JP6478455B2 - Water sterilization method - Google Patents

Water sterilization method Download PDF

Info

Publication number
JP6478455B2
JP6478455B2 JP2013262680A JP2013262680A JP6478455B2 JP 6478455 B2 JP6478455 B2 JP 6478455B2 JP 2013262680 A JP2013262680 A JP 2013262680A JP 2013262680 A JP2013262680 A JP 2013262680A JP 6478455 B2 JP6478455 B2 JP 6478455B2
Authority
JP
Japan
Prior art keywords
concentration
organic
residual chlorine
potential
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013262680A
Other languages
Japanese (ja)
Other versions
JP2015117216A (en
Inventor
若子 佐藤
若子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2013262680A priority Critical patent/JP6478455B2/en
Publication of JP2015117216A publication Critical patent/JP2015117216A/en
Application granted granted Critical
Publication of JP6478455B2 publication Critical patent/JP6478455B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、循環冷却水系などの水系の殺菌方法に係り、特に有機系殺菌剤と無機系酸化剤とを併用した水系の殺菌方法に関する。   The present invention relates to a method of sterilizing a water system such as a circulating cooling water system, and more particularly to a method of sterilizing a water system using an organic disinfectant and an inorganic oxidizing agent in combination.

冷却水は、種々の産業分野、例えば、石油化学産業や鉄鋼産業などにおいて、間接的又は直接的に被処理物を冷却する目的で、あるいは、ビルの空調や冷暖房及びその関連装置などに多量に利用されている。さらに、水資源の不足や有効利用の観点から、冷却水の使用量を削減するために、例えば、開放循環冷却水系の高濃縮運転における強制ブロー量の削減など、冷却水の高度利用が行われている。このように冷却水を高度に利用した場合には、溶存塩類や栄養源の濃縮などにより、循環冷却水の水質が悪化し、細菌、黴、藻類などの微生物群に、土砂、塵埃などが混ざり合って形成されるスライムが発生し、熱交換器における熱効率の低下や通水の悪化を引き起こし、またスライム付着下部において、機器や配管の局部腐食を誘発する。   Cooling water is used to cool objects indirectly or directly in various industrial fields, such as the petrochemical industry and the steel industry, or in large amounts to air conditioning, heating and cooling of buildings and related equipment, etc. It's being used. Furthermore, in order to reduce the amount of cooling water used from the viewpoint of lack of water resources and effective utilization, for example, advanced use of cooling water is carried out, such as reduction of forced blow amount in high concentration operation of open circulating cooling water system. ing. Thus, when cooling water is used at a high level, the quality of circulating cooling water deteriorates due to the concentration of dissolved salts and nutrient sources, etc., and soil, dust, etc. are mixed with microbes such as bacteria, moss and algae. A slime is formed together, which causes a decrease in heat efficiency and water flow in the heat exchanger, and also causes local corrosion of equipment and piping in the lower portion of the slime.

そこで、このようなスライムによる障害を防止するために、種々の抗菌剤、例えば、次亜塩素酸などの酸化性抗菌剤などが用いられている。冷却水の高度利用がさらに進んだ場合には、スライムによる障害が激しくなり、抗菌剤の必要添加濃度が上昇する。しかし、酸化性抗菌剤の場合は、金属腐食を生ずる危険性が増すので、添加濃度を増加させることはできない。また、酸化性抗菌剤は、酸化力が強くスライムに対する浸透力に乏しいために、いったんスライム障害が発生すると、その進行を阻止することは極めて困難である。   Therefore, in order to prevent such slime-induced damage, various antibacterial agents such as oxidizing antibacterial agents such as hypochlorous acid are used. If the advanced use of cooling water is further advanced, the slime-induced damage becomes severe, and the required concentration of the additive increases. However, in the case of oxidizing antimicrobial agents, the added concentration can not be increased because the risk of causing metal corrosion is increased. In addition, because the oxidizing antimicrobial agent is strong in oxidizing power and poorly permeable to slime, once slime injury occurs, it is extremely difficult to prevent its progress.

有機系抗菌剤の場合は、酸化力がないか又は極めて低く、スライムに対する浸透力が強いために、いったんスライム障害が発生した場合でもその進行を阻止することは比較的容易である。しかし、選定する薬剤によって、細菌、黴、藻類などのスライムの構成要素に対して有効なスペクトルが異なる。また、素材コストが酸化性抗菌剤と比較して遥かに高価である。   In the case of an organic antimicrobial agent, it is relatively easy to prevent the progress of slime injury even if it occurs once, because the ability to penetrate slime is low due to its lack of or extremely low oxidizing power. However, depending on the drug selected, the effective spectrum for components of slime such as bacteria, fungi and algae differs. Also, the material cost is much more expensive compared to the oxidizing antibacterial agent.

このために、スライム障害の激しい条件においても、細菌、黴、藻類などのあらゆるスライムの構成要素に対して有効であり、低コストでスライムを防除することができるスライム防除方法及び防除剤が求められている。   For this reason, a slime control method and control agent that is effective against all slime components such as bacteria, fungi and algae even under conditions with severe slime damage and that can control slime at low cost is required. ing.

特許文献1,2には、冷却水系に酸化性抗菌剤とイソチアゾロン化合物を添加することにより、各薬剤の相乗効果を発揮させ、冷却水系のスライムの付着を抑制する方法が記載されている。   Patent Documents 1 and 2 disclose a method of exerting a synergetic effect of each agent by adding an oxidizing agent and an isothiazolone compound to a cooling water system, and suppressing adhesion of slime in the cooling water system.

特許3873534Patent 3873534 特開2006−22097Japanese Patent Application Publication No. 2006-22097

有機系殺菌剤と無機系酸化剤とを併用すると、殺菌速度が大きく、殺菌効果に優れるが、無機系酸化剤を多くすると金属材に腐食が生じるので、なるべく添加量が少ないことが望まれる。   When an organic bactericidal agent and an inorganic oxidizing agent are used in combination, the bactericidal rate is high and the bactericidal effect is excellent. However, when the inorganic oxidizing agent is increased, the metal material is corroded, so it is desirable that the addition amount be as small as possible.

本発明は、有機系殺菌剤と無機系酸化剤とを併用する水系の殺菌方法において、金属材の腐食を抑制することができると共に、有機系殺菌剤の使用量を少なくしても優れた殺菌効果を得るようにすることを目的とする。   The present invention is a method of sterilizing a water system using an organic bactericide and an inorganic oxidizing agent in combination, which can suppress corrosion of a metal material and is excellent in sterilization even if the amount of the organic bactericidal agent used is reduced. The purpose is to get the effect.

本発明の水系の殺菌方法は、水系に有機系殺菌剤と無機系酸化剤とを添加する水系の殺菌方法において、該有機系殺菌剤と無機系酸化剤とを間欠的に添加する水系の殺菌方法であって、該有機系殺菌剤がジクロログリオキシム及び/又はジブロモニトロエタノールであり、該無機系酸化剤と有機系殺菌剤との添加頻度が24時間に1時間未満であり、1回の添加とその後の添加との間隔である非添加時間が24〜100時間であることを特徴とするものである。 A method of sterilizing a water system according to the present invention is a method of sterilizing a water system in which an organic bactericide and an inorganic oxidizing agent are added to the water system, wherein the organic bactericide and the inorganic oxidizing agent are intermittently added to the water system. The method, wherein the organic bactericide is dichloroglyoxime and / or dibromonitroethanol , the addition frequency of the inorganic oxidizing agent and the organic bactericidal agent is less than 1 hour in 24 hours, It is characterized in that the non-addition time, which is the interval between addition and subsequent addition, is 24 to 100 hours.

本発明では、有機系殺菌剤と無機系酸化剤とを添加する時期と時期の間に、水系の残留塩素が実質的に検出されない非残留期間を設けることが好ましい。   In the present invention, it is preferable to provide a non-remaining period in which residual chlorine in the water system is not substantially detected, between the time of adding the organic biocide and the inorganic oxidizing agent.

また、本発明では、無機系酸化剤及び有機系殺菌剤の添加間隔を24〜100hとすることが好ましい。   Moreover, in this invention, it is preferable to set the addition space | interval of an inorganic type oxidizing agent and an organic type bactericidal agent to 24-100 h.

本発明者が微生物燃料電池を用いて種々研究を重ねた結果、有機系殺菌剤と無機系酸化剤とを併用する水系の殺菌方法にあっては、両剤を間欠添加すると、添加量を少なくしても十分な殺菌効果が得られることが認められた。即ち、本発明で用いる有機系殺菌剤と無機系酸化剤とを併用して水系に添加した場合、添加を中断して水系に薬剤濃度がなくなった後も菌の代謝を阻害し続け、殺菌効果が持続することが見出された。   As a result of various researches conducted by the inventor using a microbial fuel cell, in the method of sterilizing a water system using an organic bactericide and an inorganic oxidizing agent in combination, the addition amount of both agents is reduced by intermittent addition. However, it was found that a sufficient bactericidal effect could be obtained. That is, when the organic bactericide used in the present invention and the inorganic oxidizing agent are added to the water system in combination, the addition is discontinued and the metabolism of the bacteria continues to be inhibited even after the drug concentration disappears in the water system. Was found to last.

この理由については、微生物燃料電池を用いた評価結果より、次のように推察される。   About this reason, it is guessed as follows from the evaluation result using a microbial fuel cell.

無機系酸化剤と有機系殺菌剤は作用点、作用機構が異なり、微生物燃料電池の電位阻害パターンが異なる。結合型塩素は薬剤接触とほぼ同時に急激な電位上昇がおこり、生物のエネルギー生産系の阻害に即効性があることを示す。しかし、残留しなくなると急激に効果が低下する。これは、エネルギー生産系にかかわる物質が破壊されていないためと推定される。   The inorganic oxidizing agent and the organic bactericidal agent have different action points and action mechanisms, and have different potential inhibition patterns of the microbial fuel cell. Bonded chlorine causes a rapid rise in potential almost simultaneously with drug contact, indicating that it has an immediate effect on the inhibition of biological energy production systems. However, if it does not remain, the effect drops sharply. It is presumed that this is because the substances involved in the energy production system are not destroyed.

一方、有機系殺菌剤は有効成分が微生物と接触すると、ゆっくりと電位上昇が起こる。これは、エネルギー生産系の阻害がゆっくりとおこっていることを示す。そして微生物燃料電池内の薬剤残留がなくなると、ゆっくりと電位回復が起こる。これは、エネルギー生産にかかわる物質の回復に時間がかかることを示している。無機系酸化剤と有機系殺菌剤とを併用すると、急激な電位上昇がおこり、上昇レベルも大きい。薬剤の残留がなくなると回復はゆっくりと起こる。   On the other hand, when the active ingredient comes in contact with the microorganism, the potential of the organic bactericidal agent slowly rises. This indicates that the inhibition of the energy production system is taking place slowly. And when the drug remains in the microbial fuel cell, potential recovery occurs slowly. This indicates that recovery of substances involved in energy production takes time. When an inorganic oxidizing agent and an organic bactericidal agent are used in combination, a rapid rise in potential occurs and the rising level is also large. Recovery occurs slowly when the drug remains.

これらの無機系酸化剤と有機系殺菌剤との化学的な性質の観点での違いは、無機系酸化剤(以下、酸化系増殖抑制剤又は単に酸化剤ということがある。)は酸化還元電位を変化させ、有機系殺菌剤はこの変化を引き起こさない点がある。   The difference in the chemical properties between these inorganic oxidizing agents and organic bactericidal agents is that the inorganic oxidizing agents (hereinafter sometimes referred to as oxidation type growth inhibitors or simply oxidizing agents) have a redox potential. There is a point that organic germicides do not cause this change.

これらの結果から推察されるのは、無機系酸化剤は細胞内の酸化還元電位勾配に影響を与え、電子伝達系のエネルギー生産部分を阻害しているが、このときエネルギー生産系の物質は不可逆的な科学的・物理的変化を受けないということである。そのため、酸化還元電位に影響する物質がなくなれば微生物は急速に機能を回復する。一方、有機系殺菌剤はエネルギー生産系にかかわる物質を、不可逆的に阻害するため、回復には物質生産を必要とするので時間がかかる。   It is inferred from these results that inorganic oxidants affect the redox potential gradient in cells and inhibit the energy production part of the electron transfer system, but at this time the substances of the energy production system are irreversible Not be subject to scientific and physical changes. Therefore, when there is no substance that affects the redox potential, the microorganism rapidly recovers its function. On the other hand, since organic biocides irreversibly inhibit substances involved in energy production systems, recovery takes time because substance production is required.

無機系酸化剤と有機系殺菌剤とを併用すると、酸化剤が代謝を停止させ、有機系殺菌剤の作用点への到達、及び化学反応が効率よく行われる。微生物機能の回復には物質の生産が必要なので、代謝機能の低下が大きい分回復に時間を要する。このようなメカニズムで、即効性のある殺菌がなされ、残留しない期間も効果持続期間が続く。さらに、細胞内で分解される殺菌成分も抑制されるので必要とされる薬剤濃度も低濃度となる。   When the inorganic oxidizing agent and the organic bactericidal agent are used in combination, the oxidizing agent stops the metabolism, and the reaching of the action point of the organic bactericidal agent and the chemical reaction are efficiently performed. Since recovery of the microbial function requires production of a substance, it takes a long time to recover because the decrease in metabolic function is large. By such a mechanism, immediate-acting sterilization is made, and the duration of effect continues even for the period which does not remain. Furthermore, since the bactericidal component that is degraded in cells is also suppressed, the required drug concentration is also low.

本発明では、無機系酸化剤が残留しない期間を設けるように添加することにより、腐食性も抑制される。   In the present invention, corrosiveness is also suppressed by adding it so as to provide a period in which the inorganic oxidizing agent does not remain.

本発明によると、有機系殺菌剤及び無機系酸化剤の添加量を少なくしても優れた殺菌効果が期待できるところから、経済性の向上を図ることができる。また、金属表面水系(例えば冷却塔)にレジオネラが検出された場合でも、本法によれば、その殺菌の速攻性と低腐食性によって迅速に対処することができる。   According to the present invention, since the excellent bactericidal effect can be expected even if the addition amount of the organic bactericidal agent and the inorganic type oxidizing agent is reduced, the economic efficiency can be improved. In addition, even if Legionella is detected in a metal surface water system (for example, a cooling tower), according to this method, rapidity and low corrosion of its sterilization can be quickly dealt with.

本発明では、無機系酸化剤を添加するので即効性があり、また有機系殺菌剤を添加するので、水系に無機系酸化剤がなくなっても効果が持続し、安定した処理を行うことができる。また、目的とする系以外の系の殺菌を回避でき、排水系の活性汚泥や、環境への負荷低減を図ることができる。   In the present invention, since the inorganic oxidizing agent is added, there is an immediate effect, and since the organic bactericidal agent is added, the effect can be sustained even if the inorganic oxidizing agent disappears in the water system, and stable processing can be performed. . In addition, sterilization of systems other than the target system can be avoided, and the load on activated sludge in the drainage system and the environment can be reduced.

実施例を説明するフロー図である。It is a flowchart explaining an Example. 実施例を説明するフロー図である。It is a flowchart explaining an Example. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result.

以下本発明について詳細に説明する。   The present invention will be described in detail below.

本発明が処理対象とする水系としては、冷却水系、紙パルプ製造水系、スクラバー水系などが例示される。   As a water system to be treated by the present invention, a cooling water system, a paper pulp manufacturing water system, a scrubber water system and the like are exemplified.

本発明で用いる無機系酸化剤としては、例えば、塩素ガス、次亜塩素酸ナトリウム、塩素化イソシアヌル酸などの塩素系酸化剤、ジブロモヒダントイン、ブロモクロロヒダントインなどの臭素剤、過ヨウ素酸カリウム、メタ過ヨウ素酸ナトリウム、パラ過ヨウ素酸ナトリウム、ヨウ素、ヨウ素酸カリウムなどのヨウ素剤、過酸化水素、オゾンなどを挙げることができるが、次亜塩素酸ナトリウムが好適である。   Examples of inorganic oxidizing agents used in the present invention include chlorine gas, chlorinated hypochlorite such as sodium hypochlorite, chlorinated isocyanuric acid, brominating agent such as dibromohydantoin and bromochlorohydantoin, potassium periodate, meta An iodine agent such as sodium periodate, sodium paraperiodate, iodine, potassium iodate, hydrogen peroxide, ozone and the like can be mentioned, with sodium hypochlorite being preferred.

有機系殺菌剤としては、イソチアゾリン化合物、ジクロログリオキシム、ジブロモニトロエタノールのいずれか、またはこれらの組合わせを用いるのが好ましい。   It is preferable to use any of an isothiazoline compound, dichloroglyoxime, dibromonitroethanol, or a combination thereof as the organic germicide.

イソチアゾリン化合物としては、例えば、2−メチル−4−イソチアゾリン−3−オン、2−エチル−4−イソチアゾリン−3−オン、2−n−オクチル−4−イソチアゾリン−3−オン、5−クロロ−2−メチル−4−イソチアゾリン−3−オン、5−クロロ−2−エチル−4−イソチアゾリン−3−オン、5−クロロ−2−t−オクチル−4−イソチアゾリン−3−オン、4,5−ジクロロ−2−n−オクチル−4−イソチアゾリン−3−オン、4,5−ジクロロ−2−シクロヘキシル−4−イソチアゾリン−3−オンなどを挙げることができる。これらのイソチアゾロン化合物は、1種を単独で用いることができ、あるいは、2種以上を組み合わせて用いることもできる。また、イソチアゾリン化合物としては、上述のイソチアゾリン化合物と塩化マグネシウム、硝酸マグネシウム、塩化銅、硝酸銅、塩化カルシウムなどとの錯化合物を用いてもよい。   As an isothiazoline compound, for example, 2-methyl-4-isothiazolin-3-one, 2-ethyl-4-isothiazolin-3-one, 2-n-octyl-4-isothiazolin-3-one, 5-chloro-2 -Methyl-4-isothiazolin-3-one, 5-chloro-2-ethyl-4-isothiazolin-3-one, 5-chloro-2-t-octyl-4-isothiazolin-3-one, 4,5-dichloromethane -2-n-octyl-4-isothiazolin-3-one, 4,5-dichloro-2-cyclohexyl-4-isothiazolin-3-one and the like can be mentioned. One of these isothiazolone compounds can be used alone, or two or more of them can be used in combination. In addition, as the isothiazoline compound, a complex compound of the above-described isothiazoline compound and magnesium chloride, magnesium nitrate, copper chloride, copper nitrate, calcium chloride or the like may be used.

本発明では、対象水系に対して、有機系殺菌剤(好ましくはイソチアゾリン化合物、ジクロログリオキシド、及びジブロモニトロエタノールのいずれか1種または2種以上)、無機酸化剤(好ましくは次亜塩素酸ナトリウム)を別々に、あるいは、事前に混合したのち添加する。酸化剤の安定化剤として窒素化合物(好ましくはグリシン、ポリペプトン、及びスルファミン酸のいずれか1種または2種以上)を別々にあるいは事前に混合して添加してもよい。   In the present invention, an organic biocide (preferably one or more of an isothiazoline compound, dichloroglyoxide, and dibromonitroethanol), an inorganic oxidizing agent (preferably sodium hypochlorite), is preferably added to the target aqueous system. ) Are added separately or after mixing in advance. A nitrogen compound (preferably, any one or more of glycine, polypeptone and sulfamic acid) may be added separately or in combination as a stabilizer of the oxidizing agent.

このとき、好ましくは、殺菌成分である有機系殺菌剤と増殖抑制成分である無機系酸化剤とが同時に残留する期間(残留期間)と両者とも残留しない非残留期間ができるように間欠的に添加する。この非残留期間においては、残留塩素が実質的に検出されないようにするのが好ましい。通常、残留塩素の各測定法には、測定下限値があり、残留していないことの確認には、測定下限値以下であることを確認すれば良い。例えば、DPD法における残留塩素の測定下限値は0.1mg/Lである。   At this time, preferably, the organic bactericidal agent as the bactericidal component and the inorganic oxidizing agent as the growth inhibiting component are added intermittently so that there is a period (residual period) in which both the organic bactericide and the inorganic oxidizing agent as the growth suppressing component simultaneously remain. Do. During this non-remaining period, it is preferable that substantially no residual chlorine be detected. Usually, each measurement method of residual chlorine has a measurement lower limit, and it may be confirmed that it is not more than the measurement lower limit to confirm that it does not remain. For example, the measurement lower limit value of residual chlorine in the DPD method is 0.1 mg / L.

スライムコントロール効果は期待できないが、腐食に影響がない残留塩素濃度としては0.1mg/L未満が目安であり、実用上は0.1mg/L未満となる様に管理すれば良い。無機系酸化剤の添加により検出される残留塩素はスライムコントロールに有用であるが、本発明によれば、連続的に残留塩素が検出されなくても、スライムコントロール効果が維持される。   Although a slime control effect can not be expected, a residual chlorine concentration which does not affect corrosion is less than 0.1 mg / L as a standard, and in practice, it may be controlled to be less than 0.1 mg / L. The residual chlorine detected by the addition of the inorganic oxidizing agent is useful for slime control, but according to the present invention, the slime control effect is maintained even if the residual chlorine is not detected continuously.

残留塩素濃度は遊離残留塩素濃度を超えることはなく、残留塩素濃度を一定値以下に保てば、遊離残留塩素濃度はそれ以下の値となる。遊離残留塩素は残留塩素よりも腐食性が高く、遊離塩素濃度を一定値以下にしない場合、残留塩素濃度で管理すれば目標が達成できる。   The residual chlorine concentration does not exceed the free residual chlorine concentration, and if the residual chlorine concentration is kept below a certain value, the free residual chlorine concentration becomes a value lower than that. Free residual chlorine is more corrosive than residual chlorine, and if the free chlorine concentration is not kept below a certain value, the target can be achieved if the residual chlorine concentration is managed.

無機系酸化剤と有機系殺菌剤との添加頻度は24時間に1時間未満、例えば24時間に0.1〜0.9時間特に0.25〜0.5時間程度とするのが好ましい。添加時における有機系殺菌剤の添加量は1〜30mg/L特に3〜10mg/L程度が好ましく、無機系酸化剤の場合は1〜50mg/LasCl特に3〜10mg/LasCl程度が好ましい。1回の添加とその後の添加との間隔(非添加時間)は24〜100h特に25〜72h程度が好ましい。
無機系酸化剤と有機系殺菌剤とは同じタイミングで同時に添加するだけでなく、それらを別のタイミングで添加しても良い。
The addition frequency of the inorganic oxidizing agent and the organic bactericidal agent is preferably less than 1 hour in 24 hours, for example, about 0.1 to 0.9 hours, particularly about 0.25 to 0.5 hours in 24 hours. The addition amount of the organic fungicides is preferably about 1 to 30 mg / L, especially 3-10 mg / L at the time of the addition, 2 about 1~50mg / LasCl 2 particularly 3~10mg / LasCl For inorganic oxidizing agent is preferred. The interval between one addition and the subsequent addition (non-addition time) is preferably 24 to 100 h, particularly about 25 to 72 h.
The inorganic oxidizing agent and the organic bactericidal agent may not only be added simultaneously at the same timing, but also they may be added at different timings.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。なお、以下の実施例及び比較例において、濃度を示す「%」は「重量%」を表わす。   Hereinafter, the present invention will be more specifically described by way of examples and comparative examples. In the following Examples and Comparative Examples, "%" indicating concentration represents "% by weight".

[実施例1]
<有機系殺菌剤(イソチアゾリン化合物)、窒素化合物(グリシン)及び無機系酸化剤(次亜塩素酸ナトリウム)の併用による殺菌効果の実験>
<方法>
300mL容三角フラスコに100mLの滅菌水を作成した。この滅菌水に目的濃度の下記スライムコントロール剤を添加し、培養した下記レジオネラ標準菌株懸濁液10mLを添加した。一定温度、所定時間振とうしたのち、増殖能力がある菌数を計測した。操作はすべてP2クリーンベンチ内で行い、培養はP2インキュベーターで行った。
Example 1
<Test of bactericidal effect by combined use of organic bactericidal agent (isothiazoline compound), nitrogen compound (glycine) and inorganic oxidizing agent (sodium hypochlorite)>
<Method>
100 mL of sterile water was prepared in a 300 mL Erlenmeyer flask. The following slime control agent of the target concentration was added to this sterile water, and 10 mL of the following Legionella standard strain suspension cultured was added. After shaking at a constant temperature for a predetermined time, the number of bacteria having growth ability was counted. All manipulations were performed in a P2 clean bench, and culture was performed in a P2 incubator.

スライムコントロール剤:食品添加用NaClO溶液、
5−クロロ−2−メチル−4−イソチアゾリン−3−オン(
Cl−MIT)1%とグリシン1%溶液
Slime control agent: NaClO solution for food addition
5-chloro-2-methyl-4-isothiazolin-3-one (
Cl-MIT) 1% and glycine 1% solution

濃度測定はハックポケット残留塩素計を用い、DPD試薬測定した。
遊離残留塩素濃度値はDPDfree測定試薬で行い、撹拌後、60秒静置して測定した。
残留塩素濃度はDPDtotal測定試薬で行い、撹拌後、3min静置して測定した。
5−クロロ−2−メチル−4−イソチアゾリン−3−オンの定量は液体クロマトグラフィーにより実施した。実測しなかった場合は設定値で示した。
滅菌水中の遊離残留塩素濃度、残留塩素濃度はレジオネラ添加後変化したので、レジオネラサンプリング時の残留濃度を採用した。
The concentration was measured using a hack pocket residual chlorine meter and DPD reagent.
The free residual chlorine concentration value was measured with DPDfree measuring reagent, and after stirring, it was measured by standing for 60 seconds.
The residual chlorine concentration was measured with DPDtotal measuring reagent, and after stirring, it was measured by leaving it for 3 minutes.
The quantification of 5-chloro-2-methyl-4-isothiazolin-3-one was carried out by liquid chromatography. If not measured, it is indicated by the set value.
The concentration of free residual chlorine and the concentration of residual chlorine in sterile water changed after addition of Legionella, so the residual concentration at the time of Legionella sampling was adopted.

レジオネラ標準菌株はLegionella pneumophila GIFU9134(血清型sero1)である。あらかじめ、BCYEα培地で培養し、滅菌水に懸濁して、試験管用吸光度計で660nmの吸光度0.1に合わせた液を菌液として使用した。
スライムコントロール剤との接触条件は30℃、100rpm、0分、6分、27分、60分とした。
The Legionella standard strain is Legionella pneumophila GIFU9134 (serotype sero1). A liquid previously cultured in BCYEα medium, suspended in sterile water, and adjusted to an absorbance of 0.1 at 660 nm with a test tube absorbance meter was used as a bacterial solution.
The contact conditions with the slime control agent were 30 ° C., 100 rpm, 0 minutes, 6 minutes, 27 minutes, and 60 minutes.

レジオネラの計測のために、三角フラスコから10mlをサンプリングし、チオ硫酸ナトリウム添加撹拌後、100μLをBCYEα培地の表面に塗抹した。37℃で培養し、7日〜10日後のコロニーを計測した。0分の値はあらかじめスライムコントロール剤を添加した液に、菌添加後、撹拌し、即座にサンプリングしたときの値を用いた。ブランクはスライムコントロール剤を添加しないで同様の操作を行った。   For the measurement of Legionella, 10 ml was sampled from an Erlenmeyer flask, and 100 μL was smeared on the surface of BCYEα medium after stirring with sodium thiosulfate. The cells were cultured at 37 ° C., and colonies after 7 to 10 days were counted. The value for 0 minutes was obtained by adding the bacteria to the solution to which the slime control agent had been added in advance, stirring, and sampling immediately. The blank was subjected to the same operation without the addition of the slime control agent.

その結果、表1の通り、Cl−MIT(19mg/L)と残留塩素(5〜10mg/LasCl)の併用で、遊離残留塩素が0.1mg/L未満の条件で、60分で99.9%の殺菌に至った。このときの遊離残留塩素濃度は0.1mg/L未満であったので、遊離残留塩素による殺菌ではないと考えられる。 As a result, as shown in Table 1, the combined use of Cl-MIT (19 mg / L) and residual chlorine (5 to 10 mg / LasCl 2 ) and free residual chlorine of less than 0.1 mg / L for 99 minutes in 60 minutes. It reached 9% sterilization. Since the free residual chlorine concentration at this time was less than 0.1 mg / L, it is considered not to be sterilization by free residual chlorine.

Cl−MIT(19mg/L)と残留塩素(5〜10mg/LasCl)の併用で、遊離残留塩素が0.1mg/L未満の条件で、27分で95%以上の殺菌を示した。 The combined use of Cl-MIT (19 mg / L) and residual chlorine (5 to 10 mg / LasCl 2 ) showed 95% or more sterilization in 27 minutes under the condition of free residual chlorine of less than 0.1 mg / L.

[比較例1−1]
スライムコントロール剤として5−クロロ−2−メチル−4−イソチアゾリン−3−オン(Cl−MIT)1%とグリシン1%溶液を用い、スライムコントロール剤との接触を30℃、100rpm、27分としたこと以外は実施例1と同一の試験を行った。
Comparative Example 1-1
A 1% solution of 5-chloro-2-methyl-4-isothiazolin-3-one (Cl-MIT) and 1% glycine was used as a slime control agent, and the contact with the slime control agent was made 30 ° C., 100 rpm, 27 minutes. The same test as in Example 1 was conducted except for the following.

その結果、表2の通り、Cl−MIT(19mg/L)で、27分で約80%の殺菌性しか示さず、殺菌性が劣った。   As a result, as shown in Table 2, Cl-MIT (19 mg / L) exhibited only about 80% bactericidal activity in 27 minutes, and was inferior in bactericidal activity.

[比較例1−2]
スライムコントロール剤として食添用NaClO溶液とグリシン1%溶液を用い、スライムコントロール剤との接触を30℃、100rpm、0分、6分、27分としたこと以外は実施例1と同様の試験を行った。
Comparative Example 1-2
The same test as in Example 1 was conducted except that the dietary NaClO solution and glycine 1% solution were used as a slime control agent, and the contact with the slime control agent was made 30 ° C., 100 rpm, 0 minutes, 6 minutes, 27 minutes. went.

その結果、表3の通り、残留塩素(10mg/LasCl)の条件で、27分で75%の殺菌性しか示さず、殺菌効果は低かった。 As a result, as shown in Table 3, under the condition of residual chlorine (10 mg / LasCl 2 ), only 75% of bactericidal activity was exhibited in 27 minutes, and the bactericidal effect was low.

[比較例1−3A〜3E]
スライムコントロール剤として5−クロロ−2−メチル−4−イソチアゾリン−3−オン(Cl−MIT)1%を用い、スライムコントロール剤との接触を30℃、100rpm、1時間としたこと以外は実施例1と同一の試験を行った。
[Comparative Examples 1-3A to 3E]
Example except using 1% of 5-chloro-2-methyl-4-isothiazolin-3-one (Cl-MIT) as a slime control agent and setting the contact with the slime control agent to 30 ° C., 100 rpm, 1 hour The same test as 1 was performed.

その結果、表4の通り、Cl−MIT(10mg/L)、1時間接触で、殺菌された割合は30〜87%の範囲であり、殺菌性は低かった。   As a result, as shown in Table 4, the rate of sterilization after contact with Cl-MIT (10 mg / L) for 1 hour was in the range of 30 to 87%, and the sterilization was low.

99%以上の殺菌性に至るには24時間を要し、即効性に欠けた。   It took 24 hours to achieve a bactericidal activity of 99% or more, and the immediate effect was lacking.

Figure 0006478455
Figure 0006478455

Figure 0006478455
Figure 0006478455

Figure 0006478455
Figure 0006478455

Figure 0006478455
Figure 0006478455

[実施例2]
一過性試験装置を用いて、カラム部分で滞留時間を設定し、CFU測定により殺菌性を評価した。
Example 2
Using a transient test apparatus, the residence time was set at the column part and the bactericidal activity was evaluated by CFU measurement.

一過性試験装置として、図1に示すフローのものを用いた。図1においてPはポンプを表わす。   As a transient test apparatus, the one of the flow shown in FIG. 1 was used. In FIG. 1, P represents a pump.

フェルトを固定床とした培養装置(微生物燃料電池)に、脱塩素水に培地を追加したものを20ml/minで流した。培地はポリペプトン、イーストエキストラクト、酢酸ナトリウムにより構成されるPYA培地を用いた。   In a culture apparatus (a microbial fuel cell) having a fixed bed of felt, the one obtained by adding a culture medium to dechlorinated water was flowed at 20 ml / min. The medium used was PYA medium composed of polypeptone, yeast extract, and sodium acetate.

培養装置(微生物燃料電池)から流出した菌液を一過性で流した。この液を対象に、CFUを測定した。表5に示すスライムコントロール剤を菌液の流れの途中から添加した。 表5のMITはCl−MITである。この菌液をカラムで滞留させ、スライムコントロール剤の接触時間とした。   The bacterial solution that flowed out of the culture apparatus (microbial fuel cell) was flushed temporarily. CFU was measured for this solution. A slime control agent shown in Table 5 was added to the middle of the cell flow. MIT in Table 5 is Cl-MIT. The bacterial solution was allowed to stay in the column and used as the contact time of the slime control agent.

スライムコントロール剤濃度は薬注直後とカラム出口(一定時間接触後)の濃度を測定した。   The slime control agent concentration was measured immediately after dosing and at the outlet of the column (after contact for a certain period of time).

CFU測定は1/10PY培地を用いて、段階希釈法により実施した。今回試験対象になった菌は環境中で生育した一般細菌と考えられる。菌の顕微鏡観察や菌種の同定は行っていない。   CFU measurement was performed by serial dilution using 1/10 PY medium. The bacteria to be tested this time are considered to be general bacteria grown in the environment. Microscopic observation of bacteria and identification of bacterial species were not performed.

その結果、表5の通り、Cl−MITと結合型塩素を併用すると、99.99%以上の殺菌性を示した。接触時間0分で殺菌効果を発揮し、約30分の接触でさらに効果が増した。このとき、残留塩素濃度は約7mg/LasClであった。遊離残留塩素濃度は0.15mg/LasClであった。 As a result, as shown in Table 5, when Cl-MIT and combined chlorine were used in combination, 99.99% or more of bactericidal activity was exhibited. The bactericidal effect was exhibited at a contact time of 0 minutes, and the effect was further increased by a contact of about 30 minutes. At this time, the residual chlorine concentration was about 7 mg / LasCl 2 . The free residual chlorine concentration was 0.15 mg / LasCl 2 .

[比較例2−1]
スライムコントロール剤として、表5の通り、次亜塩素酸ナトリウムを用いなかったこと以外は実施例2と同様の試験を行った。
Comparative Example 2-1
As a slime control agent, as shown in Table 5, the same test as in Example 2 was conducted except that sodium hypochlorite was not used.

[比較例2−2]
スライムコントロール剤として表5の通り、Cl−MITを用いなかったこと以外は実施例2と同様の試験を行った。
Comparative Example 2-2
As a slime control agent, as shown in Table 5, the same test as Example 2 was conducted except that Cl-MIT was not used.

その結果、表5の通り結合型残留塩素単独では、約8mg/LasClで約90%の殺菌性を示した。このとき、遊離残留塩素濃度は約0.1mg/LasClであった。また、Cl−MIT単独の場合は、10mg/L、30minで明確な殺菌性は示さなかった。 As a result, as shown in Table 5, the bound residual chlorine alone showed a bactericidal activity of about 90% at about 8 mg / LasCl 2 . At this time, the free residual chlorine concentration was about 0.1 mg / LasCl 2 . In addition, in the case of Cl-MIT alone, no clear bactericidal activity was shown at 10 mg / L and 30 min.

Figure 0006478455
Figure 0006478455

[実施例3]
回転腐食試験装置を用い、下記条件にて腐食試験を行った。
<スライムコントロール剤>
実施例3−1:Cl−MIT1%、グリシン1%、スルファミン酸3%含有400mg/L+NaClO溶液を遊離残留塩素濃度0.1mg/LasClになるよう添加
実施例3−2:Cl−MIT1%、グリシン1%400mg/L
<防食剤>
ベンゾトリアゾール(銅用防食剤、BT):1mg/L(添加濃度)
マレイン酸系ポリマー:1.5mg/L(添加濃度)
ホスホン酸:2.4gm/L(添加濃度)
<試験水水質(純水給水想定)>
Mアルカリ度:79mg/l
Ca硬度:2mg/L
Mg硬度:1mg/L
[Example 3]
The corrosion test was conducted under the following conditions using a rotational corrosion test apparatus.
<Slime control agent>
Example 3-1: Addition of 400 mg / L + NaClO solution containing 1% Cl-MIT, 1% glycine, 3% sulfamic acid to a free residual chlorine concentration of 0.1 mg / LasCl 2 Example 3-2: 1% Cl-MIT, Glycine 1% 400 mg / L
<Anticorrosive>
Benzotriazole (anticorrosive for copper, BT): 1 mg / L (additional concentration)
Maleic acid based polymer: 1.5 mg / L (additional concentration)
Phosphonic acid: 2.4 gm / L (added concentration)
<Test water quality (pure water supply assumed)>
M alkalinity: 79 mg / l
Ca hardness: 2 mg / L
Mg hardness: 1 mg / L

試験水に上記防食剤、スライムコントロール剤が所定濃度になるように添加した。試験水、防食剤、スライムコントロール剤混合液を1L/dayの速度で注入し滞留時間を与えた。測定時、遊離残留塩素濃度が所定濃度を下回っていた場合は、NaClO溶液をバッチで追加し、所定濃度にするようにした。
<試験片>
銅テストピース31cm(30mm×50mm×1mm)
回転腐食試験装置条件を140rpm、水温30℃、7日間とし、試験片の試験前の重量と後重量を測定し、一日当たり、dm当たりの減量(mg)で比較した。
The above anticorrosive agent and slime control agent were added to the test water so as to have predetermined concentrations. Test water, an anticorrosive, and a slime control agent mixture were injected at a rate of 1 L / day to give a residence time. At the time of measurement, if the concentration of free residual chlorine was lower than the predetermined concentration, the NaClO solution was added batchwise to make the predetermined concentration.
<Test specimen>
Copper test piece 31 cm 2 (30 mm × 50 mm × 1 mm)
The rotational corrosion test apparatus conditions were 140 rpm, water temperature was 30 ° C., and 7 days, and the weight before and after the test of the test piece was measured and compared in weight loss (mg) per dm 2 per day.

その結果、表6の実施例3−1に示す通り、遊離残留塩素濃度平均が0.1mg/LasCl未満で、腐食速度は問題のないレベルであった。また、表7の通り、NaClO追加時は遊離残留塩素濃度が一時0.1mg/LasClを超えることがあったが、腐食速度に悪影響はなかった。遊離残留塩素濃度を0.1mg/LasCl以上に維持しなければ腐食速度が上がらないことが示された。 As a result, as shown in Example 3-1 of Table 6, when the free residual chlorine concentration average was less than 0.1 mg / LasCl 2 , the corrosion rate was at a problem-free level. Also, as shown in Table 7, when NaClO was added, the free residual chlorine concentration sometimes exceeded 0.1 mg / LasCl 2 temporarily, but the corrosion rate was not adversely affected. It was shown that the corrosion rate could not be increased unless the free residual chlorine concentration was maintained at 0.1 mg / LasCl 2 or more.

[比較例3]
スライムコントロール剤を次の通りとしたこと以外は実施例3と同一の試験を行った。
Comparative Example 3
The same test as in Example 3 was conducted except that the slime control agent was changed as follows.

比較例3−1:スルファミン酸とNaClOとの混合液をNaClO残留塩素濃度として15mg/LasCl、遊離残留塩素濃度として0.3mg/LasClになるよう添加
比較例3−2:スルファミン酸とNaClOとの混合液をNaClO残留塩素濃度として5mg/LasCl、遊離残留塩素濃度として0.3mg/LasClになるよう添加
Comparative Example 3-1: A mixed solution of sulfamic acid and NaClO is added so that the NaClO residual chlorine concentration is 15 mg / LasCl 2 and the free residual chlorine concentration is 0.3 mg / LasCl 2 Comparative Example 3-2: sulfamic acid and NaClO The mixture with it is added so that the NaClO residual chlorine concentration is 5 mg / LasCl 2 and the free residual chlorine concentration is 0.3 mg / LasCl 2

その結果、表6の通り、平均遊離残留塩素濃度0.17mg/LasCl以上を維持すると、腐食速度は1mddをこえ、腐食が心配される。 As a result, as shown in Table 6, when the average free residual chlorine concentration is maintained at 0.17 mg / LasCl 2 or more, the corrosion rate exceeds 1 mdd, and corrosion is concerned.

Figure 0006478455
Figure 0006478455

Figure 0006478455
Figure 0006478455

比較例3−2(遊離残留塩素濃度0.17mg/LasCl)と同等の遊離残留塩素濃度及び残留塩素濃度で行った前述の表3の比較例1−2からわかるようにNaClO+グリシンだけではレジオネラ属菌の殺菌効果は不十分であり、腐食の問題がない濃度での殺菌効果は期待できないことがわかった。 Comparative Example 3-2 (free residual chlorine concentration: 0.17 mg / LasCl 2 ) As can be seen from Comparative Example 1-2 of Table 3 described above performed at free residual chlorine concentration and residual chlorine concentration equivalent to that in Table 3, Legionella with only NaClO + glycine It turned out that the bactericidal effect of genus bacteria is insufficient, and the bactericidal effect can not be expected at a concentration that does not have the problem of corrosion.

[実施例4]
間欠注入における薬剤の即効性と薬注停止後の効果を比較するために、図2のフローの微生物燃料電池のアノードに殺菌剤を間欠注入した。図2の通り、脱塩素水を窒素曝気により脱酸素して、培地を途中注入し微生物燃料電池のアノード側に流入させた。
Example 4
In order to compare the immediate effect of the drug in intermittent injection and the effect after stopping the injection, the bactericide was intermittently injected into the anode of the flow of the microbial fuel cell in FIG. As shown in FIG. 2, dechlorinated water was deoxygenated by nitrogen aeration, and the medium was injected halfway and allowed to flow to the anode side of the microbial fuel cell.

微生物燃料電池のカソード側には空気を吹き込み酸素供給を行った。微生物の生育によりアノード側からカソード側に電子が供給され、抵抗(500Ω)をアノード・カソード間に接続し、電圧を測定した。カソードを基準としたマイナス電位の絶対値が大きければ大きいほど、微生物の生育が活発であることを示す。   Air was blown into the cathode side of the microbial fuel cell to supply oxygen. Electrons were supplied from the anode side to the cathode side due to the growth of the microorganism, a resistance (500 Ω) was connected between the anode and the cathode, and the voltage was measured. The larger the absolute value of the negative potential relative to the cathode, the more active the growth of the microorganism.

本試験において、薬剤注入により上昇した最高電位を到達電位、薬剤注入停止後薬剤注入前の電位に戻るまでの期間をエネルギー生産阻害持続期間として測定した。これらの値に基づいて有機系殺菌剤及び無機系酸化剤の効果を比較した。   In this test, the highest potential raised by the drug injection was measured as the reaching potential, and the period after stopping the drug injection until returning to the potential before the drug injection was measured as the energy production inhibition duration. Based on these values, the effects of the organic bactericidal agent and the inorganic oxidizing agent were compared.

図2の微生物燃料電池の条件は次の通りである。   The conditions of the microbial fuel cell of FIG. 2 are as follows.

アノード:5mm厚グラファイトフェルト5cm*15cm(アノード容量80〜90mL)
カソード:カーボンコーティングニッケル触媒
非導電性膜:ミリポア社製ニトロセルロース膜
抵抗:500Ω
カソードには野木町水と空気を2L/minの送風量で供給した。アノード液には野木町水を曝気槽に取り、窒素ガスで曝気して溶存酸素を除いた水を8mL/minで送液し、アノード入口の前に培地をポンプにて所定濃度になるようにライン注入した。必要に応じてアノード入り口手前で、下記酸化系増殖抑制剤及び有機系殺菌剤をポンプで所定濃度になるように所定時間ライン注入した。アノードとカソードを抵抗を介した銅電線で接続し、生じた電位を連続測定した。なお、薬注停止後、アノード室の滞留時間の経過後、有機系殺菌剤と酸化系増殖抑制剤が検出されないことを確認した。
Anode: 5 mm thick Graphite felt 5 cm * 15 cm (Anode capacity 80 to 90 mL)
Cathode: carbon coated nickel catalyst Nonconductive membrane: Millipore nitrocellulose membrane Resistance: 500 Ω
Noki town water and air were supplied to the cathode at a flow rate of 2 L / min. Take the water from Noki town in the aeration tank for the anolyte, aerate it with nitrogen gas, send water without dissolved oxygen at 8 mL / min, and pump the culture medium to a predetermined concentration before the anode inlet. Line injected. If necessary, the following oxidizing system growth inhibitor and organic type bactericidal agent were injected by a line at a predetermined time for a predetermined period of time before the anode inlet, with a pump. The anode and the cathode were connected by a copper wire through a resistor, and the generated potential was continuously measured. In addition, it was confirmed that the organic bactericidal agent and the oxidation type growth inhibitor were not detected after lapse of residence time of the anode chamber after stopping the chemical injection.

試験条件は次の通りとした。
有機系殺菌剤:Cl−MIT設定濃度5mg/L+グリシン10mg/L
酸化系増殖抑制剤:NaClO設定濃度10mg/L、培地有機物・グリシンと反応してほとんど結合型になっている。
注入時間:3h
アノード滞留時間:10〜20min(アノードセル内にはフェルトがあるため、正確な滞留時間を測定することは困難)
The test conditions were as follows.
Organic disinfectant: Cl-MIT setting concentration 5 mg / L + glycine 10 mg / L
Oxidative growth inhibitor: NaClO preset concentration 10 mg / L, medium organic substance · It has become almost bound by reaction with glycine.
Infusion time: 3 h
Anode residence time: 10 to 20 min (It is difficult to measure accurate residence time because there is felt in the anode cell)

評価方法は次の通りとした。
到達電位:薬品注入により電位上昇が起こり、到達した最高電位
エネルギー生産阻害持続期間:薬注停止後薬注前の電位に戻るまでの期間及び電位の経時変化の形状
The evaluation method was as follows.
Reaching potential: The highest potential reached due to drug injection, and the maximum potential energy production inhibition duration: The shape of the time until the potential returns to the potential before dosing and the time course of the potential

その結果、表8及び図3の通り、有機系殺菌剤と無機系酸化剤との併用により電位は急激な上昇を示し、単品使用よりも高い電位となった。到達電位は単品注入で上昇した電位を加算した値と同等となった。   As a result, as shown in Table 8 and FIG. 3, the combined use of the organic bactericide and the inorganic oxidizing agent showed a sharp rise in the potential, which was higher than that of single use. The ultimate potential was equal to the value obtained by adding the potential raised by single injection.

無機系酸化剤と有機系殺菌剤とを併用した場合、電位回復は薬注停止後約100mV低下し、急激な回復を示すが、その後は緩やかな回復を示した。エネルギー生産阻害持続時間は単品による阻害時間の加算とほぼ同等であった。   When the inorganic oxidizing agent and the organic bactericidal agent were used in combination, the potential recovery decreased about 100 mV after stopping the injection, showing a rapid recovery, but thereafter showed a gradual recovery. The duration of energy production inhibition was almost equal to the addition of inhibition time by single item.

この結果から、無機系酸化剤と有機系殺菌剤とを併用すると即効性が増し、阻害の程度が強くなり、薬注後の回復が遅れることが分かった。   From these results, it was found that the combination of the inorganic oxidizing agent and the organic bactericide increased the immediate effect, the degree of inhibition became stronger, and the recovery after injection was delayed.

[比較例4−1]
酸化系増殖抑制剤を用いなかったこと以外は実施例4と同一条件にて試験を行った。
Comparative Example 4-1
The test was conducted under the same conditions as in Example 4 except that the oxidative growth inhibitor was not used.

その結果、表8及び図3の通り、電位の低下は実施例4、比較例4−2と比較すると緩やかで、3時間後も−400mVの電位を保っていた。薬注停止後の電位低下は緩やかであったが、上昇した電位幅が小さいので、4時間程度で元の電位に戻った。   As a result, as shown in Table 8 and FIG. 3, the decrease in potential was gentle as compared with Example 4 and Comparative Example 4-2, and the potential of -400 mV was maintained after 3 hours. Although the decrease in potential after stopping the drug administration was gradual, the rise in potential width was small, so the potential returned to the original potential in about 4 hours.

このことから、有機系殺菌剤の即効性が低いことが分かる。   From this, it can be seen that the immediate effect of the organic disinfectant is low.

[比較例4−2]
有機系殺菌剤を用いなかったこと以外は実施例4と同一条件にて試験を行った。
Comparative Example 4-2
The test was conducted under the same conditions as in Example 4 except that the organic biocide was not used.

この結果、表8及び図3の通り、電位は急激な上昇を示し−150mVに達する。薬注停止直後、約200mVの急激な電位の低下(回復)が起こり、電位は−300mVに至る。このように、酸化系薬剤は即効性はあるが、薬注を停止すると急激にエネルギー生産阻害をする能力が消失するので、効果を維持するためには濃度を維持しなければならないと推定される。   As a result, as shown in Table 8 and FIG. 3, the potential shows a sharp rise and reaches −150 mV. Immediately after cessation of drug administration, a rapid potential drop (restoration) of about 200 mV occurs, and the potential reaches -300 mV. Thus, it is presumed that oxidation drugs are effective, but their ability to inhibit energy production rapidly disappears when drug administration is stopped, so the concentration must be maintained in order to maintain the effect. .

Figure 0006478455
Figure 0006478455

[実施例5]
実施例4と同一の試験装置を用い、間欠注入時間を長くしたときの即効性と薬注停止後の効果に与える影響を、微生物燃料電池で下記条件にて比較した。
<試験条件>
有機系殺菌剤:Cl−MIT設定濃度5mg/L
酸化系増殖抑制剤:結合型塩素(スルファミン酸+NaClO)残留塩素設定濃度15mg/LasCl
注入時間:6h
アノード滞留時間:10〜20min
[Example 5]
Using the same test apparatus as in Example 4, the effect on the immediate effect and the effect after stopping the injection when the intermittent injection time was extended were compared in the following conditions in the microbial fuel cell.
<Test conditions>
Organic disinfectant: Cl-MIT set concentration 5 mg / L
Oxidative growth inhibitor: Combined chlorine (sulfamic acid + NaClO) residual chlorine setting concentration 15 mg / LasCl 2
Infusion time: 6 h
Anode retention time: 10 to 20 min

その結果、図4、表9の通り、電位は薬注後即座に上昇し−100mV以上となった。注入中はその電位が徐々に低下し続けた。到達した電位は−67mVであった。有機系殺菌剤と無機系酸化剤との併用により到達した電位は単独使用の上昇電位を加算した値には達せず、殺菌・増殖抑制の到達電位は上限があるようである。   As a result, as shown in FIG. 4 and Table 9, the potential immediately increased after the injection and became -100 mV or more. The potential continued to drop gradually during the injection. The potential reached was -67 mV. The potential reached by the combined use of the organic bactericidal agent and the inorganic oxidizing agent does not reach the value obtained by adding the rising potential of single use, and the ultimate potential of the bactericidal / growth inhibition seems to have an upper limit.

薬注停止後、無機系酸化剤と有機系殺菌剤とを併用した場合は、電位が即座に約100mV低下したが、その後は緩やかな電位低下(回復)を示し、ものと電位に戻るまでに39hを要した。単独使用の回復時間の和よりも、併用の方が9h程度余分に時間を要した。このように、併用接触時間を延ばすと回復にかかる時間が延びた。   After stopping the injection, when the inorganic oxidizing agent and the organic bactericide were used in combination, the potential immediately decreased by about 100 mV, but after that, it showed a moderate potential drop (recovery), and the potential was returned to the potential. It took 39 h. The combined use took about 9 hours extra time than the sum of recovery time of single use. Thus, extending the combined contact time extended the time for recovery.

この実施例5では、結合型塩素の結合相手をスルファミン酸としたが、実施例4と同様な阻害と回復のパターンを示すことが分かった。   In this Example 5, the binding partner of bound chlorine was sulfamic acid, but it was found that the same inhibition and recovery pattern as in Example 4 was shown.

無機系酸化剤と有機系殺菌剤との併用時間の延長により、十分に阻害された時間が延び、薬注停止後の回復も遅れる。このことから併用時間を長くすると、殺菌性の強さと薬注停止後の効果維持時間がより効率的になると考えられる。   By prolonging the combined use time of the inorganic oxidizing agent and the organic bactericide, the sufficiently inhibited time is extended, and the recovery after stopping the injection is also delayed. From this fact, it is thought that the longer the combined time, the more efficient the bactericidal activity and the effect maintenance time after stopping the injection.

[比較例5−1]
有機系殺菌剤をCl−MIT設定濃度5mg/Lとしたこと以外は実施例5と同一条件にて試験を行った。
Comparative Example 5-1
The test was conducted under the same conditions as in Example 5 except that the organic biocide was changed to a Cl-MIT set concentration of 5 mg / L.

その結果、図4及び表9の通り、Cl−MIT添加による阻害パータンは比較例4と同様であり、比較的緩やかであった。時間を延ばすとその電位上昇は3hの延長線上にあった。薬注停止後電位は無機系酸化剤に比較して緩やかに回復するパターンを示した。Cl−MIT薬注後、電位回復に要する時間はCl−MITが13hであった。   As a result, as shown in FIG. 4 and Table 9, the inhibition pattern by the addition of Cl-MIT was similar to that of Comparative Example 4 and was relatively gentle. When the time was extended, the potential rise was on the extension of 3 h. After stopping the injection, the potential showed a gradual recovery pattern compared to the inorganic oxidant. After Cl-MIT injection, the time required for potential recovery was 13 h for Cl-MIT.

[比較例5−2]
酸化系増殖抑制剤を結合型塩素(スルファミン酸+NaClO)残留塩素設定濃度15mg/LasClとしたこと以外は実施例5と同一条件にて試験を行った。
Comparative Example 5-2
The test was conducted under the same conditions as in Example 5 except that the oxidation-based growth inhibitor was changed to a combined chlorine (sulfamic acid + NaClO) residual chlorine set concentration 15 mg / LasCl 2 .

その結果、図4及び表9の通り、結合型塩素により、電位は直線的に300mV上昇し、その後緩やかに上昇した。薬注を停止すると電位は約200mV即座に回復(低下)した。その後緩やかに回復し、元の電位まで回復するためにかかる時間は約16hであった。   As a result, as shown in FIG. 4 and Table 9, the potential linearly increased 300 mV by bound chlorine and then gradually increased. When the injection was stopped, the potential was restored (decreased) about 200 mV immediately. After that, it took about 16 hours to recover slowly and to recover to the original potential.

Figure 0006478455
Figure 0006478455

[実施例6]
遊離残留塩素濃度が次亜塩素酸ナトリウム添加の直後に0.1mg/Lを超えても、0.1mg/L未満に下がる期間があれば腐食は抑制されることを示すための試験を行った。
[Example 6]
A test was conducted to show that even if the free residual chlorine concentration exceeds 0.1 mg / L immediately after the addition of sodium hypochlorite, there is a period that falls below 0.1 mg / L and the corrosion is suppressed. .

この試験では、実施例3と同一の回転腐食試験装置を用いた。
<スライムコントロール条件>
実施例6−1:Cl−MIT2%、グリシン2%、スルファミン酸3%含有液200mg/LとNaClOを遊離残留塩素濃度0.3mg/LasClになるよう添加。一日一回。
実施例6−2:Cl−MIT2%、グリシン2%、スルファミン酸3%含有液200mg/LとNaClOを遊離残留塩素濃度0.1mg/LasClになるよう添加。一日一回。
実施例6−3:Cl−MIT2%、グリシン2%、スルファミン酸3%含有液を200mg/L
<防食剤>
ベンゾトリアゾール(銅用防食剤、BT):1mg/L(最終濃度)
マレイン酸系ポリマー:1.5mg/L(最終濃度)
ホスホン酸:2.4gm/L(最終濃度)
<試験水水質(純水給水想定)>
Mアルカリ度:79mg/L
Ca硬度:2mg/L
Mg硬度:1mg/L
<試験手順>
試験水に防食剤、スライムコントロール剤が所定濃度になるように添加した。試験水、防食剤、スライムコントロール剤混合液を1L/dayの速度で注入し滞留時間を与えた。NaClO溶液をバッチで一日一回追加し、所定濃度にするようにした。回転腐食試験装置条件は140rpm、水温30℃、7日間とした。
<試験片>
軟鋼テストピース31cm(30mm×50mm×1mm)
試験前の重量と後重量を測定し、一日当たり、dm当たりの減量(mg)で比較した。
In this test, the same rotational corrosion test apparatus as in Example 3 was used.
<Slime control condition>
Example 6-1: 200 mg / L of a solution containing 2% Cl-MIT, 2% glycine, 3% sulfamic acid and NaClO are added so as to give a free residual chlorine concentration of 0.3 mg / LasCl 2 . once a day.
Example 6-2: 200 mg / L of a solution containing 2% Cl-MIT, 2% glycine, 3% sulfamic acid and NaClO are added so as to give a free residual chlorine concentration of 0.1 mg / LasCl 2 . once a day.
Example 6-3: 200 mg / L of a solution containing 2% Cl-MIT, 2% glycine, 3% sulfamic acid
<Anticorrosive>
Benzotriazole (anticorrosive for copper, BT): 1 mg / L (final concentration)
Maleic acid based polymer: 1.5 mg / L (final concentration)
Phosphonic acid: 2.4 gm / L (final concentration)
<Test water quality (pure water supply assumed)>
M alkalinity: 79 mg / L
Ca hardness: 2 mg / L
Mg hardness: 1 mg / L
<Test procedure>
An anticorrosive agent and a slime control agent were added to the test water so as to have predetermined concentrations. Test water, an anticorrosive, and a slime control agent mixture were injected at a rate of 1 L / day to give a residence time. The NaClO solution was added batchwise once a day to bring it to a predetermined concentration. The rotational corrosion test device conditions were 140 rpm, water temperature 30 ° C., and 7 days.
<Test specimen>
Mild steel test piece 31 cm 2 (30 mm × 50 mm × 1 mm)
Weights before and after the test were measured and compared in weight loss (mg) per dm 2 per day.

その結果、表10〜12の通り、実施例6−1はNaClOの間欠注入で遊離残留塩素濃度が1mg/LasCl以上に至っても翌日0.1未満に戻れば、腐食はNaClO無添加と同等である。 As a result, as shown in Tables 10 to 12, in Example 6-1, even if the free residual chlorine concentration reaches 1 mg / LasCl 2 or more by intermittent injection of NaClO, it returns to less than 0.1 the next day, the corrosion is equivalent to no addition of NaClO. It is.

実施例6−2に示すようにNaClOの間欠注入で遊離残留塩素濃度が0.1mg/LasCl未満を維持した場合も、腐食速度はNaClO無添加と同等である(表11)。この結果から遊離残留塩素濃度が一時的に0.1mg/LasClを超えても、確実に0.1mg/LasClを下回る期間があれば、残留塩素無添加と比較して腐食は促進されない。 As shown in Example 6-2, even when the free residual chlorine concentration is maintained at less than 0.1 mg / LasCl 2 by intermittent injection of NaClO, the corrosion rate is equivalent to no addition of NaClO (Table 11). Even beyond this results from free residual chlorine concentration is temporarily 0.1mg / LasCl 2, if there is certainly a period of less than 0.1mg / LasCl 2, corrosion compared with residual chlorine no addition is not promoted.

[比較例6]
スライムコントロール条件を次の通りとしたこと以外は実施例6と同一条件にて試験を行った。
Comparative Example 6
The test was conducted under the same conditions as Example 6 except that slime control conditions were as follows.

比較例6−1:スルファミン酸、NaClO混合液 200mg/L。残留塩素濃度として15mg/LasCl、遊離残留塩素濃度として0.3mg/LasCl以上を維持。
比較例6−2:スルファミン酸、NaClO混合液 50mg/L。残留塩素濃度5mg/LasCl、遊離残留塩素濃度として0.1−0.2mg/LasClを維持。
Comparative Example 6-1: 200 mg / L of sulfamic acid, NaClO mixed solution. Maintain 15 mg / LasCl 2 as residual chlorine concentration and 0.3 mg / LasCl 2 or more as free residual chlorine concentration.
Comparative Example 6-2 50 mg / L of sulfamic acid, NaClO mixed solution. Residual chlorine concentration 5mg / LasCl 2, maintaining the 0.1-0.2mg / LasCl 2 as free residual chlorine concentration.

その結果を表10〜12に示す。比較例6−2は実施例6−1よりも遊離残留塩素濃度の平均値が低くても、腐食速度は増大する。低濃度であっても遊離残留塩素濃度が維持されると腐食速度は増大する(表10)。
比較例6−2よりも比較例6−1の方が腐食速度は大きく、腐食速度は遊離残留塩素維持濃度が上がると増加する(表10)。
The results are shown in Tables 10-12. Even if the average value of the free residual chlorine concentration is lower than that of Example 6-1, the corrosion rate is increased in Comparative Example 6-2. The corrosion rate increases as the free residual chlorine concentration is maintained even at low concentrations (Table 10).
The corrosion rate is higher in Comparative Example 6-1 than in Comparative Example 6-2, and the corrosion rate increases as the free residual chlorine maintenance concentration increases (Table 10).

遊離最大塩素濃度は比較例6−1よりも実施例6−1のほうが大きい。このことから、最大値よりも、最低値の方が腐食速度に影響すると考えられ、濃度を維持すると腐食速度の増大につながる(表11,12)。   The free maximum chlorine concentration is larger in Example 6-1 than in Comparative Example 6-1. From this, it is thought that the lowest value affects the corrosion rate more than the maximum value, and maintaining the concentration leads to an increase in the corrosion rate (Tables 11, 12).

Figure 0006478455
Figure 0006478455

Figure 0006478455
Figure 0006478455

Figure 0006478455
Figure 0006478455

[実施例7]
イソチアゾリン以外の有機系殺菌剤と酸化剤の併用による呼吸活性阻害の即効性増進について下記条件にて試験を行った。
<有機系殺菌剤の種類>
ジクロログリオキシム(DCG)
2,2−ジブロモ−2−ニトロエタノール(DBNE)
<無機系酸化剤>
次亜塩素酸ナトリウムとスルファミン酸ナトリウム混合品
<試験方法>
Pseudomonas.putidを用いて評価した。
対象菌を滅菌水に懸濁し、660nm吸光度、0.1に調整し、10mlずつ試験管に分注した。有機系殺菌剤単独、無機系酸化剤単独、有機系殺菌剤と無機系酸化剤併用、各濃度を添加。
30℃、1h、100r.p.mで振盪した。
その後、ポアサイズ0.45μmのニトロセルロースフィルターで濾過し、10mLの滅菌水を添加して、濾過し、薬品を取り除いた。
2−p−ヨードフェニル−3−p−ニトロフェニル−5−テトラゾリウムクロライド溶液(以下INT溶液、最終濃度0.02%)と培地(ポリペプトン 最終濃度0.1g/L、イーストエキストラクト 最終濃度0.1g/L、NaCl 最終濃度0.05g/L)を菌を濾過したフィルターに載せる。
37℃、1h静置する。
所定時間後濾過し、フィルターをクロロフォルム1mLで抽出し、490nmの吸光度を測定する。この値から菌のデハイドロゲナーゼにより生じたフォルマザン濃度を算出する。
対象菌のタンパク濃度を測定する。タンパク質濃度の定量はFolin−Ciocaltenのフェノール試薬による測定により実施した。
下式を用いて、抽出液量から抽出されたINTフォルマザンモル数を算出し、反応時間で除算するとデハイドロゲナーゼ活性を算出することができる。
デハイドロゲナーゼ活性[U]=ミリモル濃度[mmol/L]×μモル換算[1000μmol/mmol]×抽出液量[L]/反応時間[min]=(0.044×490nm吸光度−0.0004)×1000×(1/1000)/60
(注) ミリモル濃度[mmol/L]=0.044×490nm吸光度−0.0004
抽出液量 1mL
反応時間 60min
[Example 7]
The immediate effect enhancement of the respiratory activity inhibition by the combined use of an organic biocide other than isothiazoline and an oxidizing agent was tested under the following conditions.
<Type of organic disinfectant>
Dichloroglyoxime (DCG)
2,2-Dibromo-2-nitroethanol (DBNE)
<Inorganic oxidant>
Sodium hypochlorite and sodium sulfamate mixture <Test method>
It evaluated using Pseudomonas.putid.
The target bacteria were suspended in sterile water, adjusted to 660 nm absorbance, 0.1 and dispensed in 10 ml aliquots into test tubes. Organic germicide alone, inorganic oxidant alone, organic germicide and inorganic oxidant combined use, each concentration is added.
30 ° C., 1 h, 100 r. p. Shake on m.
It was then filtered through a nitrocellulose filter with a pore size of 0.45 μm, 10 mL of sterile water was added and filtered to remove the drug.
2-p-iodophenyl-3-p-nitrophenyl-5-tetrazolium chloride solution (hereinafter INT solution, final concentration 0.02%) and culture medium (polypeptone final concentration 0.1 g / L, yeast extract final concentration 0. 1 g / L, final concentration of NaCl 0.05 g / L) is placed on the filtered filter.
Let stand at 37 ° C for 1 h.
After a predetermined time, it is filtered, the filter is extracted with 1 mL of chloroform, and the absorbance at 490 nm is measured. From this value, the concentration of formazan produced by fungal dehydrogenase is calculated.
Measure the protein concentration of the target bacteria. The quantification of the protein concentration was carried out by measurement with Folin-Ciocalten's phenol reagent.
Dehydrogenase activity can be calculated by calculating the INT formazan mole number extracted from the extract volume using the following equation and dividing by the reaction time.
Dehydrogenase activity [U] = millimolar concentration [mmol / L] × μ molar equivalent [1000 μmol / mmol] × amount of extract [L] / reaction time [min] = (0.044 × 490 nm absorbance-0.0004 ) × 1000 × (1/1000) / 60
(Note) millimolar concentration [mmol / L] = 0.044 x 490 nm absorbance-0.0004
Extract volume 1mL
Reaction time 60 min

デハイドロゲナーゼ活性をタンパク質の質量で除算し、菌体当たりの活性を求める。桁数が小さいので、さらに100000倍して結果とした。このデハイドロゲナーゼ活性が消失した単独及び併用の薬剤濃度を図5に示す。なお、図5のグラフ中の直線は相加効果直線を表しており、この直線より下にあると相乗効果ありと判断される。   Dehydrogenase activity is divided by the mass of protein to determine the activity per cell. Since the number of digits is small, the result was further multiplied by 100,000. The single and combined drug concentrations at which this dehydrogenase activity has disappeared are shown in FIG. The straight line in the graph of FIG. 5 represents an additive effect straight line, and if it is below this straight line, it is judged that there is a synergistic effect.

<結果>
(1) 薬剤を添加しないPseudomonas.putidの菌体当たりの活性は484で、十分な活性を示した。
(2) 次亜塩素酸ナトリウムとスルファミン酸ナトリウム混合品で、デハイドロゲナーゼ活性を消失させるためには70mg/LasCl以上の濃度を必要とし、また、DCGでは10mg/Lを必要とした。併用すると、活性消失に必要とされる各剤は両者を足した場合よりも低濃度で達成され、併用されたことによる活性抑制の相乗効果が示された。
(3) 次亜塩素酸ナトリウムとスルファミン酸ナトリウム混合品で、デハイドロゲナーゼ活性を消失させるためには70mg/LasCl以上の濃度を必要とし、また、DBNEでは10mg/Lを必要とした。併用すると、活性消失に必要とされる各剤は両者を足した場合よりも低濃度で達成され、併用されたことによる活性抑制の相乗効果が示された。
これらの結果から明らかなように、イソチアゾリン化合物以外の有機系殺菌剤と無機系酸化剤の併用においても、同様の機構が働き、相乗効果、速効性、効果の持続が達される。また、酸化剤の大幅な低減により、腐食のリスクも低減される。
<Result>
(1) The activity per bacterial cell of Pseudomonas. Putid not added with a drug was 484, showing sufficient activity.
(2) Sodium hypochlorite and sodium sulfamate mixture required a concentration of 70 mg / LasCl 2 or more to eliminate the dehydrogenase activity, and DCG required 10 mg / L. When used in combination, each agent required for loss of activity was achieved at a lower concentration than when both were added, and a synergistic effect of suppression of activity due to the combined use was shown.
(3) The mixture of sodium hypochlorite and sodium sulfamate required a concentration of 70 mg / LasCl 2 or more to eliminate the dehydrogenase activity, and DBNE required 10 mg / L. When used in combination, each agent required for loss of activity was achieved at a lower concentration than when both were added, and a synergistic effect of suppression of activity due to the combined use was shown.
As is clear from these results, the same mechanism works also in the combined use of an organic biocide other than the isothiazoline compound and an inorganic oxidant, and a synergistic effect, a rapid effect, and a sustained effect are achieved. Also, the risk of corrosion is reduced due to the significant reduction of oxidant.

Claims (2)

水系に有機系殺菌剤と無機系酸化剤とを添加する水系の殺菌方法において、
該有機系殺菌剤と無機系酸化剤とを間欠的に添加する水系の殺菌方法であって、
該有機系殺菌剤がジクロログリオキシム及び/又はジブロモニトロエタノールであり、
該無機系酸化剤が塩素系酸化剤であり、
該有機系殺菌剤と無機系酸化剤とを添加する時期と時期との間に、水系の残留塩素濃度が実質的に検出されない非残留期間を設けることを特徴とする水系の殺菌方法。
In a method of sterilizing a water system, an organic disinfectant and an inorganic oxidizing agent are added to the water system.
A method of sterilizing a water system, wherein the organic bactericide and the inorganic oxidizing agent are intermittently added,
The organic fungicide is dichloroglyoxime and / or dibromonitroethanol,
The inorganic oxidizing agent is a chlorine-based oxidizing agent,
Timing and between the timing, a method of sterilizing water-based residual chlorine concentration of the water system is characterized Rukoto provided a non-residual period not substantially detected for adding the organic fungicide and an inorganic oxidizing agent.
請求項において、有機系殺菌剤の添加量が1〜30mg/Lであり、無機系酸化剤の添加量が1〜50mg/LasClであることを特徴とする水系の殺菌方法。 In claim 1, the addition amount of 1 to 30 mg / L of organic fungicides, sterilization method of the water-based, wherein the addition amount of the inorganic oxidizing agent is 1~50mg / LasCl 2.
JP2013262680A 2013-12-19 2013-12-19 Water sterilization method Expired - Fee Related JP6478455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262680A JP6478455B2 (en) 2013-12-19 2013-12-19 Water sterilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262680A JP6478455B2 (en) 2013-12-19 2013-12-19 Water sterilization method

Publications (2)

Publication Number Publication Date
JP2015117216A JP2015117216A (en) 2015-06-25
JP6478455B2 true JP6478455B2 (en) 2019-03-06

Family

ID=53530279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262680A Expired - Fee Related JP6478455B2 (en) 2013-12-19 2013-12-19 Water sterilization method

Country Status (1)

Country Link
JP (1) JP6478455B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6020697B1 (en) * 2015-11-09 2016-11-02 栗田工業株式会社 Method for inhibiting concentration reduction of isothiazoline compounds
WO2018142904A1 (en) * 2017-02-02 2018-08-09 オルガノ株式会社 Method for modifying reverse osmosis membrane, reverse osmosis membrane, method for treating water containing non-charged substance, operation method for reverse osmosis membrane, and reverse osmosis membrane device
JP7144922B2 (en) * 2017-05-09 2022-09-30 オルガノ株式会社 Reverse osmosis membrane operation method and reverse osmosis membrane device
JP6933902B2 (en) * 2017-02-02 2021-09-08 オルガノ株式会社 Method for modifying reverse osmosis membrane and method for treating uncharged substance-containing water
JP6447687B1 (en) * 2017-09-01 2019-01-09 栗田工業株式会社 One-component water treatment agent and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3873534B2 (en) * 1999-08-11 2007-01-24 栗田工業株式会社 Slime control method and slime control agent
JP4685722B2 (en) * 2006-07-05 2011-05-18 ソマール株式会社 How to add slime control agent
JP2009024895A (en) * 2007-07-17 2009-02-05 Miura Co Ltd Water treatment system and treatment method of cooling system circulation water
JP5606820B2 (en) * 2010-08-04 2014-10-15 アクアス株式会社 Treatment method for open circulating cooling water system
JP5928938B2 (en) * 2012-02-02 2016-06-01 アクアス株式会社 Treatment method for open circulating cooling water system
JP2013198869A (en) * 2012-03-26 2013-10-03 Kurita Water Ind Ltd Method for inhibiting waterborne bacteria

Also Published As

Publication number Publication date
JP2015117216A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP6478455B2 (en) Water sterilization method
CN110078194B (en) Method for producing hypobromous acid stabilizing composition, and method for inhibiting fouling of separation membrane
JP6533056B2 (en) Filtration treatment system and filtration treatment method
JP6534524B2 (en) Filtration treatment system and filtration treatment method
JP3015508B2 (en) Disinfectant / bacteriostatic agent
AU2010258226B2 (en) Stabilized and activated bromine solutions as a biocide and as an antifouling agent
NO340906B1 (en) Composition and method of antimicrobial effect in water systems
JP2009154113A (en) Sterilization treatment method for water system water
JPH03501581A (en) How to control biological contamination in recirculating water supply systems
WO2015046016A1 (en) Antimicrobial and algicidal method for cooling water system and antimicrobial and algicidal agent
JP6649697B2 (en) Water sterilization method
CN102246751A (en) Sterilizing synergistic agent for oxidizing biocide
JP5635596B2 (en) Halogenated amide biocidal compounds and methods of treating aqueous systems from near neutral to high pH
JP5770891B2 (en) Treatment method for open circulating cooling water system
JP2017186294A (en) Microorganism inhibitor composition and microorganism inhibition method
JP5547286B2 (en) Synergistic antimicrobial composition
JP6837301B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
US8778370B2 (en) Method and composition for inhibiting growth of microorganisms in industrial process waters in the presence of anionic anti-fouling additives
JP5928938B2 (en) Treatment method for open circulating cooling water system
US6811747B2 (en) Corrosion inhibitor
JP6057526B2 (en) Treatment method for open circulating cooling water system
JP5175583B2 (en) Biofilm release agent and biofilm release method
JP7057091B2 (en) Treatment method of open circulation cooling water system
JP5281465B2 (en) Bactericidal algicide composition, water-based bactericidal algicide method, and method for producing bactericidal algicide composition
JP2013158669A (en) Treatment method for open-circulating cooling water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180302

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180312

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R150 Certificate of patent or registration of utility model

Ref document number: 6478455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees