態を説明する。
図6は本発明の一実施例のシステム構成図である。記号1〜10は図1と同様である。図6において1の集熱器に日射が当たって集熱板の温度センサー8が45℃以上になると集熱開始となり電磁弁17と19が開き、貯湯槽の水圧で、水路を構成する送水管6と戻り管7を通って水が集熱器に入り、10の空気抜き弁から空気が排出されて、集熱器が水で満たされると電磁弁19は閉じて集熱ポンプ5が運転されて集熱が開始される。集熱動作は貯湯槽底部から集熱ポンプで水が吐出され、開いている電磁弁17を経て水が集熱器に送られ、集熱器からのお湯は戻り管7を通り、電磁弁19は閉じているので、逆止弁20を経て貯湯槽の上部から貯湯槽にお湯が戻り、上部から層状にお湯が溜まってくる。なお、逆止弁20は逆止弁ではなく、電力で開閉する電磁弁または電動弁でもよく、その場合は集熱ポンプの運転が開始されると同時に弁20が開くように制御される。また、電源喪失時の排水動作を考えると、弁20に電磁弁または電動弁を用いる場合には、電源喪失時に弁が閉となるもの(電動弁の場合は例えばスプリングリターン電動弁)を用いることが望ましい。
集熱ポンプ5は回転数が可変で集熱センサー8からの信号により、集熱湯温が45℃以上になるように回転数が制御される。集熱センサー8が45℃未満又は貯湯槽下部の水温以下の温度になった場合は集熱が停止し、電磁弁17が閉じ、集熱ポンプ5が停止する。この様に貯湯槽2の中は層状性が保たれるので集熱開始するとすぐにお湯を出すことができ、太陽熱利用率が高く、湯温が45℃に達しないときは集熱しないことによる集熱効率の低下分をカバーして余りあると考えられる。
しかし、たとえば後述する図9に示す太陽熱給湯システムと代替熱源のヒートポンプ給湯器を一体化したシステム等において、炭酸ガス熱媒ヒートポンプ給湯器においてはヒートポンプで沸かす湯温はたとえば80℃ぐらいに沸き上げるのが一般的であるから、たとえば45℃程度の集熱したお湯をタンク最上部から注いで、ヒートポンプで沸かした80℃程度のお湯と混ざるのは有効エネルギーの損失になる。それを改善する方法として図6のタンクへの戻り管路の弁20の下に点線で図6に記入してあるタンク中間部につながる第3分岐管路103を設けその第3分岐管路103には電力で開閉する弁20'が設けられており、集熱湯温がたとえば60℃より低い場合は弁20が閉じて弁20'を開いてタンク中間部に集熱したお湯を注ぐようにするとタンク上部に残っていた高温のお湯に温度があまり高くない集熱したお湯を注いで有効エネルギーの損失を招くことがないようにすることができる。これにより、よりきめ細やかに貯湯槽2の中の層状性が保つことができることになる。集熱湯温がたとえば60℃以上の場合は弁20を開き弁20'は閉じてタンク最上部から集熱したお湯が注がれる。
このようなヒートポンプ給湯器とともにタンク中間部につながる第3分岐管路を設ける構成は、図4のような2個の弁を用いた構成において適用してもよいことは、言うまでもない。
冬期に集熱器内の水が凍結して集熱器が破損するのを防ぐ仕組みは集熱板の温度センサー8によって集熱板の温度が凍結温度に近い温度になったことが検知される(すなわち、排水動作が必要であることが検知される)と第1分岐管路101のスプリングリターン電動排水弁14の電流が遮断されて弁が開き、集熱板から水が送水管6を通って下に落下して排水される。そのとき集熱器の上の空気抜き弁10より空気が集熱板の中に流入する。貯湯槽の水は弁20および弁20'により止められているので排出されない。戻り管7の中の水も同時に抜けるように戻り管7から逆止弁22を通って排水弁14に接続されている。この様な送水管6と戻り管7をつなぐ第2分岐管路102があっても逆止弁22があるので集熱ポンプが運転されている集熱中は送水管6内の水圧が戻り管7の水圧より高いので、逆止弁22は閉じており、送水管6から集熱器に送水され戻り管7から貯湯槽上部または中間部に戻る正常な流れが維持される。電動排水弁14から出た水は気水分離タンクに入り、気水分離タンクの底に開いた穴24から逆止弁18を通って排出される。電動排水弁14が開いてから集熱器および集熱配管内の水が重力による自然落水によってほぼ出切る時間が経過の後に、気水分離タンク16の上部から配管接続されているブロアー15が運転開始され、気水分離タンクから空気がブロアーに吸引される。吸引過程では空気と一緒に水を吸引させるためブロアーは比較的発生圧力が高く、例えば10KPa〜30KPaぐらいの負圧が必要であり、また風量は送水管6や戻り管7内の風速が2〜5m/sec以上得られることが望ましい。そのような性能が得られるブロアーにはいろいろの形式のものが考えられるが、図7にその一例として、ゴム製のダイヤフラムを交流電磁石で電磁振動させて空気を送り出すエアポンプ形式のブロアーの構成図を示す。その他の形式のブロアーとしては真空掃除機に使われているような遠心羽根車による遠心ブロアーや、住宅用井戸ポンプなどに使われているウェスコポンプを送風用にしたウェスコポンプ型のブロアーなどが考えられる。ブロアーの運転開始により負圧になった気水分離タンクに接続されている電動排水弁14を通して集熱器および集熱配管内の空気が吸引され、それらの中の残水が空気と一緒に気水分離タンクに吸引される。気水分離タンクの中で水と空気が分離され、水はタンク内に残り、空気はブロアーに吸引されて排出される。
図8に気水分離タンクの一例の水平断面を示す。25で示す円形気水分離タンクの接線方向への流入口からタンク内に流入する水空気混合流体は断面が円形のタンク内で回転流れを起こす。比重の大きい水は遠心力で外側に集まり、比重の小さい気体は中心部に来ることによって気液が分離し、タンク上部の円の中心に設けられているパイプからブロアーに気体だけが吸引される。吸引を継続するうちに気水分離タンク内に水が一杯になり、ブロアーに水が吸い込まれる恐れが生ずるので、吸引を一定時間継続したら、ブロアーを一旦停止すると、気水分離タンク内の負圧は大気圧に戻り、気水分離タンクの水は底部の排水口24から逆止弁18を水の重力で押し開けて排水される。タンク内の水が全部排水されるぐらいの時間経過の後に再びブロアーを運転して集熱器および集熱配管内の空気を吸引する動作を何度か繰り返すと、水はほとんど吸引排水され凍結の不安はなくなる。
ブロアーによる吸引排水では吸引される空気流量に相当する空気を集熱器上部の空気抜き弁10から吸引できなければならない。しかし市販の空気抜き弁の空気だけを排出させる構造は、空気の分離のために設けた小さな容器の中に水より比重の軽い浮き子を入れた構造で、空気が溜まって液面が下がることにより浮き子も下がって空気口が開くものであり、高い水圧が作用している状態でも空気口が開くには、圧力に打ち勝って空気口を開く重さの大きい浮き子でなくては十分な空気流量が得られない。そのような大きな空気抜き弁の設置は問題があるので、対策として高圧下での空気排出はできないが負圧状態では十分な空気吸入量が得られる空気吸入弁を空気抜き弁と併設することによって、空気吸入量は大きくでき、吸引排水が有効になされる。
太陽熱利用システムの太陽熱利用率を高くするためには前述のように、貯湯タンクにお湯を上部から層状に溜めるように集熱器への循環水量を日射強度に応じて制御して1度の集熱器通過で集熱器から出てくるお湯の温度を例えば45℃以上になるようにすることである。そのようなシステムでは集熱器への循環水量は小さくてよく、循環ポンプの圧力も流量も小さく、消費動力も小さくて効率が良い。しかし循環ポンプの圧力が小さいと集熱配管の戻り側配管7に空気が入ると空気の浮力とポンプの送水力が拮抗して水が流れなくなるいわゆるエアロック現象が生ずる恐れがある。エアロック現象は高低差のある配管に水を流す場合に一般に知られた現象で、それを解消するために空気の浮力に負けない大きさの送水圧のポンプを使えばよいわけであるが、それでは無駄に大きいポンプ動力を消費することになり好ましくない。そこで、図6のシステムではエアロック現象が起きたらそれを検知してエアロックを解消することができるようになっている。エアロックを解消する方法は、エアロックを起こして集熱器への水の循環が止ると集熱器からの戻り管7にお湯が来なくなって戻り管7の温度が下がるので、戻り管7に図示しない温度センサーを取り付け集熱センサー8の温度との温度差が一定値以上の値に達して継続した場合はエアロックと判断して、エアロック解消の動作をさせるものである。エアロック解消の動作は一旦ポンプを停止して電磁弁19を開き、電磁弁17も継続して開いておくと、配管7の中の空気は上昇して集熱器上部についている空気抜き弁10より排出される。空気が抜けるぐらいの時間経過の後に電磁弁19を閉じて循環ポンプを起動することによりエアロックを解消できる。
図9は本発明の他の実施例で図6に示す太陽熱給湯システムと代替熱源のヒートポンプ給湯器を一体化したシステムの構成図である。本発明の水直接集熱式の太陽熱給湯システムは貯湯槽に太陽集熱したお湯をタンク上部から層状に溜めていくシステムであり、ヒートポンプの成績係数を低下させることがない。
すなわち、集熱器1に日射が当たって集熱板の図示しない温度センサーが、例えば45℃以上になると集熱開始となり電磁弁17等が開き、貯湯槽2の水圧で送水管と戻り管を通って水が集熱器に入り、空気抜き弁10から空気が排出されて、集熱器1が水で満たされると電磁弁19は閉じて集熱ポンプ5が運転して集熱が開始される。集熱動作は貯湯槽2の底部から集熱ポンプ5で水が吐出され、開いている電磁弁17を経て水が集熱器1に送られ、集熱器1からのお湯は戻り管7を通り、電磁弁19は閉じているので、貯湯槽2の上部から貯湯槽2にお湯が戻り、上部から層状にお湯が溜まってくる。集熱ポンプ5は回転数が可変であり、上述した集熱板の図示しない温度センサーからの信号により、集熱湯温が45度以上になるように回転数が制御される。この温度センサー8が45℃未満又は貯湯槽下部の水温以下の温度になった場合は集熱が停止し、電磁弁17が閉じ、集熱ポンプ5が停止する。この様に貯湯槽2の中は層状性が保たれるので集熱開始するとすぐにお湯を出すことができ、太陽熱利用率が高く、湯温が45℃に達しないときは集熱しないことによる集熱効率の低下分をカバーして余りあると考えられる。
なお、図9には図示しないが、図6に示したように、貯湯槽2の中間部につながる分岐管路を設けてかかる分岐管路に弁20’を設け、集熱湯温がたとえば60℃より低い場合は弁20’を開いてタンク中間部に集熱したお湯を注ぎ、一方、集熱湯温がたとえば60℃以上の場合には弁20’を閉じてタンク最上部から集熱したお湯を注ぐようにしてもよい。
また、天気が悪く、集熱湯量が不足の場合はヒートポンプユニット26(ヒートポンプの水加熱熱交換器28、ヒートポンプの膨張弁29、ヒートポンプの蒸発熱交換器30及びヒートポンプの圧縮機31からなる)によりお湯を作ることができる。ヒートポンプユニット26では、水が適宜な温度まで昇温され、貯湯槽上部から層状にお湯が溜まっていくことになる。このため、貯湯槽2にお湯がなくなっても短時間で貯湯槽上部にお湯が溜まるので短時間後に出湯が可能になる。この様にヒートポンプによる給湯加熱においても貯湯槽内の温度の成層性がよく保たれるので、貯湯槽全部を温めるのではなく、入浴に必要な湯量に達したらヒートポンプを停止して省エネルギー化を図ることができる。また湯量が不足しそうになったら、ヒートポンプユニット26を再起動して追加湯沸かしが容易にできる。
そして、冬期に集熱器1内の水が凍結して集熱器1が破損するのを防ぐ仕組みは、集熱板の温度センサー8ないし図示しない温度センサーによって集熱板の温度が凍結温度に近い温度になったこと(すなわち、排水動作が必要であること)が検知されると、集熱板内部の水がブロアー15により吸引排水されて凍結が防止される。すなわち、各所の電動弁が開くことにより集熱板から水は送水管を通り、また戻り管の中の水も含めて、電動排水弁14を通して、ブロアー15により吸引排水される。この際、集熱器1の上の空気抜き弁10より空気が集熱板の中に流入し、この空気が、送水管及び戻り管を抜けるようになる。またこの場合、貯湯槽2の水が上部または底部から排出されないように、各所の弁を適宜に制御しておけば足りる。
以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。
たとえば、実施形態では、貯水槽2からの水の吐出を貯水槽2の底部から行うとして説明してきたが、必ずしも厳密に、貯水槽2の底部から水の吐出を行わなくてもよく、貯水槽2の中から昇温すべき水を取り出せる位置から水の吐出を行えば足りる。通常であれば、貯水槽2の下部付近から水の吐出を行えば足りる。
同様に、昇温したお湯の注ぎ口(分岐管路を設けない場合)についても、図4〜6、9においては、貯水槽2の最上部からお湯を注ぐような記載となっているが、必ずしも厳密に、貯水槽2の最上部から注入しなくてもよく、貯湯槽内の温度の成層性が実現できる程度の位置であれば足りる。通常であれば、貯水槽2の上部付近からお湯の注入を行えば足りる。
また、実施形態では、凍結温度の検知を集熱板の温度センサー8により検知するものとして説明してきたが、これに限られず、図4〜6、9のシステムのいずれかの地点において、また別途温度センサーを設け、又は集熱板の温度センサー8のような既存の温度センサーを流用し、凍結温度を検知すれば足りる。要するに、図4〜6、9のシステムのいずれかの地点での水の凍結(又は凍結のおそれ)を検知し、排水動作のトリガーを与えることができれば足りる。
さらに、実施形態では、ブロアー15により吸引排水する構成を示したが、ブロアー15に代え、又はブロアー15とともに、空気抜き弁10の側から管路に空気を送り込む構成を設けてもよい。要するに、管路を吸引するか、管路に空気を送り込むかを問わず、排水動作の場合に、空気抜き弁10の側から電動排水弁14の側に向けて、送水管及び戻り管を抜けるような空気の流れを発生させれば足りる。
本発明は、一般住宅用太陽熱利用給湯システム、業務用の大形給湯システムをはじめ、太陽熱利用暖房システムなどの各種太陽熱利用システムの集熱システムとして、広く好適に利用することができる。
1・・・太陽集熱器
2・・・貯湯槽
3・・・不凍液から給湯への熱交換器
4・・・不凍液タンク
5・・・集熱循環ポンプ
6・・・集熱器への送水管
7・・・集熱器からの温水戻り管
8・・・集熱温度センサー
9・・・センサーからポンプへの信号導線
10・・・空気抜き弁(空気弁)
11・・・貯湯槽への給水の整流板
12・・・出湯弁
13・・・貯湯槽への給水弁
14・・・スプリングリターン電動排水弁(自動排水弁)
15・・・空気吸引ブロアー
16・・・気水分離タンク
17・・・太陽集熱器への管路の電磁弁(送水管用開閉弁)
18・・・気水分離タンクからの排水用逆止弁
19・・・電磁弁
20・・・電力による開閉弁または逆止弁(第1自動開閉弁)
20'・・・電力による開閉弁または逆止弁(第2自動開閉弁)
21・・・気水分離タンクの空気吸引口
22・・・凍結防止排水逆止弁
23・・・凍結防止排水弁
24・・・気水分離タンクの排水口
25・・・貯湯タンクユニット
26・・・ヒートポンプユニット
27・・・ヒートポンプの水加熱熱交換器への循環ポンプ
28・・・ヒートポンプの水加熱熱交換器
29・・・ヒートポンプの膨張弁
30・・・ヒートポンプの蒸発熱交換器
31・・・ヒートポンプの圧縮機
32・・・循環ポンプ
33・・・水―水熱交換器
34・・・混合弁
35・・・逃し弁
101・・・第1分岐管路
102・・・第2分岐管路
103・・・第3分岐管路
120・・・戻り管用逆止弁

Claims (3)

  1. 水を熱媒とする太陽熱集熱器(1)と、
    前記水の温度を測定する温度センサー(8)と、
    前記太陽熱集熱器で得られる温水を蓄える貯湯槽(2)と、
    前記貯湯槽から前記太陽熱集熱器に水を送る送水管(6)と、
    前記太陽熱集熱器から前記貯湯槽の上部側へ温水を戻す戻り管(7)と、
    前記太陽熱集熱器及び前記戻り管の上方に形成され空気を吸入及び排出する空気弁(10)と、
    前記送水管に設けられ前記貯湯槽から前記太陽熱集熱器に水を送る循環ポンプ(5)と、
    前記送水管に設けられ電力により開閉される電磁弁(17)と、
    一端が前記送水管の前記電磁弁と前記太陽熱集熱器との間に接続される第1分岐管路(101)と、
    前記第1分岐管路に設けられ電源喪失時でも開くことが可能な自動排水弁(14)と、
    前記戻り管に設けられ前記太陽集熱器から前記貯湯槽へ向かう流れのみを許容する戻り管用逆止弁(120)又は電力により開閉される第1自動開閉弁(20)と、
    一端が前記戻り管の前記集熱器と前記戻り管用逆止弁又は前記第1自動開閉弁の間に接続され、他端が送水管の前記太陽熱集熱器と前記電磁弁の間に接続される第2分岐管(102)と、
    前記第2分岐管に設けられ、前記戻り管から前記送水管へ向かう流れのみを許容する分岐管用逆止弁(22)と、
    前記第1分岐管の他端に設置され、上方に空気排出口、下方に排水口を有し、空気と水を分離する気水分離タンク(16)と、
    前記気水分離タンクの上方に設置され、前記空気排出口から空気を吸引するブロアー(15)と、
    前記気水分離タンクの前記排水口に設置され、前記気水分離タンク側から排出する方向のみ水が流れる排水用逆止弁(18)と、
    を備え、
    前記温度センサーが測定する前記太陽熱集熱器の中の水が凍結する温度に近づいた場合又は電源が喪失した場合、前記自動排水弁が開き、前記太陽熱集熱器内の水が、前記空気弁より流入する空気に押されて、前記自動排水弁より排出され、
    さらに前記太陽熱集熱器内に排出されずに残った水及び空気が前記ブロアーの運転によって前記気水分離タンクに流入口から吸引され、
    前記空気排出口から空気のみが排出され、
    水が重力によって前記排水口から排出され、
    前記太陽熱集熱器及び集熱管内の水が凍結して破損することが防がれる
    ことを特徴とする直接水集熱式太陽熱利用システム。
  2. 前記自動開閉弁(20)の前記太陽熱集熱器側手前に前記貯湯槽の中間部につながる第3分岐管(103)と、
    前記第3分岐管に設置され電力により開閉される第2自動開閉弁(20’)と、
    をさらに備え、
    前記温度センサーが測定した集熱湯温が設定の温度より高いときは前記貯湯槽上部につながっている前記第1自動開閉弁が開き、
    前記温度センサーが測定した集熱湯温が設定の温度より低いときは前記貯湯槽の中間部につながっている前記第2自動開閉弁が開くことにより、
    有効エネルギー効率が高くなるように制御される
    ことを特徴とする請求項1に記載の太陽熱給湯システム。
  3. 前記ブロアーは、ゴム製のダイヤフラムを交流電磁石で電磁振動させて空気を送り出す形式であって、
    前記気水分離タンクでは、
    前記流入口は、水平断面が円形のタンクの接線方向へ向き
    前記空気排出口は、前記円形のタンクの上部中心に設けられ、
    前記排水口は、遠心力で外側に集まった水を重力によって排出する
    ことを特徴とする請求項1又は2に記載の太陽熱給湯システム。
JP2015216101A 2014-10-17 2015-10-16 直接水集熱式太陽熱利用システム Active JP6482451B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014212206 2014-10-17
JP2014212206 2014-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019029582A Division JP2019095190A (ja) 2014-10-17 2019-02-21 直接水集熱式太陽熱利用システム

Publications (2)

Publication Number Publication Date
JP2016085030A JP2016085030A (ja) 2016-05-19
JP6482451B2 true JP6482451B2 (ja) 2019-03-13

Family

ID=55972027

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015216101A Active JP6482451B2 (ja) 2014-10-17 2015-10-16 直接水集熱式太陽熱利用システム
JP2019029582A Pending JP2019095190A (ja) 2014-10-17 2019-02-21 直接水集熱式太陽熱利用システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019029582A Pending JP2019095190A (ja) 2014-10-17 2019-02-21 直接水集熱式太陽熱利用システム

Country Status (1)

Country Link
JP (2) JP6482451B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108562056B (zh) * 2018-07-03 2023-10-27 江苏省华扬太阳能有限公司 一种自动增压供水装置及包含该装置的太阳能热水系统
JPWO2020145106A1 (ja) * 2019-01-07 2021-09-09 株式会社Ihi 蒸気供給装置及び乾燥システム
CN109780740A (zh) * 2019-03-13 2019-05-21 孔宇庭 一种介质自动补偿管路及太阳能导热管路
JP7295528B2 (ja) 2019-05-15 2023-06-21 国立大学法人電気通信大学 フリーズバルブ、原子炉、および太陽熱発電装置
JP7012118B2 (ja) * 2020-05-15 2022-01-27 エナテックス株式会社 太陽熱利用システム及び太陽熱利用システムの制御方法
CN111595036B (zh) * 2020-05-29 2021-04-13 南通大学 一种智能化太阳能热水器系统
CN112594938A (zh) * 2020-12-17 2021-04-02 云南鼎热新能源科技有限公司 一种可对水管进行防冻保护的太阳能热水器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142160A (ja) * 1982-02-18 1983-08-23 Sanyo Electric Co Ltd 太陽熱利用システム
JP3443684B2 (ja) * 2000-03-02 2003-09-08 株式会社光合金製作所 ヘッダー配管の凍結防止方法
JP2003279136A (ja) * 2002-03-19 2003-10-02 Toto Ltd ヒートポンプ給湯機
JP5535554B2 (ja) * 2009-08-27 2014-07-02 エナテックス株式会社 ヒートポンプバックアップ熱源を備えた太陽熱給湯システム

Also Published As

Publication number Publication date
JP2016085030A (ja) 2016-05-19
JP2019095190A (ja) 2019-06-20

Similar Documents

Publication Publication Date Title
JP6482451B2 (ja) 直接水集熱式太陽熱利用システム
CN104296390B (zh) 套管式换热器防冻方法
JP4476444B2 (ja) 太陽熱温水装置及びその制御方法
CN101915471B (zh) 水压式热水回收装置
CN102374666B (zh) 采用低功率泵与太阳能热水器置换热水的储热水组合装置
CN101666547B (zh) 一种带小流量抗冻循环的太阳能集热系统
WO2017146608A1 (ru) Вакуум-паровая система отопления
CN213588063U (zh) 一种双进水速热饮水机
JPH08219555A (ja) 直接集熱式太陽熱温水装置
CN105926751A (zh) 蒸气设备疏水管防冻装置
CN203405006U (zh) 一种太阳能热水器排水防冻装置
US20150128928A1 (en) Method and system for positive evacuation of solar collector
CN204115249U (zh) 套管式换热器防冻结构
CN205403194U (zh) 一种自动补排水平板太阳能热水器
CN210107765U (zh) 一种太阳能热泵泄水装置
CN201293470Y (zh) 一种抗冻的太阳能集热系统
CN100455732C (zh) 一种生活废热水热量提取方法及其装置
CN216308205U (zh) 一种新型防冻系统
CN104279760A (zh) 一种接水盘及具有其的空气能热水器
CN205825473U (zh) 太阳能集热系统
CN217907325U (zh) 一种节能环保蒸汽机柜
CN201016179Y (zh) 一种生活废热水热量提取装置
JPS6135885Y2 (ja)
CN2669090Y (zh) 双回路水介质太阳能热水装置
KR200473707Y1 (ko) 동파가 방지되는 태양열 집열장치

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190212

R150 Certificate of patent or registration of utility model

Ref document number: 6482451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250