CN108512451A - 基于功率预测的反激型微逆变器的低频纹波抑制数字控制装置 - Google Patents

基于功率预测的反激型微逆变器的低频纹波抑制数字控制装置 Download PDF

Info

Publication number
CN108512451A
CN108512451A CN201810367311.XA CN201810367311A CN108512451A CN 108512451 A CN108512451 A CN 108512451A CN 201810367311 A CN201810367311 A CN 201810367311A CN 108512451 A CN108512451 A CN 108512451A
Authority
CN
China
Prior art keywords
output
power
input
flyback
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810367311.XA
Other languages
English (en)
Other versions
CN108512451B (zh
Inventor
阚加荣
吴云亚
许志华
商志根
薛迎成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Sanxin power supply service Co.,Ltd. Yandu branch
Original Assignee
Yangcheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangcheng Institute of Technology filed Critical Yangcheng Institute of Technology
Priority to CN201810367311.XA priority Critical patent/CN108512451B/zh
Publication of CN108512451A publication Critical patent/CN108512451A/zh
Application granted granted Critical
Publication of CN108512451B publication Critical patent/CN108512451B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开一种基于功率预测的光伏反激型微逆变器的低频纹波抑制数字控制装置,其控制对象是反激型光伏微逆变器,数字控制装置采用功率预测调制比计算模块得到反激变换器的调制比,使得反激变换器的输出功率等于期望值,从而抑制光伏电池的输出电流中的低频纹波,并且可以采用容值较小的薄膜电容以延长光伏微逆变器的寿命。本发明的实施可以保证光伏微逆变器实现较低的造价、具有低频电流纹波抑制的能力以及最大化的能量获取率。

Description

基于功率预测的反激型微逆变器的低频纹波抑制数字控制 装置
技术领域
本发明涉及一种反激型光伏变换器的数字控制装置,属于电力电子变换器控制技术领域。
背景技术
光伏微逆变器作为新能源发电的重要形式受到人们越来越多的重视,其优点包括能量获取率高,可热插拔,冗余性能高。
由于光伏电池输出电压较低,为匹配电网电压,常采用两级式的电路结构,前级实现升压,后级实现并网。光伏微逆变器最常见的形式是以反激电路作为前级功率变换,后级采用SPWM桥式逆变器。
目前光伏电池的设计寿命为25年,而与之配对的微逆变器安装在其背面,工作环境恶劣,因此大大限制了微逆变器的寿命,而影响微逆变器寿命的重要元件就是电解电容。为消除电解电容对寿命的影响,常采用容值较低、寿命更长的薄膜电容取代电解电容,但随着而来的就是在前级变换器的输出端(即直流母线)出现很大的电压波动,这会传导至输入侧,光伏电池输出电流中含有大量的双倍工频的电流纹波,会引起光伏电池发电效率降低以及影响其寿命。为克服这一问题,研究人员提出了很多方法,大致分为硬件电路改进和控制策略改进。增加硬件电路以缓冲输入、输出侧的功率差异将极大的增加光伏微逆变器的成本,这一点对成本要求极高的微逆变器而言是难以接受的;对控制策略的改进目前基本可分为两类:一是在控制环路中增加陷波器以滤除双倍工频纹波分量;另一种是设计谐振控制器以实现在双倍工频纹波除具有极大的增益,以保证闭环控制时,输出电流跟踪其基准值。这两种控制策略实现起来都比较复杂,参数设计需要格外精确,否则容易造成系统不稳定工作。
因此,对以反激电路为基础的光伏微逆变而言,在采用容值较低的薄膜电容后,在不增加成本的基础上,寻找实现简单、易于控制的低频电流纹波抑制策略是非常必要的,本方案由此产生。
发明内容
发明目的:针对现有应用于两级式光伏微逆变器的低频电流纹波抑制策略的不足,本发明提出基于功率预测方法的低频电流纹波抑制策略。通过建立前级变换器输出功率的数学模型,得到期望输出功率的调制比,该调制比可保证前级变换器在一个开关周期内快速跟踪上功率基准值,如果功率基准值恒定,则变换器输出功率恒定,从而作为输入源的光伏电池输出功率恒定,即可实现光伏电池输出电流中不含低频电流纹波分量。基于功率预测方法的低频电流纹波抑制策略具有实现简单、纹波抑制效果好,动态特性快等优点。
技术方案:一种基于功率预测的反激型微逆变器的低频纹波抑制数字控制装置,控制对象是反激型光伏微逆变器,检测其输入侧的光伏电池电压、光伏电池电流、反激型电路的输入电流以及反激型电路的输出电压;数字控制装置包括模数转换器、(n+1)周期电流预测模块、第一限幅器、最大功率点跟踪模块、第一减法器、比例积分调节器、功率预调制比计算模块、第二限幅器、零阶保持器、三角波信号发生器和比较器。
反激型电路的四个检测量输入到模数转换器的输入端;模数转换器的第一输出端接(n+1)周期电流预测模块的第二输入端,模数转换器的第二输出端接(n+1)周期电流预测模块的第三输入端,模数转换器的第三输出端接(n+1)周期电流预测模块的第四输入端、最大功率点跟踪模块的第一输入端、第一减法器的负输入端以及功率预调制比计算模块的第二输入端,模数转换器的第四输出端接最大功率点跟踪模块的第二输入端;(n+1)周期电流预测模块的输出端接第一限幅器的输入端,第一限幅器的输出端接功率预调制比计算模块的第一输入端;最大功率点跟踪模块的输出端接第一减法器的正输入端,第一减法器的输出端接比例积分调节器的输入端,比例积分调节器的输出端接功率预调制比计算模块的第三输入端;功率预调制比计算模块的输出端接第二限幅器的输入端,第二限幅器的输出端接零阶保持器的输入端、比较器的第一输入端,零阶保持器的输出端接(n+1)周期电流预测模块的第一输入端;三角波信号发生器的输出端接比较器的第二输入端;比较器的输出端信号作为反激型电路的驱动信号。
上述(n+1)周期电流预测模块,其第一输入端的信号为D(n),代表反激型电路第n个周期的调制比;第二输入端信号为iin_f(n),代表反激型电路输入电流第n个周期的初始时刻电流;第三输入端信号为UDC_f,代表反激型电路输出电压的反馈值;第四输入端的信号为UPV_f,代表光伏电池输出电压的反馈值;则(n+1)周期电流预测模块的输出端信号iin_es1(n+1)为:
其中n为反激型电路中变压器的变比,Lp为反激型电路中变压器原边绕组的自感,TS为开关周期。
上述功率预测调制比计算模块中,其第一输入端的信号为iin_es(n+1),代表反激型电路输入电流第(n+1)个周期的初始时刻电流;第二输入端信号为UPV_f,代表光伏电池输出电压的反馈值;第三输入端信号为P*,代表反激型电路输出功率的基准值;则功率预测调制比计算模块的输出信号D(n+1)为:
其中,y=UPV_fiin_es(n+1),z=P*,Lp为反激型电路中变压器原边绕组的自感,TS为开关周期。
有益效果:采用上述方案后,基于功率预测的反激型微逆变器的低频纹波抑制数字控制装置,采用(n+1)周期电流预测模块与功率预测调制比计算模块,保证反激型电路的输出功率快速跟踪上基准值,一般设定功率基准为恒定值,则反激型电路输入侧的功率恒定,可保证光伏输入电池输出电流中不含有低频纹波。
附图说明
图1为本发明实施例的以反激变换器为前级的光伏微逆变器;
图2为本发明实施例的反激变换器的变压器原边、副边电流波形;
图3为本发明实施例的数字控制装置框图;
图4为本发明实施例的仿真波形1—前级变换器的输出电压与输出电流;
图5为本发明实施例的仿真波形2—前级变换器的输入电流、调制比、变压器原边电流、副边电流在工频周期内的波形;
图6为本发明实施例的仿真波形3—直流母线电压较低时,前级变换器的输入电流、调制比、变压器原边电流、副边电流在开关周期内的波形;
图7为本发明实施例的仿真波形4—直流母线电压较高时,前级变换器的输入电流、调制比、变压器原边电流、副边电流在开关周期内的波形;
图中符号名称:CPV——光伏电池电压滤波电容;T——反激变压器;W1——反激变压器原边绕组;W2——反激变压器副边绕组;S——开关管;Dr——整流二极管;Co——反激变换器输出端滤波电容;IPV——光伏电池输出电流;UPV——光伏电池输出电压;UDC——反激变换器输出电压;io——反激变换器输出电流;iin——变压器原边电流;isec——变压器副边电流;iin_f(n)——变压器原边电流第n个周期起始时刻电流反馈值;UPV_f——光伏电池输出电压反馈信号;UDC_f——反激变换器输出电压反馈信号;IPV_f——光伏电池输出电流反馈信号;iin_es1(n+1)——变压器原边电流第(n+1)个周期起始时刻电流预测中间值;iin_es(n+1)——变压器原边电流第(n+1)个周期起始时刻电流预测值;UPV*——光伏电池输出电压基准值;UPVe——光伏电池输出电压反馈误差值;P*——前级反激变换器输出功率基准值;D1(n+1)——反激变换器第(n+1)周期调制比计算中间值;D(n)——反激变换器第n周期调制比计算值;D(n+1)——反激变换器第(n+1)周期调制比计算值;uc——三角载波信号;us——反激变换器中开关管的驱动信号;Iin——变压器原边电流在开关周期内的平均值。
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
以反激变换器为基础的光伏微逆变器如图1所示,对应的工作波形如图2所示,开关管对应的调制比为D。光伏微逆变器中,光伏电池作为输入源接在反激变换器的输入侧,其输出电流io负责提供后级SPWM逆变器的并网侧电流,在开关周期内的平均值呈正弦规律变化。为了提高光伏微逆变器的寿命,滤波电容均采用容值较小的薄膜电容,如不采取低频纹波抑制策略,则将在反激变换器的输入侧与输出侧滤波电容上产生较大的电压纹波,进而造成光伏电池输出电流中含有较大的低频纹波。
如果能保证每个开关周期内,反激变换器的输入侧功率保持恒定,则可以消除光伏电池输出电流中的纹波成分。本发明就循着该思路建立反激式光伏微逆变器的功率预测方法以抑制低频电流纹波。
反激变压器原边电流、副边电流在电流连续情况下的波形如图2所示,本发明需要所做的工作就是,在第n个开关周期内,通过对应调制比D(n),检测到的电流值iin_f(n),预估下一开关周期开始时刻的变压器原边电流iin_es(n+1),并依据功率基准值P*,得到下一个开关周期,即第(n+1)开关周期内的调制比值D(n+1)。
根据第n个开关周期内变压器原边电流在起始时刻的检测电流值iin_f(n)、变压器原边自感Lp、副边自感Ls,得第(n+1)周期开始时刻的变压器原边电流iin_es1(n+1)
式中,Ts为开关周期。如果反激变换器工作于电流断续模式,则上述计算值最小为零,所以如果(1)式计算值小于零,则电流预估值即等于零,用(2)式表示。
如果令第(n+1)开关周期对应调制比为D(n+1),则第(n+1)开关周期内变压器原边电流的平均值为
则可以得到反激变换器输入侧的预估功率值为
因此,在反激变换器输出基准功率为P*时,根据式(4)就可以得到变压器的调制比
其中,y=UPViin_es(n+1),z=P*。根据上述计算过程可以得到本发明所需的数字控制装置如图3所示。检测其输入侧的光伏电池电压、光伏电池电流、反激型电路的输入电流以及反激型电路的输出电压;数字控制装置包括模数转换器、(n+1)周期电流预测模块、第一限幅器、最大功率点跟踪模块、第一减法器、比例积分调节器、功率预调制比计算模块、第二限幅器、零阶保持器、三角波信号发生器和比较器。
反激型电路的四个检测量输入到模数转换器的输入端;模数转换器的第一输出端接(n+1)周期电流预测模块的第二输入端,模数转换器的第二输出端接(n+1)周期电流预测模块的第三输入端,模数转换器的第三输出端接(n+1)周期电流预测模块的第四输入端、最大功率点跟踪模块的第一输入端、第一减法器的负输入端以及功率预调制比计算模块的第二输入端,模数转换器的第四输出端接最大功率点跟踪模块的第二输入端;(n+1)周期电流预测模块的输出端接第一限幅器的输入端,第一限幅器的输出端接功率预调制比计算模块的第一输入端;最大功率点跟踪模块的输出端接第一减法器的正输入端,第一减法器的输出端接比例积分调节器的输入端,比例积分调节器的输出端接功率预调制比计算模块的第三输入端;功率预调制比计算模块的输出端接第二限幅器的输入端,第二限幅器的输出端接零阶保持器的输入端、比较器的第一输入端,零阶保持器的输出端接(n+1)周期电流预测模块的第一输入端;三角波信号发生器的输出端接比较器的第二输入端;比较器的输出端信号作为反激型电路的驱动信号。
图4-图7所示根据图3所示数字控制装置建立的Matlab/Simulink模型得到的仿真波形,图4为反激变换器输出电压与输出电流波形,可以看出,为缓冲输入侧光伏电池功率与电网侧功率的差异,反激变换器输出滤波电容Co上出现了较大的电压波动。图5为反激变换器输入侧电流的平均值电流Iin,调制比,以及光伏电池输入侧电流与输出侧电流的波形,在一个工频周期内,反激变换器输入侧电流的平均值电流Iin恒定,即可以实现光伏电池输出电流基本恒定,对应需要改变调制比D来实现低频纹波抑制。图6与图7分别对应为图5中调制比较小与调制比较大时候的局部放大图,可以看出反激变换器的工作状态在电流连续状态与断续状态下均有效。
综上所述,本发明针对以反激变换器为基础的光伏微逆变器提出一种功率预测方法的低频电流纹波抑制数字控制装置,根据数学模型提出了对应的调制比计算方法,可以有效抑制光伏电池输出电流中的低频纹波含量,提高了光伏电池的发电效率;此外采用功率预测方法可有效提高光伏微逆变器的动态特性。

Claims (4)

1.一种基于功率预测的反激型微逆变器的低频纹波抑制数字控制装置,控制对象是反激型光伏微逆变器,检测其输入侧的光伏电池电压、光伏电池电流、反激型电路的输入电流以及反激型电路的输出电压;数字控制装置包括模数转换器、(n+1)周期电流预测模块、第一限幅器、最大功率点跟踪模块、第一减法器、比例积分调节器、功率预调制比计算模块、第二限幅器、零阶保持器、三角波信号发生器和比较器;
反激型电路的四个检测量输入到模数转换器的输入端;模数转换器的第一输出端接(n+1)周期电流预测模块的第二输入端,模数转换器的第二输出端接(n+1)周期电流预测模块的第三输入端,模数转换器的第三输出端接(n+1)周期电流预测模块的第四输入端、最大功率点跟踪模块的第一输入端、第一减法器的负输入端以及功率预调制比计算模块的第二输入端,模数转换器的第四输出端接最大功率点跟踪模块的第二输入端;(n+1)周期电流预测模块的输出端接第一限幅器的输入端,第一限幅器的输出端接功率预调制比计算模块的第一输入端;最大功率点跟踪模块的输出端接第一减法器的正输入端,第一减法器的输出端接比例积分调节器的输入端,比例积分调节器的输出端接功率预调制比计算模块的第三输入端;功率预调制比计算模块的输出端接第二限幅器的输入端,第二限幅器的输出端接零阶保持器的输入端、比较器的第一输入端,零阶保持器的输出端接(n+1)周期电流预测模块的第一输入端;三角波信号发生器的输出端接比较器的第二输入端;比较器的输出端信号作为反激型电路的驱动信号;
2.一种如权利要求1所述的(n+1)周期电流预测模块,其特征在于:设(n+1)周期电流预测模块的第一输入端的信号为D(n),代表反激型电路第n个周期的调制比;第二输入端信号为iin_f(n),代表反激型电路输入电流第n个周期的初始时刻电流;第三输入端信号为UDC_f,代表反激型电路输出电压的反馈值;第四输入端的信号为UPV_f,代表光伏电池输出电压的反馈值;则(n+1)周期电流预测模块的输出端信号iin_es1(n+1)为:
其中n为反激型电路中变压器的变比,Lp为反激型电路中变压器原边绕组的自感,TS为开关周期;
3.一种如权利要求1所述的功率预测调制比计算模块,其特征在于:设功率预测调制比计算模块的第一输入端的信号为iin_es(n+1),代表反激型电路输入电流第(n+1)个周期的初始时刻电流;第二输入端信号为UPV_f,代表光伏电池输出电压的反馈值;第三输入端信号为P*,代表反激型电路输出功率的基准值;则功率预测调制比计算模块的输出信号D(n+1)为:
其中,y=UPV_fiin_es(n+1),z=P*,Lp为反激型电路中变压器原边绕组的自感,TS为开关周期;
4.一种如权利要求1所述的基于功率预测的反激型微逆变器的低频纹波抑制数字控制装置,采用(n+1)周期电流预测模块与功率预测调制比计算模块,保证反激型电路的输出功率快速跟踪上基准值,一般设定功率基准为恒定值,则反激型电路输入侧的功率恒定,可保证光伏输入电池输出电流中不含有低频纹波。
CN201810367311.XA 2018-04-23 2018-04-23 基于功率预测的反激型微逆变器的低频纹波抑制数字控制装置 Active CN108512451B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810367311.XA CN108512451B (zh) 2018-04-23 2018-04-23 基于功率预测的反激型微逆变器的低频纹波抑制数字控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810367311.XA CN108512451B (zh) 2018-04-23 2018-04-23 基于功率预测的反激型微逆变器的低频纹波抑制数字控制装置

Publications (2)

Publication Number Publication Date
CN108512451A true CN108512451A (zh) 2018-09-07
CN108512451B CN108512451B (zh) 2020-12-29

Family

ID=63383031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810367311.XA Active CN108512451B (zh) 2018-04-23 2018-04-23 基于功率预测的反激型微逆变器的低频纹波抑制数字控制装置

Country Status (1)

Country Link
CN (1) CN108512451B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111711394A (zh) * 2020-07-09 2020-09-25 浙江大学 一种电驱动系统永磁同步电机矢量弱磁控制系统
CN115149802A (zh) * 2022-09-01 2022-10-04 浙江日风电气股份有限公司 一种直流变换器的控制器、直流变换器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1913316A (zh) * 2005-07-11 2007-02-14 电力集成公司 限制开关电源中输出功率的方法和装置
CN105978389A (zh) * 2016-07-11 2016-09-28 盐城工学院 桥式微逆变器的一种低频电流纹波抑制数字控制装置
CN107612030A (zh) * 2017-09-28 2018-01-19 盐城工学院 基于功率预测的一种电流准临界连续+软开关光伏变换器控制装置
CN107681896A (zh) * 2017-09-28 2018-02-09 盐城工学院 电流型桥式光伏变换器的双占空比控制装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1913316A (zh) * 2005-07-11 2007-02-14 电力集成公司 限制开关电源中输出功率的方法和装置
CN105978389A (zh) * 2016-07-11 2016-09-28 盐城工学院 桥式微逆变器的一种低频电流纹波抑制数字控制装置
CN107612030A (zh) * 2017-09-28 2018-01-19 盐城工学院 基于功率预测的一种电流准临界连续+软开关光伏变换器控制装置
CN107681896A (zh) * 2017-09-28 2018-02-09 盐城工学院 电流型桥式光伏变换器的双占空比控制装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111711394A (zh) * 2020-07-09 2020-09-25 浙江大学 一种电驱动系统永磁同步电机矢量弱磁控制系统
CN111711394B (zh) * 2020-07-09 2021-08-24 浙江大学 一种电驱动系统永磁同步电机矢量弱磁控制系统
CN115149802A (zh) * 2022-09-01 2022-10-04 浙江日风电气股份有限公司 一种直流变换器的控制器、直流变换器
CN115149802B (zh) * 2022-09-01 2022-11-15 浙江日风电气股份有限公司 一种直流变换器的控制器、直流变换器

Also Published As

Publication number Publication date
CN108512451B (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
Abdalla et al. Multilevel DC-link inverter and control algorithm to overcome the PV partial shading
JP6706349B2 (ja) 無停電電源システムおよび無停電電源装置
US9608447B2 (en) Solar photovoltaic three-phase micro-inverter and a solar photovoltaic generation system
EP2408096A1 (en) Current-fed converter with quadratic conversion ratio
CN102723740A (zh) 单级光伏逆变器稳定mppt控制系统及方法
CN110783965B (zh) 适用于mmc半桥串联结构微电网的微源功率协调方法
CN108512451A (zh) 基于功率预测的反激型微逆变器的低频纹波抑制数字控制装置
Hemmati et al. A new single-phase single-stage switched-capacitor based seven-level inverter for grid-tied photovoltaic applications
Nandi et al. Reduction of low-frequency ripples in single-phase switched boost inverter using active power decoupling
Husev et al. Buck-boost unfolder inverter as a novel solution for single-phase PV systems
Fayyad et al. Multilevel cascaded Z source inverter for PV power generation system
KR101920469B1 (ko) 쿡 컨버터 기반의 계통 연계형 단일단 인버터
Meshram et al. The steady state analysis of Z-source inverter based solar power generation system
JP6500738B2 (ja) 電力変換装置及びその制御方法
Chen et al. Battery current-sharing power decoupling method for realizing a single-stage hybrid PV system
Dia et al. A single phase differential Zeta rectifier-inverter
Upadhiya et al. A Switched-Capacitor 11-Level Quintuple-Boost Inverter With Self Voltage Balancing Capability
CN101888095A (zh) 光伏并网发电系统的变结构控制方法
Singh A Control Approach Based on Parallel Form Infinite Impulse Response Filter for Utility Grid Integrated Solar PV-Battery System
US20230402941A1 (en) Common-mode voltage adjustment method and apparatus, and control system
Malad et al. Simulation of a buck-boost single phase voltage source inverter for distribution generation systems
Meenakshi et al. Modified multilevel Quasi Z inverter for solar irrigation systems with improved control technique
Vasumathi et al. An Efficient KY Integrated Landsman Converter with GWO-PSO Tuned Pi Controller
Beniwal et al. Average Neutral Point Current Control Strategy in Neutral-Point-Clamped Converters
Atur et al. Novel control algorithm of storage system for small wind turbine generator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211119

Address after: 224055 No. 26, Kaiyuan Road, Yandu District, Yancheng City, Jiangsu Province

Patentee after: Yancheng Sanxin power supply service Co.,Ltd. Yandu branch

Address before: 224051 middle road of hope Avenue, Yancheng City, Jiangsu Province, No. 1

Patentee before: YANCHENG INSTITUTE OF TECHNOLOGY