JP6471936B2 - 電力変換装置及び電力変換装置の制御方法 - Google Patents
電力変換装置及び電力変換装置の制御方法 Download PDFInfo
- Publication number
- JP6471936B2 JP6471936B2 JP2015050582A JP2015050582A JP6471936B2 JP 6471936 B2 JP6471936 B2 JP 6471936B2 JP 2015050582 A JP2015050582 A JP 2015050582A JP 2015050582 A JP2015050582 A JP 2015050582A JP 6471936 B2 JP6471936 B2 JP 6471936B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- power
- inverter
- value
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0016—Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
- H02M1/0022—Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Description
分散型電源システムの電力変換装置は、通常、分散型電源から入力される直流電力を降圧または昇圧して内部コンデンサに供給するDC/DCコンバータと、内部コンデンサの蓄積電力を交流電力に変換するインバータとを備えている。
瞬低時の電力変換装置の運転方法として、インバータを制御して出力電流を瞬低直前の値に固定すると共に、内部コンデンサの電圧が予め設定された目標値に一致するようにDC/DCコンバータを制御する方法が提案されている(例えば、特許文献1参照)。
上記事情に鑑み、限定的ではない例示的なある実施形態は、電力系統が瞬低から復帰する際の出力電力の品質の低下が低減される電力変換装置を提供することを目的とする。
電力系統が瞬低からの復帰する際、系統電圧と共にインバータの出力電圧が急上昇する。このため、従来の出力電流を一定に制御しているインバータの出力電力は急上昇する。その結果、DC/DCコンバータが内部コンデンサに供給する電力に対して、インバータが電力系統に放出する電力が上回り、内部コンデンサの電圧が低下してしまう。
内部コンデンサの電圧が低下すると、インバータの出力電流に高調波が生じやすくなり、電力変換装置の出力の電力品質を損なうおそれがある。
また、瞬低における電力系統の電圧低下量と、瞬低からの復帰時における電力系統の電圧上昇量は概ね等しい。従って、内部コンデンサの電圧の瞬低からの復帰時における電圧低下量は、瞬低における電力系統の電圧低下量に応じたものとなる。
瞬低における電力系統の電圧低下量は一定ではない。そのため、電圧低下量によらず内部コンデンサの電圧を予め設定した目標値に制御する従来の方法では、例えば、以下のような問題が生じる恐れがある。予め設定した内部コンデンサの電圧の目標値に対して電圧低下量が大きい場合には、瞬低からの復帰時に内部コンデンサの電圧が低下して高調波電流が生じやすくなる(第1の課題)。
一方、予め設定した内部コンデンサの電圧の目標値に対して電圧低下量が小さい場合には、必要以上に内部コンデンサの電圧を高くすることとなり、瞬低期間中における電力変換効率が低下する(第2の課題)。
以下、本開示の実施形態について、図面を参照しながら説明する。
(第1の実施形態)
<パワーコンディショナ100の構成>
図1は、第1の実施形態に係るパワーコンディショナ100の構成を示す図である。
なお、分散型電源120は太陽電池、燃料電池、または、リチウムイオン蓄電池等の二次電池からなる直流電源である。
DC/DCコンバータ101は、分散型電源120から入力された直流電力を昇圧または降圧してコンデンサ102に供給する。DC/DCコンバータ101は、例えば、トランジスタなどのスイッチング素子と直流リアクトルと逆流防止用のダイオードとを備える。なお、各スイッチング素子には、保護ダイオードが逆並列に接続されてもよい。スイッチング素子がゲート駆動回路106から入力されるゲート信号Sg1に従って駆動することにより、分散型電源120からの入力電圧を所望の電圧に変換する。
インバータ103は、コンデンサ102の直流電力を交流電力に変換して、端子Tb側へ出力する。インバータ103は、例えば、トランジスタなどのスイッチング素子がブリッジ接続された構成となっている。なお、各スイッチング素子には、保護ダイオードが逆並列に接続されてもよい。スイッチング素子がゲート駆動回路106から入力されるゲート信号Sg2に従って駆動することにより、コンデンサ102の直流電力を交流電力に変換する。
制御装置105は、計測部104から入力される分散型電源120の電圧値Ve及び電流値Ieと、中間電圧値Vcと、電力系統130(インバータの出力側)の電圧値Vs及び電流値Isとを用いて、DC/DCコンバータ101、インバータ103のスイッチング素子のON/OFFを制御するPWM信号(Sg1’、Sg2’)を生成する。
<制御装置105の構成>
図2は、図1の制御装置105の構成の一例を示すブロック図である。
計測部104から入力されるアナログ信号は、制御装置105に内蔵されるAD変換回路により、所定のサンプリング周波数(例えば、17.5kHz)で、AD変換されて、各機能部に送られる。
位相検出部203は、系統電圧の周波数fvに基づいて、系統電圧の位相θsを検出(算出)し、検出結果を後段側(座標変換部204および座標変換部208)に出力する。位相検出部203は、例えば、制御装置105におけるAD変換の周期ごとに、系統電圧の位相θsを検出する。
出力電流指令値設定部205は、通常時、中間電圧Vcが系統電圧Vsの実効値に対してやや高い値を維持するための有効電流指令値Ip*を設定する。また、出力電流指令値設定部205は、瞬低検出部210から入力される瞬低検出信号flag1を監視し、瞬低検出信号flag1のOFFからONへと遷移を検出し、検出する直前に決定された有効電流指令値Ip*を記憶部214に記録する。そして、出力電流指令値設定部205は、瞬低時、記憶部214に記録された値を有効電流指令値Ip*として設定する。
有効電流制御部206は、有効電流検出値Ipと有効電流指令値Ip*との差をゼロに近づけるための、インバータ103の出力の有効電圧に対する補正信号を、有効電圧指令値Vp*として生成し、座標変換部208へ出力する。有効電流制御部206は、例えば、制御装置105におけるAD変換の周期ごとに、有効電圧指令値Vp*を出力する。
<瞬低検出部210の動作>
図3は、瞬低検出部210の瞬低の発生および瞬低からの復帰の検知方法、並びに、電圧低下量ΔVの検出方法の動作を示すフローチャートである。
ステップS302は、瞬低検出信号flag1がOFFであるか否かを判定するステップである。瞬低検出信号flag1がOFFである場合はステップS303へ、瞬低検出信号flag1がONである場合はステップS304へと処理を進める。
ΔV = Vpast − Vnow … (1)
なお、ΔVは、通常時にはほぼゼロとなる。
ステップS305は、瞬低が発生したか否かを検出するステップである。具体的には、電圧低下量ΔVと電圧実効値Vpastとが、以下に示す式(2)を満たすか否かを判定する。
式(2)においてA1は予め定められた定数である。例えば、A1=0.20とすると、電圧低下量ΔVが通常時の電圧実効値Vpastの20%を上回った場合(電圧実効値Vnowが電圧実効値Vpastの80%を下回った場合)に瞬低が発生したと検出する。
ステップS306は、電力系統が瞬低から復帰したか否かを検出するステップである。具体的には、電圧実効値Vnowと電圧実効値Vpastとが、以下に示す式(3)を満たすか否かを判定する。
式(3)において、A2は予め定められた設定値である。例えば、A2=0.90とすると、電圧実効値Vnowが瞬低発生前の電圧実効値Vpastの90%を上回った場合に、電力系統が瞬低から復帰したと検出する。
ステップS306において、瞬低からの復帰を検出した場合はステップS308へと処理を進め、瞬低検出信号flag1をOFFへと切り替える。また、瞬低からの復帰を検出しなかった場合は、ENDへと処理を進める(この場合、瞬低検出信号flag1の切り換えは行わないため、処理開始前の瞬低検出信号flag1を維持する)。
<中間電圧指令値設定部211の動作>
図4は、中間電圧指令値設定部211の動作を示すフローチャートである。中間電圧指令値設定部211は、通常時における、系統電圧の実効値に基づいて中間電圧指令値Vc*を決定する系統電圧追従制御と、瞬低時の電圧低下量ΔVに基づいて中間電圧指令値Vc*を決定する中間電圧一定制御とを行う。
ステップS408は、系統電圧追従制御を行うステップである。すなわち、通常時の中間電圧指令値Vc*を設定するステップである。中間電圧指令値設定部211は、以下の式(4)に示すように、通常時、中間電圧指令値Vc*を系統電圧Vsの実効値Vs’に対してやや高い値に設定することにより、インバータ103の出力電流が正弦波を維持できるようにしている。
式(4)において、K1(例えば、通常時の系統電圧の実効値の10%の値であり、ここではK1=25とする)は予め定められた定数であり、通常時、系統電圧Vs(Vs’)の変動に対して中間電圧指令値Vc*がK1(V)だけ高くなるように設定される。
ステップS402は、瞬低検出信号flag1のOFFからONへの遷移を検知することにより、瞬低が発生した瞬間を検出するステップである。例えば、瞬低検出信号flag1を記憶部216に逐次記録しておき、現在の瞬低検出信号flag1と記憶部216に記録された直前(例えば、制御装置105のAD変換における1周期前)の瞬低検出信号flag1とを比較することにより検出する。瞬低検出信号flag1のOFFからONへの遷移を検出した場合はステップS403へ、検出しなかった場合はS404へと処理を進める。
ステップS404は、以下に示す式(5)により、瞬低による電圧低下量ΔVに基づき中間電圧の上増し量αを計算するステップである。
式(5)において、K2(例えば、K2=0.2)は予め定められた定数であり、中間電圧の上増し量αは電圧低下量ΔVに比例して大きくなる。
ステップS405は、以下の式(6)に示すように、ステップS403において記憶部216に記録された中間電圧値VcnowとステップS404において算出した中間電圧
の上増し量αより、中間電圧の制御目標値Vc*’を算出するステップである。
ステップS406は、ステップS405で算出された中間電圧の制御目標値Vc*’の上限を制限するステップであり、制御目標値Vc*’が過大になりすぎないようにするためのステップである。
ステップS407は、中間電圧指令値Vc*を、ステップS406においてリミッタ処理を施した制御目標値Vc*’に設定し、中間電圧制御部212へと出力する。
<第1の実施形態のまとめ>
図5は、瞬低の発生時および瞬低からの復帰時における系統電圧Vsの実効値、インバータ103の出力電流Isの実効値、インバータ103の出力の実効値、中間電圧Vcを示す図である。図5(a)は系統電圧Vsの実効値を、図5(b)は、インバータ103の出力電流Isの実効値を、図5(c)はインバータ103の出力の実効値を、図5(d)は中間電圧Vcをそれぞれ示している。図5において、横軸は時間を示し、t1は瞬低が発生した時刻、t2は瞬低から復帰した時刻である。
ここで、瞬低の発生時における系統の電圧低下量と、瞬低からの復帰時における系統の電圧上昇量は等しい。従って、出力電流を一定に制御している場合、瞬低発生時t1における電圧変動量から出力電力の変動量が算出できるため、復帰時t2における中間電圧の低下量を、瞬低の発生時に予め推定することができる。そこで、瞬低からの復帰時t2の中間電圧の低下を見越して、瞬低の期間中に、電圧低下量に基づき中間電圧を高くすることにより、コンデンサ102は、出力電流を正弦波に維持するのに必要な中間電圧を維持することができる。これにより、第1の実施形態のパワーコンディショナ100は、瞬低からの復帰時においても出力電流の発生が低減され、出力の電力品質の低下が低減される。
(第2の実施形態)
<第2の実施形態との概要>
第1の実施形態においては、瞬低からの復帰時における中間電圧の低下を予め考慮することにより、瞬低からの復帰時における出力電流を正弦波に維持するのに必要な中間電圧値を維持する方法について説明した。
第2の実施形態では、瞬低時における、電圧低下量ΔVに基づく中間電圧Vcの上増しはせずに一定に制御しておき、瞬低からの復帰時に、インバータ103の出力電流Isを、電圧低下量ΔVに基づき抑制する点が第1の実施形態と異なる。
図6は、第2の実施形態に係る制御装置600の構成を示す図である。
第2の実施形態に係る制御装置600は、第1の実施形態に係る制御装置105と比較して、中間電圧指令値設定部211、出力電流指令値設定部205、記憶部216、214の代わりに、中間電圧指令値設定部601、出力電流指令値設定部602、記憶部603、604を備えている。
第1の実施形態と同様の構成については同じ符号を付し、説明を省略する。
出力電流指令値設定部602は、瞬低からの復帰時に有効電流指令値Ip*を電圧低下量ΔVに基づき設定し、その後、有効電流指令値Ip*を、瞬低が発生する前の値まで掃引させる(戻す)点が第1の実施形態における出力電流指令値設定部205と異なる。出力電流指令値設定部602の動作の詳細については後述する。
図7は中間電圧指令値設定部601の動作を示すフローチャートである。以下、第1の実施形態における中間電圧指令値設定部211と同様の動作については同じ符号を付し、説明を省略する。
第2の実施形態では、瞬低時に、電圧低下量ΔVによらず、瞬低を検出した時の中間電圧を維持するように中間電圧制御指令値Vc*を設定する点が第1の実施形態と異なる。
Vc* = Vcnow … (7)
ステップS702は、出力電流指令値設定部602から入力される出力電流抑制信号flag2に基づき条件分岐処理を行うステップである。出力電流抑制信号flag2がONである場合はステップS703へ、出力電流抑制信号flag2がOFFである場合はステップS408へと処理を進める。
中間電圧指令値設定部601は、このように中間電圧の中間電圧制御指令値Vc*を設定することにより、瞬低が発生してから、後述する出力電流抑制制御が完了するまでの期間において中間電圧を一定に制御する。
図8は出力電流指令値設定部602の動作を示すフローチャートである。
ステップS801は、瞬低検出信号flag1のONからOFFへの遷移を検知することにより、瞬低から復帰した瞬間を検出するステップである。瞬低検出信号flag1のONからOFFへの遷移を検出するとステップS803へ、検出しなければステップS802へ処理を進める。
ステップS803は、出力電流抑制制御の実行中であることを示す出力電流抑制信号flag2をONにする。(出力電流抑制信号flag2は、出力電流抑制制御を実行している期間はON、実行していない期間はOFFとなる。)
ステップS804は、瞬低検出信号flag1のOFFからONへの遷移を検出する直
前に決定された有効電流指令値Ip*を記憶部604に記録するステップである。ステップS802の判定により、ステップS804において記憶部604に記録される有効電流指令値Ip*は、瞬低が発生する直前の通常時の有効電流指令値となる。
以下で説明する、ステップS806〜ステップS809の処理が出力電流抑制制御である。
β = 1−ΔV×K3 … (8)
Ip2* = Ip* × β … (9)
式(8)において、K3(例えば、K3=1/250)は、電流抑制係数βが、電圧低下量ΔVに比例(単調減少)する値となるように予め設定された定数である。つまり、電流抑制係数βは、記憶部604に記録された有効電流指令値Ip*を抑制する割合(%)を示す係数であり、電圧低下量ΔVが大きくなるにしたがい、抑制割合(1−β)が大きくなり、有効電流目標値Ip2*は小さくなる。(電圧低下量ΔVに対して、電流抑制係数βおよび有効電流目標値Ip2*は、負の相関を有する。)
ステップS807は、ステップS806で計算された有効電流目標値Ip2*が負の値となることがないように0以上に制限するリミット処理を行うステップである。
出力電流指令値設定部602は、図8に示す動作により、電圧低下量ΔVに応じて瞬低
からの復帰時の出力電流を抑制する。その結果、瞬低からの復帰時のインバータ103の出力変動が緩和される。そのため、瞬低からの復帰時の中間電圧の低下が低減でき、瞬低からの復帰時においてもインバータ103(パワーコンディショナ100)の出力電流における高調波の発生を低減できる。
図9は、瞬低の発生時および瞬低からの復帰時の、第2の実施形態における、系統電圧Vsの実効値、インバータ103の出力電流Isの実効値、インバータ103の出力の実効値、中間電圧Vcを示す図である。なお、図9の見方は、図5と同様である。
第2の実施形態の制御装置600は、図9(b)に示すように、瞬低からの復帰を検出したときに、電圧低下量ΔVが大きくなれば抑制割合(1−β)が大きくなるようにインバータの出力電流Isを制御する。その結果、第2の実施形態のパワーコンディショナ100では、瞬低からの復帰時における出力変動が緩和される。このことにより、瞬低からの復帰時の中間電圧Vcの低下を低減でき、瞬低からの復帰時のパワーコンディショナ100の出力電流における高調波の発生を低減できる。なお、図8及び図9に示す例では、瞬低からの復帰時におけるインバータ103の出力電流を、有効電流目標値Ip2*から瞬低発生前の値にまで戻す形態が示されているが、これに限定されるものではない。瞬低からの復帰時におけるインバータ103の出力電流は、有効電流目標値Ip2*から上昇させ、瞬低発生前の値より小さい値に戻してもいいし、瞬低発生前の値より大きい値に戻してもよい。
つまり、瞬低からの復帰時におけるインバータの出力電流を、瞬低における電圧低下量が大きいほど、瞬低下が発生する前の値からより低下させ、その後、上昇させるのであれば、高調波の発生を低減できるので、上昇後の出力電流値はいずれの値でも構わない。
(第3の実施形態)
<第3の実施形態の概要>
第1の実施形態においては、電圧低下量に基づき中間電圧を上増しする方法を説明した。また、第2の実施形態においては、電圧低下量に基づきインバータの出力電流を抑制する方法について説明した。
<第3の実施形態に係る制御装置1000の構成>
図10は、第3の実施形態に係る制御装置1000の構成を示す図である。
第3の実施形態に係る制御装置1000は、第1の実施形態に係る制御装置105と比較して、中間電圧指令値設定部211、出力電流指令値設定部205、記憶部216、214の代わりに、中間電圧指令値設定部1001、出力電流指令値設定部1002、記憶部1003、1004を備えている。第1、第2の実施形態と同様の構成については同じ符号を付し、説明を省略する。
出力電流指令値設定部1002は、瞬低からの復帰時に有効電流指令値Ip*を電圧低下量ΔVに基づき設定し、その後、有効電流指令値Ip*を、瞬低が発生する前の値まで掃引させる点は第2の実施形態における出力電流指令値設定部205と同様である。しかしながら出力電流抑制制御を有効化するか否かを電圧低下量ΔVに基づき判断する点が異なる。出力電流指令値設定部1002の動作の詳細については後述する。
図11は、中間電圧指令値設定部1001の動作を示すフローチャートである。
ステップS401〜S408の処理は、第1の実施形態と同様である。
ステップS702、S703における処理は、第2の実施形態と同様である。
<出力電流指令値設定部1002の動作>
図12は出力電流指令値設定部1002の動作を示すフローチャートである。以下、第2の実施形態と同様の構成については同じ符号を付し、説明を省略する。
Ip2* = Ip* × β +B … (10)
式(10)において、Bは、中間電圧の上増しにより緩和される出力変動量に相当し、抑制された電流指令値(Ip2*)の下限を与える0より大きな定数である。中間電圧の上増しにより、瞬低からの復帰時における出力変動の全てを出力電流の抑制で緩和する必要がなくなるため、出力抑制の下限を0より大きくすることができる。
出力電流指令値設定部1002は、図12に示す動作により、瞬低における電圧低下量ΔVに応じて瞬低からの復帰時の出力電流を抑制する。その結果、第2の実施形態と同様に、瞬低からの復帰時においてもインバータ103(パワーコンディショナ100)の出力電流における高調波の発生を低減できる。 さらに、中間電圧の上増しにより出力変動が緩和されるため、出力電流の抑制量を低減できる。そのため、電圧低下量ΔVが大きい場合においても、瞬低からの復帰時において出力電流を0まで抑制する必要がなく、元の出力まで復帰させるのに要する時間を短縮することができる。
図13は、瞬低の発生時および瞬低からの復帰時の、第3の実施形態における、系統電圧Vsの実効値、インバータ103の出力電流Isの実効値、インバータ103の出力の実効値、中間電圧Vcを示す図である。なお、図13の見方は、図5及び図9と同様である。
つまり、瞬低からの復帰時におけるインバータの出力電流を、瞬低における電圧低下量が大きいほど、瞬低下が発生する前の値からより低下させ、その後、上昇させるのであれば、高調波の発生を低減できるので、上昇後の出力電流値はいずれの値でも構わない。
(補足1)
以上、本明細書の開示する制御装置の各実施形態について説明したが、本開示の開示する制御装置は、以下に示すように変形してもよい。
<1>上述の実施形態では、インバータ103の力率を1とする場合について説明したが、本開示は必ずしもこの場合に限定されない。インバータ103の力率は、系統連系規定等に合致する範囲であれば、例えば、95%であってもよく、無効電流指令値Iq*の値は0に限定されない。
<2>上述の実施形態では、通常時において、中間電圧Vcが系統電圧Vsの実効値に追従するように、有効電流指令値Ip*および中間電圧指令値Vc*を設定するとしたが、本開示は必ずしもこの場合に限定されない。例えば、通常時において、中間電圧Vcが系統電圧Vsに依らず一定となるように、有効電流指令値Ip*および中間電圧指令値Vc*を設定してもよい。
<3>第2の実施形態および第3の実施形態では、移動平均処理により出力電流指令値をスイープさせるとしたが、本開示はこれに限らない。予め定められた電流増分値を周期的に加算することにより、出力電流指令値をスイープさせてもよい。
<4>上述の実施形態において、制御装置105、600、1000は、所定の周波数17.5kHzで、AD変換を行い、得られたデジタル信号に対して各機能部が処理を施す場合について説明したが、本開示は必ずしもこの場合に限定されない。AD変換の周波数は、各機能部が同期して処理を行うことができればよく、例えば、20kHzであってもよい
<5>第1の実施形態および第3の実施形態において、式(5)を用いて中間電圧の上増し量αを計算するとしたが、本開示はこれに限らない。中間電圧の上増し量αは、電圧低下量ΔVに対して正の相関を有していればよく、電圧低下量ΔVに対して線形でなくてもよい。例えば、電圧低下量を複数の区分に分け、各区分ごとの中間電圧の上増し量αを保持するテーブルを予め記憶しておき、瞬低発生時に、テーブルを参照して中間電圧の上増し量αを求めてもよい。
<6>第2の実施形態および第3の実施形態において、瞬低前の有効電流指令値に対して、電流抑制係数βを乗算することにより、瞬低復帰時の有効電流指令値を求めるとしたが、本開示はこれに限らない。瞬低復帰時の有効電流指令値は、電圧低下量ΔVに対して負の相関を有していればよい。例えば、瞬低前の有効電流指令値から、電圧低下量ΔVに対して正の相関を有する値を減算することにより、瞬低復帰時の有効電流指令値を算出してもよい。
<7>上述の実施形態で示した制御装置105、600、1000は、典型的には、集積回路であるDSP(Digital Signal Pocessor)として実現される。各機能部は、個別にチップ化されてもよいし、全ての機能部又は一部の機能部を1チップに含むようにチップ化されてもよい。
Gate Array)、集積回路内部のセルの接続及び設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
(補足2)
以下に、実施形態に係るパワーコンディショナ及びパワーコンディショナの制御装置、及び、パワーコンディショナの制御方法の構成について説明する。
<2>本開示の第4形態は、第1形態において、前記瞬時電圧低下の継続中、前記DC/DCコンバータの出力電圧を制御して、前記瞬時電圧低下における電圧低下量が大きいほど前記コンデンサの電圧を高くする電圧設定部を更に備えてもよい、電力変換器の制御装置を提供する。
また、本開示の第5形態は、第2形態において、前記制御装置は、前記瞬時電圧低下の継続中、前記DC/DCコンバータの出力電圧を制御して、前記瞬時電圧低下における電圧低下量が大きいほど前記コンデンサの電圧を高くする、電力変換装置を提供する。
この構成により、瞬低からの復帰時のインバータの出力変動を、瞬低の期間における中間電圧の上増しと瞬低からの復帰時における出力電流の抑制とにより緩和する。このことにより、瞬低からの復帰時の中間電圧の低下を低減でき、瞬低からの復帰時においても出力電流に高調波の発生が低減され、電力品質の低下が低減される。また、瞬低における電圧低下量が大きい場合でも、復帰時に出力電流をゼロまで抑制する必要がなく、電流出力を継続することが可能である。そして、瞬低前の出力電流まで復帰させるのに要する時間を短縮することができる。また、瞬低における電圧低下量が予め設定した内部コンデンサの電圧の目標値に対して小さい場合でも、必要以上に内部コンデンサの電圧が高くならず、瞬低期間中における電力変換効率の低下が抑制される。つまり、第2の課題が緩和される。
本開示の第8形態は、第2形態において、前記電流制御部は、前記電圧低下量が大きくなるほど、より小さくなる電流抑制係数を、前記電流指令値の前記瞬時電圧低下が発生する前の値に乗算して得られる前記電流目標値に近づける、電力変換装置を提供する。
<4>本開示の第9形態は、第4形態において、前記電圧制御部は、前記DC/DCコンバータを制御して、前記電圧低下量が大きくなるほど、より大きくなる電圧増分値を、前記コンデンサの電圧の前記瞬時電圧低下が発生する前の値に加算して得られた前記電圧目標値に近づける電力変換器の制御装置を提供する。
本開示の第10形態は、第5形態において、前記電圧設定部は、前記DC/DCコンバータを制御して、前記電圧低下量が大きくなるほど、より大きくなる電圧増分値を、前記コンデンサの電圧の前記瞬時電圧低下が発生する前の値に加算して得られた前記電圧目標値に近づける電力変換装置を提供する。
また、瞬低における電圧低下量が予め設定した内部コンデンサの電圧の目標値に対して小さい場合でも、必要以上に内部コンデンサの電圧が高くならず、瞬低期間中における電力変換効率の低下が抑制される。つまり、第2の課題が緩和される。
101 DC/DCコンバータ
102 コンデンサ
103 インバータ
104 計測部
105,600,1000 制御装置
106 ゲート駆動回路
120 分散型電源
130 電力系統
140 負荷
201,204,208 座標変換部
202 周波数検出部
203 位相検出部
205,602,1002 出力電流指令値設定部
206 有効電流制御部
207 無効電流制御部
209、213 PWM信号生成部
210 瞬低検出部
211、601、1001 中間電圧指令値設定部
212 中間電圧制御部
214,215,216,603,604,1003,1004 記憶部
Claims (6)
- 分散型電源から入力される直流電力を変圧するDC/DCコンバータと、
前記DC/DCコンバータから供給される直流電力を保持するコンデンサと、
前記コンデンサの直流電力を交流電力に変換して電力系統に供給するインバータと、
電力系統の瞬時電圧低下からの復帰時に、前記インバータを制御して、前記瞬時電圧低下における電圧低下量が大きいほど、前記インバータの出力電流を、前記瞬時電圧低下が発生する前の値からより低下させ、その後、前記インバータの出力電流を上昇させる制御装置と、を備える
電力変換装置。 - 前記制御装置は、
前記瞬時電圧低下の継続中、前記DC/DCコンバータの出力電圧を制御して、前記瞬時電圧低下における電圧低下量が大きいほど前記コンデンサの電圧を高くする
請求項1に記載の電力変換装置。 - 分散型電源から入力される直流電力を変圧するDC/DCコンバータと、
前記DC/DCコンバータから供給される直流電力を保持するコンデンサと、
前記コンデンサが保持する電力を交流電力に変換して電力系統に供給するインバータと、
電力系統の瞬時電圧低下の継続中、前記DC/DCコンバータの出力電圧を制御して、前記瞬時電圧低下における電圧低下量が大きいほど前記コンデンサの電圧を高くする制御装置と、を備える
電力変換装置。 - 分散型電源から入力される直流電力をDC/DCコンバータで変圧するステップと、
前記DC/DCコンバータから供給された直流電力をコンデンサに保持するステップと、
前記コンデンサの直流電力をインバータで交流電力に変換して電力系統に供給するステップと、
電力系統の瞬時電圧低下からの復帰時に、前記インバータを制御して、前記瞬時電圧低下における電圧低下量が大きいほど前記インバータの出力電流を、前記瞬時電圧低下が発生する前の値からより低下させるステップと、
その後、前記インバータの出力電流を上昇させるステップと、を備える
電力変換装置の制御方法。 - 更に、
前記瞬時電圧低下の継続中、前記DC/DCコンバータの出力電圧を制御して、
前記瞬時電圧低下における電圧低下量が大きいほど前記コンデンサの電圧を高くするステップを備える
請求項4に記載の電力変換装置の制御方法。 - 分散型電源から入力される直流電力をDC/DCコンバータで変圧するステップと、
前記DC/DCコンバータから供給された直流電力をコンデンサに保持するステップと、
前記コンデンサに保持された直流電力をインバータで交流電力に変換して電力系統に供給するステップと、
電力系統の瞬時電圧低下の継続中、前記DC/DCコンバータの出力電圧を制御して、前記瞬時電圧低下における電圧低下量が大きいほど前記コンデンサの電圧を高くするステップとを備える
電力変換装置の制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015050582A JP6471936B2 (ja) | 2014-03-20 | 2015-03-13 | 電力変換装置及び電力変換装置の制御方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014058990 | 2014-03-20 | ||
JP2014058990 | 2014-03-20 | ||
JP2015050582A JP6471936B2 (ja) | 2014-03-20 | 2015-03-13 | 電力変換装置及び電力変換装置の制御方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015195710A JP2015195710A (ja) | 2015-11-05 |
JP6471936B2 true JP6471936B2 (ja) | 2019-02-20 |
Family
ID=52633158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015050582A Expired - Fee Related JP6471936B2 (ja) | 2014-03-20 | 2015-03-13 | 電力変換装置及び電力変換装置の制御方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9748866B2 (ja) |
EP (1) | EP2922193A1 (ja) |
JP (1) | JP6471936B2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9590528B2 (en) | 2014-04-11 | 2017-03-07 | Kripya LLC | Dual mode DC-AC inverter system and operation |
WO2015156901A1 (en) * | 2014-04-11 | 2015-10-15 | Kripya LLC | Dual mode micro-inverter system and operation |
JP2017229198A (ja) * | 2016-06-24 | 2017-12-28 | アイシン精機株式会社 | 系統連系制御装置 |
JP6785383B2 (ja) * | 2017-09-08 | 2020-11-18 | 東芝三菱電機産業システム株式会社 | 電力変換装置 |
JP7078463B2 (ja) * | 2018-06-13 | 2022-05-31 | 株式会社日立製作所 | 電力系統安定化システム |
EP3605813A1 (de) * | 2018-07-30 | 2020-02-05 | Fronius International GmbH | Wechselrichter mit zwischenkreisschutz |
JP7564552B2 (ja) * | 2019-03-29 | 2024-10-09 | 国立大学法人東北大学 | 電力変換装置及び発電システム |
TWI735062B (zh) * | 2019-10-30 | 2021-08-01 | 行政院原子能委員會核能研究所 | 用於微電網之電壓控制系統及方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112006004105T5 (de) * | 2006-12-15 | 2009-08-27 | Mitsubishi Electric Corporation | Invertereinrichtung |
US7495875B2 (en) * | 2007-06-05 | 2009-02-24 | Fsp Technology Inc. | Power abnormal protection circuit |
US8373312B2 (en) * | 2008-01-31 | 2013-02-12 | General Electric Company | Solar power generation stabilization system and method |
US8754622B2 (en) * | 2009-10-30 | 2014-06-17 | Linear Technology Corporation | Voltage regulator compensating for voltage drop along conductors between regulator output and load |
CN102082443B (zh) * | 2009-11-27 | 2013-10-02 | 通用电气公司 | 直流-交流转换系统和方法 |
JP5579540B2 (ja) | 2010-08-31 | 2014-08-27 | 一般財団法人電力中央研究所 | パワーコンディショナの瞬低回復時の運転安定化方法、これを実施するパワーコンディショナ、及びパワーコンディショナの瞬低回復時の運転安定化用プログラム |
KR101243909B1 (ko) * | 2010-12-16 | 2013-03-14 | 삼성에스디아이 주식회사 | 전력 저장 시스템 및 그 제어 방법 |
JP5608809B2 (ja) * | 2011-02-23 | 2014-10-15 | 東芝三菱電機産業システム株式会社 | 電力変換装置 |
ES2792050T3 (es) * | 2011-02-23 | 2020-11-06 | Toshiba Mitsubishi Elec Ind | Aparato de conversión de potencia |
ES2893307T3 (es) * | 2011-02-23 | 2022-02-08 | Toshiba Mitsubishi Elec Ind | Sistema de generación de energía solar |
JP5776308B2 (ja) | 2011-04-26 | 2015-09-09 | 富士電機株式会社 | 系統連系電力変換装置 |
CN102904272B (zh) * | 2011-07-29 | 2015-07-29 | 通用电气公司 | 具有改善的瞬态事件穿越能力的能量转换系统和方法 |
JP5760930B2 (ja) * | 2011-10-07 | 2015-08-12 | 日新電機株式会社 | 系統連系用電力変換装置の制御装置、及び系統連系用電力変換装置 |
JP5856028B2 (ja) * | 2012-08-29 | 2016-02-09 | 京セラ株式会社 | パワーコンディショナ及びその制御方法 |
-
2015
- 2015-03-11 EP EP15158541.1A patent/EP2922193A1/en not_active Withdrawn
- 2015-03-12 US US14/656,700 patent/US9748866B2/en active Active
- 2015-03-13 JP JP2015050582A patent/JP6471936B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015195710A (ja) | 2015-11-05 |
EP2922193A1 (en) | 2015-09-23 |
US9748866B2 (en) | 2017-08-29 |
US20150270788A1 (en) | 2015-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6471936B2 (ja) | 電力変換装置及び電力変換装置の制御方法 | |
JP6187587B2 (ja) | インバータ装置 | |
US9667178B2 (en) | Variable frequency speed control system and method of the same | |
US11296629B2 (en) | Method, device for sub synchronous oscillation suppression and controller for converter | |
JP6303970B2 (ja) | 変換装置 | |
TW201513551A (zh) | 換流裝置 | |
WO2015011781A1 (ja) | 太陽光発電用インバータの制御装置 | |
JP6762680B2 (ja) | 太陽光発電システム | |
EP3223023B1 (en) | Method and apparatus for estimating capacitance of dc link | |
EP3316471B1 (en) | Conversion device and method for controlling the same | |
JP6452906B1 (ja) | 電力変換装置 | |
JP2016063575A (ja) | パワーコンディショナ | |
JP5331399B2 (ja) | 電源装置 | |
US10666131B2 (en) | Dead-time voltage compensation apparatus and dead-time voltage compensation method | |
JP6656341B1 (ja) | 電力変換装置 | |
JP2016063688A (ja) | 電力変換装置 | |
JP7078869B2 (ja) | 電力変換システム | |
CN108512451A (zh) | 基于功率预测的反激型微逆变器的低频纹波抑制数字控制装置 | |
JP2019004651A (ja) | 系統連系用電力変換装置 | |
TWI657634B (zh) | 電力變換裝置及電力變換方法 | |
JP6098629B2 (ja) | 電力変換装置 | |
JP4569552B2 (ja) | 瞬時電圧低下補償装置 | |
JP2018137839A (ja) | 力率改善回路 | |
US20240258800A1 (en) | Power supply system | |
JP6433627B1 (ja) | 電力変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171002 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180828 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190110 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6471936 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |