JP6478103B2 - Film forming apparatus and film forming method - Google Patents

Film forming apparatus and film forming method Download PDF

Info

Publication number
JP6478103B2
JP6478103B2 JP2015023488A JP2015023488A JP6478103B2 JP 6478103 B2 JP6478103 B2 JP 6478103B2 JP 2015023488 A JP2015023488 A JP 2015023488A JP 2015023488 A JP2015023488 A JP 2015023488A JP 6478103 B2 JP6478103 B2 JP 6478103B2
Authority
JP
Japan
Prior art keywords
film forming
mist
film
droplet
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015023488A
Other languages
Japanese (ja)
Other versions
JP2016146442A (en
Inventor
貴博 佐々木
貴博 佐々木
真也 織田
真也 織田
俊実 人羅
俊実 人羅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flosfia Inc
Original Assignee
Flosfia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flosfia Inc filed Critical Flosfia Inc
Priority to EP15156678.3A priority Critical patent/EP3051002A1/en
Priority to US14/632,768 priority patent/US20160222511A1/en
Priority to TW104106265A priority patent/TWI535883B/en
Priority to KR1020150026934A priority patent/KR101708283B1/en
Priority to CN201510090158.7A priority patent/CN105986246A/en
Publication of JP2016146442A publication Critical patent/JP2016146442A/en
Application granted granted Critical
Publication of JP6478103B2 publication Critical patent/JP6478103B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0615Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced at the free surface of the liquid or other fluent material in a container and subjected to the vibrations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45506Turbulent flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45508Radial flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、ミスト化学気相成長法の適用に有用な新規な成膜装置および成膜方法に関する。   The present invention relates to a novel film formation apparatus and film formation method useful for application of mist chemical vapor deposition.

従来から、パルスレーザー堆積法(Pulsed laser deposition: PLD)、分子線エピタキシー法(Molecular beam epitaxy: MBE)、スパッタリング法等の非平衡状態を実現できる高真空製膜装置が検討されており、これまでの融液法等では作製不可能であった酸化物半導体の作製が可能となってきている。中でも、霧化された原料(ミスト)を用いて、基板上に結晶成長させるミスト化学気相成長法(Mist Chemical Vapor Deposition: Mist CVD。以下、ミストCVD法ともいう。)が検討されており、コランダム構造を有する酸化ガリウム(α−Ga)の作製が可能となってきている。α−Gaは、バンドギャップの大きな半導体として、高耐圧、低損失および高耐熱を実現できる次世代のスイッチング素子への応用が期待されている。 Conventionally, high-vacuum film forming apparatuses that can realize non-equilibrium states such as pulsed laser deposition (PLD), molecular beam epitaxy (MBE), and sputtering have been studied. It has become possible to produce oxide semiconductors that could not be produced by the melt method. Among them, a mist chemical vapor deposition method (Mist Chemical Vapor Deposition: Mist CVD, hereinafter also referred to as a mist CVD method) in which crystals are grown on a substrate using an atomized raw material (mist) has been studied. Fabrication of gallium oxide (α-Ga 2 O 3 ) having a corundum structure has become possible. As a semiconductor having a large band gap, α-Ga 2 O 3 is expected to be applied to a next-generation switching element that can realize high breakdown voltage, low loss, and high heat resistance.

ミストCVD法については、特許文献1には、管状炉型のミストCVD装置が記載されている。特許文献2には、ファインチャネル型のミストCVD装置が記載されている。特許文献3には、リニアソース型のミストCVD装置が記載されている。特許文献4には、管状炉のミストCVD装置が記載されており、特許文献1記載のミストCVD装置とは、ミスト発生器内にキャリアガスを導入する点で異なっている。また、特許文献5には、ミスト発生器の上方に基板を設置し、さらにサセプタがホットプレート上に備え付けられた回転ステージであるミストCVD装置が記載されている。   Regarding the mist CVD method, Patent Document 1 describes a tubular furnace type mist CVD apparatus. Patent Document 2 describes a fine channel type mist CVD apparatus. Patent Document 3 describes a linear source type mist CVD apparatus. Patent Document 4 describes a mist CVD apparatus for a tubular furnace, and differs from the mist CVD apparatus described in Patent Document 1 in that a carrier gas is introduced into a mist generator. Patent Document 5 describes a mist CVD apparatus which is a rotary stage in which a substrate is installed above a mist generator and a susceptor is provided on a hot plate.

しかしながら、ミストCVD法は、他の方法とは異なり、高温にする必要もなく、α−酸化ガリウムのコランダム構造のような準安定相の結晶構造も作製可能である一方、非特許文献1記載のライデンフロスト効果により、ミスト揮発層で基板表面を覆うことで、ミストの液滴が直接膜に接触することなく結晶成長させる必要があるため、その制御が容易ではなく、均質な結晶膜を得ることが困難であった。また、ミストCVD法では、ミストの粒子にバラつきがあったり、基板に至るまでに、供給管内でミストが沈んでしまったりする問題もあり、成膜レートが低い等の問題があった。   However, unlike other methods, the mist CVD method does not require a high temperature and can produce a metastable phase crystal structure such as a corundum structure of α-gallium oxide. By covering the substrate surface with a mist volatile layer due to the Leidenfrost effect, it is necessary to grow crystals without causing the mist droplets to directly contact the film, so that the control is not easy, and a homogeneous crystal film is obtained. It was difficult. In addition, the mist CVD method has a problem in that the mist particles vary or the mist sinks in the supply pipe before reaching the substrate, and the film formation rate is low.

特開平1−257337号公報JP-A-1-257337 特開2005−307238号公報JP 2005-307238 A 特開2012−46772号公報JP 2012-46772 A 特許第5397794号Japanese Patent No. 5398794 特開2014−63973号公報JP 2014-63973 A

B. S. Gottfried., et al., "Film Boiling of Spheroidal Droplets. Leidenfrost Phenomenon", Ind. Eng. Chem. Fundamen., 1966, 5 (4), pp 561〜568B. S. Gottfried., Et al., "Film Boiling of Spheroidal Droplets. Leidenfrost Phenomenon", Ind. Eng. Chem. Fundamen., 1966, 5 (4), pp 561-568

本発明は、成膜レートに優れ、ミストCVD法が適用可能な成膜装置および成膜方法を提供することを目的とする。   An object of the present invention is to provide a film forming apparatus and a film forming method that are excellent in film forming rate and to which a mist CVD method can be applied.

本発明者らは、上記目的を達成すべく鋭意検討した結果、成膜部に、前記ミストまたは前記液滴を旋回させて旋回流を発生させる手段を設けたミストCVD装置の創製に成功し、このようなミストCVD装置を用いて、ミストCVD法により成膜すると、驚くべきことに、成膜レートに優れていること、均一な膜厚分布であること、大面積成膜が可能であること等を知見した。そして、このような装置が、上記した従来の問題を一挙に解決できることを見出した。   As a result of intensive studies to achieve the above object, the present inventors have succeeded in creating a mist CVD apparatus provided with means for generating a swirling flow by swirling the mist or the droplet in the film forming unit, Surprisingly, when such a mist CVD apparatus is used to form a film by the mist CVD method, the film formation rate is excellent, the film thickness is uniform, and large-area film formation is possible. I found out. And it discovered that such an apparatus can solve the above-mentioned conventional problem at a stretch.

また、本発明者らは、上記知見を得た後、さらに検討を重ねて本発明を完成させるに至った。   In addition, after obtaining the above knowledge, the present inventors have further studied and completed the present invention.

すなわち、本発明は、以下の発明に関する。
[1]原料溶液を霧化または液滴化する霧化・液滴化部、前記霧化・液滴化部で発生したミストまたは液滴をキャリアガスでもって基体まで搬送する搬送部、および該ミストまたは該液滴を熱処理して該基体上に成膜する成膜部を備える成膜装置において、
成膜部が、前記ミストまたは前記液滴を旋回させて旋回流を発生させる手段を具備することを特徴とする成膜装置。
[2]旋回流が、内向きに流れる前記[1]記載の成膜装置。
[3]成膜部が、円筒状または略円筒状であり、成膜部の側面に、前記ミストまたは前記液滴の搬入口が設けられている前記[1]または[2]に記載の成膜装置。
[4]成膜部の前記搬入口よりも前記基体から離れているところに、前記ミストまたは前記液滴の排気口が設けられている前記[3]記載の成膜装置。
[5]さらに、排気ファンが備え付けられている前記[1]〜[4]のいずれかに記載の成膜装置。
[6]ホットプレートを成膜部に備えている前記[1]〜[5]のいずれかに記載の成膜装置。
[7]超音波振動子を霧化・液滴化部に備えている前記[1]〜[6]のいずれかに記載の成膜装置。
[8]原料溶液を霧化または液滴化して生成されるミストまたは液滴を、キャリアガスでもって成膜室内に設置されている基体まで搬送し、ついで該基体上で該ミストまたは該液滴を熱反応させて成膜する成膜方法において、
前記成膜室内において、前記ミストまたは前記液滴を旋回させて旋回流を発生させることを特徴とする成膜方法。
[9]旋回流が、内向きに流れる前記[8]記載の成膜方法。
[10]成膜室が円筒状または略円筒状であり、成膜室の側面に前記ミストまたは前記液滴の搬入口が設けられている前記[8]または[9]に記載の成膜方法。
[11]成膜室の前記搬入口よりも前記基体から離れているところに、前記ミストまたは前記液滴の排気口が設けられている前記[10]記載の成膜方法。
[12]排気ファンを用いて排気する前記[11]記載の成膜方法。
[13]霧化または液滴化を、超音波振動により行う前記[8]〜[12]のいずれかに記載の成膜方法。
That is, the present invention relates to the following inventions.
[1] An atomization / droplet forming unit for atomizing or dropletizing a raw material solution, a transfer unit for transferring mist or droplets generated in the atomization / droplet forming unit to a substrate with a carrier gas, and In a film forming apparatus including a film forming unit that heat-treats the mist or the droplet to form a film on the substrate,
A film forming apparatus, wherein the film forming unit includes means for rotating the mist or the droplet to generate a swirling flow.
[2] The film forming apparatus according to [1], wherein the swirling flow flows inward.
[3] The film forming unit according to [1] or [2], wherein the film forming unit has a cylindrical shape or a substantially cylindrical shape, and the mist or the droplet inlet is provided on a side surface of the film forming unit. Membrane device.
[4] The film forming apparatus according to [3], wherein an exhaust port for the mist or the droplet is provided at a position farther from the substrate than the carry-in port of the film forming unit.
[5] The film forming apparatus according to any one of [1] to [4], further including an exhaust fan.
[6] The film forming apparatus according to any one of [1] to [5], wherein the film forming unit includes a hot plate.
[7] The film forming apparatus according to any one of [1] to [6], wherein an ultrasonic vibrator is provided in the atomizing / droplet forming unit.
[8] A mist or droplet generated by atomizing or dropletizing the raw material solution is conveyed to a substrate installed in a film forming chamber with a carrier gas, and then the mist or droplet on the substrate. In a film forming method for forming a film by reacting with heat,
A film forming method, wherein a swirl flow is generated by swirling the mist or the droplet in the film forming chamber.
[9] The film forming method according to [8], wherein the swirling flow flows inward.
[10] The film forming method according to [8] or [9], wherein the film forming chamber is cylindrical or substantially cylindrical, and the mist or the droplet inlet is provided on a side surface of the film forming chamber. .
[11] The film forming method according to [10], wherein an exhaust port for the mist or the droplet is provided at a position farther from the substrate than the carry-in port of the film forming chamber.
[12] The film forming method according to [11], wherein exhaust is performed using an exhaust fan.
[13] The film forming method according to any one of [8] to [12], wherein atomization or droplet formation is performed by ultrasonic vibration.

本発明の成膜装置および成膜方法は、ミストCVD法が適用可能であり、成膜レートに優れている。   The mist CVD method can be applied to the film forming apparatus and the film forming method of the present invention, and the film forming rate is excellent.

本発明の成膜装置の概略構成図である。It is a schematic block diagram of the film-forming apparatus of this invention. 本発明に用いられる霧化・液滴化部の一態様を説明する図である。It is a figure explaining the one aspect | mode of the atomization / droplet formation part used for this invention. 図2における超音波振動子の一態様を示す図である。It is a figure which shows the one aspect | mode of the ultrasonic transducer | vibrator in FIG. 本発明に用いられる成膜部の一態様を示す図である。It is a figure which shows the one aspect | mode of the film-forming part used for this invention. 実施例における膜厚の測定箇所を説明する図である。It is a figure explaining the measurement location of the film thickness in an Example. 比較例で用いた成膜装置の概略構成図である。It is a schematic block diagram of the film-forming apparatus used by the comparative example. 比較例における膜厚の測定箇所を説明する図である。It is a figure explaining the measurement location of the film thickness in a comparative example. 図4の成膜室における基板上のミストまたは液滴の流れを説明する模式図である。(a)は、円筒状の成膜室の断面を上面から見た模式図であり、(b)は、円筒状の成膜室の断面を側面から見た模式図である。FIG. 5 is a schematic diagram for explaining a flow of mist or droplets on a substrate in the film forming chamber of FIG. 4. (A) is the schematic diagram which looked at the cross section of the cylindrical film-forming chamber from the upper surface, (b) is the schematic diagram which looked at the cross section of the cylindrical film-forming chamber from the side. 実施例におけるXRD測定結果を示す図である。It is a figure which shows the XRD measurement result in an Example.

本発明の成膜装置は、原料溶液を霧化または液滴化する霧化・液滴化部、前記霧化・液滴化部で発生したミストまたは液滴をキャリアガスでもって基体まで搬送する搬送部、および該ミストまたは該液滴を熱処理して該基体上に成膜する成膜部を備える成膜装置において、成膜部が、前記ミストまたは前記液滴を旋回させて旋回流を発生させる手段を具備することを特徴とする。   The film-forming apparatus of the present invention transports the mist or droplet generated in the atomizing / droplet forming unit for atomizing or dropping the raw material solution to the substrate with the carrier gas. In a film forming apparatus including a transport unit and a film forming unit that heat-treats the mist or the droplet to form a film on the substrate, the film forming unit rotates the mist or the droplet to generate a swirling flow. It has the means to make it comprise, It is characterized by the above-mentioned.

以下、本発明の成膜装置について、図面を用いて説明するが、本発明は、これら図面に限定されるものではない。   Hereinafter, although the film-forming apparatus of this invention is demonstrated using drawing, this invention is not limited to these drawings.

図1は、本発明の成膜装置の一例を示している。成膜装置1は、キャリアガスを供給するキャリアガス源2aと、キャリアガス源2aから送り出されるキャリアガスの流量を調節するための流量調節弁3aと、希釈用キャリアガスを供給する希釈用キャリアガス源2bと、希釈用キャリアガス源2bから送り出される希釈用キャリアガスの流量を調節するための流量調節弁3bと、原料溶液4aが収容されるミスト発生源4と、水5aが入れられる容器5と、容器5の底面に取り付けられた超音波振動子6と、成膜室7と、ミスト発生源4から成膜室7までをつなぐ供給管9と、成膜室7内に設置されたホットプレート8と、排気管17と排気ファン11とを備えている。ホットプレート8上には、基板10が設置されている。   FIG. 1 shows an example of a film forming apparatus of the present invention. The film forming apparatus 1 includes a carrier gas source 2a for supplying a carrier gas, a flow rate adjusting valve 3a for adjusting the flow rate of the carrier gas sent from the carrier gas source 2a, and a dilution carrier gas for supplying a dilution carrier gas. A source 2b, a flow rate adjusting valve 3b for adjusting the flow rate of the dilution carrier gas sent out from the dilution carrier gas source 2b, a mist generating source 4 in which the raw material solution 4a is stored, and a container 5 in which water 5a is placed. An ultrasonic transducer 6 attached to the bottom of the container 5, a film forming chamber 7, a supply pipe 9 connecting the mist generation source 4 to the film forming chamber 7, and a hot installed in the film forming chamber 7. A plate 8, an exhaust pipe 17 and an exhaust fan 11 are provided. A substrate 10 is installed on the hot plate 8.

本発明の成膜装置1は、原料溶液を霧化または液滴化する霧化・液滴化部を備えている。図2は、霧化・液滴化部の一態様を示している。原料溶液4aが収容されている容器からなるミスト発生源4が、水5aが収容されている容器5に、支持体(図示せず)を用いて収納されている。容器5の底部には、超音波振動子6が備え付けられており、超音波振動子6と発振器16とが接続されている。そして、発振器16を作動させると、超音波振動子6が振動し、水5aを介して、ミスト発生源4内に超音波が伝播し、原料溶液4aが霧化または液滴化するように構成されている。   The film forming apparatus 1 of the present invention includes an atomization / droplet forming unit that atomizes or drops the raw material solution. FIG. 2 shows one mode of the atomization / droplet forming unit. A mist generating source 4 composed of a container in which the raw material solution 4a is accommodated is accommodated in a container 5 in which water 5a is accommodated using a support (not shown). An ultrasonic transducer 6 is provided at the bottom of the container 5, and the ultrasonic transducer 6 and the oscillator 16 are connected to each other. Then, when the oscillator 16 is operated, the ultrasonic vibrator 6 vibrates, the ultrasonic wave propagates into the mist generation source 4 through the water 5a, and the raw material solution 4a is atomized or dropletized. Has been.

図3は、図2に示されている超音波振動子6の一態様を示している。図2の超音波振動子は、支持体6e上の円筒状の弾性体6d内に、円板状の圧電体素子6bが備え付けられており、圧電体素子6bの両面に電極6a、6cが設けられている。そして、電極に発振器を接続して発振周波数を変更すると、圧電振動子の厚さ方向の共振周波数及び径方向の共振周波数を持つ超音波が発生されるように構成されている。   FIG. 3 shows one mode of the ultrasonic transducer 6 shown in FIG. The ultrasonic transducer of FIG. 2 includes a disk-like piezoelectric element 6b in a cylindrical elastic body 6d on a support 6e, and electrodes 6a and 6c are provided on both sides of the piezoelectric element 6b. It has been. When the oscillator is connected to the electrode and the oscillation frequency is changed, an ultrasonic wave having a resonance frequency in the thickness direction and a resonance frequency in the radial direction of the piezoelectric vibrator is generated.

上記したとおり、霧化・液滴化部では、原料溶液を調整し、前記原料溶液を霧化または液滴化してミストまたは液滴を発生させる。霧化または液滴化手段は、前記原料溶液を霧化または液滴化できさえすれば特に限定されず、公知の霧化手段または液滴化手段であってよいが、本発明においては、超音波振動により行う霧化手段または液滴化手段であるのが好ましい。   As described above, the atomization / droplet forming unit adjusts the raw material solution and atomizes or drops the raw material solution to generate mist or droplets. The atomization or droplet formation means is not particularly limited as long as the raw material solution can be atomized or dropletized, and may be a known atomization means or droplet formation means. An atomizing means or a droplet forming means performed by sonic vibration is preferable.

搬送部では、キャリアガスおよび所望により供給管等を用いて前記ミストまたは前記液滴を基体まで搬送する。キャリアガスの種類としては、本発明の目的を阻害しない限り特に限定されず、例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、または水素ガスやフォーミングガス等の還元ガスなどが好適な例として挙げられる。また、キャリアガスの種類は1種類であってよいが、2種類以上であってもよい。例えば、第1のキャリアガスと同じガスをそれ以外のガスで希釈した(例えば10倍に希釈した)希釈ガスなどを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。キャリアガスの流量は、特に限定されないが、例えば30mm角基板上に成膜する場合には、0.01〜20L/分であるのが好ましく、1〜10L/分であるのがより好ましい。   In the transfer unit, the mist or the droplet is transferred to the substrate using a carrier gas and, if desired, a supply pipe. The type of the carrier gas is not particularly limited as long as the object of the present invention is not impaired. For example, an inert gas such as oxygen, ozone, nitrogen or argon, or a reducing gas such as hydrogen gas or forming gas is preferable. As mentioned. Further, the type of carrier gas may be one, but may be two or more. For example, a diluted gas obtained by diluting the same gas as the first carrier gas with another gas (for example, diluted 10 times) may be further used as the second carrier gas. Further, the supply location of the carrier gas is not limited to one location but may be two or more locations. The flow rate of the carrier gas is not particularly limited. For example, in the case of forming a film on a 30 mm square substrate, it is preferably 0.01 to 20 L / min, and more preferably 1 to 10 L / min.

成膜部では、前記ミストまたは前記液滴を熱処理して、熱反応を生じさせて、前記基体表面の一部または全部に成膜する。前記熱反応は、加熱でもって前記ミストまたは前記液滴が反応すればそれでよく、反応条件等も本発明の目的を阻害しない限り特に限定されない。本工程において、熱反応を行う際の条件等については特に制限はないが、通常、加熱温度は120〜600℃の範囲であり、好ましくは120℃〜350℃の範囲であり、より好ましくは130℃〜300℃の範囲である。また、熱反応は、本発明の目的を阻害しない限り、真空下、非酸素雰囲気下、還元ガス雰囲気下および酸素雰囲気下のいずれの雰囲気下で行われてもよく、また、大気圧下、加圧下および減圧下のいずれの条件下で行われてもよいが、本発明においては、大気圧下で行われるのが好ましい。   In the film forming section, the mist or the droplet is heat-treated to cause a thermal reaction, and the film is formed on a part or all of the substrate surface. The thermal reaction is not particularly limited as long as the mist or the droplet reacts by heating, and the reaction conditions and the like are not particularly limited as long as the object of the present invention is not impaired. In this step, there are no particular restrictions on the conditions for carrying out the thermal reaction, but the heating temperature is usually in the range of 120 to 600 ° C, preferably in the range of 120 ° C to 350 ° C, more preferably 130. It is the range of ° C to 300 ° C. Further, the thermal reaction may be performed in any atmosphere of a vacuum, a non-oxygen atmosphere, a reducing gas atmosphere, and an oxygen atmosphere as long as the object of the present invention is not impaired. Although it may be carried out under any conditions of reduced pressure and reduced pressure, it is preferably carried out under atmospheric pressure in the present invention.

図4は、成膜部の一態様を示している。図4の成膜室7は、円筒状であり、ホットプレート8上に設けられている。そして、成膜室7は、ミスト発生源4と供給管9を介して接続されており、ミスト発生源4で発生したミストまたは液滴4bが、キャリアガスによって供給管9を通って成膜室7内に流れ込み、ホットプレート上に載置された基板10上で、熱反応するように構成されている。また、成膜室7は、天井面(上面)の中心に排気口を有しており、前記搬入口よりも前記基体から離れているところに、前記ミストまたは前記液滴の排気口が設けられている。そして、成膜室7は、排気口から排気管19aと接続されており、熱反応後のミスト、液滴もしくは排気ガスが、排気管19aへと運ばれるように構成されている。本発明においては、熱反応後のミスト、液滴もしくは排気ガスがトラップ処理に付されるように、トラップ手段をさらに備えていてもよい。成膜室7に、ミストまたは液滴4bが搬送されると、図4において矢印で表されるように、基板に向かってミストまたは液滴4bが流れ出す。このとき、内向きの旋回流が発生する。そして、ミストまたは液滴4bが旋回しながら、基板上で熱反応する。ついで、熱反応後のミスト、液滴もしくは排気ガスは、図4において矢印で表されるように、排気口へと流れていき、そして、排気管19aへと運ばれていく。   FIG. 4 shows one mode of the film forming unit. The film formation chamber 7 in FIG. 4 is cylindrical and is provided on a hot plate 8. The film formation chamber 7 is connected to the mist generation source 4 via the supply pipe 9, and the mist or droplet 4b generated by the mist generation source 4 passes through the supply pipe 9 by the carrier gas and forms the film formation chamber. 7 and is configured to react with heat on the substrate 10 placed on the hot plate. The film formation chamber 7 has an exhaust port at the center of the ceiling surface (upper surface), and the exhaust port for the mist or the droplet is provided at a position farther from the base than the carry-in port. ing. The film forming chamber 7 is connected to the exhaust pipe 19a from the exhaust port, and is configured such that the mist, liquid droplets or exhaust gas after the thermal reaction is carried to the exhaust pipe 19a. In the present invention, a trap means may be further provided so that the mist, droplet or exhaust gas after the thermal reaction is subjected to the trap process. When the mist or droplet 4b is transferred to the film forming chamber 7, the mist or droplet 4b flows toward the substrate as indicated by an arrow in FIG. At this time, an inward swirl flow is generated. Then, the mist or the liquid droplet 4b performs a thermal reaction on the substrate while turning. Next, the mist, droplets or exhaust gas after the thermal reaction flows to the exhaust port and is carried to the exhaust pipe 19a as represented by the arrow in FIG.

前記旋回流は、内向きでも外向きでもいずれの向きに流れてもよいが、本発明においては、内向きに流れるのが好ましい。図8は、図4の成膜室における基板上のミストまたは液滴の流れを説明する模式図である。図8(a)は、円筒状の成膜室7の断面を上面から見た図であり、成膜室7内には、基板10が設置されており、ミストまたは液滴の流れが矢印で表されている。図4の成膜室においては、図8(a)の矢印方向に旋回流が生じ、ミストまたは液滴が内向きに旋回して基板中心へと流れる。図8(b)は、円筒状の成膜室7の断面を側面から見た模式図であり、成膜室7内に基板10が設置されている。図8(b)において矢印で表されるように、外側から内側に向かってミストまたは液滴が流れる。そして、基板中心付近上に到達したミストまたは液滴は、上方の排気口に向かって流れる。なお、本発明においては、基体を成膜室上面に設置するなどして、フェイスダウンとしてもよいし、図4のように、基体を底面に設置して、フェイスアップとしてもよい。なお、前記旋回流の発生手段は、本発明の目的を阻害しない限り特に限定されず、公知の手段を用いてもよい。例えば、成膜室を円筒状にして、底面または上面に基体を配置し、側面からミストまたは液滴を導入し、基体が配置されている面の対称となる面(好ましくは箇所)に排出口を設けて、旋回流を発生させる手段等が挙げられる。ミストまたは液滴は、ミストまたは液滴が成膜室の内壁面に沿って移動するように、成膜室内に導入することが好ましい。このため、ミストまたは液滴の導入口が、実質的に、成膜室の内壁面の接線方向に向いていることが好ましい。但し、ミストまたは液滴を成膜室の径方向中央に向かって成膜室内に導入した場合でも、例えばキャリアガスの流速を適宜調整すること等の公知の手段を用いることによって、旋回流を発生させることが可能であるので、ミストまたは液滴の導入方向は、特に限定されない。なお、旋回流の流速は、本発明の目的を阻害しない限り特に限定されないが、好ましくは10〜100cm/秒であり、より好ましくは20〜70cm/秒である。   The swirling flow may flow in either an inward direction or an outward direction, but in the present invention, it preferably flows inward. FIG. 8 is a schematic diagram for explaining the flow of mist or droplets on the substrate in the film forming chamber of FIG. FIG. 8A is a view of a cross section of the cylindrical film forming chamber 7 as viewed from above. A substrate 10 is installed in the film forming chamber 7, and the flow of mist or droplets is indicated by arrows. It is represented. In the film forming chamber of FIG. 4, a swirling flow is generated in the direction of the arrow in FIG. 8A, and the mist or droplet swirls inward and flows to the center of the substrate. FIG. 8B is a schematic view of a cross section of the cylindrical film forming chamber 7 as viewed from the side, and the substrate 10 is installed in the film forming chamber 7. As shown by arrows in FIG. 8B, mist or droplets flow from the outside toward the inside. Then, the mist or droplet that reaches near the center of the substrate flows toward the upper exhaust port. In the present invention, the substrate may be placed on the upper surface of the film forming chamber to be face-down, or the substrate may be installed on the bottom surface as shown in FIG. The means for generating the swirling flow is not particularly limited as long as the object of the present invention is not impaired, and a known means may be used. For example, the film forming chamber is cylindrical, a substrate is disposed on the bottom or top surface, mist or droplets are introduced from the side surface, and a discharge port is formed on a surface (preferably a location) that is symmetrical to the surface on which the substrate is disposed. And a means for generating a swirling flow. The mist or droplet is preferably introduced into the deposition chamber so that the mist or droplet moves along the inner wall surface of the deposition chamber. For this reason, it is preferable that the mist or droplet inlet is substantially directed in the tangential direction of the inner wall surface of the film forming chamber. However, even when mist or droplets are introduced into the film formation chamber toward the radial center of the film formation chamber, a swirl flow is generated by using a known means such as appropriately adjusting the flow rate of the carrier gas. Therefore, the direction of introducing the mist or droplet is not particularly limited. The flow rate of the swirl flow is not particularly limited as long as the object of the present invention is not impaired, but is preferably 10 to 100 cm / second, more preferably 20 to 70 cm / second.

以下、図1を用いて、本発明の製造装置の使用態様を説明する。
まず、原料溶液4aをミスト発生源4内に収容し、基板10をホットプレート8上に設置させ、ホットプレート8を作動させる。次に、流量調節弁3(3a、3b)を開いてキャリアガス源2(2a、2b)からキャリアガスを成膜室7内に供給し、成膜室7の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量と希釈用キャリアガスの流量をそれぞれ調節する。次に、超音波振動子6を振動させ、その振動を、水5aを通じて原料溶液4aに伝播させることによって、原料溶液4aを霧化または液滴化させてミストまたは液滴4bを生成する。ついで、ミストまたは液滴4bが、キャリアガスによって成膜室7内に導入される。成膜室7の上面真ん中には、排気口が設けられており、排気管17と接続されている。また、排気管17は排気ファン11に接続されており、排気ファン17によって、成膜室7内の排気ガス等が排気口から吸気されるように構成されている。また、円筒状の成膜室7の側面には、ミストまたは液滴の搬入口が設けられており、成膜室7内に導入されたミストまたは液滴が旋回して、内向きに流れる旋回流が生じるように構成されている。そして、旋回しながら、ミストまたは液滴が、成膜室7内でホットプレート8の加熱により熱反応して、基板10上に成膜することができる。
Hereinafter, the usage mode of the manufacturing apparatus of the present invention will be described with reference to FIG.
First, the raw material solution 4a is accommodated in the mist generating source 4, the substrate 10 is placed on the hot plate 8, and the hot plate 8 is operated. Next, the flow rate adjusting valve 3 (3a, 3b) is opened to supply the carrier gas from the carrier gas source 2 (2a, 2b) into the film forming chamber 7, and the atmosphere in the film forming chamber 7 is sufficiently replaced with the carrier gas. After that, the flow rate of the carrier gas and the flow rate of the carrier gas for dilution are adjusted. Next, the ultrasonic vibrator 6 is vibrated, and the vibration is propagated to the raw material solution 4a through the water 5a, whereby the raw material solution 4a is atomized or formed into droplets to generate mist or droplets 4b. Subsequently, the mist or the droplet 4b is introduced into the film forming chamber 7 by the carrier gas. An exhaust port is provided in the middle of the upper surface of the film forming chamber 7 and is connected to the exhaust pipe 17. Further, the exhaust pipe 17 is connected to the exhaust fan 11, and the exhaust fan 17 is configured such that exhaust gas or the like in the film forming chamber 7 is sucked from the exhaust port. Further, a mist or droplet inlet is provided on the side surface of the cylindrical film formation chamber 7, and the mist or droplet introduced into the film formation chamber 7 swirls and swirls to flow inwardly. It is comprised so that a flow may arise. Then, while turning, the mist or droplets can be thermally reacted by heating the hot plate 8 in the film forming chamber 7 to form a film on the substrate 10.

なお、前記成膜室の形状は、本発明の目的を阻害しない限り特に限定されず、筒状であることが好ましい。成膜室は、円筒状または略円筒状であってもよいし、角柱状(例えば立方体、直方体、五角柱、六角柱もしくは八角柱等)または略角柱状であってもよいが、本発明においては、円筒状または略円筒状が好ましい。
また、前記基体は成膜時に回転されてもよく、回転方向は、前記旋回流の向きと逆向きにするのが好ましい。
Note that the shape of the film forming chamber is not particularly limited as long as the object of the present invention is not impaired, and a cylindrical shape is preferable. The film formation chamber may have a cylindrical shape or a substantially cylindrical shape, and may have a prismatic shape (for example, a cube, a rectangular parallelepiped, a pentagonal column, a hexagonal column, or an octagonal column) or a substantially prismatic shape. Is preferably cylindrical or substantially cylindrical.
The substrate may be rotated during film formation, and the rotation direction is preferably opposite to the direction of the swirl flow.

(原料溶液)
原料溶液は、霧化または液滴化が可能な材料を含んでいれば特に限定されず、無機材料であっても、有機材料であってもよいが、本発明においては、金属または金属化合物であるのが好ましく、ガリウム、鉄、インジウム、アルミニウム、バナジウム、チタン、クロム、ロジウム、ニッケルおよびコバルトから選ばれる1種または2種以上の金属を含むのがより好ましい。
(Raw material solution)
The raw material solution is not particularly limited as long as it contains a material that can be atomized or formed into droplets, and may be an inorganic material or an organic material. It is preferable that it contains one or more metals selected from gallium, iron, indium, aluminum, vanadium, titanium, chromium, rhodium, nickel and cobalt.

前記原料溶液は、上記金属を霧化または液滴化できるものであれば特に限定されないが、前記原料溶液として、前記金属を錯体または塩の形態で有機溶媒または水に溶解または分散させたものを好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、塩化金属塩、臭化金属塩、ヨウ化金属塩などが挙げられる。   The raw material solution is not particularly limited as long as the metal can be atomized or formed into droplets, but the raw material solution is a solution in which the metal is dissolved or dispersed in an organic solvent or water in the form of a complex or salt. It can be used suitably. Examples of complex forms include acetylacetonate complexes, carbonyl complexes, ammine complexes, hydride complexes, and the like. Examples of the salt form include metal chloride salts, metal bromide salts, metal iodide salts, and the like.

また、前記原料溶液には、ハロゲン化水素酸や酸化剤等の添加剤を混合してもよい。前記ハロゲン化水素酸としては、例えば、臭化水素酸、塩酸、ヨウ化水素酸などが挙げられるが、中でも、臭化水素酸またはヨウ化水素酸が好ましい。前記酸化剤としては、例えば、過酸化水素(H)、過酸化ナトリウム(Na)、過酸化バリウム(BaO)、過酸化ベンゾイル(CCO)等の過酸化物、次亜塩素酸(HClO)、過塩素酸、硝酸、オゾン水、過酢酸やニトロベンゼン等の有機過酸化物などが挙げられる。 Moreover, you may mix additives, such as a hydrohalic acid and an oxidizing agent, with the said raw material solution. Examples of the hydrohalic acid include hydrobromic acid, hydrochloric acid, hydroiodic acid, etc. Among them, hydrobromic acid or hydroiodic acid is preferable. Examples of the oxidizing agent include hydrogen peroxide (H 2 O 2 ), sodium peroxide (Na 2 O 2 ), barium peroxide (BaO 2 ), and benzoyl peroxide (C 6 H 5 CO) 2 O 2. Peroxides, hypochlorous acid (HClO), perchloric acid, nitric acid, ozone water, organic peroxides such as peracetic acid and nitrobenzene.

前記原料溶液には、ドーパントが含まれていてもよい。前記ドーパントは、本発明の目的を阻害しない限り、特に限定されない。前記ドーパントとしては、例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブ等のn型ドーパント、またはp型ドーパントなどが挙げられる。ドーパントの濃度は、通常、約1×1016/cm〜1×1022/cmであってもよいし、また、ドーパントの濃度を例えば約1×1017/cm以下の低濃度にしてもよい。また、さらに、本発明によれば、ドーパントを約1×1020/cm以上の高濃度で含有させてもよい。 The raw material solution may contain a dopant. The dopant is not particularly limited as long as the object of the present invention is not impaired. Examples of the dopant include n-type dopants such as tin, germanium, silicon, titanium, zirconium, vanadium or niobium, or p-type dopants. The concentration of the dopant may usually be about 1 × 10 16 / cm 3 to 1 × 10 22 / cm 3 , and the concentration of the dopant is set to a low concentration of about 1 × 10 17 / cm 3 or less, for example. May be. Furthermore, according to the present invention, the dopant may be contained at a high concentration of about 1 × 10 20 / cm 3 or more.

(基体)
前記基体は、前記膜を支持できるものであれば特に限定されない。前記基体の材料も、本発明の目的を阻害しない限り特に限定されず、公知の基体であってよく、有機化合物であってもよいし、無機化合物であってもよい。前記基体の形状としては、どのような形状のものであってもよく、あらゆる形状に対して有効であり、例えば、平板や円板等の板状、繊維状、棒状、円柱状、角柱状、筒状、螺旋状、球状、リング状などが挙げられるが、本発明においては、基板が好ましい。基板の厚さは、本発明においては特に限定されないが、好ましくは、10〜2000μmであり、より好ましくは50〜800μmである。
(Substrate)
The substrate is not particularly limited as long as it can support the film. The material of the substrate is not particularly limited as long as the object of the present invention is not impaired, and may be a known substrate, an organic compound, or an inorganic compound. The shape of the substrate may be any shape and is effective for all shapes, for example, a plate shape such as a flat plate or a disk, a fiber shape, a rod shape, a columnar shape, a prismatic shape, A cylindrical shape, a spiral shape, a spherical shape, a ring shape and the like can be mentioned. In the present invention, a substrate is preferable. Although the thickness of a board | substrate is not specifically limited in this invention, Preferably, it is 10-2000 micrometers, More preferably, it is 50-800 micrometers.

上記のようにして本発明の成膜装置および成膜方法を用いることにより、ミストCVD法でも成膜レートに優れたものになり、均一な膜厚分布でかつ大面積成膜が可能となる。   By using the film forming apparatus and the film forming method of the present invention as described above, the film forming rate is excellent even by the mist CVD method, and a film can be formed with a uniform film thickness distribution and a large area.

以下、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

(実施例1)
1.製造装置
まず、図1を用いて、本実施例で用いた成膜装置1を説明する。成膜装置1は、キャリアガスを供給するキャリアガス源2aと、キャリアガス源2aから送り出されるキャリアガスの流量を調節するための流量調節弁3aと、希釈用キャリアガスを供給する希釈用キャリアガス源2bと、希釈用キャリアガス源2bから送り出される希釈用キャリアガスの流量を調節するための流量調節弁3bと、原料溶液4aが収容されるミスト発生源4と、水5aが入れられる容器5と、容器5の底面に取り付けられた超音波振動子6と、成膜室7と、ミスト発生源4から成膜室7までをつなぐ石英製の供給管9と、成膜室7内に設置されたホットプレート8と、排気管17および排気ファン11とを備えている。ホットプレート8上には、基板10が設置されている。
Example 1
1. Manufacturing Apparatus First, the film forming apparatus 1 used in this example will be described with reference to FIG. The film forming apparatus 1 includes a carrier gas source 2a for supplying a carrier gas, a flow rate adjusting valve 3a for adjusting the flow rate of the carrier gas sent from the carrier gas source 2a, and a dilution carrier gas for supplying a dilution carrier gas. A source 2b, a flow rate adjusting valve 3b for adjusting the flow rate of the dilution carrier gas sent out from the dilution carrier gas source 2b, a mist generating source 4 in which the raw material solution 4a is stored, and a container 5 in which water 5a is placed. And an ultrasonic transducer 6 attached to the bottom surface of the container 5, a film forming chamber 7, a quartz supply pipe 9 connecting the mist generating source 4 to the film forming chamber 7, and the film forming chamber 7. The hot plate 8, the exhaust pipe 17 and the exhaust fan 11 are provided. A substrate 10 is installed on the hot plate 8.

2.原料溶液の作製
臭化ガリウム0.1mol/Lの水溶液を調整し、この際、さらに48%臭化水素酸溶液を体積比で10%となるように含有させ、これを原料溶液とした。
2. Preparation of Raw Material Solution An aqueous solution of gallium bromide 0.1 mol / L was prepared. At this time, a 48% hydrobromic acid solution was further added so as to be 10% by volume, and this was used as a raw material solution.

3.成膜準備
上記2.で得られた原料溶液4aをミスト発生源4内に収容した。次に、基板10として4インチのc面サファイア基板を用いて、c面サファイア基板をホットプレート8上に設置し、ホットプレート8を作動させて成膜室7内の温度を500℃にまで昇温させた。次に、流量調節弁3(3a、3b)を開いてキャリアガス源2(2a、2b)からキャリアガスを成膜室7内に供給し、成膜室7の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を5L/minに、希釈用キャリアガスの流量を0.5L/minにそれぞれ調節した。なお、キャリアガスとして酸素を用いた。
3. Preparation of film formation The raw material solution 4a obtained in the above was accommodated in the mist generating source 4. Next, using a 4-inch c-plane sapphire substrate as the substrate 10, the c-plane sapphire substrate is placed on the hot plate 8, and the hot plate 8 is operated to raise the temperature in the film forming chamber 7 to 500 ° C. Allowed to warm. Next, the flow rate adjusting valve 3 (3a, 3b) is opened to supply the carrier gas from the carrier gas source 2 (2a, 2b) into the film forming chamber 7, and the atmosphere in the film forming chamber 7 is sufficiently replaced with the carrier gas. Then, the flow rate of the carrier gas was adjusted to 5 L / min, and the flow rate of the carrier gas for dilution was adjusted to 0.5 L / min. Note that oxygen was used as a carrier gas.

4.単層膜形成
次に、超音波振動子6を2.4MHzで振動させ、その振動を、水5aを通じて原料溶液4aに伝播させることによって、原料溶液4aを霧化してミスト4bを生成した。このミスト4bが、キャリアガスによって成膜室7内に導入され、成膜室7内でミストが旋回して、図8に示されるような内向きに流れる旋回流が発生した。そして、大気圧下、560℃にて、成膜室7内で旋回流のミストが反応して、基板10上に薄膜が形成された。なお、ミストの流速は45.6cm/秒であり、成膜時間は30分であった。
4). Next, the ultrasonic vibrator 6 was vibrated at 2.4 MHz, and the vibration was propagated to the raw material solution 4a through the water 5a, whereby the raw material solution 4a was atomized to generate a mist 4b. The mist 4b was introduced into the film forming chamber 7 by the carrier gas, and the mist swirled in the film forming chamber 7 to generate a swirling flow flowing inward as shown in FIG. Then, at atmospheric pressure and 560 ° C., the swirl mist reacted in the film forming chamber 7 to form a thin film on the substrate 10. The flow rate of mist was 45.6 cm / second, and the film formation time was 30 minutes.

5.評価
上記4.にて得られたα−Ga薄膜の相の同定をした。同定は、薄膜用XRD回折装置を用いて、15度から95度の角度で2θ/ωスキャンを行うことによって行った。測定は、CuKα線を用いて行った。その結果、得られた薄膜はα−Gaであった。
5. Evaluation 4. The phase of the α-Ga 2 O 3 thin film obtained in (1) was identified. Identification was performed by performing 2θ / ω scanning at an angle of 15 to 95 degrees using an XRD diffractometer for thin films. The measurement was performed using CuKα rays. As a result, the obtained thin film was α-Ga 2 O 3 .

また、図5に示される基板10上の薄膜の各測定箇所(A1、A2、A3、A4、A5)につき、段差計を用いて膜厚を測定し、それぞれの膜厚の値から平均値を算出したところ、平均膜厚は、3,960nmであった。そして、平均膜厚を成膜時間で割った成膜レートは、132nm/分であった。   Further, for each measurement point (A1, A2, A3, A4, A5) of the thin film on the substrate 10 shown in FIG. 5, the film thickness is measured using a step gauge, and the average value is calculated from the respective film thickness values. When calculated, the average film thickness was 3,960 nm. The film formation rate obtained by dividing the average film thickness by the film formation time was 132 nm / min.

(比較例)
図6を用いて、比較例で用いた成膜装置19を説明する。ミストCVD装置19は、基板20を載置するサセプタ21と、キャリアガスを供給するキャリアガス供給手段22aと、キャリアガス供給手段22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、希釈用キャリアガスを供給する希釈用キャリアガス供給手段22bと、希釈用キャリアガス供給手段22bから送り出されるキャリアガスの流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、内径40mmの石英管からなる供給管27と、供給管27の周辺部に設置されたヒーター28と、排気口29とを備えている。サセプタ21は、石英からなり、基板20を載置する面が水平面から45度傾斜している。成膜室となる供給管27とサセプタ21をどちらも石英で作製することにより、基板20上に形成される膜内に装置由来の不純物が混入することを抑制している。
(Comparative example)
The film forming apparatus 19 used in the comparative example will be described with reference to FIG. The mist CVD apparatus 19 includes a susceptor 21 on which the substrate 20 is placed, a carrier gas supply means 22a for supplying a carrier gas, and a flow rate adjusting valve 23a for adjusting the flow rate of the carrier gas sent from the carrier gas supply means 22a. A dilution carrier gas supply means 22b for supplying a dilution carrier gas, a flow rate adjusting valve 23b for adjusting the flow rate of the carrier gas sent from the dilution carrier gas supply means 22b, and a mist in which the raw material solution 24a is accommodated Installed in the periphery of the supply tube 27, a source 25, a container 25 in which water 25 a is placed, an ultrasonic transducer 26 attached to the bottom surface of the container 25, a supply tube 27 made of a quartz tube having an inner diameter of 40 mm, and the supply tube 27. The heater 28 and the exhaust port 29 are provided. The susceptor 21 is made of quartz, and the surface on which the substrate 20 is placed is inclined 45 degrees from the horizontal plane. Both the supply pipe 27 and the susceptor 21 serving as a film formation chamber are made of quartz, so that impurities derived from the apparatus are prevented from being mixed into the film formed on the substrate 20.

図6に示す成膜装置を用いたこと、および基板20として10mm角のc面サファイア基板を用いたこと以外は、実施例1と同様にして成膜した。得られた薄膜につき、上記実施例と同様にして、薄膜用XRD回折装置を用いて、相を同定した。その結果、得られた薄膜はα−Gaであった。また、上記実施例と同様にして膜厚を測定した。なお、膜厚測定箇所は、図6に示される基板20上の薄膜の各測定箇所(B1、B2、B3、B4およびB5)とした。結果を比較例として表1に示す。 A film was formed in the same manner as in Example 1 except that the film forming apparatus shown in FIG. 6 was used and a 10 mm square c-plane sapphire substrate was used as the substrate 20. About the obtained thin film, it carried out similarly to the said Example, and identified the phase using the XRD diffraction apparatus for thin films. As a result, the obtained thin film was α-Ga 2 O 3 . The film thickness was measured in the same manner as in the above example. In addition, the film thickness measurement location was made into each measurement location (B1, B2, B3, B4, and B5) of the thin film on the board | substrate 20 shown by FIG. The results are shown in Table 1 as comparative examples.

(実施例2)
基板10として、10mm角のc面サファイア基板を用いたこと以外は、実施例1と同様にして成膜した。得られた薄膜につき、上記比較例と同様にして、薄膜用XRD回折装置を用いて、相を同定した。その結果、得られた薄膜はα−Gaであった。また、上記比較例と同様にして膜厚を測定した。なお、膜厚測定箇所は、基板20を基板10としたこと以外は、比較例と同様に、薄膜の各測定箇所(B1、B2、B3、B4およびB5)とした。結果を実施例2として表1に示す。
(Example 2)
A film was formed in the same manner as in Example 1 except that a 10 mm square c-plane sapphire substrate was used as the substrate 10. About the obtained thin film, the phase was identified using the XRD diffraction apparatus for thin films similarly to the said comparative example. As a result, the obtained thin film was α-Ga 2 O 3 . Further, the film thickness was measured in the same manner as in the comparative example. The film thickness measurement locations were the thin film measurement locations (B1, B2, B3, B4, and B5), as in the comparative example, except that the substrate 20 was the substrate 10. The results are shown in Table 1 as Example 2.

表1の結果から、平均膜厚、成膜レート、変動係数および面内均一性を求めた。結果を表2に示す。なお、平均膜厚は、各測定箇所の膜厚の平均値であり、成膜レートは、各測定箇所の膜厚の平均値を成膜時間(分)で割った値であり、変動係数は、膜厚の標準偏差を膜厚の平均値で割ったものであり、面内均一性は、平均値と、最大値または最小値との差を百分率で表して、バラツキの範囲を表したものである。   From the results in Table 1, the average film thickness, film formation rate, coefficient of variation, and in-plane uniformity were determined. The results are shown in Table 2. The average film thickness is the average value of the film thickness at each measurement location, the film formation rate is the value obtained by dividing the average value of the film thickness at each measurement location by the film formation time (minutes), and the coefficient of variation is The standard deviation of the film thickness is divided by the average value of the film thickness, and the in-plane uniformity is the difference between the average value and the maximum or minimum value, expressed as a percentage, indicating the range of variation. It is.

表1および表2から明らかなとおり、実施例では、成膜レートにおいて、桁違いに優れており、成膜レートや面内均一性等の成膜品質の差も歴然としていることがわかる。そのため、本発明の成膜装置および成膜方法は、従来のミストCVD装置よりも成膜レートや膜厚の均一性に優れている。   As is apparent from Tables 1 and 2, in the examples, the film formation rate is excellent by an order of magnitude, and it can be seen that the difference in film formation quality such as film formation rate and in-plane uniformity is obvious. Therefore, the film forming apparatus and film forming method of the present invention are superior in film forming rate and film thickness uniformity as compared with the conventional mist CVD apparatus.

(実施例3)
ガリウムアセチルアセトナートとアルミニウムアセチルアセトナートとがモル比で1:6となり、かつ塩酸が体積比で2%となるように水溶液を調整し、これを原料溶液とした。
得られた原料溶液を用いたこと、成膜温度を600℃としたこと、キャリアガスの流量を8LPMとしたこと、成膜時間を3時間としたこと以外は、実施例1と同様にして成膜した。なお、ミストの流速は73.0cm/秒であった。得られた膜につき、アルミニウムの含有率をX線にて測定した。XRD測定結果を図9に示す。XRD測定結果から、得られた膜は、今まで成膜が困難とされてきたコランダム構造のアルミニウム62.8%含有AlGaO系半導体膜であった。また、得られたコランダム構造のAlGaO系半導体膜につき、膜厚を測定したところ、720nmであった。
今まではコランダム構造のAlGaO系半導体膜が得られたとしても、50nm以上の厚い膜を得ることは困難であったが、本発明によれば、700nm以上もの厚いコランダム構造のAlGaO系半導体膜を得ることができた。このことからも、本発明の成膜装置は、ミストCVD法の適性に優れ、さらに、成膜レートが格別に優れていることがわかる。
(Example 3)
An aqueous solution was prepared so that gallium acetylacetonate and aluminum acetylacetonate were in a molar ratio of 1: 6, and hydrochloric acid was in a volume ratio of 2%, and this was used as a raw material solution.
The process was performed in the same manner as in Example 1 except that the obtained raw material solution was used, the film formation temperature was 600 ° C., the carrier gas flow rate was 8 LPM, and the film formation time was 3 hours. Filmed. The mist flow rate was 73.0 cm / second. About the obtained film | membrane, the content rate of aluminum was measured by the X ray. The XRD measurement results are shown in FIG. From the XRD measurement results, the obtained film was an AlGaO-based semiconductor film containing 62.8% aluminum having a corundum structure, which has been difficult to form. Moreover, when the film thickness was measured about the obtained AlGaO type semiconductor film of the corundum structure, it was 720 nm.
Up to now, even if an AlGaO-based semiconductor film having a corundum structure has been obtained, it has been difficult to obtain a film having a thickness of 50 nm or more. However, according to the present invention, an AlGaO-based semiconductor film having a thickness of 700 nm or more can be obtained. I was able to get it. This also shows that the film forming apparatus of the present invention is excellent in the suitability of the mist CVD method and has a particularly excellent film forming rate.

本発明の成膜装置および成膜方法は、あらゆる成膜分野に用いることができ、工業的に有用である。特に、ミストCVD法にて得られる薄膜を成膜する場合には、本発明の成膜装置および成膜方法を好適に利用することができる。   The film forming apparatus and film forming method of the present invention can be used in any film forming field and are industrially useful. In particular, when a thin film obtained by the mist CVD method is formed, the film forming apparatus and the film forming method of the present invention can be suitably used.

1 成膜装置
2a キャリアガス源
2b 希釈用キャリアガス源
3a 流量調節弁
3b 流量調節弁
4 ミスト発生源
4a 原料溶液
4b ミスト
4c 排気ガス
5 容器
5a 水
6 超音波振動子
6a 電極
6b 圧電体素子
6c 電極
6d 弾性体
6e 支持体
7 成膜室
8 ホットプレート
9 供給管
10 基板
11 排気ファン
16 発振器
17 排気管
19 ミストCVD装置
20 基板
21 サセプタ
22a キャリアガス供給手段
22b 希釈用キャリアガス供給手段
23a 流量調節弁
23b 流量調節弁
24 ミスト発生源
24a 原料溶液
25 容器
25a 水
26 超音波振動子
27 供給管
28 ヒーター
29 排気口
DESCRIPTION OF SYMBOLS 1 Film-forming apparatus 2a Carrier gas source 2b Dilution carrier gas source 3a Flow control valve 3b Flow control valve 4 Mist generation source 4a Raw material solution 4b Mist 4c Exhaust gas 5 Container 5a Water 6 Ultrasonic transducer 6a Electrode 6b Piezoelectric element 6c Electrode 6d Elastic body 6e Support body 7 Deposition chamber 8 Hot plate 9 Supply pipe 10 Substrate 11 Exhaust fan 16 Oscillator 17 Exhaust pipe 19 Mist CVD apparatus 20 Substrate 21 Susceptor 22a Carrier gas supply means 22b Dilution carrier gas supply means 23a Flow rate adjustment Valve 23b Flow control valve 24 Mist generation source 24a Raw material solution 25 Container 25a Water 26 Ultrasonic vibrator 27 Supply pipe 28 Heater 29 Exhaust port

Claims (11)

原料溶液を霧化または液滴化する霧化・液滴化部、前記霧化・液滴化部で発生したミストまたは液滴をキャリアガスでもって基体まで搬送する搬送部、および該ミストまたは該液滴を熱処理して該基体上に成膜する成膜部を備える成膜装置において、
成膜部が、前記ミストまたは前記液滴を旋回させて内向きに流れる旋回流を発生させる手段を具備することを特徴とする成膜装置。
An atomization / droplet forming unit for atomizing or dropletizing a raw material solution, a transport unit for transporting a mist or droplet generated in the atomization / droplet forming unit to a substrate with a carrier gas, and the mist or the In a film forming apparatus including a film forming unit that heat-treats droplets to form a film on the substrate,
A film forming apparatus, wherein the film forming unit includes means for generating a swirling flow that swirls the mist or the droplets to flow inward .
成膜部が、円筒状または略円筒状であり、成膜部の側面に、前記ミストまたは前記液滴の搬入口が設けられている請求項1に記載の成膜装置。   The film forming apparatus according to claim 1, wherein the film forming unit is cylindrical or substantially cylindrical, and the mist or the droplet inlet is provided on a side surface of the film forming unit. 成膜部の前記搬入口よりも前記基体から離れているところに、前記ミストまたは前記液滴の排気口が設けられている請求項記載の成膜装置。 The film forming apparatus according to claim 2 , wherein an exhaust port for the mist or the droplet is provided at a position farther from the substrate than the carry-in port of the film forming unit. さらに、排気ファンが備え付けられている請求項1〜のいずれかに記載の成膜装置。 Further, the film forming apparatus according to any one of claims 1 to 3, the exhaust fan is equipped. ホットプレートを成膜部に備えている請求項1〜のいずれかに記載の成膜装置。 Film forming apparatus according to any one of claims 1 to 4, which comprises a hot plate in the deposition unit. 超音波振動子を霧化・液滴化部に備えている請求項1〜のいずれかに記載の成膜装置。 Film forming apparatus according to any one of claims 1 to 5, which comprises an ultrasonic vibrator atomizing-droplet unit. 原料溶液を霧化または液滴化して生成されるミストまたは液滴を、キャリアガスでもって成膜室内に設置されている基体まで搬送し、ついで該基体上で該ミストまたは該液滴を熱反応させて成膜する成膜方法において、
前記成膜室内において、前記ミストまたは前記液滴を旋回させて内向きに流れる旋回流を発生させることを特徴とする成膜方法。
Mist or droplets generated by atomizing or dropletizing the raw material solution are transported to a substrate installed in a film forming chamber with a carrier gas, and then the mist or droplets are thermally reacted on the substrate. In a film forming method for forming a film,
In the film forming chamber, the mist or the droplet is swirled to generate a swirling flow that flows inward .
成膜室が円筒状または略円筒状であり、成膜室の側面に前記ミストまたは前記液滴の搬入口が設けられている請求項に記載の成膜方法。 The film forming method according to claim 7 , wherein the film forming chamber is cylindrical or substantially cylindrical, and the mist or the droplet inlet is provided on a side surface of the film forming chamber. 成膜室の前記搬入口よりも前記基体から離れているところに、前記ミストまたは前記液滴の排気口が設けられている請求項8に記載の成膜方法。 The film forming method according to claim 8, wherein an exhaust port for the mist or the droplet is provided at a position farther from the substrate than the carry-in port of the film forming chamber. 排気ファンを用いて排気する請求項記載の成膜方法。 The film forming method according to claim 9, wherein exhaust is performed using an exhaust fan. 霧化または液滴化を、超音波振動により行う請求項10のいずれかに記載の成膜方法。
The atomization or liquid droplets, film deposition method according to any one of claims 7-10 carried out by ultrasonic vibration.
JP2015023488A 2015-01-29 2015-02-09 Film forming apparatus and film forming method Active JP6478103B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15156678.3A EP3051002A1 (en) 2015-01-29 2015-02-26 Apparatus and method for forming film
US14/632,768 US20160222511A1 (en) 2015-01-29 2015-02-26 Apparatus and method for forming film
TW104106265A TWI535883B (en) 2015-01-29 2015-02-26 Film forming apparatus and film forming method
KR1020150026934A KR101708283B1 (en) 2015-01-29 2015-02-26 Apparatus and method for forming film
CN201510090158.7A CN105986246A (en) 2015-01-29 2015-02-27 Apparatus and method for forming film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015015217 2015-01-29
JP2015015217 2015-01-29

Publications (2)

Publication Number Publication Date
JP2016146442A JP2016146442A (en) 2016-08-12
JP6478103B2 true JP6478103B2 (en) 2019-03-06

Family

ID=56686476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023488A Active JP6478103B2 (en) 2015-01-29 2015-02-09 Film forming apparatus and film forming method

Country Status (4)

Country Link
JP (1) JP6478103B2 (en)
KR (1) KR101708283B1 (en)
CN (1) CN105986246A (en)
TW (1) TWI535883B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643660B (en) 2016-08-31 2024-03-05 株式会社Flosfia p-type oxide semiconductor and method for manufacturing the same
JP6793942B2 (en) * 2016-11-01 2020-12-02 国立大学法人 和歌山大学 Gallium oxide production method and crystal growth equipment
JP7054850B2 (en) * 2017-03-31 2022-04-15 株式会社Flosfia Method for manufacturing crystalline laminated structure
US10989609B2 (en) 2017-05-09 2021-04-27 Flosfia Inc. Thermistor film and method of depositing the same
CN109423694B (en) * 2017-08-21 2022-09-09 株式会社Flosfia Crystalline film, semiconductor device including the same, and method of manufacturing the same
JP7223515B2 (en) * 2018-06-26 2023-02-16 信越化学工業株式会社 Film forming apparatus and film forming method
JP2020011858A (en) * 2018-07-17 2020-01-23 トヨタ自動車株式会社 Film deposition method, and manufacturing method of semiconductor device
JP6875336B2 (en) * 2018-08-27 2021-05-26 信越化学工業株式会社 Film formation method
JP7274024B2 (en) * 2018-08-27 2023-05-15 信越化学工業株式会社 Deposition equipment
CN109056066A (en) * 2018-09-05 2018-12-21 南京大学 A kind of system of ultrasonic wave added mist phase transport chemical vapor deposition growing gallium oxide
JP2020092125A (en) * 2018-12-03 2020-06-11 トヨタ自動車株式会社 Film deposition apparatus
JP6934852B2 (en) * 2018-12-18 2021-09-15 信越化学工業株式会社 Manufacturing method of gallium oxide film
KR20200079086A (en) 2018-12-24 2020-07-02 한국세라믹기술원 Chemical Vapor Deposition Instrument for Forming Ultra wide bandgap Semiconductor Film Using Semipolar Sapphire Substrate
KR20200079167A (en) 2018-12-24 2020-07-02 한국세라믹기술원 Mist Chemical Vapor Deposition Instrument for Forming Gallium Oxide Film
KR20200079084A (en) 2018-12-24 2020-07-02 한국세라믹기술원 Mist Chemical Vapor Deposition Instrument for Forming Gallium Oxide Film Using Non-polar Sapphire Substrate
JP6879516B2 (en) * 2019-01-25 2021-06-02 株式会社デンソー Film formation equipment and semiconductor device manufacturing method
WO2020174642A1 (en) * 2019-02-28 2020-09-03 東芝三菱電機産業システム株式会社 Film forming device
JP2020188170A (en) * 2019-05-15 2020-11-19 トヨタ自動車株式会社 Mist generation device and deposition device
JP7228160B2 (en) * 2019-06-03 2023-02-24 株式会社デンソー Mist generating device, film forming device, and film forming method using film forming device
JP7212890B2 (en) * 2019-06-05 2023-01-26 株式会社デンソー Oxide Film Forming Method, Semiconductor Device Manufacturing Method, and Oxide Film Forming Apparatus
WO2020261355A1 (en) * 2019-06-25 2020-12-30 日本碍子株式会社 Semiconductor film
JP7265624B2 (en) * 2019-06-28 2023-04-26 日本碍子株式会社 semiconductor film
CN114269972A (en) * 2019-09-02 2022-04-01 日本碍子株式会社 Semiconductor film
JP6925548B1 (en) * 2020-07-08 2021-08-25 信越化学工業株式会社 Manufacturing method and film forming equipment for gallium oxide semiconductor film
TW202235663A (en) 2021-03-02 2022-09-16 日商信越化學工業股份有限公司 Film forming method, film forming apparatus and multilayer body
CN113755826A (en) * 2021-08-26 2021-12-07 新沂市锡沂高新材料产业技术研究院有限公司 Gallium oxide thin film deposition system and method based on corona charge
KR20240063901A (en) * 2021-09-22 2024-05-10 신에쓰 가가꾸 고교 가부시끼가이샤 Film formation method, film formation equipment, and crystalline oxide film
CN114774883B (en) * 2022-04-14 2023-10-31 重庆理工大学 Compact atomizing auxiliary CVD film preparation device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2671367B2 (en) 1988-04-06 1997-10-29 富士通株式会社 Vapor phase epitaxial growth equipment
JPH03105914A (en) * 1989-09-20 1991-05-02 Fujitsu Ltd Normal-pressure cvd device system
JP2932588B2 (en) * 1990-03-28 1999-08-09 富士通株式会社 Exhaust device
JPH0714771A (en) * 1993-06-26 1995-01-17 Taiyo Yuden Co Ltd Method and equipment for forming thin film
US6174371B1 (en) * 1997-10-06 2001-01-16 Dainippon Screen Mfg. Co., Ltd. Substrate treating method and apparatus
US6349668B1 (en) * 1998-04-27 2002-02-26 Msp Corporation Method and apparatus for thin film deposition on large area substrates
US6527833B1 (en) * 1999-02-02 2003-03-04 Virginia Tech Intellectual Properties, Inc. Hydrogen-selective silica based membrane
JP2001011653A (en) * 1999-07-02 2001-01-16 Matsushita Electric Ind Co Ltd Formation of thin film and thin film forming device
US20040028810A1 (en) * 2000-10-16 2004-02-12 Primaxx, Inc. Chemical vapor deposition reactor and method for utilizing vapor vortex
JP2005511895A (en) * 2001-12-04 2005-04-28 プライマックス・インコーポレーテッド Chemical vapor deposition reactor
KR20040083417A (en) * 2001-12-04 2004-10-01 프라이맥스 인코포레이티드 Chemical vapor deposition reactor
KR100559792B1 (en) * 2003-08-29 2006-03-15 한국과학기술원 The method for producing thin film or powder array using liquid source misted chemical deposition process
JP5124760B2 (en) 2004-04-19 2013-01-23 静雄 藤田 Film forming method and film forming apparatus
CN2784166Y (en) * 2005-04-07 2006-05-31 比亚迪股份有限公司 Flow casting and film forming machine
JP2012046772A (en) 2010-08-24 2012-03-08 Sharp Corp Mist cvd device and method for generating mist
JP6137668B2 (en) 2012-08-26 2017-05-31 国立大学法人 熊本大学 Zinc oxide crystal layer manufacturing method and mist chemical vapor deposition apparatus
JP5343224B1 (en) * 2012-09-28 2013-11-13 Roca株式会社 Semiconductor device and crystal
JP5397794B1 (en) 2013-06-04 2014-01-22 Roca株式会社 Method for producing oxide crystal thin film

Also Published As

Publication number Publication date
KR101708283B1 (en) 2017-02-20
TW201627521A (en) 2016-08-01
KR20160093510A (en) 2016-08-08
JP2016146442A (en) 2016-08-12
TWI535883B (en) 2016-06-01
CN105986246A (en) 2016-10-05

Similar Documents

Publication Publication Date Title
JP6478103B2 (en) Film forming apparatus and film forming method
JP7374282B2 (en) Method for forming gallium-containing film
EP3051002A1 (en) Apparatus and method for forming film
JP2022050520A (en) Film deposition apparatus and film deposition method
JP7432904B2 (en) Gallium oxide semiconductor film and raw material solution
JP2022016426A (en) Method for producing gallium oxide semiconductor film and film formation device
JP2024023981A (en) Crystalline oxide thin film, laminate and method for manufacturing crystalline oxide thin film
WO2021079571A1 (en) Method for producing gallium precursor, and method for producing layered product using same
JP6867637B2 (en) Suceptor
US20230082812A1 (en) Film forming method
JP2016157879A (en) Crystalline oxide semiconductor film and semiconductor device
JP7274024B2 (en) Deposition equipment
JP2016079485A (en) Film deposition method, film formation mist, and precursor solution thereof
JP6980183B2 (en) Crystalline oxide semiconductor film, semiconductor device
TW202316499A (en) Film deposition device and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171211

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190123

R150 Certificate of patent or registration of utility model

Ref document number: 6478103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250