JP6438157B2 - Lithographic in-situ high speed and high spatial resolution wavefront aberration measuring device and measuring method - Google Patents

Lithographic in-situ high speed and high spatial resolution wavefront aberration measuring device and measuring method Download PDF

Info

Publication number
JP6438157B2
JP6438157B2 JP2017556235A JP2017556235A JP6438157B2 JP 6438157 B2 JP6438157 B2 JP 6438157B2 JP 2017556235 A JP2017556235 A JP 2017556235A JP 2017556235 A JP2017556235 A JP 2017556235A JP 6438157 B2 JP6438157 B2 JP 6438157B2
Authority
JP
Japan
Prior art keywords
diffraction grating
wavefront aberration
sensor
projection lens
spatial resolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017556235A
Other languages
Japanese (ja)
Other versions
JP2018521337A (en
Inventor
向朝 王
向朝 王
鋒 唐
鋒 唐
杰 李
杰 李
飛斌 呉
飛斌 呉
国先 張
国先 張
福東 郭
福東 郭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Publication of JP2018521337A publication Critical patent/JP2018521337A/en
Application granted granted Critical
Publication of JP6438157B2 publication Critical patent/JP6438157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明はリソグラフィ、特に一種のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス、及びその測定方法に関する。   The present invention relates to an in-situ high-speed, high spatial resolution wavefront aberration measuring device for lithography, and more particularly to a method for measuring the same.

リソグラフィは、大規模な集積回路製造において、中核な設備の一つである。投影レンズはリソグラフィの中で最も重要なサブシステムの一つである。投影レンズの波面収差はリソグラフィが生成した画像の品質に影響を与え、画像のコントラストが低下させられ、プロセスウィンドウが縮小させられることに繋がる。リソグラフィの技術がドライ式から浸液方式に進んだことに伴い、リソグラフィ投影レンズにおける波面収差の許容範囲が狭くなり、波面収差の測定精度も厳しく求められるようになった。   Lithography is one of the core facilities in large scale integrated circuit manufacturing. Projection lenses are one of the most important subsystems in lithography. The wavefront aberration of the projection lens affects the quality of the image produced by lithography, leading to a reduction in image contrast and a reduction in the process window. As the lithography technology has progressed from the dry method to the immersion method, the allowable range of wavefront aberration in the lithographic projection lens has been narrowed, and the measurement accuracy of the wavefront aberration has been strictly demanded.

Van De Kerkhofたちが、リソグラフィのマスクステージとウェハーステージにシャーリング干渉原理に基づいた波面収差測定デバイスの設置を提案したことにより、リソグラフィのin-situ投影レンズ波面収差の測定が実現された(非特許文献1)。このin-situ測定デバイスの空間分解能力は、測定デバイスのピクセル数による。リソグラフィのウェハーステージに設置されている波面収差の干渉図測定デバイスが稼働する際に発熱し、リソグラフィのウェハーステージに大きな熱負荷をもたらす。リソグラフィのウェハーステージの長期的な安定性に影響を及ぼす。測定デバイスのピクセル数が多いほど、測定空間の解像度が高くなる一方、より多く発熱することが非常に矛盾することになる。それと同時に測定デバイスのピクセル数が多ければ、測定時間と計算時間も長くなることが測定速度に影響をもたらす。リソグラフィのノードが1Xnm以下になると、リソグラフィ投影レンズは波面収差を64項のZernike係数まで測定する必要がある。即ち、より高い測定空間の解像度が求められる。熱収差を制御するために、より速い測定速度も求められる。   Van De Kerkhof and colleagues proposed the installation of wavefront aberration measurement devices based on the principle of shearing interference on the lithography mask stage and wafer stage, thereby realizing in-situ projection lens wavefront aberration measurement in lithography (non-patented). Reference 1). The spatial resolution capability of this in-situ measurement device depends on the number of pixels of the measurement device. When the wavefront aberration interferometric measurement device installed on the lithography wafer stage is operated, heat is generated, which causes a large heat load on the lithography wafer stage. It affects the long-term stability of the lithography wafer stage. The greater the number of pixels in the measurement device, the higher the resolution of the measurement space, while the more heat is generated is very contradictory. At the same time, if the number of pixels of the measurement device is large, the measurement time and calculation time are also long, which affects the measurement speed. When the lithography node is 1X nm or less, the lithographic projection lens needs to measure the wavefront aberration up to the 64th term Zernike coefficient. That is, a higher measurement space resolution is required. Faster measurement speeds are also required to control thermal aberrations.

干渉図測定デバイスのピクセルの個数を抑えて、高空間解像度で波面収差を測定することが可能であれば、ウェハーステージの熱負荷制御と測定速度の向上とが実現され、ハイエンドリソグラフィのin-situ波面収差測定の要件を満たす。   If it is possible to measure wavefront aberration with high spatial resolution by reducing the number of pixels in the interferometric measurement device, it is possible to control the thermal load of the wafer stage and increase the measurement speed, and to achieve in-situ high-end lithography. Meet the requirements of wavefront aberration measurement.

Van De Kerkhof,M.,et al.,Full optical column characterization of DUV lithographic projection tools.Optical Microlithography Xvii,Pts 1-3,2004.5377:p.1960-1970Van De Kerkhof, M., et al., Full optical column characterization of DUV lithographic projection tools.Optical Microlithography Xvii, Pts 1-3,2004.5377: p.1960-1970

本発明は、リソグラフィのin-situ高速高空間解像度の波面収差測定デバイスおよび測定方法を提供することによって、リソグラフィ投影レンズのin-situ波面収差の測定を実現させると同時に測定の解像度を向上させることが目的である。   The present invention provides an in-situ high-speed high spatial resolution wavefront aberration measurement device and measurement method for lithography, thereby achieving in-situ wavefront aberration measurement of a lithographic projection lens and at the same time improving measurement resolution. Is the purpose.

本発明の技術的な解決案は下記である。
一種のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイスは、レーザビームを生成する光源、照明システム、物面回折格子パネル、物面回折格子パネルを支持する精密な位置決めの機能を持つマスクステージ、リソグラフィの投影レンズ、波面収差センサ、波面収差センサを支持するXYZ三次元スキャン機能及び精密な位置決めの機能を持つウェハーステージ、及びコンピュータより構成される。
The technical solution of the present invention is as follows.
A kind of in-situ high-speed, high spatial resolution wavefront aberration measurement device for lithography, a light source that generates laser beams, an illumination system, an object diffraction grating panel, and a mask with precise positioning function that supports the object diffraction grating panel It comprises a stage, a projection lens for lithography, a wavefront aberration sensor, a wafer stage having an XYZ three-dimensional scanning function and a precise positioning function for supporting the wavefront aberration sensor, and a computer.

前述のパーツの接続関係は下記となる。
ビームの伝搬方向に沿って順番に、照明システム、物面回折格子パネル、リソグラフィの投影レンズ、及び波面収差センサが備えられる。
The connection relationship of the aforementioned parts is as follows.
In order along the beam propagation direction, an illumination system, an object surface diffraction grating panel, a lithographic projection lens, and a wavefront aberration sensor are provided.

前述の物面回折格子パネルがマスクステージに、前述の波面収差センサがウェハーステージに配置され、前述の波面収差センサがコンピュータに接続される。   The object surface diffraction grating panel is disposed on the mask stage, the wavefront aberration sensor is disposed on the wafer stage, and the wavefront aberration sensor is connected to the computer.

前述の物面回折格子パネルは周期がPで、デューティサイクルが50%である二つの物面回折格子より構成される。二つの物面回折格子はY方向に沿う第一回折格子とX方向に沿う第二回折格子である。 In the above-mentioned object plane diffraction grating panels period P 0, composed of two object plane diffraction grating duty cycle is 50%. The two object surface diffraction gratings are a first diffraction grating along the Y direction and a second diffraction grating along the X direction.

前述の波面収差センサは、ビームの伝搬方向に沿って順番に配置される像面回折格子、穴配列と二次元光電センサである。   The wavefront aberration sensor described above is an image plane diffraction grating, a hole array, and a two-dimensional photoelectric sensor arranged in order along the beam propagation direction.

前述の第一回折格子と第二回折格子の周期Pと像面回折格子の周期Pとは下記の関係を満たす。
=P・M
上記のMはリソグラフィの投影レンズが生成した画像の倍率である。
The period P 0 of the first diffraction grating and the second diffraction grating and the period P i of the image plane diffraction grating satisfy the following relationship.
P 0 = P i · M
M is the magnification of the image generated by the lithographic projection lens.

前述の第一回折格子と第二回折格子とは位相回折格子である、或いは振幅回折格子である、或いは振幅と位相とを組み合わせたその他の種類の一次元回折格子である。   The first diffraction grating and the second diffraction grating are phase diffraction gratings, amplitude diffraction gratings, or other types of one-dimensional diffraction gratings in which amplitude and phase are combined.

前述の像面回折格子はデューティサイクルが50%であるチェス盤回折格子などのような二次元の透過型回折格子である。   The aforementioned image plane diffraction grating is a two-dimensional transmission diffraction grating such as a chessboard diffraction grating having a duty cycle of 50%.

前述の像面回折格子は位相回折格子である、或いは振幅回折格子である、或いは振幅と位相とを組み合わせたその他の回折格子である。   The image plane diffraction grating described above is a phase diffraction grating, an amplitude diffraction grating, or another diffraction grating that combines amplitude and phase.

前述の穴配列は周期が光電二次元センサのピクセルの周期と同じであり、穴の位置を光電二次元センサのピクセルの位置に一つずつ合わせる。穴の直径は光電二次元センサのピクセルの大きさの1/Nになり、Nはサンプリングした周波数である。   The above-described hole arrangement has the same period as the pixel period of the photoelectric two-dimensional sensor, and the hole positions are aligned with the pixel positions of the photoelectric two-dimensional sensor one by one. The diameter of the hole is 1 / N of the size of the pixel of the photoelectric two-dimensional sensor, where N is the sampled frequency.

マスクステージは、物面回折格子パネルをリソグラフィの投影レンズの物面光路に移動させる移動台である。   The mask stage is a moving table that moves the object surface diffraction grating panel to the object surface optical path of the projection lens for lithography.

前述のウェハーステージは、波面収差センサをリソグラフィの投影レンズの像面光路にあわせて、波面収差センサをドライブさせる移動台である。   The wafer stage described above is a moving table that drives the wavefront aberration sensor by aligning the wavefront aberration sensor with the image plane optical path of the projection lens for lithography.

前述の二次元光電センサは、カメラ、CCD、CMOS画像センサ、PEEM、或いは二次元光電測定デバイスが配列される。その測定面は、像面回折格子が生成した穴配列がサンプリングしたシャーリング干渉縞を受け取る。   In the two-dimensional photoelectric sensor, a camera, a CCD, a CMOS image sensor, a PEEM, or a two-dimensional photoelectric measurement device is arranged. The measurement surface receives the shearing interference fringes sampled by the hole array generated by the image plane diffraction grating.

前述のコンピュータは、波面収差の測定過程をコントロールして、測定したデータを保存して、その干渉図に対して処理と解析を行う。   The aforementioned computer controls the wavefront aberration measurement process, stores the measured data, and processes and analyzes the interference diagram.

一種のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイスにおけるin-situ波面収差の測定方法であり、下記のステップとなる。
(1)物面回折格子パネルをマスクステージに配置する。マスクステージを調整し、第一回折格子をリソグラフィの投影レンズの必要な測定位置に合わせる。
(2)光源が発した光は照明システムに調整され、均一に物面回折格子パネルの第一回折格子に照射する。
(3)波面収差センサをウェハーステージに配置する。像面回折格子がリソグラフィの投影レンズの像面に入るようにウェハーステージを調整する。
(4)従来の技術を使用してウェハーステージを調整し、像面回折格子をリソグラフィの投影レンズによって生成された第一回折格子の画像に合わせる。
(5)従来の位相シフト技術を使用し、X方向に沿ってウェハーステージを移動させ、複数に測定を行う。移動する度に波面収差センサがシャーリング干渉図を採集する。採集した干渉図に基づき、位相データを計算する。
(6)従来の技術を使用し、マスクステージを調整し、物面回折格子パネルの第二回折格子を第一回折格子の位置に移動させ、第二回折格子がリソグラフィの投影レンズによって生成された画像を像面回折格子に合わせる。
(7)従来の位相シフト技術を使用し、Y方向に沿ってウェハーステージを移動させ、複数の測定を行う。移動する度に波面収差センサがシャーリング干渉図を採集する。採集した干渉図に基づき、位相データを計算する。
(8)ステップ(5)と(7)より得られた位相データを従来の技術によって解析すると、リソグラフィの投影レンズのそれぞれX方向とY方向での差分波面のΔWとΔWを得る。得られた差分波面を従来の波面の再構成技術によって再構成し、リソグラフィの投影レンズの波面収差を得る。
This is a method for measuring in-situ wavefront aberration in an in-situ high-speed, high spatial resolution wavefront aberration measuring device of lithography, and includes the following steps.
(1) An object surface diffraction grating panel is arranged on a mask stage. The mask stage is adjusted and the first diffraction grating is aligned with the required measurement position of the lithographic projection lens.
(2) The light emitted from the light source is adjusted by the illumination system and uniformly irradiated to the first diffraction grating of the object surface diffraction grating panel.
(3) The wavefront aberration sensor is disposed on the wafer stage. The wafer stage is adjusted so that the image plane diffraction grating enters the image plane of the lithography projection lens.
(4) Adjust the wafer stage using conventional techniques to match the image plane diffraction grating to the image of the first diffraction grating generated by the lithographic projection lens.
(5) Using a conventional phase shift technique, the wafer stage is moved along the X direction, and a plurality of measurements are performed. Each time it moves, the wavefront aberration sensor collects a shearing interferogram. Based on the collected interference diagram, phase data is calculated.
(6) Using conventional techniques, adjusting the mask stage, moving the second diffraction grating of the object surface diffraction grating panel to the position of the first diffraction grating, and the second diffraction grating was generated by the lithographic projection lens Match the image to the image plane diffraction grating.
(7) Using a conventional phase shift technique, the wafer stage is moved along the Y direction to perform a plurality of measurements. Each time it moves, the wavefront aberration sensor collects a shearing interferogram. Based on the collected interference diagram, phase data is calculated.
(8) When the phase data obtained in steps (5) and (7) is analyzed by the conventional technique, ΔW x and ΔW y of the difference wavefronts in the X direction and Y direction of the projection lens of lithography are obtained. The obtained differential wavefront is reconstructed by a conventional wavefront reconstruction technique to obtain the wavefront aberration of the lithographic projection lens.

本発明は従来の技術と比べ、下記のメリットがある。
(1)穴配列を使用し、リソグラフィの波面収差を採集することによって、in-situの測定空間解像度がN倍に高まった。
(2)画像のピクセルが低い光電二次元センサで波面収差を測定することによって、作動中に発せられる熱が削減され、測定速度が速まった。
The present invention has the following merits as compared with the prior art.
(1) The in-situ measurement spatial resolution was increased N 2 times by using a hole array and collecting wavefront aberrations of lithography.
(2) By measuring wavefront aberration with a photoelectric two-dimensional sensor with low image pixels, the heat generated during operation is reduced and the measurement speed is increased.

穴配列なしの測定誤差である。This is a measurement error without hole arrangement. 穴配列ありの測定誤差である。This is a measurement error with hole arrangement. 本発明のリソグラフィin-situ高速高空間解像度の波面収差測定デバイスの構造図である。FIG. 2 is a structural diagram of a wavefront aberration measuring device with high-speed and high spatial resolution of lithography in-situ of the present invention. 本発明に関する物面回折格子パネルである。1 is an object surface diffraction grating panel according to the present invention. 本発明の波面収差センサの構造図である。It is a structural diagram of the wavefront aberration sensor of the present invention.

シミュレーションの結果と実施例及び添付図によって、更に本発明を説明するが、下記の実施例は本発明の保護範囲を制限するものではない。   The present invention will be further explained with simulation results, examples, and attached drawings. However, the following examples do not limit the protection scope of the present invention.

図3は本発明が採用した測定の構造図である。レーザービームを生成した光源1、照明システム2、物面回折格子パネル3、物面回折格子パネル3を支持する精密な位置決めの機能を持つマスクステージ4、物面回折格子をウェハーに画像をイメージングするリソグラフィの投影レンズ5、波面収差センサ6、波面収差センサ6を支持するXYZ三次元スキャン機能と精密な位置決めの機能を持つウェハーステージ7及び、波面収差センサ6に接続するデータを処理するコンピュータ8、光源1の波長が193nmで、物面回折格子が一次元振幅回折格子で、周期が41.52μm、リソグラフィの投影レンズ5の開口数が0.93である。リソグラフィの投影レンズ5の画像の拡大倍率が1/4である。像面回折格子がチェス盤二次元回折格子で、その周期が10.38μmである。波面収差センサ6はビームの伝搬方向に沿って設置される画像表面回折格子601、穴配列602、及び二次元光電センサ603を備える。二次元光電センサ603は、CMOSカメラを採用し、画像のピクセルのサイズが7.4μm×7.4μmで、個数が640×480である。穴配列602の穴の直径は1.85μm、サンプリングの周波数がN=4、穴配列602の周期が光電二次元センサ603の画像ピクセルの周期と同じで7.4μmである。   FIG. 3 is a structural diagram of the measurement employed by the present invention. A light source 1 that has generated a laser beam, an illumination system 2, an object surface diffraction grating panel 3, a mask stage 4 having a precise positioning function that supports the object surface diffraction grating panel 3, and an image of the object surface diffraction grating are imaged on a wafer. A lithography projection lens 5, a wavefront aberration sensor 6, a wafer stage 7 having an XYZ three-dimensional scanning function and a precise positioning function for supporting the wavefront aberration sensor 6, and a computer 8 for processing data connected to the wavefront aberration sensor 6. The wavelength of the light source 1 is 193 nm, the object surface diffraction grating is a one-dimensional amplitude diffraction grating, the period is 41.52 μm, and the numerical aperture of the lithography projection lens 5 is 0.93. The magnification of the image of the projection lens 5 for lithography is 1/4. The image plane diffraction grating is a two-dimensional chessboard diffraction grating whose period is 10.38 μm. The wavefront aberration sensor 6 includes an image surface diffraction grating 601, a hole array 602, and a two-dimensional photoelectric sensor 603 installed along the beam propagation direction. The two-dimensional photoelectric sensor 603 employs a CMOS camera and has an image pixel size of 7.4 μm × 7.4 μm and a number of 640 × 480. The diameter of the holes in the hole array 602 is 1.85 μm, the sampling frequency is N = 4, and the period of the hole array 602 is 7.4 μm, which is the same as the period of the image pixels of the photoelectric two-dimensional sensor 603.

前述の物面回折格子パネル3は二つのそれぞれの周期がPで、デューティサイクルが50%である物面回折格子から構成される。二つの物面回折格子はそれぞれ回折格子がY方向に沿う第一回折格子301とX方向に沿う第二回折格子302である。 Object plane diffraction grating panel 3 described above in each period of the two is P 0, consists those surface diffraction grating duty cycle is 50%. The two object-surface diffraction gratings are a first diffraction grating 301 along the Y direction and a second diffraction grating 302 along the X direction, respectively.

前述の第一回折格子301と第二回折格子302とは位相回折格子であるか、或いは振幅回折格子であるか、あるいは振幅と位相を組み合わせたその他の一次元回折格子である。   The first diffraction grating 301 and the second diffraction grating 302 are phase diffraction gratings, amplitude diffraction gratings, or other one-dimensional diffraction gratings that combine amplitude and phase.

波面収差センサ6は、ビームの伝搬方向に沿って順番に設置される像面回折格子601、穴配列602、及び二次元光電センサ603を備える。   The wavefront aberration sensor 6 includes an image plane diffraction grating 601, a hole array 602, and a two-dimensional photoelectric sensor 603 that are installed in order along the beam propagation direction.

前述の物面回折格子の周期Pと像面回折格子601の周期Pは下記の関係を満たす。
=P・M
上記のMはリソグラフィの投影レンズ5の倍率である。
The period P 0 of the object plane diffraction grating and the period P i of the image plane diffraction grating 601 satisfy the following relationship.
P 0 = P i · M
M is the magnification of the projection lens 5 for lithography.

像面回折格子601は、デューティサイクルが50%であるチェス盤の回折格子などのような二次元の透過型回折格子である。   The image plane diffraction grating 601 is a two-dimensional transmission diffraction grating such as a chessboard diffraction grating having a duty cycle of 50%.

像面回折格子601は、位相回折格子、或いは振幅回折格子、或いは位相と振幅を組み合わせたその他の回折格子である。   The image plane diffraction grating 601 is a phase diffraction grating, an amplitude diffraction grating, or another diffraction grating in which phase and amplitude are combined.

穴配列602の周期は、光電二次元センサ603のピクセルの周期と同等である。穴の位置は、光電二次元センサのピクセルの位置に一つずつ合わせる。   The period of the hole array 602 is equivalent to the period of the pixels of the photoelectric two-dimensional sensor 603. The positions of the holes are adjusted one by one to the positions of the pixels of the photoelectric two-dimensional sensor.

前述のマスクステージ4は、物面回折格子パネル3をリソグラフィ投影レンズ5に移動させる物面光路の移動台である。   The aforementioned mask stage 4 is a moving table of the object surface optical path for moving the object surface diffraction grating panel 3 to the lithography projection lens 5.

前述のウェハーステージ7は前述の波面収差センサ6をリソグラフィの投影レンズ5に搬入する像面光路で、波面収差センサ6をドライブする移動台である。   The wafer stage 7 described above is a moving table that drives the wavefront aberration sensor 6 by an image surface optical path for carrying the wavefront aberration sensor 6 into the projection lens 5 of lithography.

前述の二次元光電センサ603は、カメラ、CCD、CMOS画像センサ、PEEM、或いは二次元光電測定器の配列である。その測定面は、像面回折格子601が生成した穴配列602がサンプリングしたシャーリング干渉縞を受け取る。   The aforementioned two-dimensional photoelectric sensor 603 is an array of a camera, a CCD, a CMOS image sensor, a PEEM, or a two-dimensional photoelectric measuring device. The measurement plane receives the shearing interference fringes sampled by the hole array 602 generated by the image plane diffraction grating 601.

前述のコンピュータ8は、波面収差測定の過程をコントロールし、測定したデータを保存する。そして干渉図に対して処理し分析を行う。   The aforementioned computer 8 controls the process of wavefront aberration measurement and stores the measured data. Then, the interference diagram is processed and analyzed.

一種のリソグラフィin-situ高速高空間解像度波面収差測定デバイスにおける波面収差in-situ測定方法は、次のステップを含む。
(1)物面回折格子パネル3をマスクステージ4に配置し、マスクステージ4を調整し、第一回折格子301をリソグラフィ投影レンズ5の必要な測定の視野位置に合わせる。
(2)光源1が発した光が照明システム2に調整され、均一に物面回折格子パネル3の第一回折格子301を照射する。
(3)波面収差センサ6をウェハーステージ7に配置し、ウェハーステージ7を調整し、像面回折格子601をリソグラフィ投影レンズ5の像面に合わせる。
(4)従来の技術を使用しウェハーステージ7を調整し、像面回折格子601と第一回折格子301がリソグラフィ投影レンズ5によって生成した画像を合わせる。
(5)従来の位相シフト技術を使用し、X方向に沿ってウェハーステージ7を移動し、複数の測定を行う。移動する度に、波面収差センサがシャーリング干渉図を採集する。採集した干渉図を計算し、位相情報を得る。
(6)従来の技術を使用しマスクステージ4を調整し、物面回折格子パネル3の第二回折格子302を第一回折格子位置にドライブさせる。第二回折格子のリソグラフィ投影レンズ5によって生成した画像を像面回折格子601に合わせる。
(7)従来の位相シフト技術を使用し、Y方向に沿って、ウェハーステージ7をドライブし、複数測定を行う。ドライブする度に波面収差センサ6がシャーリング干渉図を採集する。採集した干渉図を計算し、位相データを得る。
(8)ステップ(5)と(7)で得た位相データを従来の技術で分析し、リソグラフィ投影レンズ5がX方向とY方向での差分波面ΔWとΔWを得る。従来の波面再構成技術を使用し、差分波面を再構成し、リソグラフィ投影レンズ5の波面収差を得る。
A wavefront aberration in-situ measurement method in a kind of lithography in-situ high-speed high spatial resolution wavefront aberration measurement device includes the following steps.
(1) The object surface diffraction grating panel 3 is placed on the mask stage 4, the mask stage 4 is adjusted, and the first diffraction grating 301 is adjusted to the required field of view of the lithography projection lens 5.
(2) The light emitted from the light source 1 is adjusted by the illumination system 2 and uniformly irradiates the first diffraction grating 301 of the object surface diffraction grating panel 3.
(3) The wavefront aberration sensor 6 is disposed on the wafer stage 7, the wafer stage 7 is adjusted, and the image plane diffraction grating 601 is adjusted to the image plane of the lithography projection lens 5.
(4) The wafer stage 7 is adjusted using conventional technology, and the image plane diffraction grating 601 and the first diffraction grating 301 match the images generated by the lithography projection lens 5.
(5) Using a conventional phase shift technique, the wafer stage 7 is moved along the X direction to perform a plurality of measurements. Each time it moves, the wavefront aberration sensor collects a shearing interferogram. The collected interference diagram is calculated to obtain phase information.
(6) The mask stage 4 is adjusted using a conventional technique, and the second diffraction grating 302 of the object surface diffraction grating panel 3 is driven to the first diffraction grating position. The image generated by the lithographic projection lens 5 of the second diffraction grating is matched to the image plane diffraction grating 601.
(7) Using a conventional phase shift technique, the wafer stage 7 is driven along the Y direction to perform a plurality of measurements. The wavefront aberration sensor 6 collects a shearing interference diagram every time it is driven. The collected interference diagram is calculated to obtain phase data.
(8) The phase data obtained in steps (5) and (7) is analyzed by conventional techniques, and the lithographic projection lens 5 obtains differential wavefronts ΔW x and ΔW y in the X and Y directions. Using a conventional wavefront reconstruction technique, the differential wavefront is reconstructed and the wavefront aberration of the lithographic projection lens 5 is obtained.

本発明は穴配列を使用し波面収差を採集することによって、in-situ空間測定解像率をN倍に高めた。256ピクセル×256ピクセルの波面収差(二乗平均平方根の値0.0995λ)を使用し、シミュレーションを行う。差分波面のうちに4個ごとにピクセルの平均値をとり、穴配列を使用しない場合と同様である。得られた64ピクセル×64ピクセルの差分波面を従来の技術で再構成する。図1が示すように、平均平行値が0.0141λである。それに対して、波面収差の差分波面を採集し、測定器に穴配列を加えたと同様にピクセル4個ごとに1個のピクセルをとって、得られた64ピクセル×64ピクセルの差分波面を従来の技術で再構成した。図2が示すように、平均平方根の値の誤差は0.0001λである。 In the present invention, the in-situ space measurement resolution was increased N 2 times by collecting the wavefront aberration using the hole arrangement. The simulation is performed using a wavefront aberration of 256 pixels × 256 pixels (root mean square value 0.0995λ). This is the same as the case where the average value of the pixels is taken for every four differential wavefronts and the hole arrangement is not used. The resulting 64 pixel × 64 pixel differential wavefront is reconstructed using conventional techniques. As shown in FIG. 1, the average parallel value is 0.0141λ. On the other hand, the difference wavefront of the wavefront aberration is collected, one pixel is taken for every four pixels in the same manner as the hole array is added to the measuring instrument, and the obtained difference wavefront of 64 × 64 pixels is obtained by the conventional method. Reconstructed with technology. As shown in FIG. 2, the error of the mean square root value is 0.0001λ.

実験で検証された通り、本発明のデバイス及び測定方法は、投影レンズの波面収差の解像度を16倍上げた。或いは同様の条件で、ピクセルの個数が1/16に下げられた。即ち、測定速度が16倍上昇した。   As verified experimentally, the device and measurement method of the present invention increased the resolution of the wavefront aberration of the projection lens by 16 times. Alternatively, the number of pixels was reduced to 1/16 under the same conditions. That is, the measurement speed increased 16 times.

(付記)
(付記1)
一種のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイスであって、
レーザビームを生成する光源(1)、照明システム(2)、物面回折格子パネル(3)、物面回折格子パネル(3)を支持する精密な位置決めの機能を持つマスクステージ(4)、リソグラフィ投影レンズ(5)、波面収差センサ(6)、波面収差センサ(6)を支持するXYZ三次元スキャン機能と精密な位置決めの機能を持つウェハーステージ(7)、及びコンピュータ(8)を備え、
ビームの伝搬方向に沿って、前記照明システム(2)、物面回折格子パネル(3)、リソグラフィ投影レンズ(5)、及び波面収差センサ(6)が順次に配置され、
前記物面回折格子パネル(3)がマスクステージ(4)の上に、前記波面収差センサ(6)がウェハーステージ(7)の上に備えられ、前記波面収差センサ(6)がコンピュータ(8)と接続され、
前記物面回折格子パネル(3)は、周期がPで、デューティサイクルが50%である二つの物面回折格子から構成され、Y方向に沿う第一回折格子(301)とX方向に沿う第二回折格子(302)であり、
前記波面収差センサ(6)は、ビームの伝搬方向に沿って配置された像面回折格子(601)、穴配列(602)及び二次元光電センサ(603)から構成され、
前記第一回折格子(301)と第二回折格子(302)の周期Pと前記像面回折格子(601)の周期Pとは下記の関係となり、
=P・M
上記のMはリソグラフィの投影レンズが生成した画像の倍率である、
ことを特徴とするリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス。
(Appendix)
(Appendix 1)
A kind of in-situ high-speed high spatial resolution wavefront aberration measurement device for lithography,
A light source (1) for generating a laser beam, an illumination system (2), an object surface diffraction grating panel (3), a mask stage (4) having a precise positioning function for supporting the object surface diffraction grating panel (3), lithography A projection lens (5), a wavefront aberration sensor (6), a wafer stage (7) having a XYZ three-dimensional scanning function and a precise positioning function for supporting the wavefront aberration sensor (6), and a computer (8);
Along the beam propagation direction, the illumination system (2), the object surface diffraction grating panel (3), the lithographic projection lens (5), and the wavefront aberration sensor (6) are sequentially disposed,
The object surface diffraction grating panel (3) is provided on a mask stage (4), the wavefront aberration sensor (6) is provided on a wafer stage (7), and the wavefront aberration sensor (6) is provided on a computer (8). Connected with
The object-surface diffraction grating panel (3) is composed of two object-surface diffraction gratings having a period of P 0 and a duty cycle of 50%, and includes a first diffraction grating (301) along the Y direction and an X direction. A second diffraction grating (302),
The wavefront aberration sensor (6) includes an image plane diffraction grating (601), a hole array (602), and a two-dimensional photoelectric sensor (603) arranged along the beam propagation direction.
The period P 0 of the first diffraction grating (301) and the second diffraction grating (302) and the period P i of the image plane diffraction grating (601) have the following relationship:
P 0 = P i · M
M above is the magnification of the image produced by the lithographic projection lens,
In-situ high-speed, high spatial resolution wavefront aberration measuring device for lithography.

(付記2)
前記第一回折格子(301)と第二回折格子(302)が位相回折格子と振幅回折格子、或いは振幅と位相とを合わせた一次元の回折格子である、
ことを特徴とする付記1に記載のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス。
(Appendix 2)
The first diffraction grating (301) and the second diffraction grating (302) are a phase diffraction grating and an amplitude diffraction grating, or a one-dimensional diffraction grating in which amplitude and phase are combined.
The in-situ high-speed, high spatial resolution wavefront aberration measuring device for lithography according to Supplementary Note 1, wherein

(付記3)
前記像面回折格子(601)は、デューティサイクルが50%である位相回折格子、振幅回折格子、振幅と位相とを合わせた回折格子、或いはチェス盤回折格子などのような二次元の透過型回折格子である、
ことを特徴とする付記1に記載のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス。
(Appendix 3)
The image plane diffraction grating (601) is a two-dimensional transmission diffraction such as a phase diffraction grating having a duty cycle of 50%, an amplitude diffraction grating, a diffraction grating having a combined amplitude and phase, or a chessboard diffraction grating. Is a lattice,
The in-situ high-speed, high spatial resolution wavefront aberration measuring device for lithography according to Supplementary Note 1, wherein

(付記4)
前記穴配列(602)の周期が光電二次元センサ(603)の画像周期と同じであり、穴の位置が光電二次元センサのピクセルの位置と一対一の関係であり、穴の直径が光電二次元センサ(603)のピクセルの大きさの1/Nであり、Nはサンプリングの周波数である、
ことを特徴とする付記1に記載のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス。
(Appendix 4)
The period of the hole array (602) is the same as the image period of the photoelectric two-dimensional sensor (603), the position of the hole has a one-to-one relationship with the position of the pixel of the photoelectric two-dimensional sensor, and the diameter of the hole is photoelectric. 1 / N of the pixel size of the dimensional sensor (603), where N is the sampling frequency,
The in-situ high-speed, high spatial resolution wavefront aberration measuring device for lithography according to Supplementary Note 1, wherein

(付記5)
前記マスクステージ(4)が、物面回折格子パネル(3)をリソグラフィの投影レンズ(5)の物面光路に移動させる移動台である、
ことを特徴とする付記1に記載のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス。
(Appendix 5)
The mask stage (4) is a moving table that moves the object diffraction grating panel (3) to the object optical path of the lithography projection lens (5).
The in-situ high-speed, high spatial resolution wavefront aberration measuring device for lithography according to Supplementary Note 1, wherein

(付記6)
前記ウェハーステージ(7)が、前記波面収差センサ(6)をリソグラフィ投影レンズ(5)の像面光路に移動させると同時に、波面収差センサ(6)を連動させる移動台である、
ことを特徴とする付記1に記載のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス。
(Appendix 6)
The wafer stage (7) is a moving table for moving the wavefront aberration sensor (6) to the image plane optical path of the lithographic projection lens (5) and at the same time interlocking the wavefront aberration sensor (6).
The in-situ high-speed, high spatial resolution wavefront aberration measuring device for lithography according to Supplementary Note 1, wherein

(付記7)
前記コンピュータ(8)が波面収差測定の過程をコントロールし、測定したデータを保存し、干渉図のデータを処理し分析を行う、
ことを特徴とする付記1に記載のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス。
(Appendix 7)
The computer (8) controls the process of wavefront aberration measurement, stores the measured data, processes and analyzes the data of the interference diagram,
The in-situ high-speed, high spatial resolution wavefront aberration measuring device for lithography according to Supplementary Note 1, wherein

(付記8)
前記二次元光電センサ(603)がカメラ、CCD、CMOS画像センサ、PEEM、或いは二次元光電測定デバイスから配列され、
測定面は、像面回折格子(601)が生成した穴配列(602)がサンプリングして得たシャーリング干渉縞を受け取る、
ことを特徴とする付記1に記載のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス。
(Appendix 8)
The two-dimensional photoelectric sensor (603) is arranged from a camera, CCD, CMOS image sensor, PEEM, or two-dimensional photoelectric measurement device;
The measurement surface receives shearing interference fringes obtained by sampling the hole array (602) generated by the image plane diffraction grating (601).
The in-situ high-speed, high spatial resolution wavefront aberration measuring device for lithography according to Supplementary Note 1, wherein

(付記9)
付記1乃至8のいずれか1つに記載のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイスにおける測定方法であって、
該測定方法は、下記の
(a)物面回折格子パネル(3)をマスクステージ(4)の上に配置され、マスクステージ(4)を調整し、第一回折格子(301)をリソグラフィ投影レンズ(5)の測定に必要な視野位置に合わせる、
(b)光源(1)が発したレーザビームが照明システム(2)により調整され、均一に物面回折格子(3)の第一回折格子(301)を照射する、
(c)波面収差センサ(6)がウェハーステージ(7)の上に設置され、ウェハーステージ(7)を調整し、像面回折格子(601)をリソグラフィ投影レンズ(5)の像面に合わせる、
(d)従来の技術を使用しウェハーステージ(7)を調整し、像面回折格子(601)を第一回折格子(301)がリソグラフィ投影レンズ(5)で生成した画像に合わせる、
(e)従来の位相シフト技術を使用し、X方向にウェハーステージ(7)を移動させ、複数的に測定を行い、移動する度に波面収差センサ(6)がシャーリング干渉図をサンプリングし、サンプリングした干渉図から位相データを計算する、
(f)マスクステージ(4)を調整し、物面回折格子パネル(3)の第二回折格子(302)を第一回折格子(301)の位置にドライブさせ、第二回折格子(302)がリソグラフィ投影レンズ(5)で生成した画像を像面回折格子(601)に合わせる、
(g)従来の位相シフト技術を使用し、Y方向に沿ってウェハーステージ(7)を移動させ複数的に測定を行い、移動する度に波面収差センサ(6)がシャーリング干渉図をサンプリングし、サンプリングした干渉図より位相データを計算する、
(h)ステップ(e)と(g)から得られたそれぞれの位相データを分析することによって、リソグラフィ投影レンズ(5)がX方向とY方向での差分波面ΔWxとΔWyを得て、従来の波面再構成アルゴリズムに基づき差分波面を再構成して、リソグラフィ投影レンズ(5)の波面収差を得る、
ステップを備える、
ことを特徴とする測定方法。
(Appendix 9)
An in-situ high-speed high spatial resolution wavefront aberration measuring device for lithography according to any one of appendices 1 to 8,
The measurement method is as follows: (a) an object surface diffraction grating panel (3) is placed on a mask stage (4), the mask stage (4) is adjusted, and the first diffraction grating (301) is placed in a lithographic projection lens. Match the field of view necessary for the measurement in (5),
(B) The laser beam emitted from the light source (1) is adjusted by the illumination system (2) and uniformly irradiates the first diffraction grating (301) of the object surface diffraction grating (3).
(C) A wavefront aberration sensor (6) is installed on the wafer stage (7), adjusts the wafer stage (7), and aligns the image plane diffraction grating (601) with the image plane of the lithographic projection lens (5).
(D) adjusting the wafer stage (7) using conventional techniques and aligning the image plane diffraction grating (601) with the image produced by the first projection grating (301) with the lithographic projection lens (5);
(E) Using a conventional phase shift technique, the wafer stage (7) is moved in the X direction, a plurality of measurements are performed, and each time the wavefront aberration sensor (6) moves, the shearing interference diagram is sampled and sampled. Calculating phase data from the interferogram
(F) The mask stage (4) is adjusted, the second diffraction grating (302) of the object surface diffraction grating panel (3) is driven to the position of the first diffraction grating (301), and the second diffraction grating (302) Aligning the image produced by the lithographic projection lens (5) with the image plane diffraction grating (601),
(G) Using a conventional phase shift technique, move the wafer stage (7) along the Y direction to make a plurality of measurements, and each time the wavefront aberration sensor (6) samples the shearing interferogram, Calculate phase data from the sampled interferogram,
(H) By analyzing the respective phase data obtained from steps (e) and (g), the lithographic projection lens (5) obtains the differential wavefronts ΔWx and ΔWy in the X and Y directions, Reconstructing the differential wavefront based on the wavefront reconstruction algorithm to obtain the wavefront aberration of the lithographic projection lens (5),
Comprising steps,
A measuring method characterized by the above.

Claims (9)

一種のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイスであって、
レーザビームを生成する光源(1)、照明システム(2)、物面回折格子パネル(3)、物面回折格子パネル(3)を支持する精密な位置決めの機能を持つマスクステージ(4)、リソグラフィ投影レンズ(5)、波面収差センサ(6)、波面収差センサ(6)を支持するXYZ三次元スキャン機能と精密な位置決めの機能を持つウェハーステージ(7)、及びコンピュータ(8)を備え、
ビームの伝搬方向に沿って、前記照明システム(2)、物面回折格子パネル(3)、リソグラフィ投影レンズ(5)、及び波面収差センサ(6)が順次に配置され、
前記物面回折格子パネル(3)がマスクステージ(4)の上に、前記波面収差センサ(6)がウェハーステージ(7)の上に備えられ、前記波面収差センサ(6)がコンピュータ(8)と接続され、
前記物面回折格子パネル(3)は、周期がPで、デューティサイクルが50%である二つの物面回折格子から構成され、Y方向に沿う第一回折格子(301)とX方向に沿う第二回折格子(302)であり、
前記波面収差センサ(6)は、ビームの伝搬方向に沿って配置された像面回折格子(601)、穴配列(602)及び二次元光電センサ(603)から構成され、
前記第一回折格子(301)と第二回折格子(302)の周期Pと前記像面回折格子(601)の周期Pとは下記の関係となり、
=P・M
上記のMはリソグラフィの投影レンズが生成した画像の倍率である、
ことを特徴とするリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス。
A kind of in-situ high-speed high spatial resolution wavefront aberration measurement device for lithography,
A light source (1) for generating a laser beam, an illumination system (2), an object surface diffraction grating panel (3), a mask stage (4) having a precise positioning function for supporting the object surface diffraction grating panel (3), lithography A projection lens (5), a wavefront aberration sensor (6), a wafer stage (7) having a XYZ three-dimensional scanning function and a precise positioning function for supporting the wavefront aberration sensor (6), and a computer (8);
Along the beam propagation direction, the illumination system (2), the object surface diffraction grating panel (3), the lithographic projection lens (5), and the wavefront aberration sensor (6) are sequentially disposed,
The object surface diffraction grating panel (3) is provided on a mask stage (4), the wavefront aberration sensor (6) is provided on a wafer stage (7), and the wavefront aberration sensor (6) is provided on a computer (8). Connected with
The object-surface diffraction grating panel (3) is composed of two object-surface diffraction gratings having a period of P 0 and a duty cycle of 50%, and includes a first diffraction grating (301) along the Y direction and an X direction. A second diffraction grating (302),
The wavefront aberration sensor (6) includes an image plane diffraction grating (601), a hole array (602), and a two-dimensional photoelectric sensor (603) arranged along the beam propagation direction.
The period P 0 of the first diffraction grating (301) and the second diffraction grating (302) and the period P i of the image plane diffraction grating (601) have the following relationship:
P 0 = P i · M
M above is the magnification of the image produced by the lithographic projection lens,
In-situ high-speed, high spatial resolution wavefront aberration measuring device for lithography.
前記第一回折格子(301)と第二回折格子(302)が位相回折格子と振幅回折格子、或いは振幅と位相とを合わせた一次元の回折格子である、
ことを特徴とする請求項1に記載のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス。
The first diffraction grating (301) and the second diffraction grating (302) are a phase diffraction grating and an amplitude diffraction grating, or a one-dimensional diffraction grating in which amplitude and phase are combined.
The in-situ high-speed and high spatial resolution wavefront aberration measuring device for lithography according to claim 1.
前記像面回折格子(601)は、デューティサイクルが50%である位相回折格子、振幅回折格子、振幅と位相とを合わせた回折格子、或いはチェス盤回折格子などのような二次元の透過型回折格子である、
ことを特徴とする請求項1に記載のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス。
The image plane diffraction grating (601) is a two-dimensional transmission diffraction such as a phase diffraction grating having a duty cycle of 50%, an amplitude diffraction grating, a diffraction grating having a combined amplitude and phase, or a chessboard diffraction grating. Is a lattice,
The in-situ high-speed and high spatial resolution wavefront aberration measuring device for lithography according to claim 1.
前記穴配列(602)の周期が光電二次元センサ(603)の画像周期と同じであり、穴の位置が光電二次元センサのピクセルの位置と一対一の関係であり、穴の直径が光電二次元センサ(603)のピクセルの大きさの1/Nであり、Nはサンプリングの周波数である、
ことを特徴とする請求項1に記載のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス。
The period of the hole array (602) is the same as the image period of the photoelectric two-dimensional sensor (603), the position of the hole has a one-to-one relationship with the position of the pixel of the photoelectric two-dimensional sensor, and the diameter of the hole is photoelectric. 1 / N of the pixel size of the dimensional sensor (603), where N is the sampling frequency,
The in-situ high-speed and high spatial resolution wavefront aberration measuring device for lithography according to claim 1.
前記マスクステージ(4)が、物面回折格子パネル(3)をリソグラフィの投影レンズ(5)の物面光路に移動させる移動台である、
ことを特徴とする請求項1に記載のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス。
The mask stage (4) is a moving table that moves the object diffraction grating panel (3) to the object optical path of the lithography projection lens (5).
The in-situ high-speed and high spatial resolution wavefront aberration measuring device for lithography according to claim 1.
前記ウェハーステージ(7)が、前記波面収差センサ(6)をリソグラフィ投影レンズ(5)の像面光路に移動させると同時に、波面収差センサ(6)を連動させる移動台である、
ことを特徴とする請求項1に記載のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス。
The wafer stage (7) is a moving table for moving the wavefront aberration sensor (6) to the image plane optical path of the lithographic projection lens (5) and at the same time interlocking the wavefront aberration sensor (6).
The in-situ high-speed and high spatial resolution wavefront aberration measuring device for lithography according to claim 1.
前記コンピュータ(8)が波面収差測定の過程をコントロールし、測定したデータを保存し、干渉図のデータを処理し分析を行う、
ことを特徴とする請求項1に記載のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス。
The computer (8) controls the process of wavefront aberration measurement, stores the measured data, processes and analyzes the data of the interference diagram,
The in-situ high-speed and high spatial resolution wavefront aberration measuring device for lithography according to claim 1.
前記二次元光電センサ(603)がカメラ、CCD、CMOS画像センサ、PEEM、或いは二次元光電測定デバイスから配列され、
測定面は、像面回折格子(601)が生成した穴配列(602)がサンプリングして得たシャーリング干渉縞を受け取る、
ことを特徴とする請求項1に記載のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイス。
The two-dimensional photoelectric sensor (603) is arranged from a camera, CCD, CMOS image sensor, PEEM, or two-dimensional photoelectric measurement device;
The measurement surface receives shearing interference fringes obtained by sampling the hole array (602) generated by the image plane diffraction grating (601).
The in-situ high-speed and high spatial resolution wavefront aberration measuring device for lithography according to claim 1.
請求項1乃至8のいずれか1項に記載のリソグラフィのin-situ高速高空間解像度の波面収差測定デバイスにおける測定方法であって、
該測定方法は、下記の
(a)物面回折格子パネル(3)をマスクステージ(4)の上に配置され、マスクステージ(4)を調整し、第一回折格子(301)をリソグラフィ投影レンズ(5)の測定に必要な視野位置に合わせる、
(b)光源(1)が発したレーザビームが照明システム(2)により調整され、均一に物面回折格子パネル(3)の第一回折格子(301)を照射する、
(c)波面収差センサ(6)がウェハーステージ(7)の上に設置され、ウェハーステージ(7)を調整し、像面回折格子(601)をリソグラフィ投影レンズ(5)の像面に合わせる、
(d)ウェハーステージ(7)を調整し、像面回折格子(601)を第一回折格子(301)がリソグラフィ投影レンズ(5)で生成した画像に合わせる、
(e)位相シフト技術を使用し、X方向にウェハーステージ(7)を移動させ、複数的に測定を行い、移動する度に波面収差センサ(6)がシャーリング干渉図をサンプリングし、サンプリングした干渉図から位相データを計算する、
(f)マスクステージ(4)を調整し、物面回折格子パネル(3)の第二回折格子(302)を第一回折格子(301)の位置にドライブさせ、第二回折格子(302)がリソグラフィ投影レンズ(5)で生成した画像を像面回折格子(601)に合わせる、
(g)位相シフト技術を使用し、Y方向に沿ってウェハーステージ(7)を移動させ複数的に測定を行い、移動する度に波面収差センサ(6)がシャーリング干渉図をサンプリングし、サンプリングした干渉図より位相データを計算する、
(h)ステップ(e)と(g)から得られたそれぞれの位相データを分析することによって、リソグラフィ投影レンズ(5)がX方向とY方向での差分波面ΔWxとΔWyを得て、波面再構成アルゴリズムに基づき差分波面を再構成して、リソグラフィ投影レンズ(5)の波面収差を得る、
ステップを備える、
ことを特徴とする測定方法。
A measurement method in an in-situ high-speed, high spatial resolution wavefront aberration measuring device for lithography according to any one of claims 1 to 8,
The measurement method is as follows: (a) an object surface diffraction grating panel (3) is placed on a mask stage (4), the mask stage (4) is adjusted, and the first diffraction grating (301) is placed in a lithographic projection lens. Match the field of view necessary for the measurement in (5),
(B) The laser beam emitted from the light source (1) is adjusted by the illumination system (2) and uniformly irradiates the first diffraction grating (301) of the object surface diffraction grating panel (3).
(C) A wavefront aberration sensor (6) is installed on the wafer stage (7), adjusts the wafer stage (7), and aligns the image plane diffraction grating (601) with the image plane of the lithographic projection lens (5).
(D) c Adjust E hard stage (7), fit the image first diffraction grating image plane diffraction grating (601) (301) was formed in a lithographic projection lens (5),
(E) of phase shifting techniques using, by moving the wafer stage (7) in the X direction, a plurality to perform the measurement, wavefront aberration sensor (6) samples the shearing interferogram every move was sampled Calculating phase data from the interferogram,
(F) The mask stage (4) is adjusted, the second diffraction grating (302) of the object surface diffraction grating panel (3) is driven to the position of the first diffraction grating (301), and the second diffraction grating (302) Aligning the image produced by the lithographic projection lens (5) with the image plane diffraction grating (601),
(G) using the position phase shifting techniques, make several measured by moving the wafer stage (7) along the Y-direction wavefront aberration sensor (6) samples the shearing interferogram every move, sampling Calculate phase data from the interferogram
(H) By analyzing step (e) and the respective phase data obtained from (g), the lithographic projection lens (5) to obtain a difference wavefront ΔWx and ΔWy in the X and Y directions, the wavefront Reconstructing the differential wavefront based on the reconstruction algorithm to obtain the wavefront aberration of the lithographic projection lens (5),
Comprising steps,
A measuring method characterized by the above.
JP2017556235A 2015-05-12 2015-08-27 Lithographic in-situ high speed and high spatial resolution wavefront aberration measuring device and measuring method Active JP6438157B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510237227.2A CN106324995B (en) 2015-05-12 2015-05-12 Litho machine quick high spatial resolution wave aberration detection means in situ and method
CN201510237227.2 2015-05-12
PCT/CN2015/088310 WO2016179926A1 (en) 2015-05-12 2015-08-27 Fast and high-spatial resolution wave aberration in-situ detection apparatus and method for lithography machine

Publications (2)

Publication Number Publication Date
JP2018521337A JP2018521337A (en) 2018-08-02
JP6438157B2 true JP6438157B2 (en) 2018-12-12

Family

ID=57248379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017556235A Active JP6438157B2 (en) 2015-05-12 2015-08-27 Lithographic in-situ high speed and high spatial resolution wavefront aberration measuring device and measuring method

Country Status (3)

Country Link
JP (1) JP6438157B2 (en)
CN (1) CN106324995B (en)
WO (1) WO2016179926A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107121893B (en) * 2017-06-12 2018-05-25 中国科学院上海光学精密机械研究所 Photoetching projection objective lens thermal aberration on-line prediction method
DE102017213107A1 (en) 2017-07-31 2019-01-31 Carl Zeiss Smt Gmbh Method and apparatus for determining wavefront aberrations caused by a projection lens
DE102017216679A1 (en) 2017-09-20 2019-03-21 Carl Zeiss Smt Gmbh Microlithographic projection exposure machine
CN108827188B (en) * 2018-09-07 2020-04-14 苏州瑞霏光电科技有限公司 Three-dimensional profile microscopic measurement method based on maskless photoetching machine
CN112130417A (en) * 2019-06-24 2020-12-25 上海微电子装备(集团)股份有限公司 Wave aberration measuring method, wave aberration measuring device and photoetching machine
CN113049224B (en) * 2019-12-27 2023-02-17 上海微电子装备(集团)股份有限公司 Measuring device and measuring method thereof
CN112034688B (en) * 2020-08-11 2021-07-27 中国科学院上海光学精密机械研究所 Projection objective wave aberration detection device and detection method for improving detection speed

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086501A (en) * 2001-07-04 2003-03-20 Nikon Corp Wave aberration measuring device
CN1212508C (en) * 2002-06-24 2005-07-27 中国科学院光电技术研究所 Dynamic field and measuring accuracy adjustable Hartmann wavefront sensor
DE60332697D1 (en) * 2002-09-30 2010-07-08 Asml Netherlands Bv Lithographic apparatus and a measuring device
US6867846B2 (en) * 2003-01-15 2005-03-15 Asml Holding Nv Tailored reflecting diffractor for EUV lithographic system aberration measurement
JP2006032692A (en) * 2004-07-16 2006-02-02 Nikon Corp Wavefront aberration measurement device, optical projection system, manufacturing method thereof, projection aligner, manufacturing method thereof, micro device and manufacturing method thereof
JP2006038561A (en) * 2004-07-26 2006-02-09 Canon Inc Method and apparatus for measurement of transmission wave front, surface figure, and high frequency component of homogeneity, and projection lens and exposure equipment assembled and adjusted using them
US20060039603A1 (en) * 2004-08-19 2006-02-23 Koutsky Keith A Automated color classification for biological samples
JP4904708B2 (en) * 2005-03-23 2012-03-28 株式会社ニコン Wavefront aberration measuring method, wavefront aberration measuring apparatus, projection exposure apparatus, and projection optical system manufacturing method
JP4830400B2 (en) * 2005-08-19 2011-12-07 株式会社ニコン Wavefront aberration measuring apparatus, projection exposure apparatus, and projection optical system manufacturing method
JP2010206033A (en) * 2009-03-04 2010-09-16 Nikon Corp Wavefront aberration measuring device, method of calibrating the same, and aligner
JP2011142279A (en) * 2010-01-08 2011-07-21 Nikon Corp Wavefront aberration measuring method and device, exposing method, and aligner
CN102608870B (en) * 2011-01-21 2014-08-20 上海微电子装备有限公司 Wave aberration measuring device and method
JP2012253163A (en) * 2011-06-02 2012-12-20 Nikon Corp Wavefront aberration measuring device, wavefront aberration measuring method, exposure device, exposure method, and manufacturing method of device
JP2013004547A (en) * 2011-06-11 2013-01-07 Nikon Corp Wavefront aberration measuring device, calibration method of the same, exposure device, exposure method, and device manufacturing method
CN102681358B (en) * 2012-04-18 2014-02-12 中国科学院上海光学精密机械研究所 Space image detection-based projection objective wave aberration in-situ measurement method
CN102681365B (en) * 2012-05-18 2015-01-14 中国科学院光电技术研究所 Projection objective lens wave aberration detection device and method
CN104421835A (en) * 2013-09-04 2015-03-18 海洋王(东莞)照明科技有限公司 Lens and lamp using same
CN203870394U (en) * 2014-05-26 2014-10-08 张河生 UV LED light source structure and parallel-light exposure machine

Also Published As

Publication number Publication date
JP2018521337A (en) 2018-08-02
WO2016179926A1 (en) 2016-11-17
CN106324995A (en) 2017-01-11
CN106324995B (en) 2017-12-12

Similar Documents

Publication Publication Date Title
JP6438157B2 (en) Lithographic in-situ high speed and high spatial resolution wavefront aberration measuring device and measuring method
US10670974B2 (en) Metrology apparatus for and a method of determining a characteristic of interest of a structure on a substrate
TWI635272B (en) Computer program product, method and inspection apparatus for measuring properties of a target structure, and method of manufacturing devices
KR102217258B1 (en) HHG source, inspection device, and method of performing measurements
KR101954290B1 (en) Inspection method and apparatus, substrates for use therein and device manufacturing method
US8736849B2 (en) Method and apparatus for measuring structures on photolithography masks
TW201716883A (en) Inspection method, lithographic apparatus, mask and substrate
JP2009204621A (en) Method and apparatus for angular-resolved spectroscopic lithography characterization
JP6605736B2 (en) Wavefront analysis device and method
JP5816297B2 (en) Method for characterizing structures on a mask and device for performing the method
CN105359039A (en) Inspection apparatus and method, lithographic apparatus, lithographic processing cell and device manufacturing method
TWI759779B (en) Metrology method and associated metrology and lithographic apparatuses
KR20160021223A (en) Scanning coherent diffractive imaging method and system for actinic mask inspection for euv lithography
TW201719301A (en) Lithographic apparatus alignment sensor and method
WO2016201788A1 (en) In-situ multichannel imaging quality detection device and method for mask aligner
US20180299787A1 (en) Method for measuring an angularly resolved intensity distribution and projection exposure apparatus
JP6853843B2 (en) A method of determining the focus position of a lithography mask and a measurement system for performing such a method.
JP2006332561A (en) Best focus position measuring method and astigmatic difference measuring method
JP2019179237A5 (en)
JP2019159317A (en) Method for determining structure-independent contribution of lithography mask to fluctuation of linewidth
Sohn et al. 193 nm angle-resolved scatterfield microscope for semiconductor metrology
KR102323045B1 (en) Method for determining properties of structures, inspection apparatus and device manufacturing method
US11454887B2 (en) Metrology apparatus and method for determining a characteristic of one or more structures on a substrate
JP2003307465A (en) Apparatus and method for inspection of grating
WO2023169818A1 (en) Method for correcting measurements in the manufacture of integrated circuits and associated apparatuses

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181115

R150 Certificate of patent or registration of utility model

Ref document number: 6438157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250