JP6478782B2 - ビームドリフト量の測定方法 - Google Patents

ビームドリフト量の測定方法 Download PDF

Info

Publication number
JP6478782B2
JP6478782B2 JP2015086013A JP2015086013A JP6478782B2 JP 6478782 B2 JP6478782 B2 JP 6478782B2 JP 2015086013 A JP2015086013 A JP 2015086013A JP 2015086013 A JP2015086013 A JP 2015086013A JP 6478782 B2 JP6478782 B2 JP 6478782B2
Authority
JP
Japan
Prior art keywords
pattern
evaluation
shot
dummy
dummy pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015086013A
Other languages
English (en)
Other versions
JP2016207779A (ja
Inventor
理恵子 西村
理恵子 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2015086013A priority Critical patent/JP6478782B2/ja
Publication of JP2016207779A publication Critical patent/JP2016207779A/ja
Application granted granted Critical
Publication of JP6478782B2 publication Critical patent/JP6478782B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Description

本発明は、ビームドリフト量の測定方法に係り、例えば、電子ビーム描画装置における最小偏向領域内での時間に依存したビームドリフト量の測定方法に関する。
近年、LSIの高集積化に伴い、半導体デバイスの回路線幅はさらに微細化されてきている。これらの半導体デバイスへ回路パターンを形成するための露光用マスク(レチクルともいう。)を形成する方法として、優れた解像性を有する電子ビーム(EB:Electron beam)描画技術が用いられる。
図11は、可変成形型電子線描画装置の動作を説明するための概念図である。可変成形型電子線描画装置は、以下のように動作する。第1のアパーチャ410には、電子線330を成形するための矩形の開口411が形成されている。また、第2のアパーチャ420には、第1のアパーチャ410の開口411を通過した電子線330を所望の矩形形状に成形するための可変成形開口421が形成されている。荷電粒子ソース430から照射され、第1のアパーチャ410の開口411を通過した電子線330は、偏向器により偏向され、第2のアパーチャ420の可変成形開口421の一部を通過して、所定の一方向(例えば、X方向とする)に連続的に移動するステージ上に搭載された試料340に照射される。すなわち、第1のアパーチャ410の開口411と第2のアパーチャ420の可変成形開口421との両方を通過できる矩形形状が、X方向に連続的に移動するステージ上に搭載された試料340の描画領域に描画される。第1のアパーチャ410の開口411と第2のアパーチャ420の可変成形開口421との両方を通過させ、任意形状を作成する方式を可変成形方式(VSB方式)という。
ここで、電子ビーム描画装置では、描画対象のマスクの所望位置へと電子ビームを偏向する際に多段偏向が用いられる。そして、各段の偏向領域内にビームを偏向する場合、時間に依存したドリフトが発生する。そのため、かかる各段の偏向領域内における時間依存のドリフト量を測定することが必要となる。近年の半導体装置に代表される回路パターンの高精度化および微細化が進むに伴い、電子ビーム描画装置においても、描画精度の高精度化およびスループットの向上が求められている。そのため、電子ビームを偏向する偏向領域の縮小化が進んでいる(例えば、特許文献1参照)。例えば、最小偏向領域に至っては、同じ最小偏向領域内に矩形の評価パターンを縦横1×1個、乃至は2×2個程度しか配置することができないサイズにまで小さくなっている。かかる最小偏向領域内では、偏向量が小さいため短時間の間に複数のショットが行われることになるが、その場合でも時間に依存したドリフトによる位置ずれが発生する。従来、かかる短時間でのドリフト量はパターンサイズに対して許容される程度であったが、昨今のパターンの微細化に伴って、かかる短時間でのドリフト量も無視できなくなってきた。
特開2011−228498号公報
そこで、本発明は、多段偏向における最小偏向領域内での時間依存のドリフト量を測定する手法を提供することを目的とする。
本発明の一態様のビームドリフト量の測定方法は、
サイズの異なる複数の偏向領域のうち、最小偏向領域内に基準位置が位置するように、レジストが塗布された試料上に荷電粒子ビームを用いてレジストの解像限界未満のサイズのダミーパターンを露光する工程と、
ダミーパターンの露光から予め設定された経過時間が経過した時点で、最小偏向領域内に基準位置が位置し、かつダミーパターンとは異なる位置に、レジストが塗布されたかかる試料上に荷電粒子ビームを用いてレジストの解像限界以上のサイズの評価パターンを露光する工程と、
露光された前記評価パターンの位置を測定する工程と、
評価パターンの設計位置からの評価パターンの測定位置の位置ずれ量を演算する工程と、
演算された位置ずれ量を出力する工程と、
を備えたことを特徴とする。
また、評価パターンの評価方向のダミーパターンのサイズは、評価パターンとのサイズが用いられ、評価方向と直交する方向のダミーパターンのサイズは、レジストの解像限界未満のサイズが用いられると好適である。
また、評価パターンの評価方向と直交する方向のダミーパターンの位置と評価パターンの位置とが同じ位置になるようにダミーパターンと評価パターンは露光され、
評価パターンの評価方向と直交する方向に、ダミーパターンの位置と評価パターンの位置とを同じ移動量だけ可変に移動させながら、他とは異なる最小偏向領域を用いてそれぞれ上述した各工程を実施すると好適である。
また、荷電粒子ビームのショット間のセトリング時間を可変にすることにより経過時間を可変にしながら、他とは異なる最小偏向領域を用いてそれぞれ上述した各工程を実施すると好適である。
また、上述したダミーパターンを第1のダミーパターンとした場合に、
第1のダミーパターンと重なるように、レジストの解像限界未満のサイズの第2以上の複数のダミーパターンが順に露光され、
経過時間は第1のダミーパターンの露光から計測し、
第2以上の複数のダミーパターンの露光回数を可変にすることにより経過時間を可変にしながら、他とは異なる最小偏向領域を用いてそれぞれ上述した各工程を実施するように構成しても好適である。
本発明の一態様によれば、多段偏向における最小偏向領域内での時間依存のドリフト量を測定できる。
実施の形態1における描画装置の構成を示す概念図である。 実施の形態1における各領域を説明するための概念図である。 実施の形態1における描画方法の要部工程を示すフローチャート図である。 実施の形態1における評価チップに定義されるショット位置の一例を示す図である。 実施の形態1におけるダミーパターンと評価パターンとの組の他の一例を示す図である。 実施の形態1における最小偏向領域内で生じる時間依存のドリフト量の推移の一例を示す図である。 実施の形態1における最小偏向領域内で生じる時間依存のドリフト量の推移の他の一例を示す図である。 実施の形態2における描画装置の構成を示す概念図である。 実施の形態2における描画方法の要部工程を示すフローチャート図である。 実施の形態2における最小偏向領域内で生じる時間依存のドリフト量の推移の一例を示す図である。 可変成形型電子線描画装置の動作を説明するための概念図である。
以下、実施の形態では、荷電粒子ビームの一例として、電子ビームを用いた構成について説明する。但し、荷電粒子ビームは、電子ビームに限るものではなく、イオンビーム等の荷電粒子を用いたビームでも構わない。また、荷電粒子ビーム装置の一例として、可変成形型の描画装置について説明する。
実施の形態1.
図1は、実施の形態1における描画装置の構成を示す概念図である。図1において、描画装置100は、描画部150と制御部160を備えている。描画装置100は、荷電粒子ビーム描画装置の一例である。特に、可変成形型(VSB型)の描画装置の一例である。描画部150は、電子鏡筒102と描画室103を備えている。電子鏡筒102内には、電子銃201、照明レンズ202、ブランキング偏向器(ブランカー)212、ブランキングアパーチャ214、第1の成形アパーチャ203、投影レンズ204、偏向器205、第2の成形アパーチャ206、対物レンズ207、主偏向器208、副偏向器209、及び副副偏向器216が配置されている。描画室103内には、少なくともXY方向に移動可能なXYステージ105が配置される。XYステージ105上には、レジストが塗布された描画対象となる試料101(基板)が配置される。試料101には、半導体装置を製造するための露光用のマスクやシリコンウェハ等が含まれる。マスクにはマスクブランクスが含まれる。
制御部160は、制御計算機ユニット110、メモリ112、外部インターフェース(I/F)回路114、偏向制御回路120、DAC(デジタル・アナログコンバータ)アンプユニット130,132,134(偏向アンプ)、及び磁気ディスク装置等の記憶装置140,142を有している。制御計算機ユニット110、メモリ112、外部I/F回路114、偏向制御回路120、及び記憶装置140,142は、図示しないバスを介して互いに接続されている。偏向制御回路120にはDACアンプユニット130,132,134が接続されている。DACアンプユニット130は、副偏向器209に接続されている。DACアンプユニット132は、主偏向器208に接続されている。DACアンプユニット134は、副副偏向器216に接続されている。
また、制御計算機ユニット110内には、設定部60、設定部62、設定部64、判定部66、判定部68、描画制御部72、データ処理部74、位置ずれ量演算部76、プロットデータ作成部78、及び出力部79が配置される。設定部60、設定部62、設定部64、判定部66、判定部68、描画制御部72、データ処理部74、位置ずれ量演算部76、プロットデータ作成部78、及び出力部79といった各機能は、プログラムといったソフトウェアで構成されても良い。或いは、電子回路等のハードウェアで構成されてもよい。或いは、これらの組み合わせであってもよい。設定部60、設定部62、設定部64、判定部66、判定部68、描画制御部72、データ処理部74、位置ずれ量演算部76、プロットデータ作成部78、及び出力部79内に必要な入力データ或いは演算された結果はその都度メモリ112に記憶される。
図形パターンによって構成される後述するダミーパターンと評価パターンが配置された評価チップのデータが定義された描画データが描画装置100の外部から入力され、記憶装置140に格納されている。
ここで、図1では、実施の形態1を説明する上で必要な構成を記載している。描画装置100にとって、通常、必要なその他の構成を備えていても構わない。
図2は、実施の形態1における各領域を説明するための概念図である。図2において、試料101の描画領域10は、主偏向器208(第1の偏向器)の偏向可能幅で、例えばy方向に向かって短冊状に複数のストライプ領域20に仮想分割される。そして、主偏向器208(第1の偏向器)の偏向可能幅で、ストライプ領域20をx方向に分割した領域が主偏向器208(第1の偏向器)の偏向領域(第1の偏向領域:最大偏向領域、或いは主偏向領域)となる。主偏向領域は、ストライプ領域20上の固定位置に作成されるのではなく電子鏡筒102側からの電子ビームの偏向可能範囲となる。よって、XYステージ105の移動に伴って、主偏向領域は描画対象ストライプ領域20上を相対的に移動することになる。各ストライプ領域20は、副偏向器209(第2の偏向器)の偏向可能サイズで、メッシュ状に複数のサブフィールド(SF)30(第2の偏向領域)に仮想分割される。そして、各SF30は、副副偏向器216(第3の偏向器)の偏向可能サイズで、メッシュ状に複数のアンダーサブフィールド(USF:ここでは第3の偏向を意味するTertiary Deflection Fieldの略語を用いて「TF」とする。以下、同じ)40(第3の偏向領域:最小偏向領域の一例)に仮想分割される。そして、各TF40の各ショット位置52,54にショット図形がそれぞれ描画される。このように、電子ビーム200を偏向する3段の偏向器によって、各偏向領域は、それぞれ偏向される領域サイズの異なる大きい方から順に主偏向領域、SF30、TF40となる。
偏向制御回路120から図示しないDACアンプユニットに対して、ブランキング制御用のデジタル信号が出力される。そして、図示しないDACアンプユニットでは、デジタル信号をアナログ信号に変換し、増幅させた上で偏向電圧として、ブランキング偏向器212に印加する。かかる偏向電圧によって電子ビーム200が偏向させられ、各ショットのビームが形成される。
偏向制御回路120から図示しないDACアンプユニットに対して、成形偏向制御用のデジタル信号が出力される。そして、図示しないDACアンプユニットでは、デジタル信号をアナログ信号に変換し、増幅させた上で偏向電圧として、偏向器205に印加する。かかる偏向電圧によって電子ビーム200が成形偏向させられ、各ショットのビームが所望の形状及びサイズに成形される。
偏向制御回路120からDACアンプユニット132に対して、主偏向制御用のデジタル信号が出力される。そして、DACアンプユニット132では、デジタル信号をアナログ信号に変換し、増幅させた上で偏向電圧として、主偏向器208に印加する。かかる偏向電圧によって電子ビーム200が偏向させられ、各ショットのビームがメッシュ状に仮想分割された所定のサブフィールド(SF)の基準位置(例えば、該当するSFの中心位置或いは左下の角位置等)に偏向される。また、XYステージ105が連続移動しながら描画する場合には、かかる偏向電圧には、ステージ移動に追従するトラッキング用の偏向電圧も含まれる。
偏向制御回路120からDACアンプユニット130に対して、副偏向制御用のデジタル信号が出力される。そして、DACアンプユニット130では、デジタル信号をアナログ信号に変換し、増幅させた上で偏向電圧として、副偏向器209に印加する。かかる偏向電圧によって電子ビーム200が偏向させられ、各ショットのビームが最小偏向領域となるTF40の基準位置(例えば、該当するTFの中心位置或いは左下の角位置等)に偏向される。
偏向制御回路120からDACアンプユニット134に対して、副副偏向制御用のデジタル信号が出力される。そして、DACアンプユニット134では、デジタル信号をアナログ信号に変換し、増幅させた上で偏向電圧として、副副偏向器216に印加する。かかる偏向電圧によって電子ビーム200が偏向させられ、各ショットのビームがTF40内の各ショット位置に偏向される。
描画処理を行う場合、描画制御部72は、描画部150を制御して、描画処理を開始する。描画部150は、ショットデータに定義されたショット位置に、電子ビーム200を用いてパターンを描画する。具体的には、以下のように動作する。
電子銃201(放出部)から放出された電子ビーム200は、ブランキング偏向器212内を通過する際にブランキング偏向器212によって、例えば、ビームONの状態では、ブランキングアパーチャ214を通過するように制御され、ビームOFFの状態では、ビーム全体がブランキングアパーチャ214で遮へいされるように偏向される。ビームOFFの状態からビームONとなり、その後ビームOFFになるまでにブランキングアパーチャ214を通過した電子ビーム200が1回の電子ビームのショットとなる。ブランキング偏向器212は、通過する電子ビーム200の向きを制御して、ビームONの状態とビームOFFの状態とを交互に生成する。例えば、ビームONの状態では電圧を印加せず、ビームOFFの際にブランキング偏向器212に電圧を印加すればよい。かかる各ショットの照射時間で試料101に照射される電子ビーム200のショットあたりの照射量が調整されることになる。
以上のようにブランキング偏向器212とブランキングアパーチャ214を通過することによって生成された各ショットの電子ビーム200は、照明レンズ202により矩形の穴を持つ第1の成形アパーチャ203全体を照明する。ここで、電子ビーム200をまず矩形に成形する。そして、第1の成形アパーチャ203を通過した第1のアパーチャ像の電子ビーム200は、投影レンズ204により第2の成形アパーチャ206上に投影される。偏向器205によって、かかる第2の成形アパーチャ206上での第1のアパーチャ像は偏向制御され、ビーム形状と寸法を変化させる(可変成形を行なう)ことができる。かかる可変成形はショット毎に行なわれ、通常ショット毎に異なるビーム形状と寸法に成形される。そして、第2の成形アパーチャ206を通過した第2のアパーチャ像の電子ビーム200は、対物レンズ207により焦点を合わせ、主偏向器208、副偏向器209及び副副偏向器216によって偏向され、連続的に移動するXYステージ105に配置された試料101の所望する位置に照射される。以上のように、各偏向器によって、電子ビーム200の複数のショットが順に基板となる試料101上へと偏向される。
描画装置100では、複数段の偏向器を用いて、ストライプ領域20毎に描画処理を進めていく。ここでは、一例として、主偏向器208、副偏向器209、及び副副偏向器216といった3段偏向器が用いられる。XYステージ105が例えば−x方向に向かって連続移動しながら、1番目のストライプ領域20についてx方向に向かって描画を進めていく。そして、1番目のストライプ領域20の描画終了後、同様に、或いは逆方向に向かって2番目のストライプ領域20の描画を進めていく。以降、同様に、3番目以降のストライプ領域20の描画を進めていく。そして、主偏向器208(第1の偏向器)が、XYステージ105の移動に追従するように、SF30の基準位置に電子ビーム200を順に偏向する。また、副偏向器209(第2の偏向器)が、各SF30の基準位置から、TF40の基準位置に電子ビーム200を順に偏向する。そして、副副偏向器216(第3の偏向器)が、各TF40の基準位置から、当該TF40内に照射されるビームのショット位置52,54に電子ビーム200を偏向する。このように、主偏向器208、副偏向器209、及び副副偏向器216は、サイズの異なる偏向領域をもつ。そして、TF40は、かかる複数段の偏向器の偏向領域のうち、最小偏向領域となる。
ここで、SF30は、例えば、9μm角のサイズで作成される。これに対して、TF40は、例えば、0.6μm角のサイズで作成される。偏向されたパターンの形状を評価するための評価パターンは、パターン位置測定器(位置測定装置)で測定可能なサイズで形成される必要がある。パターン位置測定器は、例えば、0.2μm以上の幅サイズで測定可能である。そこで、評価パターンが、1ショットあたり、例えば、0.35μm角のサイズで作成されると、0.6μm角のサイズのTF40内には、評価パターンが1つだけしか配置することができなくなってしまう。或いは、評価パターンの基準位置(例えば、左下の角位置)が含まれるように描画すれば、縦横2×2個の評価パターンを描画することができる。
時間依存のドリフト量を測定するためには、同じTF40内に少なくとも2ショットが必要となる。1ショット目は、注目するTF40に初めてビームが照射されるショットなので、かかる1ショット目の時刻から注目するTF40内での時間の流れが開始する。よって、かかる1ショット目から2ショット目以降の注目ショットまでの時間に応じたドリフト量を測定する必要がある。実施の形態1では、1ショット目にダミーパターンを用い、時間依存のドリフト量を測定する対象となる2ショット目に評価パターンを用いる。
図3は、実施の形態1における描画方法の要部工程を示すフローチャート図である。図3において、実施の形態1における描画方法は、ショット位置(x,y)設定工程(S102)と、セトリング時間T設定工程(S104)と、TF設定工程(S110)と、ダミーパターン露光工程(S112)と、評価パターン露光工程(S114)と、判定工程(S116)と、セトリング時間T変更工程(S118)と、判定工程(S130)と、ショット位置変更工程(S132)と、現像工程(S140)と、位置測定工程(S142)と、位置ずれ量演算工程(S144)と、いう一連の工程を実施する。
ショット位置(x,y)設定工程(S102)として、設定部60は、記憶装置140から描画データを読み出し、描画データに定義された評価チップデータに従い、TF40内でのダミーパターンと評価パターンとの各ショット位置(x,y)を設定する。
図4は、実施の形態1における評価チップに定義されるショット位置の一例を示す図である。図4(a)では、x,y方向のうち、y方向を時間依存のドリフト量の評価方向とする場合のパターンのショット位置の一例を示す。副偏向器209によってTF40の基準位置に偏向位置が合わされた電子ビームは、副副偏向器216によってTF40の基準位置からの所望するTF40内の位置までの相対距離だけ偏向されることになる。TF40の基準位置をTF40の中心とすると、副副偏向器216によってTF40の中心からの所望するTF40内の位置までの相対距離だけ偏向されることになる。かかる副副偏向器216による偏向量が大きい場合と小さい場合とでドリフト量が異なり得る。そこで、実施の形態1では、評価パターン14の評価方向(例えば、y方向)と直交する方向(例えば、x方向)のダミーパターン12の位置と評価パターン14の位置とが同じ位置になるように、ダミーパターン12と評価パターン14との各ショット位置(x,y)を設定する。図4(a)の例では、y方向を評価方向とする場合なので、x=0(中心位置)の場合と、x=1/2(TF40のサイズの1/4だけ中心からx方向にずれた位置)の場合と、x≒1(TF40のサイズの1/2近くだけ中心からx方向にずれた位置:右端付近、例えば、x=0.9)の場合と、を示している。
図4(b)では、x,y方向のうち、x方向を時間依存のドリフト量の評価方向とする場合のパターンのショット位置の一例を示す。図4(b)の例では、x方向を評価方向とする場合なので、y=0(中心位置)の場合と、y=1/2(TF40のサイズの1/4だけ中心からy方向にずれた位置)の場合と、x≒1(TF40のサイズの1/2近くだけ中心からy方向にずれた位置:上端付近、例えば、y=0.9)の場合と、を示している。
セトリング時間T設定工程(S104)として、設定部62は、評価パターン14を露光(ショット)する場合のDACアンプ134のセトリング時間を設定する。セトリング時間は、予め複数の時間(例えばT1〜T5)を用意しておく。そして、ここでは、予め用意された複数の時間(T1〜T5)のうちの1つ(例えば時間T1)を設定する。かかるセトリング時間が1ショット目から2ショット目までのドリフト量を決定する時間となる。なお、評価パターン14を露光(ショット)する場合のDACアンプ134のセトリング時間は、評価パターンを1ショット目に照射した場合に位置ずれしないだけの十分な長さに設定されることは言うまでもない。言い換えれば、時間依存のドリフトとは無関係のセトリング時間の調整不良による位置ずれを排除することが可能な適正時間以上であることが必要となる。ここでは、DACアンプ134に設定される通常のセトリング時間をT1とすればよい。なお、ダミーパターン12を露光(ショット)する場合のDACアンプ134のセトリング時間もセトリング時間の調整不良による位置ずれを排除することが可能な適正時間以上に設定する。
TF設定工程(S110)として、設定部64は、描画(露光)するTF40を設定する。上述したように、TF40内には、パターン位置測定器で測定可能なサイズの評価パターン14が1つだけしか配置することができなくなってしまう。或いは、矩形パターンの基準位置(例えば、左下の角位置)が含まれるように描画しても、例えば縦横2×2個を超える数の矩形パターンを描画することが困難である。時間依存のドリフト量の推移を測定するためには、少なくとも数個の評価パターン14の位置を測定することが必要である。しかし、同じTF40内に数個の評価パターン14を描画(露光)することは困難である。そこで、実施の形態1では、2ショット目の評価パターン14を描画(露光)する際の1ショット目からの経過時間を可変にして時間毎に異なるTF40にダミーパターン12と評価パターン14を描画(露光)する。そのための複数のTF40を用意して、設定部64は、複数のTF40の中から今回描画(露光)するTF40を設定する。図4(a)と図4(b)の例では、2ショット目のセトリング時間TをT1からT5までの5段階に設定する例を示している。よって、図4(a)では、x=0のy方向評価方向に5つのTF40が示されている。同様に、x=1/2のy方向評価方向に5つのTF40が示されている。同様に、x≒1のy方向評価方向に5つのTF40が示されている。同様に、図4(b)では、y=0のx方向評価方向に5つのTF40が示されている。同様に、y=1/2のx方向評価方向に5つのTF40が示されている。同様に、y≒1のx方向評価方向に5つのTF40が示されている。
また、これらの工程と直列或いは並列に、描画制御部72による制御のもと、データ処理部74は、記憶装置140から描画データを読み出し、複数段のデータ変換を行ってチップデータに定義された各図形パターン(ダミーパターン12と評価パターン14)のショットデータを生成する。図4(a)に示すダミーパターン12と評価パターン14の組については、描画されるTF40が異なるが、図形パターン自体は同じ組み合わせなので、ダミーパターン12のショットデータは、位置データ以外は同じデータでよい。同様に、評価パターン14のショットデータは、位置データ以外は同じデータでよい。位置データについては、ショット位置(x,y)設定工程(S102)(或いは、後述するショット位置変更工程(S132))で設定された位置にする。図4(b)についても同様である。各ショットデータは、描画順に並べられる。或いは、チップデータに、予め、各TF40に配置されるダミーパターン12と評価パターン14をそれぞれ定義したデータを作成しておいても好適である。
ダミーパターン露光工程(S112)として、描画部150は、サイズの異なる複数の偏向領域のうち、TF40(最小偏向領域)内に基準位置(例えば、左下)が位置するように、レジストが塗布された試料101上に電子ビーム200を用いてレジストの解像限界未満のサイズのダミーパターン12を露光(描画)する。時間依存のドリフト量のy方向評価を行う場合、例えば、図4(a)に示す左端最上段に示されたTF40に、基準位置(例えば、左下)のx方向位置がx=0(TF中心)でy方向位置がTF40(最小偏向領域)内にある位置にダミーパターン12を露光する。
評価パターン露光工程(S114)として、描画部150は、ダミーパターン12の露光から予め設定された経過時間(例えばT1)が経過した時点で、TF40内に基準位置が位置し、かつダミーパターン12とは異なる位置に、レジストが塗布された試料101上に電子ビームを用いてレジストの解像限界以上のサイズの評価パターン14を露光(描画)する。例えば、図4(a)に示す左端最上段に示されたTF40に、基準位置(例えば、左下)のx方向位置がx=0(TF中心)でy方向位置がTF40(最小偏向領域)内にある位置に評価パターン14を露光する。
ここで、評価パターン14は、パターン位置測定器で測定可能なサイズで形成される。パターン位置測定器が、例えば、0.2μm以上の幅サイズで測定可能であるならば、評価パターン14は、1ショットあたり、例えば、0.20μm角以上のサイズで作成される。また、評価パターン14の評価方向のダミーパターン12のサイズは、評価パターン14と同様のサイズが用いられる。そして、評価方向と直交する方向のダミーパターン12のサイズは、レジストの解像限界未満のサイズが用いられると好適である。例えば、y方向評価を行う場合、ダミーパターン12のサイズは、評価方向と同じ例えばy方向サイズを評価パターン14と同様にすると好適である。逆にx方向サイズは、レジストの解像限界未満のサイズにする。これにより、偏向器205が、ダミーパターン12用のショットビームを成形した後、評価パターン14用のショットビームを成形する際、評価方向について別のサイズに成形し直す必要を無くすことができる。評価方向(例えばy方向)については同じ偏向電圧を維持していれば足りる。これにより、1ショット目と2ショット目との間で評価方向に対するビームの成形誤差を無くすことができる。また、位置偏向については、x方向に移動させずに、副副偏向器216によって評価方向(例えばy方向)にだけ移動させる。例えば、評価パターン14の1ショット分だけy方向(図4(a)では−y方向)に移動するように偏向する。言い換えれば、ダミーパターン12のy方向サイズ分だけy方向(図4(a)では−y方向)に移動するように偏向する。これにより、ダミーパターン12と評価パターン14とが重ならずに異なる位置に描画されることになる。但し、これに限るものではなく、同じTF40内に基準位置があればダミーパターン12からさらに離れるy方向位置に評価パターン14を描画しても良い。
判定工程(S116)として、判定部66は、2ショット目に使用されたDACアンプ134のセトリング時間Tが予め設定された最終セトリング時間Tnかどうかを判定する。セトリング時間Tがまだ最終セトリング時間Tnでなければ、セトリング時間T変更工程(S118)に進む。セトリング時間Tが最終セトリング時間Tnであれば判定工程(S130)に進む。
セトリング時間T変更工程(S118)として、設定部62は、評価パターン14を露光(ショット)する場合のDACアンプ134の次のセトリング時間を設定する。セトリング時間は、予め用意された複数の時間(T1〜T5)のうちのまだ設定していない1つ(例えば時間T2)を設定する。その後、TF設定工程(S110)に戻る。
TF設定工程(S110)として、設定部64は、描画(露光)する次のTF40を設定する。同じTF40内にさらに評価パターン14を描画するのではなく、別のTF40に次のダミーパターン12と評価パターン14との組合せを描画(露光)する。そのための次のTF40を設定する。図4(a)の例では、最上段の左から2列目のTF40を設定する。そして、ダミーパターン露光工程(S112)と評価パターン露光工程(S114)にて新たに設定されたTF40にダミーパターン12と評価パターン14を露光する。判定工程(S116)において、2ショット目に使用されたDACアンプ134のセトリング時間Tが予め設定された最終セトリング時間Tn(例えば、T5)になるまで、セトリング時間T変更工程(S118)から判定工程(S116)までの各工程を繰り返す。言い換えれば、セトリング時間T変更工程(S118)によって、2ショット目のDACアンプ134のセトリング時間を順次余分に加算していき、1ショット目から2ショット目が露光(描画)されるまでの経過時間を調整する。
判定工程(S130)として、判定部68は、評価方向と直交する方向のショット位置が予め設定された最終ショット位置かどうかを判定する。評価方向がy方向であれば、直交するx方向のショット位置が最終ショット位置xnかどうかを判定する。x方向のショット位置が最終ショット位置xnでなければ、ショット位置変更工程(S132)に進む。x方向のショット位置が最終ショット位置xnであれば現像工程(S140)に進む。
ショット位置変更工程(S132)として、設定部60は、記憶装置140から描画データを読み出し、描画データに定義された評価チップデータに従い、TF40内でのダミーパターンと評価パターンとの各ショット位置(x,y)を評価方向と直交する方向について変更する。例えば、現在、x=0に設定されていた場合には、x=1/2に変更する。そして、セトリング時間T設定工程(S104)に戻り、評価方向がy方向であれば、直交するx方向のショット位置が最終ショット位置xn(図4(a)の例では、x≒1)になるまで、ショット位置変更工程(S132)から判定工程(S130)までの各工程を繰り返す。そして、y方向評価のための各工程が終了した後、次に、x方向評価のためのショット位置変更工程(S132)から判定工程(S130)までの各工程をy方向のショット位置が最終ショット位置yn(図4(b)の例では、y≒1)になるまで、繰り返す。
x方向評価を行う場合、ダミーパターン12のサイズは、評価方向と同じ例えばx方向サイズを評価パターン14と同様にすると好適である。逆にy方向サイズは、レジストの解像限界未満のサイズにする。これにより、偏向器205が、ダミーパターン12用のショットビームを成形した後、評価パターン14用のショットビームを成形する際、評価方向について別のサイズに成形し直す必要を無くすことができる。評価方向(例えばx方向)については同じ偏向電圧を維持していれば足りる。これにより、1ショット目と2ショット目との間で評価方向に対するビームの成形誤差を無くすことができる。また、位置偏向については、y方向に移動させずに、副副偏向器216によって評価方向(例えばx方向)にだけ移動させる。例えば、評価パターン14の1ショット分だけx方向(図4(b)では+x方向)に移動するように偏向する。言い換えれば、ダミーパターン12のx方向サイズ分だけx方向(図4(b)では+x方向)に移動するように偏向する。これにより、ダミーパターン12と評価パターン14とが重ならずに異なる位置に描画されることになる。但し、これに限るものではなく、同じTF40内に基準位置があればダミーパターン12からさらに離れるx方向位置に評価パターン14を描画しても良い。
以上のように、電子ビーム200の2ショット間のセトリング時間Tを可変にすることにより経過時間を可変にしながら、他とは異なるTF40を用いてそれぞれ上述した各工程が実施される。そして、評価パターン14の評価方向と直交する方向のダミーパターン12の位置と評価パターン14の位置とが同じ位置になるようにダミーパターン12と評価パターン14は露光される。そして、評価パターン14の評価方向と直交する方向に、ダミーパターン12の位置と評価パターン14の位置とを同じ移動量だけ可変に移動させながら、他とは異なるTF40を用いてそれぞれ上述した各工程が実施される。
以上により、1ショット目のダミーパターン12と、1ショット目からそれぞれ異なる経過時間が経過した2ショット目の評価パターン14との組が、それぞれ異なるTF40に露光(露光)された評価基板となる試料101を得ることができる。いずれのTF40にしても1ショット目のダミーパターン12の露光(描画)により、当該TF40内の露光(描画)が開始されるので、1ショット目のダミーパターン12の露光(描画)時が、当該TF40内での時間依存のドリフトの基準時刻となる。よって、それぞれ異なるTF40に1ショット目からそれぞれ異なる経過時間が経過した2ショット目の評価パターン14が露光されることで、各時間における評価パターン14の位置を取得できる。
図5は、実施の形態1におけるダミーパターンと評価パターンとの組の他の一例を示す図である。上述した例では、評価方向のサイズについてダミーパターン12と評価パターン14とを同じサイズにする場合を示したがこれに限るものではない。予め成形誤差が小さいことがわかっている場合には、図5に示すように、ダミーパターン16の評価方向のサイズをレジストの解像限界未満にしても良い。
現像工程(S140)として、評価チップの各パターンが露光された試料101を描画装置100から搬出し、図示しない現像装置にて現像する。これにより、評価チップの各パターンが形成されたレジストパターンが形成できる。なお、ダミーパターン12は、レジストの解像限界未満のサイズなので現像しても解像されない。よって、試料101の描画対象となった各TF40にはダミーパターン12は形成されず、評価パターン14だけが形成されることになる。レジストがポジ型でもネガ型でも同様である。
位置測定工程(S142)として、パターン位置測定器を用いて、露光された各評価パターン14の位置を測定する。測定結果である測定データは、描画装置100の外部から描画装置100に入力され、記憶装置142に格納される。
位置ずれ量演算工程(S144)として、位置ずれ量演算部76は、評価パターン14の設計位置からの評価パターン14の測定位置の位置ずれ量を演算する。これにより、各セトリング時間についての位置ずれ量を取得できる。言い換えれば、1ショット目からの各経過時間が経過した2ショット目の位置ずれ量を取得できる。かかる位置ずれ量が、TF40内で生じる時間依存のドリフト量となる。出力部79は、外部I/F回路114を介して演算された位置ずれ量を出力する。
或いは、時間依存のドリフト量の推移を示してもよい。かかる場合、プロットデータ作成部78は、評価方向毎に、かつ、評価方向と直交する方向毎に、演算された位置ずれ量をプロットしてプロットデータを作成する。
図6は、実施の形態1における最小偏向領域内で生じる時間依存のドリフト量の推移の一例を示す図である。図6において、横軸に時間、縦軸にドリフト量を示す。図6では、例えば、y方向評価において、x=0(TF中心)の位置での結果の一例を示す。左端のプロットは、各TF40におけるダミーパターン12の位置ずれ量を示す。かかる位置ずれ量は時間依存とは無関係の位置ずれ量となる。セトリング時間T1〜T5が、T1からT5に向かって順に長くなる場合、左から2番目のプロット(1−2)は、セトリング時間T1の場合に評価パターン14の位置ずれ量を示す。続いて、左から3番目のプロット(2−2)は、セトリング時間T2の場合に評価パターン14の位置ずれ量を示す。続いて、左から4番目のプロット(3−2)は、セトリング時間T3の場合に評価パターン14の位置ずれ量を示す。続いて、左から5番目のプロット(4−2)は、セトリング時間T4の場合に評価パターン14の位置ずれ量を示す。続いて、左から6番目のプロット(5−2)は、セトリング時間T5の場合に評価パターン14の位置ずれ量を示す。各評価パターン14の位置ずれ量と、左端のプロットで示すダミーパターン12の位置ずれ量との差分が時間依存のドリフト量ΔLとなる。図6に示すように、時間依存のドリフト量ΔLは、最初は変化が大きく、徐々に小さくなる。
図7は、実施の形態1における最小偏向領域内で生じる時間依存のドリフト量の推移の他の一例を示す図である。図7において、横軸に時間、縦軸にドリフト量を示す。図7では、y方向評価において、x方向の異なる位置でのデータを重ねて表示した結果の一例を示す。評価方向が同じでも、評価方向と直交する方向での位置が異なるとドリフト量も変化する。図7の例では、x方向への偏向量(移動量)が小さい(ゼロ)の場合が最もドリフト量が小さく、x方向への偏向量が大きくなるに伴ってドリフト量が大きくなることがわかる。偏向量(移動量)が大きいほどドリフトし易いことを示している。
なお、x方向評価においても、ドリフト量の時間的推移の傾向は、図6及び図7と同様となる。
出力部79は、外部I/F回路114を介して、時間依存のドリフト量の推移が示されたプロットデータ或いはかかるプロットデータを近似した近似線データを出力する。例えば、図示しないモニタに表示しても良いし、図示しないプリンタによって紙等の媒体に印刷等をしてもよい。或いは、携帯可能なメモリ等に記憶させてもよい。
以上のように、実施の形態1によれば、多段偏向におけるTF40(最小偏向領域)内での時間依存のドリフト量を測定できる。さらに、2ショット目のセトリング時間を可変に調整することで時間依存のドリフト量の推移を得ることができる。
実施の形態2.
実施の形態1では、2ショット目のセトリング時間を可変に調整することでドリフト量が依存する時間を可変にしたが、これに限るものではない。実施の形態2では、ダミーパターン12のショット回数を可変にすることでドリフト量が依存する時間を可変にする場合について説明する。
図8は、実施の形態2における描画装置の構成を示す概念図である。図8において、設定部62、設定部64、及び判定部66の代わりに、設定部63、設定部65、判定部67、及び判定部70を配置する点以外は、図1と同様である。
よって、制御計算機ユニット110内には、設定部60、設定部63、設定部64、判定部67、判定部68、判定部70、描画制御部72、データ処理部74、位置ずれ量演算部76、プロットデータ作成部78、及び出力部79が配置される。設定部60、設定部63、設定部64、判定部67、判定部68、判定部70、描画制御部72、データ処理部74、位置ずれ量演算部76、プロットデータ作成部78、及び出力部79といった各機能は、プログラムといったソフトウェアで構成されても良い。或いは、電子回路等のハードウェアで構成されてもよい。或いは、これらの組み合わせであってもよい。設定部60、設定部63、設定部64、判定部67、判定部68、判定部70、描画制御部72、データ処理部74、位置ずれ量演算部76、プロットデータ作成部78、及び出力部79内に必要な入力データ或いは演算された結果はその都度メモリ112に記憶される。
図9は、実施の形態2における描画方法の要部工程を示すフローチャート図である。図9において、実施の形態2における描画方法は、ショット位置(x,y)設定工程(S102)と、ダミーショット回数S設定工程(S106)と、ダミーショットセトリング時間T’設定工程(S108)と、TF設定工程(S110)と、ダミーパターン露光工程(S113)と、評価パターン露光工程(S114)と、判定工程(S120)と、セトリング時間T’変更工程(S124)と、判定工程(S126)と、ダミーショット回数S変更工程(S128)と、判定工程(S130)と、ショット位置変更工程(S132)と、現像工程(S140)と、位置測定工程(S142)と、位置ずれ量演算工程(S144)と、いう一連の工程を実施する。また、以下、特に説明した点以外の内容は、実施の形態1と同様である。
ショット位置(x,y)設定工程(S102)の内容は、実施の形態1と同様である。
ダミーショット回数S設定工程(S106)として、設定部63は、ダミーパターン12を露光(ショット)する場合のショット回数Sを設定する。実施の形態2では、例えば、同じ位置に繰り返し(例えばS回:S≧1の整数)ダミーパターン12を連続して同じ位置に多重露光(ショット)することで、時間を経過させ、S+1回目のショットになる評価パターン14が露光されるまでの時間を調整する。繰り返しによるダミーパターン12を露光する回数Sの上限値Snは予め設定しておく。かかるダミーパターン12を露光する回数Sが1ショット目からS+1ショット目までのドリフト量を決定する時間となる。
ダミーショットセトリング時間T’設定工程(S108)として、設定部65は、1回目(或いは2回目)からS回目までのショットとなるダミーパターン12を露光(ショット)する場合のDACアンプ134のセトリング時間T’を設定する。セトリング時間は、予め複数の時間(例えばT1’〜Tk’)を用意しておく。そして、ここでは、予め用意された複数の時間(T1’〜Tk’)のうちの1つ(例えば時間T1’)を設定する。ダミーショット回数Sと合わせてダミーショットセトリング時間T’を調整することで、さらに時間を経過させ、S+1回目のショットになる評価パターン14が露光されるまでの時間を長くできる。
なお、ダミーパターン12を1回目(或いは2回目)からS回目までのショットで露光(ショット)する場合のDACアンプ134のセトリング時間は、ダミーパターン12を照射した場合に位置ずれしないだけの十分な長さに設定されると好適である。言い換えれば、時間依存のドリフトとは無関係のセトリング時間の調整不良による位置ずれを排除することが可能な適正時間以上であると好適である。但し、ダミーパターン12は、評価パターンと異なる解像されないので、多少の位置ずれがあっても構わない。よって、セトリング時間の調整不良による若干の位置ずれは許容しても構わない。実施の形態2では、評価パターン14を露光(ショット)する場合のDACアンプ134のセトリング時間Tを可変に設定することはしないが、適正時間に設定しておくことは言うまでもない。言い換えれば、時間依存のドリフトとは無関係のセトリング時間の調整不良による位置ずれを排除することが可能な適正時間であることが必要となる。
TF設定工程(S110)の内容は、実施の形態1と同様である。
ダミーパターン露光工程(S113)として、描画部150は、サイズの異なる複数の偏向領域のうち、TF40(最小偏向領域)内に基準位置(例えば、左下)が位置するように、レジストが塗布された試料101上に電子ビーム200を用いてレジストの解像限界未満のサイズのダミーパターン12をS回連続して同じ位置に多重露光(描画)する。時間依存のドリフト量のy方向評価を行う場合、例えば、図4(a)に示す左端最上段に示されたTF40に、基準位置(例えば、左下)のx方向位置がx=0(TF中心)でy方向位置がTF40(最小偏向領域)内にある位置にダミーパターン12をS回連続して同じ位置に多重露光(描画)する。これにより、1ショット目のダミーパターンを第1のダミーパターンとした場合に、第1のダミーパターン12と重なるように、レジストの解像限界未満のサイズの第2以上の複数のダミーパターン12が順に露光される。ダミーパターン12のショット回数を増やすことで、ダミーパターン12のショット回数が1回だけの場合よりも評価パターン14が露光されるまでの経過時間を長く調整できる。
評価パターン露光工程(S114)として、描画部150は、設定されたS回のダミーパターン12の露光により1回目のダミーパターン12の露光から予め設定された経過時間が経過した時点で、TF40内に基準位置が位置し、かつダミーパターン12とは異なる位置に、レジストが塗布された試料101上に電子ビームを用いてレジストの解像限界以上のサイズの評価パターン14をS+1回目のショットとして露光(描画)する。例えば、図4(a)に示す左端最上段に示されたTF40に、基準位置(例えば、左下)のx方向位置がx=0(TF中心)でy方向位置がTF40(最小偏向領域)内にある位置に評価パターン14を露光する。
判定工程(S120)として、判定部67は、ダミーパターン12のS回のショットに使用されたDACアンプ134のセトリング時間T’が予め設定された最終セトリング時間Tn’かどうかを判定する。セトリング時間T’がまだ最終セトリング時間Tn’でなければ、セトリング時間T’変更工程(S124)に進む。セトリング時間T’が最終セトリング時間Tn’であれば判定工程(S126)に進む。
セトリング時間T’変更工程(S124)として、設定部63は、S回のダミーパターン12を露光(ショット)する場合のDACアンプ134の次のセトリング時間を設定する。セトリング時間は、予め用意された複数の時間(T1’〜Tk’)のうちのまだ設定していない1つ(例えば時間T2’)を設定する。その後、TF設定工程(S110)に戻る。
TF設定工程(S110)として、設定部64は、描画(露光)する次のTF40を設定する。同じTF40内にさらに評価パターン14を描画するのではなく、別のTF40に次のダミーパターン12と評価パターン14との組合せを描画(露光)する。そのための次のTF40を設定する。図4(a)の例では、最上段の左から2列目のTF40を設定する。そして、ダミーパターン露光工程(S113)と評価パターン露光工程(S114)にて新たに設定されたTF40にS回のショットによるダミーパターン12と評価パターン14を露光する。判定工程(S120)において、ダミーパターン12のS回のショットに使用されたDACアンプ134のセトリング時間T’が予め設定された最終セトリング時間Tn’(例えば、Tk’)になるまで、セトリング時間T’変更工程(S124)から判定工程(S120)までの各工程を繰り返す。言い換えれば、セトリング時間T’変更工程(S124)によって、ダミーパターン12のS回のショットのDACアンプ134のセトリング時間を順次余分に加算していき、1ショット目から(S+1)ショット目が露光(描画)されるまでの経過時間を変化させる。
判定工程(S126)として、判定部70は、ダミーショット回数Sが予め設定された最大ダミーショット回数Sn’かどうかを判定する。ダミーショット回数Sがまだ最大ダミーショット回数Sn’でなければ、ダミーショット回数S変更工程(S128)に進む。ダミーショット回数Sが最大ダミーショット回数Sn’であれば判定工程(S130)に進む。
ダミーショット回数S変更工程(S128)として、設定部63は、ダミーパターン12を連続多重露光(ショット)する場合の次のダミーショット回数Sを設定する。ダミーショット回数Sは、予め用意された複数のダミーショット回数S(S1〜 Sn)のうちのまだ設定していない1つ(例えば時間S2)を設定する。その後、ダミーショットセトリング時間T’設定工程(S108)に戻る。そして、判定工程(S126)において、ダミーショット回数Sが予め設定された最大ダミーショット回数Sn’になるまで、ダミーショット回数S変更工程(S128)から判定工程(S126)までの各工程を繰り返す。
判定工程(S130)と、ショット位置変更工程(S132)と、現像工程(S140)と、位置測定工程(S142)と、位置ずれ量演算工程(S144)と、の各工程の内容は実施の形態1と同様である。
以上のように、実施の形態2では、経過時間は1ショット目の第1のダミーパターン12の露光から計測され、2ショット目以降(第2以上)の複数のダミーパターン12の露光回数を可変にすることにより経過時間を可変にしながら、他とは異なるTF40(最小偏向領域)を用いてそれぞれ上述した各工程が実施される。
なお、図9のフローチャートでは、ダミーパターン12のショット回数の可変による時間調整の他に、さらに、S回のダミーパターン12を露光(ショット)する場合のDACアンプ134のセトリング時間の可変による時間調整を行う場合を示したが、これに限るものではない。ダミーパターン12のショット回数の可変による時間調整だけでも良い。かかる場合には、ダミーショットセトリング時間T’設定工程(S108)と、判定工程(S120)と、セトリング時間T’変更工程(S124)と、を省略しても良い。かかる場合、ダミーショットセトリング時間T’は上述した適正時間に設定されることは言うまでもない。
出力部79は、外部I/F回路114を介して演算された位置ずれ量を出力する。
或いは、時間依存のドリフト量の推移を示してもよい。かかる場合、プロットデータ作成部78は、評価方向毎に、かつ、評価方向と直交する方向毎に、演算された位置ずれ量をプロットしてプロットデータを作成する。
図10は、実施の形態2における最小偏向領域内で生じる時間依存のドリフト量の推移の一例を示す図である。図10において、横軸に時間、縦軸にドリフト量を示す。実施の形態1では、時間調整が評価パターン14を露光する場合のセトリング時間により行われるので、その範囲は限界がある。そのため、図10に示すグラフのAで示す範囲のデータしか得られない。これに対して、実施の形態2では、ダミーパターン12のショット回数の可変による時間調整を行うので時間調整の幅を各段に大きくできる。その結果、図10に示すAで示す範囲のデータに続いて、さらにグラフのBで示す範囲のデータも得ることができる。そして、S回のダミーパターン12を露光(ショット)する場合のDACアンプ134のセトリング時間の可変による時間調整を行えば、さらに広範囲の時間でのドリフト量のデータを得ることができる。
以上のように、実施の形態2によれば、実施の形態1よりも広範囲の時間帯で多段偏向におけるTF40(最小偏向領域)内での時間依存のドリフト量の推移を得ることができる。
また、上述したように、1つの最小偏向領域内に、パターン位置測定器で測定可能なサイズで数個のショット図形を描画することが困難であるため、TF40(最小偏向領域)の偏向形状は、上位の偏向領域(例えばSF30)を偏向する偏向器(例えば、副偏向器209)およびかかる偏向器を駆動するDACアンプ(例えば、DACアンプユニット130)を用いてTF40の偏向形状を評価することが検討されている。かかる上位のDACアンプは偏向量が大きいためセトリング時間が長く設定されている。一方、TF40を偏向する副副偏向器216を駆動するDACアンプユニット134は偏向量が小さいためセトリング時間が短い。そのため実際にTF40を描画する際には短時間で描画されることになる。そのため、上位のDACアンプを使って得られる最小偏向領域の偏向形状は、上述した時間依存のドリフトの影響を受けていない状態となっている。よって、かかるTF40の偏向形状からはドリフト評価が困難であった。しかしながら、実施の形態1,2により、TF40の時間依存のドリフト量の測定が可能になるので、TF40の時間依存のドリフト評価を可能にできる。
以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。上述した例では、最小偏向領域のサイズが、数個のショットが困難であるサイズである場合を説明したが、これに限るものではない。最小偏向領域のサイズはもっと大きいサイズであっても本発明を適用できる。また、最小偏向領域に限らず、最小偏向領域よりも上位の偏向領域にも本発明を適用できる。また、上述した例では、3段偏向の場合を示したがこれに限るものではない。2段偏向であっても良いし、4段以上の多段偏向であってもよい。
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。例えば、描画装置100を制御する制御部構成については、記載を省略したが、必要とされる制御部構成を適宜選択して用いることは言うまでもない。
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての荷電粒子ビーム描画装置及び方法は、本発明の範囲に包含される。
10 描画領域
12,16 ダミーパターン
14 評価パターン
20 ストライプ領域
30 SF
40 TF
52,54 ショット位置
60 設定部
62,63 設定部
64,65 設定部
66,67 判定部
68,70 判定部
72 描画制御部
74 データ処理部
76 位置ずれ量演算部
78 プロットデータ作成部
79 出力部
100 描画装置
101 試料
102 電子鏡筒
103 描画室
105 XYステージ
110 制御計算機ユニット
112 メモリ
114 外部I/F回路
120 偏向制御回路
130,132,134 DACアンプユニット
140,142 記憶装置
150 描画部
160 制御部
200 電子ビーム
201 電子銃
202 照明レンズ
203 第1の成形アパーチャ
204 投影レンズ
205 偏向器
206 第2の成形アパーチャ
207 対物レンズ
208 主偏向器
209 副偏向器
212 ブランキング偏向器
214 ブランキングアパーチャ
216 副副偏向器
330 電子線
340 試料
410 第1のアパーチャ
411 開口
420 第2のアパーチャ
421 可変成形開口
430 荷電粒子ソース

Claims (5)

  1. サイズの異なる複数の偏向領域のうち、最小偏向領域内に基準位置が位置するように、レジストが塗布された試料上に荷電粒子ビームを用いて前記レジストの解像限界未満のサイズのダミーパターンを露光する工程と、
    前記ダミーパターンの露光から予め設定された経過時間が経過した時点で、前記最小偏向領域内に基準位置が位置し、かつ前記ダミーパターンとは異なる位置に、前記レジストが塗布された前記試料上に荷電粒子ビームを用いて前記レジストの解像限界以上のサイズの評価パターンを露光する工程と、
    露光された前記評価パターンの位置を測定する工程と、
    前記評価パターンの設計位置からの前記評価パターンの測定位置の位置ずれ量を演算する工程と、
    演算された位置ずれ量を出力する工程と、
    を備えたことを特徴とするビームドリフト量の測定方法。
  2. 前記評価パターンの評価方向の前記ダミーパターンのサイズは、前記評価パターンと同様のサイズが用いられ、前記評価方向と直交する方向の前記ダミーパターンのサイズは、前記レジストの解像限界未満のサイズが用いられることを特徴とする請求項1記載のビームドリフト量の測定方法。
  3. 前記評価パターンの評価方向と直交する方向の前記ダミーパターンの位置と前記評価パターンの位置とが同じ位置になるように前記ダミーパターンと前記評価パターンは露光され、
    前記評価パターンの評価方向と直交する方向に、前記ダミーパターンの位置と前記評価パターンの位置とを同じ移動量だけ可変に移動させながら、他とは異なる最小偏向領域を用いてそれぞれ前記各工程を実施することを特徴とする請求項1又は2記載のビームドリフト量の測定方法。
  4. 前記荷電粒子ビームのショット間のセトリング時間を可変にすることにより前記経過時間を可変にしながら、他とは異なる最小偏向領域を用いてそれぞれ前記各工程を実施することを特徴とする請求項1又は2記載のビームドリフト量の測定方法。
  5. 前記ダミーパターンを第1のダミーパターンとした場合に、
    前記第1のダミーパターンと重なるように、前記レジストの解像限界未満のサイズの第2以上の複数のダミーパターンが順に露光され、
    前記経過時間は前記第1のダミーパターンの露光から計測し、
    前記第2以上の複数のダミーパターンの露光回数を可変にすることにより前記経過時間を可変にしながら、他とは異なる最小偏向領域を用いてそれぞれ前記各工程を実施することを特徴とする請求項1又は2記載のビームドリフト量の測定方法。
JP2015086013A 2015-04-20 2015-04-20 ビームドリフト量の測定方法 Active JP6478782B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015086013A JP6478782B2 (ja) 2015-04-20 2015-04-20 ビームドリフト量の測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015086013A JP6478782B2 (ja) 2015-04-20 2015-04-20 ビームドリフト量の測定方法

Publications (2)

Publication Number Publication Date
JP2016207779A JP2016207779A (ja) 2016-12-08
JP6478782B2 true JP6478782B2 (ja) 2019-03-06

Family

ID=57490220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015086013A Active JP6478782B2 (ja) 2015-04-20 2015-04-20 ビームドリフト量の測定方法

Country Status (1)

Country Link
JP (1) JP6478782B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073732A (ja) * 2008-09-16 2010-04-02 Nuflare Technology Inc 荷電粒子ビーム描画装置の評価方法および荷電粒子ビーム描画装置
JP2010074039A (ja) * 2008-09-22 2010-04-02 Nuflare Technology Inc 描画エラーの検出方法及び描画方法
JP5819144B2 (ja) * 2011-09-09 2015-11-18 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置の評価方法及び荷電粒子ビーム描画装置

Also Published As

Publication number Publication date
JP2016207779A (ja) 2016-12-08

Similar Documents

Publication Publication Date Title
JP6057797B2 (ja) セトリング時間の取得方法
JP6043125B2 (ja) セトリング時間の取得方法
JP4714591B2 (ja) パターン面積値算出方法、近接効果補正方法及び荷電粒子ビーム描画方法
JP5616674B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5977629B2 (ja) 荷電粒子ビームの偏向形状誤差取得方法及び荷電粒子ビーム描画方法
JP6087154B2 (ja) 荷電粒子ビーム描画装置、試料面へのビーム入射角調整方法、および荷電粒子ビーム描画方法
TWI613524B (zh) 帶電粒子束描繪裝置及帶電粒子束描繪方法
JP5607413B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP6515835B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP6262007B2 (ja) セトリング時間の取得方法
JP6869695B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP6478782B2 (ja) ビームドリフト量の測定方法
JP2016149400A (ja) 荷電粒子ビーム描画装置の評価方法
JP5469531B2 (ja) 描画データの作成方法、荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
JP2012109483A (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2011066236A (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5871557B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP6174862B2 (ja) 荷電粒子ビーム描画方法および荷電粒子ビーム描画装置
JP2012195571A (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2008042173A (ja) 荷電粒子ビーム描画方法、荷電粒子ビーム描画装置及びプログラム
JP5687838B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2020205378A (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2014045151A (ja) セトリング時間の設定方法、荷電粒子ビーム描画方法、および荷電粒子ビーム描画装置
JP2020009887A (ja) 照射量補正量の取得方法、荷電粒子ビーム描画方法、及び荷電粒子ビーム描画装置
JP2015215269A (ja) パターン位置測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R150 Certificate of patent or registration of utility model

Ref document number: 6478782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250