JP6459297B2 - Drying equipment - Google Patents

Drying equipment Download PDF

Info

Publication number
JP6459297B2
JP6459297B2 JP2014168084A JP2014168084A JP6459297B2 JP 6459297 B2 JP6459297 B2 JP 6459297B2 JP 2014168084 A JP2014168084 A JP 2014168084A JP 2014168084 A JP2014168084 A JP 2014168084A JP 6459297 B2 JP6459297 B2 JP 6459297B2
Authority
JP
Japan
Prior art keywords
drying
compartment
lignite
fluid medium
drying chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014168084A
Other languages
Japanese (ja)
Other versions
JP2016044845A (en
Inventor
田村 雅人
雅人 田村
由佳 安江
由佳 安江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2014168084A priority Critical patent/JP6459297B2/en
Publication of JP2016044845A publication Critical patent/JP2016044845A/en
Application granted granted Critical
Publication of JP6459297B2 publication Critical patent/JP6459297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Description

本発明は、含水物、例えば高水分含有のバイオマスや多量の水分を含有する褐炭等の低品位炭を乾燥させる乾燥装置に関するものである。   The present invention relates to a drying apparatus that dries a hydrated material, for example, low-grade coal such as high moisture-containing biomass or lignite containing a large amount of moisture.

近年、ボイラの燃料として、高水分含有のバイオマスや、高水分含有の褐炭等の低品位炭等の含水物を用いることが求められている。   In recent years, it has been required to use a high moisture content biomass or a water content such as a low grade coal such as a high moisture content lignite as a fuel for a boiler.

含水物をボイラの燃料として用いる場合、火炉内に持込まれる水分量が多い為、含水物中の水分を蒸発させる為のエネルギーが消費され、更に含水物から蒸発した水蒸気により火炉内の温度が低下し、ボイラの効率が低下するという問題がある。   When using hydrated products as boiler fuel, the amount of water brought into the furnace is large, so energy is consumed to evaporate the moisture in the hydrated product, and the temperature inside the furnace decreases due to water vapor evaporated from the hydrated products. However, there is a problem that the efficiency of the boiler is lowered.

この為、含水物をボイラの燃料として用いる場合には、乾燥装置を設け、該乾燥装置内で流動媒体を介して含水物を流動させつつ乾燥させ、予め乾燥して水分含水物を除去した含水物を火炉へと供給する必要がある。   For this reason, when using a hydrated product as a fuel for a boiler, a drying device is provided, and the hydrated product is dried while flowing the hydrated product through a fluid medium in the drying device, and dried in advance to remove the moisture hydrated product. Things need to be supplied to the furnace.

然し乍ら、従来の乾燥装置では、流動し難い含水物に合わせて一律に流動媒体を供給していた為、必要以上の流動媒体が供給されることとなり、エネルギー消費が増加すると共に、粒径の小さい含水物の飛散が増大するという問題があった。   However, in the conventional drying apparatus, since the fluid medium is uniformly supplied according to the water-containing material that is difficult to flow, the fluid medium is supplied more than necessary, and the energy consumption increases and the particle size is small. There was a problem that scattering of water-containing materials increased.

尚、特許文献1には、乾燥容器がガス分散板によって上方の乾燥室と下方のチャンバ室とに区分けされ、前記乾燥室は4枚の分割板により5つの乾燥分室に分割され、前記チャンバ室に設けられた流動化ガス供給部より導入された流動化ガスが、前記ガス分散板を介して前記乾燥分室に流入することで該乾燥分室に褐炭の流動層が形成され、該流動層が前記分割板を乗越えて隣接する乾燥分室に移動する過程で、各乾燥分室毎に設けられた伝熱部材により加熱されることで順次乾燥される流動層乾燥装置、流動層乾燥設備および湿潤原料乾燥方法が開示されている。   In Patent Document 1, a drying container is divided into an upper drying chamber and a lower chamber chamber by a gas dispersion plate, and the drying chamber is divided into five drying compartments by four dividing plates. The fluidized gas introduced from the fluidized gas supply section provided in the flow into the dry compartment through the gas dispersion plate, a fluidized bed of lignite is formed in the dry compartment, the fluidized bed Fluidized bed drying apparatus, fluidized bed drying equipment, and wet raw material drying method that are sequentially dried by being heated by a heat transfer member provided for each drying compartment in the process of moving over the dividing plate to the adjacent drying compartment Is disclosed.

特開2012−215316号公報JP 2012-215316 A

本発明は斯かる実情に鑑み、含水物の流動性を向上させ、乾燥効率を向上させる乾燥装置を提供するものである。   In view of such circumstances, the present invention provides a drying apparatus that improves the fluidity of a hydrated product and improves the drying efficiency.

本発明は、含水物が乾燥される乾燥室と、該乾燥室の一端部より前記含水物を供給する含水物供給手段と、前記乾燥室の他端部より乾燥された前記含水物を排出する排出手段と、前記乾燥室に設けられた加熱手段と、加熱により生じた蒸気を前記乾燥室の他端部より排気する排気手段と、前記乾燥室に流動媒体を噴出し前記含水物を液状化させる流動媒体供給手段と、前記乾燥室を複数の乾燥分室に分割し、前記含水物が各乾燥分室間を上下に反転しながら流動する様隣接する乾燥分室を上部又は下部で連通させる複数の分割壁とを具備し、前記流動媒体供給手段は前記乾燥室の底部に形成されたウインドボックスを有し、該ウインドボックスは各乾燥分室に対応して分割され、分割された前記ウインドボックス毎に前記流動媒体が供給され、前記含水物が下方に流動する前記乾燥分室に対する前記流動媒体の供給量を、前記含水物が上方に流動する前記乾燥分室に対する前記流動媒体の供給量よりも少なくする乾燥装置に係るものである。   The present invention discharges the hydrated material dried from the drying chamber in which the hydrated material is dried, the hydrated material supply means for supplying the hydrated material from one end of the drying chamber, and the other end of the drying chamber. Discharging means, heating means provided in the drying chamber, exhaust means for exhausting steam generated by heating from the other end of the drying chamber, and liquefying the hydrated matter by ejecting a fluid medium into the drying chamber Dividing the drying chamber into a plurality of drying compartments, and allowing the adjacent drying compartments to communicate with each other at the upper or lower part so that the hydrated material flows while reversing up and down between the drying compartments. And the fluid medium supply means has a wind box formed at the bottom of the drying chamber, and the window box is divided corresponding to each drying compartment, and the window box is divided for each divided window box. Fluid medium is supplied The supply amount of the fluidized medium with respect to the dry compartment where the hydrous material flows downwards, the hydrate is related to the drying apparatus be less than the supply amount of the fluidized medium with respect to the dry compartment to flow upward.

又本発明は、各乾燥分室内の圧力を検出する圧力計と、制御部とを更に具備し、該制御部は、前記圧力計の検出結果に基づき各ウインドボックスへの前記流動媒体の供給量を制御する乾燥装置に係るものである。   The present invention further includes a pressure gauge for detecting the pressure in each drying compartment and a control section, and the control section supplies the flow medium to each wind box based on the detection result of the pressure gauge. The present invention relates to a drying device that controls

更に又本発明は、前記乾燥室は上流側の複数の乾燥分室により加熱領域が形成され、下流側の複数の乾燥分室により冷却領域が形成され、前記加熱領域の各乾燥分室に対応する各ウインドボックス毎に蒸気が供給され、前記冷却領域の各乾燥分室に対応する各ウインドボックス毎に冷却空気が供給される乾燥装置に係るものである。   Further, according to the present invention, in the drying chamber, a heating region is formed by a plurality of drying compartments on the upstream side, a cooling region is formed by a plurality of drying compartments on the downstream side, and each window corresponding to each drying compartment in the heating region. The present invention relates to a drying apparatus in which steam is supplied for each box, and cooling air is supplied for each wind box corresponding to each drying compartment in the cooling region.

本発明によれば、含水物が乾燥される乾燥室と、該乾燥室の一端部より前記含水物を供給する含水物供給手段と、前記乾燥室の他端部より乾燥された前記含水物を排出する排出手段と、前記乾燥室に設けられた加熱手段と、加熱により生じた蒸気を前記乾燥室の他端部より排気する排気手段と、前記乾燥室に流動媒体を噴出し前記含水物を液状化させる流動媒体供給手段と、前記乾燥室を複数の乾燥分室に分割し、前記含水物が各乾燥分室間を上下に反転しながら流動する様隣接する乾燥分室を上部又は下部で連通させる複数の分割壁とを具備し、前記流動媒体供給手段は前記乾燥室の底部に形成されたウインドボックスを有し、該ウインドボックスは各乾燥分室に対応して分割され、分割された前記ウインドボックス毎に前記流動媒体が供給され、前記含水物が下方に流動する前記乾燥分室に対する前記流動媒体の供給量を、前記含水物が上方に流動する前記乾燥分室に対する前記流動媒体の供給量よりも少なくするので、前記含水物の流動性に合わせて最適な流量の前記流動媒体を供給することができ、前記含水物の流動性を向上させ、乾燥効率を向上させることができるという優れた効果を発揮する。   According to the present invention, there is provided a drying chamber in which the hydrated product is dried, a hydrated product supplying means for supplying the hydrated product from one end of the drying chamber, and the hydrated product dried from the other end of the drying chamber. A discharge means for discharging, a heating means provided in the drying chamber, an exhaust means for exhausting steam generated by heating from the other end of the drying chamber, a fluid medium is ejected into the drying chamber, and the hydrated material is discharged. A plurality of fluid medium supply means for liquefaction and the drying chamber divided into a plurality of drying compartments, and the adjacent drying compartments communicate with each other at the upper part or the lower part so that the hydrated material flows while reversing between the drying compartments. The fluid medium supply means has a wind box formed at the bottom of the drying chamber, and the window box is divided corresponding to each drying compartment, and each divided wind box Is provided with the fluid medium. And the amount of the fluid medium supplied to the dry compartment in which the water content flows downward is less than the amount of fluid medium supplied to the dry compartment in which the water content flows upward. The fluid medium having an optimal flow rate can be supplied in accordance with the fluidity, and the fluidity of the hydrated material can be improved and the drying efficiency can be improved.

本発明の実施例に係る乾燥装置が適用されるボイラ装置を示す概略図である。It is the schematic which shows the boiler apparatus with which the drying apparatus which concerns on the Example of this invention is applied. 本発明の実施例に係る乾燥装置が適用される含水物乾燥システムを示す概略図である。It is the schematic which shows the hydrated matter drying system with which the drying apparatus which concerns on the Example of this invention is applied. 本発明の実施例に係る乾燥装置を示す概略図である。It is the schematic which shows the drying apparatus which concerns on the Example of this invention. 本発明の実施例に係る乾燥装置に於ける層圧損と流動媒体流量との関係を示すグラフである。It is a graph which shows the relationship between the bed pressure loss and the fluid medium flow rate in the drying apparatus which concerns on the Example of this invention.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、図1に於いて、本発明の実施例に係る含水物乾燥システムが適用されるボイラ装置1について説明する。   First, referring to FIG. 1, a boiler device 1 to which a hydrated matter drying system according to an embodiment of the present invention is applied will be described.

図1中、2は該ボイラ装置1の火炉を示し、3は該火炉2の炉壁に設けられたバーナを示している。前記火炉2の炉壁には、炉内からの輻射熱を吸収する伝熱管(図示せず)が設けられ、又前記火炉2の上方には、発生した蒸気を過熱する為のスーパヒータ(過熱蒸気発生器)4が設けられている。   In FIG. 1, 2 indicates a furnace of the boiler device 1, and 3 indicates a burner provided on the furnace wall of the furnace 2. The furnace wall of the furnace 2 is provided with a heat transfer tube (not shown) for absorbing radiant heat from the inside of the furnace, and a super heater (superheated steam generation) for heating the generated steam above the furnace 2. 4) is provided.

又、図1中、5はバイオマスや低品位炭等の含水物、例えば褐炭を乾燥させる含水物乾燥システムを示しており、水分を含有する褐炭6が前記含水物乾燥システム5に供給されると、該含水物乾燥システム5にて前記褐炭6の乾燥が行われ、乾燥褐炭7として前記バーナ3に供給される。   In FIG. 1, reference numeral 5 denotes a hydrated material drying system for drying hydrated materials such as biomass and low-grade coal, such as lignite, and when lignite 6 containing moisture is supplied to the hydrated material drying system 5. The hydrated coal drying system 5 dries the lignite 6 and supplies it as the dried lignite 7 to the burner 3.

該バーナ3に前記乾燥褐炭7が供給されることで、前記バーナ3にて前記乾燥褐炭7が燃焼され、前記火炉2内に火炎が形成される。燃焼により生じた燃焼排ガス8は、前記火炉2内を加熱し、又前記スーパヒータ4と熱交換をし、煙道9を介して排気される様になっている。   By supplying the dry lignite 7 to the burner 3, the dry lignite 7 is burned in the burner 3, and a flame is formed in the furnace 2. The combustion exhaust gas 8 generated by the combustion heats the inside of the furnace 2 and exchanges heat with the super heater 4 to be exhausted through the flue 9.

次に、図2に於いて、本発明の実施例に係る前記含水物乾燥システム5について説明する。   Next, referring to FIG. 2, the hydrated material drying system 5 according to an embodiment of the present invention will be described.

図2中、11は前記褐炭6を所定の粒径、例えば2mm以下に粉砕するハンマーミル等の粉砕機を示し、12は乾燥装置を示しており、該乾燥装置12の内部には粉砕された前記褐炭6を乾燥させると共に乾燥後冷却させる乾燥室13が形成されている。   In FIG. 2, 11 indicates a pulverizer such as a hammer mill that pulverizes the lignite 6 to a predetermined particle size, for example, 2 mm or less, and 12 indicates a drying device. The drying device 12 is pulverized inside. A drying chamber 13 for drying the lignite 6 and cooling it after drying is formed.

該乾燥室13は、上流側に形成された加熱領域14と、下流側に形成された冷却領域15とを有しており、前記加熱領域14は前記褐炭6を加熱して乾燥させ、前記冷却領域15は前記加熱領域14で加熱、乾燥された前記乾燥褐炭7を冷却する様になっている。   The drying chamber 13 has a heating region 14 formed on the upstream side and a cooling region 15 formed on the downstream side, and the heating region 14 heats the lignite 6 to dry it, and The region 15 cools the dried lignite 7 heated and dried in the heating region 14.

前記乾燥室13の前記加熱領域14側の側壁の上部に前記褐炭6の褐炭供給ライン16が接続され、該褐炭供給ライン16の途中には前記粉砕機11が設けられ、該粉砕機11の下流側には褐炭ホッパ17が設けられる。該褐炭ホッパ17、前記粉砕機11、前記褐炭供給ライン16は含水物供給手段を構成する。   A lignite supply line 16 for the lignite 6 is connected to an upper portion of the side wall of the drying chamber 13 on the heating region 14 side, and the pulverizer 11 is provided in the middle of the lignite supply line 16, downstream of the pulverizer 11. On the side, a brown coal hopper 17 is provided. The lignite hopper 17, the pulverizer 11, and the lignite supply line 16 constitute a hydrated material supply means.

前記乾燥室13の天板18の前記冷却領域15に対応する部分、即ち前記乾燥室13の前記褐炭供給ライン16の反対側には、排気手段である排気ライン19が接続されている。   An exhaust line 19 as exhaust means is connected to a portion of the top plate 18 of the drying chamber 13 corresponding to the cooling region 15, that is, on the opposite side of the drying chamber 13 to the lignite supply line 16.

又、前記乾燥室13の前記冷却領域15側の側壁には、褐炭排出ライン21が接続され、該褐炭排出ライン21は前記バーナ3に接続されている。   A lignite discharge line 21 is connected to the side wall of the drying chamber 13 on the cooling region 15 side, and the lignite discharge line 21 is connected to the burner 3.

前記乾燥室13の前記加熱領域14側の底板22の下方には加熱側ウインドボックス23が設けられ、前記底板22には蒸気供給ノズル24が多数設けられている。該蒸気供給ノズル24から図示しない孔を介して流動媒体、例えば高温のバブリング蒸気25が導入される。又、前記冷却領域15側の前記底板22の下方には冷却側ウインドボックス26が設けられ、前記底板22には冷却空気供給ノズル27が多数設けられている。該冷却空気供給ノズル27から図示しない孔を介して流動媒体、例えば冷却空気28が導入される。   A heating side wind box 23 is provided below the bottom plate 22 on the heating region 14 side of the drying chamber 13, and a plurality of steam supply nozzles 24 are provided on the bottom plate 22. A fluid medium such as high-temperature bubbling steam 25 is introduced from the steam supply nozzle 24 through a hole (not shown). A cooling side wind box 26 is provided below the bottom plate 22 on the cooling region 15 side, and a plurality of cooling air supply nozzles 27 are provided on the bottom plate 22. A fluid medium such as cooling air 28 is introduced from the cooling air supply nozzle 27 through a hole (not shown).

又、前記粉砕機11より前記褐炭ホッパ17を介し供給された前記褐炭6に対して、前記バブリング蒸気25及び前記冷却空気28を供給することで、褐炭粉が前記バブリング蒸気25及び前記冷却空気28によって浮遊され、液状化し、液状化した前記褐炭粉によって前記乾燥室13内に流動層29が形成される。   Further, by supplying the bubbling steam 25 and the cooling air 28 to the lignite 6 supplied from the pulverizer 11 via the lignite hopper 17, the lignite powder becomes the bubbling steam 25 and the cooling air 28. A fluidized bed 29 is formed in the drying chamber 13 by the lignite powder that has been floated, liquefied, and liquefied.

該流動層29中の前記加熱領域14には、加熱手段である伝熱管31(図2中では1つのみ図示)が多数設けられている。該伝熱管31の上流端には過熱蒸気導入ライン32が接続されており、該過熱蒸気導入ライン32には図示しない稼働中のボイラのタービンより抽出した過熱蒸気の一部が導入され、前記伝熱管31内を過熱蒸気が流通する様になっている。   The heating region 14 in the fluidized bed 29 is provided with a large number of heat transfer tubes 31 (only one is shown in FIG. 2) as heating means. A superheated steam introduction line 32 is connected to the upstream end of the heat transfer pipe 31, and a part of the superheated steam extracted from a turbine of an operating boiler (not shown) is introduced into the superheated steam introduction line 32. Superheated steam flows through the heat pipe 31.

前記伝熱管31の下流端には、排水管33が接続されている。過熱蒸気は前記伝熱管31内を流通し、前記流動層29中の前記褐炭6と熱交換されることで凝縮し、凝縮潜熱を放出する。凝縮潜熱を回収された凝縮水は、前記排水管33から排出される。尚、該排水管33は図示しない復水器等のコンデンサに接続され、凝縮水はボイラに戻される。   A drain pipe 33 is connected to the downstream end of the heat transfer pipe 31. The superheated steam flows through the heat transfer pipe 31 and is condensed by exchanging heat with the lignite 6 in the fluidized bed 29 to release latent heat of condensation. The condensed water whose latent condensation heat has been recovered is discharged from the drain pipe 33. The drain pipe 33 is connected to a condenser such as a condenser (not shown), and the condensed water is returned to the boiler.

又、前記過熱蒸気導入ライン32には、該過熱蒸気導入ライン32の中途部より分岐するバブリング蒸気導入ライン34が接続されている。該バブリング蒸気導入ライン34は前記加熱側ウインドボックス23と接続されており、ボイラのタービンより抽出した過熱蒸気の残部が前記バブリング蒸気25として、前記加熱側ウインドボックス23を介して前記蒸気供給ノズル24に供給される様になっている。   The superheated steam introduction line 32 is connected to a bubbling steam introduction line 34 that branches from a middle portion of the superheated steam introduction line 32. The bubbling steam introduction line 34 is connected to the heating side wind box 23, and the remaining superheated steam extracted from the boiler turbine serves as the bubbling steam 25 through the heating side wind box 23 and the steam supply nozzle 24. To be supplied.

前記冷却側ウインドボックス26には冷却空気導入ライン35が接続されている。又、該冷却空気導入ライン35は図示しない冷却空気供給源に接続され、前記冷却側ウインドボックス26を介して前記冷却空気28が前記冷却空気供給ノズル27に供給される。   A cooling air introduction line 35 is connected to the cooling side window box 26. The cooling air introduction line 35 is connected to a cooling air supply source (not shown), and the cooling air 28 is supplied to the cooling air supply nozzle 27 through the cooling side window box 26.

尚、前記蒸気供給ノズル24、前記冷却空気供給ノズル27、前記加熱側ウインドボックス23、前記冷却側ウインドボックス26、前記バブリング蒸気導入ライン34、前記冷却空気導入ライン35により流動媒体供給手段が構成される。   The steam supply nozzle 24, the cooling air supply nozzle 27, the heating side wind box 23, the cooling side window box 26, the bubbling steam introduction line 34, and the cooling air introduction line 35 constitute a fluid medium supply means. The

次に、図3に於いて、前記乾燥装置12の詳細について説明する。尚、図3中、前記伝熱管31は前記加熱領域14に於ける前記流動層29の上部にのみ示されているが、該流動層29の中部、下部も同様に前記伝熱管31が設けられているものとする。   Next, the details of the drying device 12 will be described with reference to FIG. In FIG. 3, the heat transfer tube 31 is shown only on the upper part of the fluidized bed 29 in the heating region 14, but the heat transfer tube 31 is similarly provided on the middle and lower parts of the fluidized bed 29. It shall be.

前記褐炭ホッパ17には粉砕機11(図2参照)により粉砕された前記褐炭6が貯留されており、前記褐炭ホッパ17より前記褐炭供給ライン16を介して前記加熱領域14に前記褐炭6が供給される様になっている。尚、前記褐炭供給ライン16の前記乾燥室13に対する開口位置は、前記褐炭排出ライン21の前記乾燥室13に対する開口位置よりも上方に位置している。又、前記褐炭供給ライン16の開口位置と前記褐炭排出ライン21の開口位置との高低差は、バブリングにより液状化した前記褐炭6の流動性、前記乾燥装置12が持つ乾燥処理能力によって適宜決定する。   The lignite hopper 17 stores the lignite 6 pulverized by a pulverizer 11 (see FIG. 2), and the lignite 6 is supplied from the lignite hopper 17 to the heating region 14 via the lignite supply line 16. It is supposed to be done. The opening position of the lignite supply line 16 with respect to the drying chamber 13 is located above the opening position of the lignite discharge line 21 with respect to the drying chamber 13. The height difference between the opening position of the lignite supply line 16 and the opening position of the lignite discharge line 21 is appropriately determined according to the fluidity of the lignite 6 liquefied by bubbling and the drying processing capability of the drying device 12. .

前記乾燥室13内には、該乾燥室13を複数の乾燥分室に分割する為に設けられた複数の分割壁、例えば上流側から第1分割壁36、第2分割壁37、第3分割壁38、第4分割壁39、第5分割壁40、第6分割壁41の6枚の分割壁が設けられている。   In the drying chamber 13, a plurality of dividing walls provided to divide the drying chamber 13 into a plurality of drying compartments, for example, a first dividing wall 36, a second dividing wall 37, a third dividing wall from the upstream side. There are six divided walls 38, a fourth divided wall 39, a fifth divided wall 40, and a sixth divided wall 41.

前記第1分割壁36〜前記第3分割壁38は前記加熱領域14内に位置し、前記第5分割壁40と前記第6分割壁41は前記冷却領域15内に位置している。又、前記第4分割壁39は前記加熱領域14と前記冷却領域15との境界に位置しており、前記第4分割壁39により前記加熱領域14と前記冷却領域15とが区分けされる様になっている。尚、前記加熱領域14は前記冷却領域15よりも前記褐炭6の流路長が長くなっている。   The first dividing wall 36 to the third dividing wall 38 are located in the heating region 14, and the fifth dividing wall 40 and the sixth dividing wall 41 are located in the cooling region 15. The fourth dividing wall 39 is located at the boundary between the heating area 14 and the cooling area 15 so that the heating area 14 and the cooling area 15 are separated by the fourth dividing wall 39. It has become. In addition, the flow length of the lignite 6 is longer in the heating area 14 than in the cooling area 15.

前記第1分割壁36、前記第3分割壁38、前記第5分割壁40は、それぞれ上端が前記流動層29の表面より上方に突出し、下端と前記乾燥室13の前記底板22との間には、それぞれ所定の間隔を有する間隙43,44,45が形成されている。前記第2分割壁37、前記第4分割壁39、前記第6分割壁41は、それぞれ前記乾燥室13の前記底板22より上方に突出して設けられ、上端は前記流動層29の表面よりも所定距離下がった下方に位置している。尚、前記間隙43〜45の大きさは、前記流動層29の流動性に応じて適宜選択される。   The first dividing wall 36, the third dividing wall 38, and the fifth dividing wall 40 each have an upper end protruding above the surface of the fluidized bed 29, and between the lower end and the bottom plate 22 of the drying chamber 13. Are formed with gaps 43, 44, 45 having predetermined intervals, respectively. The second dividing wall 37, the fourth dividing wall 39, and the sixth dividing wall 41 are provided so as to protrude above the bottom plate 22 of the drying chamber 13, and the upper end is predetermined from the surface of the fluidized bed 29. It is located below the distance. The size of the gaps 43 to 45 is appropriately selected according to the fluidity of the fluidized bed 29.

前記第1分割壁36と前記乾燥装置12の前記褐炭供給ライン16側の側壁との間に第1乾燥分室46が形成され、前記第1分割壁36と前記第2分割壁37との間に第2乾燥分室47が形成され、前記第2分割壁37と前記第3分割壁38との間に第3乾燥分室48が形成され、前記第3分割壁38と前記第4分割壁39との間に第4乾燥分室49が形成され、前記第4分割壁39と前記第5分割壁40との間に第5乾燥分室50が形成され、前記第5分割壁40と前記第6分割壁41との間に第6乾燥分室51が形成され、前記第6分割壁41と前記乾燥装置12の前記褐炭排出ライン21側の側壁との間に第7乾燥分室52が形成されている。   A first drying compartment 46 is formed between the first dividing wall 36 and the side wall of the drying device 12 on the lignite supply line 16 side, and between the first dividing wall 36 and the second dividing wall 37. A second drying compartment 47 is formed, a third drying compartment 48 is formed between the second dividing wall 37 and the third dividing wall 38, and the third dividing wall 38 and the fourth dividing wall 39 A fourth drying compartment 49 is formed therebetween, a fifth drying compartment 50 is formed between the fourth dividing wall 39 and the fifth dividing wall 40, and the fifth dividing wall 40 and the sixth dividing wall 41 are formed. A sixth drying compartment 51 is formed between the sixth partition wall 41 and a side wall of the drying device 12 on the lignite discharge line 21 side.

前記加熱側ウインドボックス23と前記冷却側ウインドボックス26は、各乾燥分室46〜52に対応する様分割されている。即ち、前記第1乾燥分室46に前記バブリング蒸気25を供給する第1ウインドボックス55、前記第2乾燥分室47に前記バブリング蒸気25を供給する第2ウインドボックス56、前記第3乾燥分室48に前記バブリング蒸気25を供給する第3ウインドボックス57、前記第4乾燥分室49に前記バブリング蒸気25を供給する第4ウインドボックス58、前記第5乾燥分室50に前記冷却空気28を供給する第5ウインドボックス59、前記第6乾燥分室51に前記冷却空気28を供給する第6ウインドボックス60、前記第7乾燥分室52に前記冷却空気28を供給する第7ウインドボックス61がそれぞれ設けられている。   The heating side window box 23 and the cooling side window box 26 are divided so as to correspond to the respective drying compartments 46 to 52. That is, the first wind box 55 for supplying the bubbling steam 25 to the first drying compartment 46, the second window box 56 for supplying the bubbling steam 25 to the second drying compartment 47, and the third drying compartment 48 to the first drying compartment 46, respectively. A third wind box 57 for supplying bubbling steam 25, a fourth wind box 58 for supplying the bubbling steam 25 to the fourth drying compartment 49, and a fifth wind box for supplying the cooling air 28 to the fifth drying compartment 50 59, a sixth window box 60 for supplying the cooling air 28 to the sixth drying compartment 51, and a seventh window box 61 for supplying the cooling air 28 to the seventh drying compartment 52, respectively.

前記バブリング蒸気導入ライン34は前記第1ウインドボックス55〜前記第4ウインドボックス58にそれぞれ接続されている。又、前記バブリング蒸気導入ライン34には、前記第1ウインドボックス55に供給される前記バブリング蒸気25の流量を調整する第1調整バルブ63、前記第2ウインドボックス56に供給される前記バブリング蒸気25の流量を調整する第2調整バルブ64、前記第3ウインドボックス57に供給される前記バブリング蒸気25の流量を調整する第3調整バルブ65、前記第4ウインドボックス58に供給される前記バブリング蒸気25の流量を調整する第4調整バルブ66がそれぞれ設けられている。   The bubbling steam introduction line 34 is connected to the first window box 55 to the fourth window box 58, respectively. The bubbling steam introduction line 34 has a first adjustment valve 63 for adjusting the flow rate of the bubbling steam 25 supplied to the first wind box 55 and the bubbling steam 25 supplied to the second wind box 56. The second adjusting valve 64 for adjusting the flow rate of the gas, the third adjusting valve 65 for adjusting the flow rate of the bubbling steam 25 supplied to the third wind box 57, and the bubbling steam 25 supplied to the fourth wind box 58. A fourth adjustment valve 66 for adjusting the flow rate of each is provided.

前記冷却空気導入ライン35は前記第5ウインドボックス59〜前記第7ウインドボックス61にそれぞれ接続されている。又、前記冷却空気導入ライン35には、前記第5ウインドボックス59に供給される前記冷却空気28の流量を調整する第5調整バルブ67、前記第6ウインドボックス60に供給される前記冷却空気28の流量を調整する第6調整バルブ68、前記第7ウインドボックス61に供給される前記冷却空気28の流量を調整する第7調整バルブ69がそれぞれ設けられている。   The cooling air introduction line 35 is connected to the fifth window box 59 to the seventh window box 61, respectively. The cooling air introduction line 35 has a fifth adjustment valve 67 for adjusting the flow rate of the cooling air 28 supplied to the fifth window box 59 and the cooling air 28 supplied to the sixth window box 60. A sixth adjustment valve 68 for adjusting the flow rate of the cooling air 28 and a seventh adjustment valve 69 for adjusting the flow rate of the cooling air 28 supplied to the seventh window box 61 are provided.

又、前記乾燥装置12には、前記第1乾燥分室46内の圧力を検出する第1圧力計71と、前記第2乾燥分室47内の圧力を検出する第2圧力計72と、前記第3乾燥分室48内の圧力を検出する第3圧力計73と、前記第4乾燥分室49内の圧力を検出する第4圧力計74と、前記第5乾燥分室50内の圧力を検出する第5圧力計75と、前記第6乾燥分室51内の圧力を検出する第6圧力計76と、前記第7乾燥分室52内の圧力を検出する第7圧力計77が設けられ、前記第1圧力計71〜前記第7圧力計77は制御部78と電気的に接続されている。又、前記制御部78は前記第1調整バルブ63〜前記第7調整バルブ69と電気的に接続され、前記第1調整バルブ63〜前記第7調整バルブ69の開度を制御できる様になっている。尚、図3中では、便宜上前記第1乾燥分室46〜前記第7乾燥分室52の内部に前記第1圧力計71〜前記第7圧力計77が設けられているが、実際には前記第1乾燥分室46〜前記第7乾燥分室52の外部に設けられている。   The drying device 12 includes a first pressure gauge 71 that detects the pressure in the first drying compartment 46, a second pressure gauge 72 that detects the pressure in the second drying compartment 47, and the third pressure gauge. A third pressure gauge 73 for detecting the pressure in the drying compartment 48, a fourth pressure gauge 74 for detecting the pressure in the fourth drying compartment 49, and a fifth pressure for detecting the pressure in the fifth drying compartment 50 A first pressure gauge 71, a sixth pressure gauge 76 for detecting the pressure in the sixth drying compartment 51, and a seventh pressure gauge 77 for detecting the pressure in the seventh drying compartment 52. The seventh pressure gauge 77 is electrically connected to the control unit 78. The controller 78 is electrically connected to the first adjustment valve 63 to the seventh adjustment valve 69 so that the opening degree of the first adjustment valve 63 to the seventh adjustment valve 69 can be controlled. Yes. In FIG. 3, the first pressure gauge 71 to the seventh pressure gauge 77 are provided inside the first dry compartment 46 to the seventh dry compartment 52 for convenience. It is provided outside the drying compartment 46 to the seventh drying compartment 52.

前記第1圧力計71〜前記第7圧力計77に検出される圧力は、例えば前記褐炭6の供給量や粒径分布等により変化するものであり、前記制御部78は前記第1圧力計71〜前記第7圧力計77の検出結果に基づき前記第1乾燥分室46〜前記第7乾燥分室52の層圧損を演算する。又、前記制御部78は、演算した層圧損を基に前記第1調整バルブ63〜前記第7調整バルブ69の開度を個別に制御し、前記第1ウインドボックス55〜前記第7ウインドボックス61に供給される前記バブリング蒸気25及び前記冷却空気28の供給量を調整する様になっている。   The pressure detected by the first pressure gauge 71 to the seventh pressure gauge 77 varies depending on, for example, the supply amount and particle size distribution of the lignite 6, and the control unit 78 controls the first pressure gauge 71. Based on the detection result of the seventh pressure gauge 77, the layer pressure loss of the first dry compartment 46 to the seventh dry compartment 52 is calculated. The controller 78 individually controls the opening degrees of the first adjustment valve 63 to the seventh adjustment valve 69 based on the calculated layer pressure loss, and the first window box 55 to the seventh window box 61. The supply amount of the bubbling steam 25 and the cooling air 28 supplied to the air is adjusted.

図4は、検出された圧力を基に演算された層圧損と、前記バブリング蒸気25や前記冷却空気28等の流動媒体との関係を示したグラフである。図4に示される様に、流動媒体の流量増加に伴い、層圧損が上昇していくが、前記流動層29が完全流動状態となる流動化領域に至ると、流動媒体の流量を増加させても層圧損はそれ以上上昇せず、一定となる。この時の層圧損を最大層圧損Pcとすると、最大層圧損Pcは前記第1乾燥分室46〜前記第7乾燥分室52でそれぞれ異なる値を有する。前記制御部78の図示しない記憶部には、前記第1乾燥分室46〜前記第7乾燥分室52のそれぞれの層圧損Pcが設定され、又流動媒体の設計上の最大流量Fmが設定される。   FIG. 4 is a graph showing the relationship between the laminar pressure loss calculated based on the detected pressure and the fluid medium such as the bubbling steam 25 and the cooling air 28. As shown in FIG. 4, the laminar pressure loss increases as the flow rate of the fluidized medium increases. However, when the fluidized bed 29 reaches the fluidization region where the fluidized layer 29 is in a completely fluidized state, the flow rate of the fluidized medium is increased. However, the layer pressure loss does not increase any more and becomes constant. Assuming that the layer pressure loss at this time is the maximum layer pressure loss Pc, the maximum layer pressure loss Pc has different values in the first drying compartment 46 to the seventh drying compartment 52, respectively. In the storage unit (not shown) of the control unit 78, the layer pressure loss Pc of each of the first drying compartment 46 to the seventh drying compartment 52 is set, and the maximum flow rate Fm on the design of the fluid medium is set.

前記褐炭供給ライン16から供給された前記褐炭6は、前記バブリング蒸気25のバブリング、前記冷却空気28のバブリングによって液状化され、前記褐炭排出ライン21から排出される迄の間に、前記第1乾燥分室46〜前記第4乾燥分室49内を上下に反転しながら流動し、乾燥されると共に、前記第5乾燥分室50〜前記第7乾燥分室52内を上下に反転しながら流動し、冷却される様になっている。前記第1乾燥分室46〜前記第7乾燥分室52を上下に反転しながら流動することで、流路長が長くなり、乾燥及び冷却に充分な時間が与えられる。   The lignite 6 supplied from the lignite supply line 16 is liquefied by bubbling of the bubbling steam 25 and bubbling of the cooling air 28 and is discharged from the lignite discharge line 21 before the first drying. Flows in the compartment 46 to the fourth dry compartment 49 while being turned upside down and dried, and flows in the fifth dry compartment 50 to the seventh dry compartment 52 while being turned upside down and cooled. It is like. By flowing while the first dry compartment 46 to the seventh dry compartment 52 are turned upside down, the flow path length becomes longer, and sufficient time is provided for drying and cooling.

次に、本実施例に係る前記含水物乾燥システム5による前記褐炭6の乾燥について更に説明する。   Next, the drying of the lignite 6 by the hydrated matter drying system 5 according to the present embodiment will be further described.

先ず、未粉砕の該褐炭6が前記粉砕機11に投入され、該粉砕機11にて粒径が2mm以下となる様に粉砕される。該粉砕機11により粉砕された前記褐炭6は、前記褐炭ホッパ17に貯留された後、前記褐炭6が前記褐炭供給ライン16を介して前記乾燥装置12に投入される。この時、前記褐炭6は、10μm〜2mm程度の粒径分布を有している。   First, the unpulverized brown coal 6 is put into the pulverizer 11 and pulverized by the pulverizer 11 so that the particle diameter becomes 2 mm or less. After the lignite 6 pulverized by the pulverizer 11 is stored in the lignite hopper 17, the lignite 6 is charged into the drying device 12 through the lignite supply line 16. At this time, the lignite 6 has a particle size distribution of about 10 μm to 2 mm.

前記乾燥装置12に供給された前記褐炭6は、前記第1乾燥分室46に堆積し、堆積した前記褐炭6に前記蒸気供給ノズル24を介して前記第1ウインドボックス55より前記バブリング蒸気25が供給されることで液状化され、流動性を有する前記褐炭6の前記流動層29が形成される。   The lignite 6 supplied to the drying device 12 is accumulated in the first drying compartment 46, and the bubbling steam 25 is supplied from the first wind box 55 to the deposited lignite 6 through the steam supply nozzle 24. By doing so, the fluidized bed 29 of the lignite 6 liquefied and having fluidity is formed.

この時、前記第1圧力計71〜前記第7圧力計77により前記第1乾燥分室46内〜前記第7乾燥分室52内の圧力が検出されており、前記第1圧力計71〜前記第7圧力計77の検出結果は前記制御部78にフィードバックされている。前記検出結果から、前記流動層29に対する前記バブリング蒸気25及び前記冷却空気28の供給量が予め決められた設定に基づき決定される。   At this time, the pressures in the first dry compartment 46 to the seventh dry compartment 52 are detected by the first pressure gauge 71 to the seventh pressure gauge 77, and the first pressure gauge 71 to the seventh pressure gauge are detected. The detection result of the pressure gauge 77 is fed back to the control unit 78. From the detection result, the supply amount of the bubbling steam 25 and the cooling air 28 to the fluidized bed 29 is determined based on a predetermined setting.

例えば、前記第2乾燥分室47の場合、前記制御部78が前記第2圧力計72により検出された圧力を基に、前記第2乾燥分室47の層圧損P2を演算し、層圧損P2と予め設定された前記第2乾燥分室47に於ける最大層圧損Pcとを比較する。前記制御部78は、P2<Pc、即ち完全流動状態ではないと判断すると、前記第2調整バルブ64を開制御し、前記バブリング蒸気25の流量を増大させる。又、前記制御部78は、P2≧Pc、即ち完全流動状態であり、且つ前記バブリング蒸気25の流量が最大流量Fmに到達していると判断すると、前記第2調整バルブ64を閉制御し、前記バブリング蒸気25の流量を減少させる。上記処理により、前記第2乾燥分室47内の前記流動層29が常に流動化領域にある様前記バブリング蒸気25を供給することができ、前記流動層29を常に完全流動状態とすることができる。   For example, in the case of the second drying compartment 47, the control unit 78 calculates the layer pressure loss P2 of the second drying compartment 47 based on the pressure detected by the second pressure gauge 72, and the layer pressure loss P2 is calculated in advance. The set maximum layer pressure loss Pc in the second drying compartment 47 is compared. When the control unit 78 determines that P2 <Pc, that is, it is not a complete flow state, the control unit 78 opens the second adjustment valve 64 to increase the flow rate of the bubbling steam 25. Further, when the control unit 78 determines that P2 ≧ Pc, that is, a complete flow state and the flow rate of the bubbling steam 25 has reached the maximum flow rate Fm, the control unit 78 controls the second adjustment valve 64 to be closed, The flow rate of the bubbling steam 25 is decreased. By the above process, the bubbling vapor 25 can be supplied so that the fluidized bed 29 in the second drying compartment 47 is always in the fluidized region, and the fluidized bed 29 can be always in a completely fluidized state.

前記第1乾燥分室46、前記第3乾燥分室48〜前記第7乾燥分室52についても同様に、前記第1圧力計71、前記第3圧力計73〜前記第7圧力計77により検出された圧力を基に層圧損を演算し、該層圧損と予め設定された各乾燥分室毎の最大層圧損Pcとを比較し、比較結果を基に前記第1調整バルブ63、前記第3調整バルブ65〜前記第7調整バルブ69の開度が制御され、前記バブリング蒸気25及び前記冷却空気28の供給量が調整される。   Similarly, the pressures detected by the first pressure gauge 71 and the third pressure gauge 73 to the seventh pressure gauge 77 in the first dry compartment 46 and the third dry compartment 48 to the seventh dry compartment 52. The layer pressure loss is calculated on the basis of this, the layer pressure loss is compared with a preset maximum layer pressure loss Pc for each drying compartment, and the first adjustment valve 63 and the third adjustment valve 65-65 are compared based on the comparison result. The opening degree of the seventh adjustment valve 69 is controlled, and the supply amounts of the bubbling steam 25 and the cooling air 28 are adjusted.

この時、前記流動層29は、自重により下方に流動するので、前記第1乾燥分室46、前記第3乾燥分室48、前記第5乾燥分室50、前記第7乾燥分室52内の下降流に対する前記バブリング蒸気25と前記冷却空気28の供給量は、前記第2乾燥分室47、前記第4乾燥分室49、前記第6乾燥分室51内の上昇流に対する前記バブリング蒸気25と前記冷却空気28の供給量よりも少なくなる。又、意図的にP2<Pcとすることで、流動化を抑制し、下方流れを促進することも可能である。   At this time, since the fluidized bed 29 flows downward due to its own weight, the fluidized bed 29 flows with respect to the downward flow in the first dry compartment 46, the third dry compartment 48, the fifth dry compartment 50, and the seventh dry compartment 52. The supply amount of the bubbling steam 25 and the cooling air 28 is the supply amount of the bubbling steam 25 and the cooling air 28 with respect to the upward flow in the second drying compartment 47, the fourth drying compartment 49, and the sixth drying compartment 51. Less than. In addition, by intentionally setting P2 <Pc, it is possible to suppress fluidization and promote downward flow.

又、前記褐炭供給ライン16からの前記褐炭6の供給と並行して、前記過熱蒸気導入ライン32に過熱蒸気が導入され、該過熱蒸気が前記伝熱管31内を流通する。   In parallel with the supply of the lignite 6 from the lignite supply line 16, superheated steam is introduced into the superheated steam introduction line 32, and the superheated steam flows through the heat transfer pipe 31.

前記流動層29は、前記第1乾燥分室46内を下方に向って流動し、前記間隙43を潜抜けて前記第2乾燥分室47内へと流動する。この時、投入された前記褐炭6は、多量の水分を含有している為、前記褐炭6の自重により前記第1乾燥分室46内を降下する。下部の前記褐炭6は上部からの圧力で前記間隙43より前記第2乾燥分室47へと押出されて流動する。前記褐炭6は、前記第1乾燥分室46から前記第2乾燥分室47へと流動する過程で前記伝熱管31と接触し、該伝熱管31内を流通する過熱蒸気との熱交換により加熱され、乾燥され、更に前記バブリング蒸気25との熱交換により加熱され、乾燥される。   The fluidized bed 29 flows downward in the first drying compartment 46, passes through the gap 43, and flows into the second drying compartment 47. At this time, since the supplied lignite 6 contains a large amount of water, the lignite 6 descends in the first dry compartment 46 due to its own weight. The lower lignite 6 is extruded from the gap 43 to the second drying compartment 47 by the pressure from the upper part and flows. The lignite 6 is in contact with the heat transfer pipe 31 in the process of flowing from the first drying compartment 46 to the second drying compartment 47, and is heated by heat exchange with superheated steam flowing through the heat transfer pipe 31, It is dried and further heated by heat exchange with the bubbling steam 25 and dried.

尚、前記褐炭6が前記第1分割壁36を乗越えて前記第2乾燥分室47へと移動しない様に、前記流動層29の流動性に応じて前記間隙43の大きさが設定されている。又、前記第1分割壁36を乗越えて前記第2乾燥分室47へと移動しない様に、前記褐炭ホッパ17からの前記褐炭6の投入量が調整される。   The size of the gap 43 is set according to the fluidity of the fluidized bed 29 so that the lignite 6 does not move over the first partition wall 36 and move to the second drying compartment 47. Further, the amount of lignite 6 fed from the lignite hopper 17 is adjusted so as not to get over the first dividing wall 36 and move to the second drying compartment 47.

前記第2乾燥分室47へと流動した前記褐炭6は、前記第2乾燥分室47で反転して下方から上方に向って流動し、前記第2分割壁37を乗越えて前記第3乾燥分室48へと流動し、該第3乾燥分室48で反転して上方から下方に向って流動し、前記間隙44を潜抜けて前記第4乾燥分室49へと流動し、該第4乾燥分室49で反転して下方から上方に向って流動する。   The lignite 6 that has flowed into the second drying compartment 47 is reversed in the second drying compartment 47 and flows upward from below, and passes over the second dividing wall 37 to the third drying compartment 48. Flows in the third drying compartment 48 and flows downward from above, flows through the gap 44 and flows into the fourth drying compartment 49, and inverts in the fourth drying compartment 49. It flows from the bottom to the top.

この時、前記第1乾燥分室46での熱交換により、前記褐炭6が乾燥されて前記流動層29の流動性が増しており、更に前記第1乾燥分室46側からの圧力で前記褐炭6は逆流することなく円滑に前記第3乾燥分室48、前記第4乾燥分室49へと流動する。   At this time, the lignite 6 is dried by heat exchange in the first drying compartment 46 and the fluidity of the fluidized bed 29 is increased, and the lignite 6 is further pressurized by the pressure from the first drying compartment 46 side. It smoothly flows to the third drying compartment 48 and the fourth drying compartment 49 without backflow.

前記第2乾燥分室47〜前記第4乾燥分室49に於いても、前記褐炭6が上下に反転しながら流動する過程で、前記伝熱管31内を流通する過熱蒸気及び前記バブリング蒸気25により加熱され、乾燥される。   Also in the second drying compartment 47 to the fourth drying compartment 49, the lignite 6 is heated by the superheated steam flowing through the heat transfer pipe 31 and the bubbling steam 25 in the process of flowing while the lignite 6 is turned upside down. Dried.

前記第1乾燥分室46〜前記第4乾燥分室49で乾燥された前記乾燥褐炭7は、前記第4分割壁39を乗越えて前記冷却領域15の前記第5乾燥分室50へと流動する。該第5乾燥分室50へと流動した前記乾燥褐炭7は、前記第5乾燥分室50で反転して上方から下方へと流動し、前記間隙45を潜抜けて前記第6乾燥分室51へと流動する。又、前記乾燥褐炭7は前記第6乾燥分室51で反転して下方から上方へと流動し、前記第6分割壁41を乗越えて前記第7乾燥分室52へと流動し、前記褐炭排出ライン21より排出される。   The dry lignite 7 dried in the first dry compartment 46 to the fourth dry compartment 49 flows over the fourth dividing wall 39 and flows into the fifth dry compartment 50 in the cooling region 15. The dried lignite 7 that has flowed into the fifth drying compartment 50 is reversed in the fifth drying compartment 50 and flows downward from above, flows through the gap 45, and flows into the sixth drying compartment 51. To do. In addition, the dry lignite 7 is reversed in the sixth dry compartment 51 and flows upward from below, flows over the sixth dividing wall 41 and flows into the seventh dry compartment 52, and the lignite discharge line 21. More discharged.

前記乾燥褐炭7は、前記第5乾燥分室50〜前記第7乾燥分室52を反転しながら流動する過程で、前記冷却空気供給ノズル27より供給された前記冷却空気28により冷却される。又、前記褐炭6及び前記乾燥褐炭7が、前記第1乾燥分室46〜前記第7乾燥分室52を流動して乾燥、冷却される過程で生じた蒸気及び冷却空気は、前記排気ライン19を介して外部へと排気される。   The dry lignite 7 is cooled by the cooling air 28 supplied from the cooling air supply nozzle 27 in the process of flowing while inverting the fifth dry compartment 50 to the seventh dry compartment 52. Further, steam and cooling air generated in the process in which the lignite 6 and the dried lignite 7 flow through the first dry compartment 46 to the seventh dry compartment 52 and are cooled and dried are passed through the exhaust line 19. Exhausted to the outside.

前記伝熱管31内を流通する過熱蒸気は、該伝熱管31を流通する過程で前記流動層29の前記褐炭6との熱交換が行われる。該褐炭6との熱交換により過熱蒸気の凝縮潜熱が回収されて相変化し、凝縮水となり、前記排水管33を介して図示しない復水器等のコンデンサへと送られる。   The superheated steam flowing through the heat transfer tube 31 is exchanged with the brown coal 6 in the fluidized bed 29 in the process of flowing through the heat transfer tube 31. Through heat exchange with the lignite 6, the latent heat of condensation of the superheated steam is recovered and phase-changed to become condensed water, which is sent to a condenser such as a condenser (not shown) through the drain pipe 33.

又、前記乾燥室13より排出された冷却後の前記乾燥褐炭7は、前記バーナ3へと送られ、該バーナ3により前記乾燥褐炭7が燃焼される。   The cooled dry lignite 7 discharged from the drying chamber 13 is sent to the burner 3, and the dry lignite 7 is burned by the burner 3.

上述の様に、本実施例では、前記第1調整バルブ63〜前記第7調整バルブ69により、前記第1乾燥分室46〜前記第7乾燥分室52に供給する流動媒体の供給量を個別に調整することができ、自重により下方に流動する前記流動層29の下降流に対する前記流動媒体の供給量を、前記流動層29の上昇流に対する前記流動媒体の供給量よりも少なくしている。   As described above, in this embodiment, the supply amount of the fluid medium supplied to the first drying compartment 46 to the seventh drying compartment 52 is individually adjusted by the first adjustment valve 63 to the seventh adjustment valve 69. The supply amount of the fluid medium with respect to the downward flow of the fluidized bed 29 that flows downward due to its own weight is made smaller than the supply amount of the fluid medium with respect to the upward flow of the fluidized bed 29.

従って、前記流動層29中の前記褐炭6に対して必要以上の前記流動媒体が供給されることがないので、前記褐炭6の飛散を防止できると共に、前記流動媒体の供給量を低減し、該流動媒体を供給する為に要する動力の低減を図ることができる。   Therefore, since the fluid medium more than necessary is not supplied to the lignite 6 in the fluidized bed 29, it is possible to prevent the lignite 6 from being scattered and to reduce the supply amount of the fluid medium, The power required to supply the fluid medium can be reduced.

又、前記第1乾燥分室46〜前記第7乾燥分室52に対して、前記流動層29の流動性に合わせて前記流動媒体を供給することができるので、前記流動層29の流動性を向上させ、前記褐炭6の乾燥効率を向上させることができる。   Further, since the fluid medium can be supplied to the first dry compartment 46 to the seventh dry compartment 52 in accordance with the fluidity of the fluidized bed 29, the fluidity of the fluidized bed 29 is improved. The drying efficiency of the lignite 6 can be improved.

又、前記第1乾燥分室46〜前記第7乾燥分室52に前記第1圧力計71〜前記第7圧力計77を設け、各乾燥分室46〜52毎に最大層圧損Pcを予め設定し、前記第1圧力計71〜前記第7圧力計77の検出結果と各乾燥分室46〜52毎の前記最大層圧損Pcとの比較に基づき、前記流動媒体の供給量を変化させることができるので、前記褐炭6の供給量や粒径分布に変更があった場合でも容易に対応することができ、前記流動層29が常に完全流動状態となる様流動性に合わせて最適な流量の前記流動媒体を供給することができる。   Further, the first pressure gauge 71 to the seventh pressure gauge 77 are provided in the first drying compartment 46 to the seventh drying compartment 52, and the maximum layer pressure loss Pc is preset for each of the drying compartments 46 to 52, Based on the comparison of the detection results of the first pressure gauge 71 to the seventh pressure gauge 77 and the maximum bed pressure loss Pc for each of the drying compartments 46 to 52, the supply amount of the fluid medium can be changed. Even if there is a change in the supply amount or particle size distribution of the brown coal 6, the fluidized medium having an optimum flow rate according to the fluidity can be supplied so that the fluidized bed 29 is always in a completely fluid state. can do.

又、本実施例では、前記第4分割壁39により、前記乾燥室13を前記褐炭6を加熱し乾燥させる前記加熱領域14と、前記乾燥褐炭7を冷却する前記冷却領域15とに区画し、前記乾燥室13で前記褐炭6の乾燥と前記乾燥褐炭7の冷却の両方を行える様になっているので、前記乾燥褐炭7を冷却する冷却機構を別途設ける必要がなく、装置構成が簡易となり、製造コストを低減させることができる。   Further, in this embodiment, the fourth dividing wall 39 divides the drying chamber 13 into the heating region 14 for heating and drying the lignite 6 and the cooling region 15 for cooling the dry lignite 7, Since both the drying of the lignite 6 and the cooling of the dried lignite 7 can be performed in the drying chamber 13, there is no need to separately provide a cooling mechanism for cooling the dried lignite 7, and the apparatus configuration is simplified. Manufacturing cost can be reduced.

又、前記第1分割壁36、前記第2分割壁37、前記第3分割壁38、前記第4分割壁39の4枚の分割壁により、前記加熱領域14を前記第1乾燥分室46、前記第2乾燥分室47、前記第3乾燥分室48、前記第4乾燥分室49の4つの乾燥分室に分割し、前記褐炭6が各乾燥分室46〜49間を上下に反転しながら流動する様各分割壁36〜39を配置している。従って、前記褐炭6が流動する距離が長くなり、前記伝熱管31及び前記バブリング蒸気25により加熱される時間を長くすることができ、前記乾燥装置12を小型化できると共に、大量の前記褐炭6を効率よく乾燥させることができる。   Further, the heating region 14 is divided into the first drying compartment 46, the four partition walls, the first partition wall 36, the second partition wall 37, the third partition wall 38, and the fourth partition wall 39. Divided into four dry compartments, a second dry compartment 47, a third dry compartment 48, and a fourth dry compartment 49, and each division so that the lignite 6 flows while turning upside down between the dry compartments 46-49. Walls 36 to 39 are arranged. Therefore, the distance over which the lignite 6 flows is increased, the time for heating by the heat transfer tube 31 and the bubbling steam 25 can be increased, the drying device 12 can be downsized, and a large amount of the lignite 6 can be obtained. It can be dried efficiently.

又、前記第4分割壁39、前記第5分割壁40、前記第6分割壁41の3枚の分割壁により、前記冷却領域15を前記第5乾燥分室50、前記第6乾燥分室51、前記第7乾燥分室52の3つの乾燥分室に分割し、前記乾燥褐炭7が各乾燥分室50〜52間を上下に反転しながら流動する様各分割壁39〜41を配置している。従って、前記乾燥褐炭7が流動する距離、即ち前記冷却空気28により冷却される時間を長くすることができ、大量の前記乾燥褐炭7を効率よく冷却することができる。   In addition, the cooling region 15 is divided into the fifth drying compartment 50, the sixth drying compartment 51, the three partition walls of the fourth partition wall 39, the fifth partition wall 40, and the sixth partition wall 41. Each of the dividing walls 39 to 41 is arranged so that the dry lignite 7 is divided into three drying compartments of the seventh drying compartment 52 and flows while the dry lignite 7 is turned upside down between the respective drying compartments 50 to 52. Therefore, the distance that the dried lignite 7 flows, that is, the time for cooling by the cooling air 28 can be increased, and a large amount of the dried lignite 7 can be efficiently cooled.

又、前記第1分割壁36、前記第3分割壁38、前記第5分割壁40の上端を前記流動層29の表面よりも上方に突出させ、前記第1分割壁36、前記第3分割壁38、前記第5分割壁40の下端と前記底板22との間にそれぞれ前記間隙43〜45を形成すると共に、前記第2分割壁37、前記第4分割壁39、前記第6分割壁41が前記底板22から上方に突出する様に設けられ、該底板22との間に間隙が形成されない様になっているので、前記褐炭6及び前記乾燥褐炭7を確実に上方に反転させることができ、前記褐炭6及び前記乾燥褐炭7が前記乾燥室13内に滞留するのを防止することができる。   The upper ends of the first dividing wall 36, the third dividing wall 38, and the fifth dividing wall 40 are protruded upward from the surface of the fluidized bed 29, so that the first dividing wall 36 and the third dividing wall are projected. 38, the gaps 43 to 45 are formed between the lower end of the fifth dividing wall 40 and the bottom plate 22, respectively, and the second dividing wall 37, the fourth dividing wall 39, and the sixth dividing wall 41 are provided. Since it is provided so as to protrude upward from the bottom plate 22 and no gap is formed between the bottom plate 22, the lignite 6 and the dry lignite 7 can be reliably reversed upward, It is possible to prevent the lignite 6 and the dried lignite 7 from staying in the drying chamber 13.

更に、前記第4分割壁39が、前記加熱領域14と前記冷却領域15の境界に設けられているので、前記バブリング蒸気25が前記冷却領域15に混入するのを抑止できると共に、前記冷却空気28が前記加熱領域14に混入するのを抑止でき、前記褐炭6の加熱効率及び前記乾燥褐炭7の冷却効率が低下するのを防止することができる。   Furthermore, since the fourth dividing wall 39 is provided at the boundary between the heating region 14 and the cooling region 15, the bubbling vapor 25 can be prevented from entering the cooling region 15, and the cooling air 28 can be prevented. Can be prevented from being mixed into the heating region 14, and the heating efficiency of the lignite 6 and the cooling efficiency of the dry lignite 7 can be prevented from decreasing.

尚、本実施例の前記乾燥装置12に於いては、6枚の分割壁36〜41により7つの乾燥分室46〜52を形成しているが、前記分割壁の枚数及び該分割壁により形成される乾燥分室の数は、前記褐炭6の乾燥状態等により適宜選択されるものであり、例えば4枚以下の分割壁により5つ以下の乾燥分室を形成してもよいし、7枚以上の分割壁により8つ以上の乾燥分室を形成してもよい。   In the drying apparatus 12 of the present embodiment, seven drying compartments 46 to 52 are formed by six dividing walls 36 to 41, but the number of the dividing walls and the dividing walls are used. The number of dry compartments to be selected is appropriately selected according to the dry state of the lignite 6 and the like, for example, 5 or less dry compartments may be formed by 4 or less divided walls, or 7 or more divided compartments. Eight or more dry compartments may be formed by walls.

又、本実施例に於いては、前記乾燥装置12により前記褐炭6を乾燥させる場合について説明しているが、バイオマス等他の含水物を乾燥させる場合にも、本実施例の前記乾燥装置12が適用可能であるのは言う迄もない。   Further, in this embodiment, the case where the lignite 6 is dried by the drying device 12 is described, but the drying device 12 of the present embodiment is also used when other hydrated materials such as biomass are dried. Needless to say, is applicable.

1 ボイラ装置 5 含水物乾燥システム
6 褐炭 12 乾燥装置
13 乾燥室 14 加熱領域
15 冷却領域 23 加熱側ウインドボックス
24 蒸気供給ノズル 25 バブリング蒸気
26 冷却側ウインドボックス 27 冷却空気供給ノズル
28 冷却空気 29 流動層
31 伝熱管 36〜41 分割壁
46〜52 乾燥分室 55〜61 ウインドボックス
63〜69 調整バルブ 71〜77 圧力計
78 制御部
DESCRIPTION OF SYMBOLS 1 Boiler apparatus 5 Water content drying system 6 Brown coal 12 Drying apparatus 13 Drying room 14 Heating area 15 Cooling area 23 Heating side wind box 24 Steam supply nozzle 25 Bubbling steam 26 Cooling side wind box 27 Cooling air supply nozzle 28 Cooling air 29 Fluidized bed 31 Heat transfer tube 36-41 Partition wall 46-52 Drying compartment 55-61 Wind box 63-69 Adjusting valve 71-77 Pressure gauge 78 Control unit

Claims (3)

含水物が乾燥される乾燥室と、該乾燥室の一端部より前記含水物を供給する含水物供給手段と、前記乾燥室の他端部より乾燥された前記含水物を排出する排出手段と、前記乾燥室に設けられた加熱手段と、加熱により生じた蒸気を前記乾燥室の他端部より排気する排気手段と、前記乾燥室に流動媒体を噴出し前記含水物を液状化させる流動媒体供給手段と、前記乾燥室を複数の乾燥分室に分割し、前記含水物が各乾燥分室間を上下に反転しながら流動する様隣接する乾燥分室を上部又は下部で連通させる複数の分割壁と、各乾燥分室内の圧力を検出する圧力計と、制御部とを具備し、前記流動媒体供給手段は前記乾燥室の底部に形成されたウインドボックスを有し、該ウインドボックスは各乾燥分室に対応して分割され、分割された前記ウインドボックス毎に前記流動媒体が供給され、前記制御部は前記含水物が下方に流動する前記乾燥分室に対する前記流動媒体の供給量を、前記含水物が上方に流動する前記乾燥分室に対する前記流動媒体の供給量よりも少なくすると共に、前記圧力計の検出結果に基づき各乾燥分室毎の層圧損を演算し、該層圧損と予め設定された最大層圧損との比較に基づき各ウインドボックスへの前記流動媒体の供給量を制御することを特徴とする乾燥装置。 A drying chamber in which the hydrated material is dried, a hydrated material supplying means for supplying the hydrated material from one end of the drying chamber, and a discharging means for discharging the hydrated material dried from the other end of the drying chamber; Heating means provided in the drying chamber, exhaust means for exhausting steam generated by heating from the other end of the drying chamber, and fluid medium supply for ejecting a fluid medium into the drying chamber and liquefying the hydrated material Means, a plurality of dividing walls that divide the drying chamber into a plurality of drying compartments, and the adjacent drying compartments communicate with each other at the upper part or the lower part so that the hydrated material flows while reversing up and down between the respective drying compartments ; A pressure gauge for detecting the pressure in the drying compartment, and a controller; and the fluid medium supply means has a wind box formed at the bottom of the drying compartment, and the wind box corresponds to each drying compartment. And the divided window The fluid medium is supplied to each de box, the supply amount of the fluidized medium and the control unit with respect to the dry compartment where the hydrous material flows downward, the fluid medium relative to the dry compartment where the hydrous material flows upwardly Less than the supply amount of the pressure, calculate the layer pressure loss for each drying compartment based on the detection result of the pressure gauge, and based on the comparison between the layer pressure loss and a preset maximum layer pressure loss, A drying apparatus for controlling a supply amount of a fluid medium . 前記制御部は、前記層圧損が前記最大層圧損よりも小さいと判断すると、前記流動媒体の供給量を増大させ、前記層圧損が前記最大層圧損よりも大きいと判断すると、前記流動媒体の供給量を減少させる請求項1の乾燥装置。   When the control unit determines that the laminar pressure loss is smaller than the maximum laminar pressure loss, the control unit increases the supply amount of the fluid medium, and when it determines that the laminar pressure loss is greater than the maximum laminar pressure loss, the supply of the fluid medium 2. The drying device of claim 1 which reduces the amount. 前記乾燥室は上流側の複数の乾燥分室により加熱領域が形成され、下流側の複数の乾燥分室により冷却領域が形成され、前記加熱領域の各乾燥分室に対応する各ウインドボックス毎に蒸気が供給され、前記冷却領域の各乾燥分室に対応する各ウインドボックス毎に冷却空気が供給される請求項1又は請求項2の乾燥装置。   In the drying chamber, a heating region is formed by a plurality of drying compartments on the upstream side, a cooling region is formed by a plurality of drying compartments on the downstream side, and steam is supplied to each wind box corresponding to each drying compartment in the heating region. The drying apparatus according to claim 1 or 2, wherein cooling air is supplied to each wind box corresponding to each drying compartment in the cooling region.
JP2014168084A 2014-08-21 2014-08-21 Drying equipment Active JP6459297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014168084A JP6459297B2 (en) 2014-08-21 2014-08-21 Drying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014168084A JP6459297B2 (en) 2014-08-21 2014-08-21 Drying equipment

Publications (2)

Publication Number Publication Date
JP2016044845A JP2016044845A (en) 2016-04-04
JP6459297B2 true JP6459297B2 (en) 2019-01-30

Family

ID=55635579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014168084A Active JP6459297B2 (en) 2014-08-21 2014-08-21 Drying equipment

Country Status (1)

Country Link
JP (1) JP6459297B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106643088B (en) * 2016-10-09 2019-04-19 芜湖瑞德机械科技有限公司 General-purpose type drying device and its operating method suitable for architectural shape raw material
JP6633138B2 (en) * 2018-06-14 2020-01-22 三菱日立パワーシステムズ株式会社 Hydrothermal treatment apparatus, biomass fuel production plant, hydrothermal treatment method, and biomass fuel production method
CN108893815B (en) * 2018-08-07 2019-12-13 义乌市一线天线业有限公司 production method of polyester sewing thread

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248785U (en) * 1988-09-27 1990-04-04
JP2937932B2 (en) * 1997-03-05 1999-08-23 川崎重工業株式会社 Fluidized bed drying / cooling method and apparatus
WO2011043541A2 (en) * 2009-10-08 2011-04-14 한국에너지기술연구원 Fluidized bed drying apparatus
JP2014112020A (en) * 2012-12-05 2014-06-19 Mitsubishi Heavy Ind Ltd Fluid bed drier

Also Published As

Publication number Publication date
JP2016044845A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
JP5905463B2 (en) Drying conveyor device and thermal power generation system including the same
CN102419079B (en) Solid particle material composite grading and drying device and method
JP6459297B2 (en) Drying equipment
CN102177406A (en) Closed loop drying system and method
CN104006631A (en) Microwave multistage fluidized bed drying device and drying method thereof
JP6592304B2 (en) Biomass utilization method and apparatus
JP6152984B2 (en) Method for improving the operation of a circulating mass reactor and a circulating mass reactor
Violidakis et al. Critical review of current industrial scale lignite drying technologies
JP6287559B2 (en) Drying equipment
JP6127720B2 (en) Drying equipment
JP2016080217A (en) Woody fuel dryer and woody fuel drying method using the same
JP6613746B2 (en) Drying system
JP6357969B2 (en) Drying apparatus and method for drying water-containing material
JP2014141619A (en) Manufacturing apparatus of modified coal and fire power power-generating plant with the same
CN112138776B (en) Grinding device, boiler system and method for operating grinding device
JP6394209B2 (en) Drying equipment
JP5498434B2 (en) Biomass fired boiler
JP2015021642A (en) Drying equipment
JP6136338B2 (en) Boiler equipment
Bullinger et al. Coal drying improves performance and reduces emissions
AU2015246271A1 (en) Method and device for drying wet, carbon-containing particulate fuel
JP6135856B2 (en) Fluidized bed dryer
JP6338430B2 (en) Swirling fluidized bed furnace
JP5713801B2 (en) Fluidized bed dryer
JP2014181839A (en) Dryer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181217

R151 Written notification of patent or utility model registration

Ref document number: 6459297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151