JP2003086501A - Wave aberration measuring device - Google Patents

Wave aberration measuring device

Info

Publication number
JP2003086501A
JP2003086501A JP2001355034A JP2001355034A JP2003086501A JP 2003086501 A JP2003086501 A JP 2003086501A JP 2001355034 A JP2001355034 A JP 2001355034A JP 2001355034 A JP2001355034 A JP 2001355034A JP 2003086501 A JP2003086501 A JP 2003086501A
Authority
JP
Japan
Prior art keywords
light
optical system
order
wavefront aberration
diffracted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001355034A
Other languages
Japanese (ja)
Inventor
Ikusou Shiyu
郁葱 朱
Takashi Genma
隆志 玄間
Mikihiko Ishii
幹彦 石井
Katsumi Sugizaki
克己 杉崎
Katsuhiko Murakami
勝彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2001355034A priority Critical patent/JP2003086501A/en
Publication of JP2003086501A publication Critical patent/JP2003086501A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wave aberration measuring machine using a diffraction grating shearing interferometer for a mirror (reflection) type optical system, which can prevent the analysis of zero-order light or high-order overlapped diffracted light from becoming difficult caused by double diffraction interference. SOLUTION: The device includes a pin hole member for generating spherical wave light, a device for holding an optical system to be inspected at a predetermined position, a diffraction grating, a mask member 16 for receiving light from the diffraction grating, a CCD for projecting diffracted light from the mask member 16, a diffracted light selecting means for causing the mask member 16 to selectively transmit only a predetermined order of diffracted light therethrough, and a diffracted light analyzing means for selectively analyzing only the predetermined order of diffracted light component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ミラー(反射)型
光学系における波面収差の精密測定に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to precise measurement of wavefront aberration in a mirror (reflection) type optical system.

【0002】[0002]

【従来の技術】例えば、従来半導体回路素子などのデバ
イスをリソグラフィー工程によって製造する際に用いら
れるリソグラフィー装置(露光装置)では、露光光とし
て波長が193nm以上の光が用いられてきた。しかし
ながら近年は、半導体回路上のパターンのさらなる細分
化が求められているため、今まで以上の短い波長を用い
た露光装置が必要とされており、波長が13nmの軟X
線(この波長域の光は、EUV(Extreme Ultra Viole
t)とも称する)を用いる投影露光装置の開発が提案さ
れている。
2. Description of the Related Art For example, in a lithography apparatus (exposure apparatus) which is conventionally used for manufacturing a device such as a semiconductor circuit element by a lithography process, light having a wavelength of 193 nm or more has been used as exposure light. However, in recent years, there has been a demand for further subdivision of patterns on a semiconductor circuit, so that an exposure apparatus using a shorter wavelength than ever has been required, and a soft X having a wavelength of 13 nm is required.
Line (Light in this wavelength range is EUV (Extreme Ultra Viole
The development of a projection exposure apparatus using (also referred to as t) is proposed.

【0003】ところが、軟X線領域の光線は、吸収の効
果が大きいので光学レンズ(屈折光学素子)を用いて集
光・発散等の光学的制御をすることに適さない。そのた
め軟X線領域の制御光学系は全て反射面によるミラー
(反射)型光学系を用いなければならない。
However, a light ray in the soft X-ray region has a large absorption effect, and is not suitable for optical control such as focusing and divergence using an optical lens (refractive optical element). Therefore, the control optical system in the soft X-ray region must be a mirror (reflection) type optical system having a reflecting surface.

【0004】この軟X線の波長領域を用いた投影露光装
置は、今まで以上に細かなパターンを投影露光するもの
であり、その露光の波面収差は非常に高精度なものが要
求される。例えば波面収差を±1nmRMS以内に抑え
ることが求められる。したがって軟X線の波長領域を用
いた投影露光光学系(被検光学系)を審査・評価する波
面収差計測機も非常に高い分解能が要求され、波面収差
を±1nmRMS以内に抑えられているか否かを審査・
評価する場合には0.5nm程度の分解能が要求され
る。光学レンズを用いないで、この分解能を得るために
は、回折格子シアリング干渉計を用いることが考えられ
る。回折格子シアリング干渉計を用いた波面計測機と
は、被検光学系から射出される光波面を回折格子を用い
て横ずらしした被検波面同士を干渉させるものである。
回折格子を移動させる手段を用いて干渉稿の位相差をシ
フトさせ、フリンジスキャン法でその干渉稿から被検光
学系の通過にともなう波面の歪みを解析するものであ
る。
The projection exposure apparatus using the wavelength range of the soft X-ray projects and exposes a finer pattern than ever, and the wavefront aberration of the exposure is required to be very high in accuracy. For example, it is required to suppress the wavefront aberration within ± 1 nm RMS. Therefore, a wavefront aberration measuring instrument that examines and evaluates the projection exposure optical system (test optical system) that uses the wavelength range of soft X-rays also requires very high resolution, and whether the wavefront aberration is suppressed within ± 1 nm RMS. Examining
For evaluation, a resolution of about 0.5 nm is required. To obtain this resolution without using an optical lens, it is possible to use a diffraction grating shearing interferometer. A wavefront measuring device using a diffraction grating shearing interferometer is a device for causing interference between test wavefronts obtained by laterally shifting an optical wavefront emitted from a test optical system using a diffraction grating.
The phase difference of the interference pattern is shifted using a means for moving the diffraction grating, and the fringe scan method is used to analyze the distortion of the wavefront due to the passage of the optical system under test from the interference pattern.

【0005】[0005]

【発明が解決しようとする課題】ところがこのような構
成の回折格子シアリング干渉計を用いて解析を行う場
合、1次回折光と−1次回折光の2束の干渉を行うには
0次光と高次の回折干渉光が重なってしまい解析が困難
になってしまうという問題があった。
However, when analysis is performed using the diffraction grating shearing interferometer having such a configuration, in order to perform interference of two bundles of the 1st-order diffracted light and the -1st-order diffracted light, high-order light and high-order diffracted light are used. There is a problem that the next diffraction interference light overlaps and the analysis becomes difficult.

【0006】本発明はこのような問題に鑑みてなされた
ものであり、ミラー(反射)型光学系に対する回折格子
シアリング干渉計を用いた波面収差計測機において、0
次光と高次の回折光の影響による煩瑣な解析を必要とせ
ずに必要な分解能を得ることのできる波面収差計測機を
提供することを目的とする。
The present invention has been made in view of such a problem, and a wavefront aberration measuring instrument using a diffraction grating shearing interferometer for a mirror (reflection) type optical system is provided.
It is an object of the present invention to provide a wavefront aberration measuring instrument that can obtain a required resolution without requiring a complicated analysis due to the influence of secondary light and higher-order diffracted light.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
に本発明の波面収差計測機は、所定波長の光を供給する
光源からの光を通過させて球面波の光を発生させるピン
ホールを有したピンホール部材と、被検光学系を所定位
置に保持し、球面波の光を被検光学系に照射させるとと
もに被検光学系から光を出射させる被検光学系保持装置
と、被検光学系からの出射光を受ける位置に配置された
回折格子と、被検光学系からの出射光を受けることによ
り回折格子から出射される光を受ける位置に配置された
マスク部材と、マスク部材からの回折光の干渉稿を測定
する検出光学系と、マスク部材が所定次数の回折光のみ
を選択的に透過させる回折光選択手段とを有する構成を
なしている。
In order to solve the above-mentioned problems, a wavefront aberration measuring device of the present invention has a pinhole for generating light of spherical wave by passing light from a light source which supplies light of a predetermined wavelength. A pinhole member having the optical system to be inspected, which holds the optical system to be inspected at a predetermined position, irradiates the optical system with spherical wave light, and emits light from the optical system to be inspected, A diffraction grating arranged at a position for receiving the light emitted from the optical system, a mask member arranged at a position for receiving the light emitted from the diffraction grating by receiving the light emitted from the optical system under test, and a mask member The detection optical system for measuring the interference pattern of the diffracted light and the mask member have a diffracted light selection means for selectively transmitting only diffracted light of a predetermined order.

【0008】このような構成の波面収差計測機ならば、
ミラー(反射)型光学系に対して回折格子を用いて射出
光波面を横ずらししてシアリング干渉計を構成すること
ができ、なおかつマスク部材を用いて高次の干渉光の影
響を取り除くことができるので解析がしやすくなり本発
明の目的を達することができる。
With the wavefront aberration measuring device having such a structure,
A shearing interferometer can be constructed by using a diffraction grating for a mirror (reflection) type optical system and displacing the wavefront of emitted light, and a mask member can be used to remove the influence of higher-order interference light. Therefore, the analysis is facilitated and the object of the present invention can be achieved.

【0009】尚、上記構成の波面収差計測機において、
検出光学系の受光部材が荷電結合素子(CCD)である
構成にしてもよい。
Incidentally, in the wavefront aberration measuring device having the above structure,
The light receiving member of the detection optical system may be a charge coupled device (CCD).

【0010】上述構成の波面収差計測機において、マス
ク部材が被検光学系によって集光された球面波の略結像
位置に配置されている様に構成してもよい。
In the wavefront aberration measuring device having the above-described structure, the mask member may be arranged so as to be disposed at a substantially image forming position of the spherical wave focused by the optical system under test.

【0011】上述構成の波面収差計測機において、回折
光選択手段は、前記マスク部材に所定個数の開口部を設
られる様に構成してもよい。
In the wavefront aberration measuring device having the above-mentioned structure, the diffracted light selecting means may be structured such that a predetermined number of openings are provided in the mask member.

【0012】さらに、マスク部材に設けられた開口部を
透過する回折光が+1次と−1次の回折光である様に構
成してもよい。
Further, the diffracted light transmitted through the opening provided in the mask member may be + 1st order and -1st order diffracted light.

【0013】上述構成の波面収差計測機において、被検
光学系がレチクル面に描画されている回路パターンをウ
ェハー面上に転写する露光投影系である場合、被検光学
系保持装置により被検光学系が所定位置に保持された状
態で、レチクル面が配置される位置にピンホール部材を
配置し、且つウェハー面が配置される位置にマスク部材
を配置する様に構成してもよい。
In the wavefront aberration measuring device having the above-described structure, when the optical system to be measured is an exposure projection system for transferring the circuit pattern drawn on the reticle surface onto the wafer surface, the optical system to be measured is held by the optical system holding device. The pinhole member may be arranged at a position where the reticle surface is arranged and the mask member may be arranged at a position where the wafer surface is arranged while the system is held at a predetermined position.

【0014】上述構成の波面収差計測機において、光源
が、シンクロトロン放射光源、レーザプラズマ光源ある
いは、放電プラズマ光源のいずれかの1つである様に構
成してもよい。
In the wavefront aberration measuring device having the above-mentioned structure, the light source may be one of a synchrotron radiation light source, a laser plasma light source, and a discharge plasma light source.

【0015】さらに上述構成の波面収差計測機におい
て、回折光選択手段と受光部材との間に球面波を平面波
に変換する手段を備えた構成を用いてもよい。
Further, in the wavefront aberration measuring device having the above-mentioned structure, a structure may be used in which a means for converting a spherical wave into a plane wave is provided between the diffracted light selecting means and the light receiving member.

【0016】上述構成の波面収差計測機において、回折
光選択手段と切り換え可能なピンホールと開口とを有す
るマスク部材を備えた構成を用いてもよい。
In the wavefront aberration measuring device having the above-mentioned structure, a structure having a mask member having a diffracted light selecting means, a switchable pinhole and an opening may be used.

【0017】前記課題を解決するために本発明の波面収
差計測機は、上述したマスク部材を設けた上述の構成の
もの以外にも、次の構成をもつ波面収差計測機でもよ
い。この本発明の第2の波面収差計測機は、所定波長の
光を供給する光源と、光源からの光を通過させて球面波
の光を発生させるピンホールを有したピンホール部材
と、被検光学系を所定位置に保持し、球面波の光を被検
光学系に照射させるとともに被検光学系から光を出射さ
せる被検光学系保持装置と、被検光学系からの出射光を
受ける位置に配置された回折格子と、回折格子からの回
折光の干渉稿を測定する検出光学系とからなる回折格子
シアリング干渉を用いた波面収差計測機において、所定
次数の回折光成分のみを選択的に解析する回折光解析手
段とを有する構成をなしている。
In order to solve the above-mentioned problems, the wavefront aberration measuring instrument of the present invention may be a wavefront aberration measuring instrument having the following constitution in addition to the above-mentioned constitution in which the mask member is provided. The second wavefront aberration measuring device of the present invention includes a light source that supplies light of a predetermined wavelength, a pinhole member that has a pinhole that allows light from the light source to pass therethrough, and generates spherical wave light, and a test object. A test optical system holding device that holds the optical system in a predetermined position, irradiates the test optical system with spherical wave light, and emits light from the test optical system, and a position that receives light emitted from the test optical system. In the wavefront aberration measuring instrument using the diffraction grating shearing interference, which consists of the diffraction grating arranged in and the detection optical system for measuring the interference pattern of the diffracted light from the diffraction grating, only the diffracted light component of the predetermined order is selectively And a diffracted light analysis means for analysis.

【0018】このような構成の波面収差計測機でも上述
したマスク部材を用いたものと同様に、シアリング干渉
計を構成することができ、なお解析に用いない回折光の
成分を取り除くことができるので解析がしやすくなり本
発明の目的を達することができる。
Even with the wavefront aberration measuring device having such a configuration, a shearing interferometer can be constructed similarly to the one using the above-mentioned mask member, and the component of the diffracted light which is not used in the analysis can be removed. The analysis becomes easier and the object of the present invention can be achieved.

【0019】尚、回折光解析手段が、回折格子を移動さ
せて縞走査を行うフリンジスキャン手段を有していても
よい。
The diffracted light analyzing means may have fringe scanning means for moving the diffraction grating to perform fringe scanning.

【0020】また、回折光解析手段は0次の回折光成分
を補整して被検光学系の波面収差を算出してもよい。
Further, the diffracted light analysis means may compensate the zeroth-order diffracted light component to calculate the wavefront aberration of the optical system under test.

【0021】さらに、回折光解析手段は0次に加えて±
2次以上の回折光成分を補整して被検光学系の波面収差
を算出してもよい。
Further, the diffracted light analyzing means has ± 0
The wavefront aberration of the optical system to be tested may be calculated by compensating for the diffracted light components of the second or higher order.

【0022】その算出の際、0次光の補整を次の式
(1)での計算式で求めてもよい。(ここで、a+1、a
0、a-1はそれぞれ+1次光、0次光、−1次光の波動
の振幅成分であり、kは波数であり、w+1、w-1はそれ
ぞれ+1次光、−1次光の波面収差であり、giは0
次、±1次の3成分もしくは±1次の2成分の回折光の
干渉光強度値であり、指標iは回折格子の1ピッチを2
l(lは3以上の正数)に分割した場合i=1、2、
3、…、l+1である。)
At the time of the calculation, the correction of the 0th order light may be obtained by the calculation formula in the following formula (1). (Where a + 1 , a
0 and a −1 are the amplitude components of the waves of the + 1st order light, the 0th order light, and the −1st order light, k is the wave number, and w +1 and w −1 are the + 1st order light and the −1st order light, respectively. Is the wavefront aberration, and g i is 0
Next, it is the interference light intensity value of the diffracted light of the 3rd component of the ± 1st order or the 2nd component of the ± 1st order.
When divided into l (l is a positive number of 3 or more), i = 1, 2,
3, ..., L + 1. )

【0023】[0023]

【数1】 [Equation 1]

【0024】また、実際の波面収差の算出を、回折格子
の1ピッチを8分割した場合は、被検光学系の波面収差
を次の計算式(2)で求めてもよい。(ここで、kは波
数であり、w+1、w-1はそれぞれ+1次光、−1次光の
波面収差であり、g1、g2、g3、…、g9は回折格子の
1ピッチを8分割した場合の0次、±1次の3成分もし
くは±1次の2成分の回折光の干渉光強度値である。)
When the actual wavefront aberration is calculated by dividing one pitch of the diffraction grating into eight, the wavefront aberration of the optical system to be tested may be calculated by the following equation (2). (Here, k is the wave number, w +1 and w −1 are the wavefront aberrations of the + 1st order light and the −1st order light, respectively, and g 1 , g 2 , g 3 , ..., G 9 are of the diffraction grating. (This is an interference light intensity value of diffracted light of three components of 0th order, ± 1st order, or two components of ± 1st order when one pitch is divided into eight.)

【0025】[0025]

【数2】 [Equation 2]

【0026】同様に、回折格子の1ピッチを6分割した
場合は、被検光学系の波面収差をの計算式で求めてもよ
い。(ここで、kは波数であり、w+1、w-1はそれぞれ
+1次光、−1次光の波面収差であり、g1、g2
3、…、gは回折格子の1ピッチを6分割した場合の
0次、±1次の3成分もしくは±1次の2成分の回折光
の干渉光強度値である。)
Similarly, when one pitch of the diffraction grating is divided into six, the wavefront aberration of the optical system to be tested may be calculated by the following equation. (Here, k is the wave number, w +1 and w −1 are the wavefront aberrations of the + 1st order light and the −1st order light, respectively, g 1 , g 2 ,
g 3, ..., g is 0-order, interference light intensity values of the diffracted light of ± 1-order three components or ± 1-order of the two components in the case of 6 dividing one pitch of the diffraction grating. )

【0027】[0027]

【数3】 [Equation 3]

【0028】この構成の波面収差計測機において、検出
光学系の受光部材が荷電結合素子(CCD)である構成
にしてもよい。
In the wavefront aberration measuring instrument of this structure, the light receiving member of the detection optical system may be a charge coupled device (CCD).

【0029】この構成の波面収差計測機において、被検
光学系がレチクル面に描画されている回路パターンをウ
ェハー面上に転写する露光投影系であり、被検光学系保
持装置により被検光学系が所定位置に保持された状態
で、レチクル面が配置される位置にピンホール部材を配
置し、且つ前記ウェハー面が配置される位置に受光部材
を配置する様に構成してもよい。
In the wavefront aberration measuring instrument having this structure, the optical system to be inspected is an exposure projection system for transferring the circuit pattern drawn on the reticle surface onto the wafer surface, and the optical system to be inspected by the optical system holding device to be inspected. The pinhole member may be arranged at a position where the reticle surface is arranged, and the light receiving member may be arranged at a position where the wafer surface is arranged while being held at a predetermined position.

【0030】この構成の波面収差計測機において、光源
が、シンクロトロン放射光源、レーザプラズマ光源ある
いは、放電プラズマ光源のいずれかの1つである様に構
成してもよい。
In the wavefront aberration measuring device of this structure, the light source may be one of a synchrotron radiation light source, a laser plasma light source, or a discharge plasma light source.

【0031】この構成の波面収差計測機において、回折
格子と受光部材との間に球面波を平面波に変換する手段
を備えた構成を用いてもよい。
In the wavefront aberration measuring device having this structure, a structure may be used in which a means for converting a spherical wave into a plane wave is provided between the diffraction grating and the light receiving member.

【0032】これまで述べたように本発明に係る波面収
差計測機には0次や±2次光以上の高次光を補整するた
めに、マスク部材を有するものや、回折光解析手段を有
するものがある。さらに本発明は第3の波面収差計測機
として波面収差計測機を、これら2種の波面収差計測機
の構成を併せ持つ、即ち所定波長の光を供給する光源
と、光源からの光を通過させて球面波の光を発生させる
ピンホールを有したピンホール部材と、被検光学系を所
定位置に保持し、球面波の光を被検光学系に照射させる
とともに被検光学系から光を出射させる被検光学系保持
装置と、被検光学系からの出射光を受ける位置に配置さ
れた回折格子と、被検光学系からの出射光を受けること
により回折格子から出射される光を受ける位置に配置さ
れたマスク部材と、マスク部材からの回折光の干渉稿を
測定する検出光学系とからなる回折格子シアリング干渉
を用いた波面収差計測機として、マスク部材が所定次数
の回折光のみを選択的に透過させる回折光選択手段と、
所定次数の回折光成分のみを選択的に解析する回折光解
析手段とを有するように構成してもよい。
As described above, in the wavefront aberration measuring instrument according to the present invention, there are one having a mask member and one having a diffracted light analyzing means in order to compensate high-order light of 0th order or ± 2nd order or higher. is there. Further, the present invention has a wavefront aberration measuring machine as a third wavefront aberration measuring machine, which has both configurations of these two kinds of wavefront aberration measuring machines, that is, a light source for supplying light of a predetermined wavelength and a light from the light source for passing therethrough. A pinhole member having a pinhole for generating spherical wave light and an optical system under test are held at predetermined positions, and the optical system under test is irradiated with spherical wave light and emitted from the optical system under test. The optical system holding device to be inspected, the diffraction grating arranged at a position to receive the light emitted from the optical system to be inspected, and the position to receive the light emitted from the diffraction grating by receiving the light emitted from the optical system to be inspected. As a wavefront aberration measuring instrument using diffraction grating shearing interference consisting of a mask member arranged and a detection optical system that measures the interference pattern of diffracted light from the mask member, the mask member selectively selects only diffracted light of a predetermined order. Times to penetrate And the light selection means,
A diffracted light analyzing means for selectively analyzing only diffracted light components of a predetermined order may be provided.

【0033】[0033]

【発明の実施の形態】以下、本発明に係る波面収差計測
機の好ましい実施の形態を図1から図5に基づいて説明
する。好ましい実施の形態として、波面収差計測機の測
定対象が、EUV光に対する半導体リソグラフィーの露
光投影装置の被検光学系である場合を考える。そこでは
じめに露光投影装置について簡単に説明しておく。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a wavefront aberration measuring machine according to the present invention will be described below with reference to FIGS. As a preferred embodiment, consider a case where the measurement target of the wavefront aberration measuring device is an optical system to be inspected of an exposure projection device of semiconductor lithography for EUV light. Therefore, the exposure projection apparatus will be briefly described first.

【0034】図1に見るように、露光装置1は、最上部
に必要な投影面上での照度分布が均一となるようEUV
光を出射する光源2が配置され、その下方に光源2に対
向するようにレチクル支持部材5が配置され、そのレチ
クル支持部材5上に集積回路の回路パターンが拡大され
て精密に描かれたレチクル4が配置される。レチクル支
持部材5の下方には、集光作用のあるミラー(反射)型
光学系からなる投影光学系6が配置され、その下方にス
テージ8上に載せられフォトレジストの塗布された(半
導体)ウエハー7(例えばシリコンウエハー)が配置さ
れ、ウエハー7はステージ8に接続された駆動装置9に
より投影光学系6の焦点位置に対して水平面内で移動制
御されるように構成されている。
As shown in FIG. 1, the exposure apparatus 1 uses the EUV so that the illuminance distribution on the projection plane necessary for the uppermost part is uniform.
A light source 2 for emitting light is arranged, a reticle support member 5 is arranged below the light source 2 so as to face the light source 2, and a circuit pattern of an integrated circuit is enlarged on the reticle support member 5 and a reticle is drawn precisely. 4 are arranged. Below the reticle support member 5, a projection optical system 6 composed of a mirror (reflection) type optical system having a light condensing function is arranged, and below it is placed on a stage 8 and coated with a photoresist (semiconductor) wafer. 7 (for example, a silicon wafer) is arranged, and the wafer 7 is configured to be moved and controlled in a horizontal plane with respect to the focal position of the projection optical system 6 by a driving device 9 connected to the stage 8.

【0035】このような構成の露光装置1において、レ
チクル4の回路パターンは、投影光学系6により所定の
縮小倍率で縮小されウエハー7に投影露光され、該回路
パターンがウエハー7上に結像・転写される。このと
き、1回の投影露光が完了する度にステージ8を移動す
ることにより、ウエハー7上の異なる位置に回路パター
ンが転写される。このようなステージの駆動、露光方式
をステップ・アンド・リピート方式という。ステージの
駆動、露光方式にはこのほかに、レチクル支持部材5に
も駆動機構を設け、ステージ8とレチクル4とを相対的
に移動させて露光を行うスキャン方式がある。
In the exposure apparatus 1 having such a structure, the circuit pattern of the reticle 4 is reduced by the projection optical system 6 at a predetermined reduction ratio and projected and exposed on the wafer 7, and the circuit pattern is formed on the wafer 7. Transcribed. At this time, the circuit pattern is transferred to different positions on the wafer 7 by moving the stage 8 every time one projection exposure is completed. Such a stage drive and exposure method is called a step-and-repeat method. In addition to the stage drive / exposure method, there is a scan method in which a drive mechanism is also provided on the reticle support member 5 and the stage 8 and the reticle 4 are relatively moved to perform exposure.

【0036】この露光時におけるウエハー7上に転写さ
れる回路パターンは、最近ますます細かくすることが求
められている。但し、パターン寸法を小さくするにも限
界があり、その最小パターン寸法(解像度)Rは、露光
装置1で投影するために用いる光源2の波長λ、投影光
学系6の開口数NAによって次式(4)で示される。
The circuit pattern transferred onto the wafer 7 during this exposure has recently been required to be finer and finer. However, there is a limit to reducing the pattern size, and the minimum pattern size (resolution) R is calculated by the following equation () by the wavelength λ of the light source 2 used for projection by the exposure apparatus 1 and the numerical aperture NA of the projection optical system 6. 4).

【0037】[0037]

【数4】R=K・λ/NA …(4)[Equation 4] R = K · λ / NA (4)

【0038】上記の式(4)から明らかなように、最小
パターン寸法Rを小さくするためには、この定数Kを小
さくするか、開口数NAを大きくするか、または投影す
る光源2の波長λを小さくするかの3つの方法があるこ
とがわかる。
As is clear from the above equation (4), in order to reduce the minimum pattern size R, the constant K is decreased, the numerical aperture NA is increased, or the wavelength λ of the light source 2 to be projected. It can be seen that there are three ways to reduce.

【0039】ここで定数Kは投影光学系やプロセスによ
って決まる定数であり、通常0.5〜0.8程度の値を
とる。この定数Kを小さくする方法は、広い意味で超解
像と呼ばれている。今までに、投影光学系の改良、変形
投影、位相シフトマスク法などが提案、研究されてき
た。しかし、適用できるパターンに制限があるなどの難
点があった。一方、開口数NAは式(4)からその値が
大きいほど最小パターンの寸法Rを小さくできるが、こ
のことは焦点深度が浅くなってしまうといった問題があ
った。このためNA値を大きくすることにも限界があ
り、通常はこれら両者のかねあいから0.5〜0.6程
度が適当とされている。
Here, the constant K is a constant determined by the projection optical system and the process, and usually takes a value of about 0.5 to 0.8. The method of reducing the constant K is called super-resolution in a broad sense. Up to now, improvement of projection optical system, deformation projection, phase shift mask method, etc. have been proposed and studied. However, there are drawbacks such as restrictions on the applicable patterns. On the other hand, the numerical aperture NA can be made smaller as the numerical value NA becomes larger from the equation (4), but this causes a problem that the depth of focus becomes shallow. For this reason, there is a limit to increasing the NA value, and it is usually considered to be suitable from about 0.5 to 0.6 because of the balance between the two.

【0040】したがって、最小パターンの寸法Rを小さ
くするのに最も単純かつ有効な方法は、露光に用いる光
の波長λを小さくすることである。そこでこれまでに実
用化されてきた露光装置1に用いる光線は、可視光のg
線(λ=436nm)から紫外線のi線(λ=365n
m)、さらにKrF(フッ化クリプトン)エキシマレー
ザ(λ=248nm)やArF(フッ化アルゴン)エキ
シマレーザ(λ=193nm)とより短波長の光線へと
進化してきた。次世代の露光装置用の光源2の候補に
は、F2(フッ素)レーザ(λ=157nm)や軟X線
(EUV)(λ=13.4nm)といったものが考えら
れている。
Therefore, the simplest and most effective method for reducing the size R of the minimum pattern is to reduce the wavelength λ of light used for exposure. Therefore, the light beam used for the exposure apparatus 1 that has been put into practical use is g of visible light.
Line (λ = 436 nm) to ultraviolet i-line (λ = 365n)
m), and further to KrF (krypton fluoride) excimer laser (λ = 248 nm) and ArF (argon fluoride) excimer laser (λ = 193 nm), to shorter wavelength light. F2 (fluorine) laser (λ = 157 nm) and soft X-ray (EUV) (λ = 13.4 nm) are considered as candidates for the light source 2 for the next-generation exposure apparatus.

【0041】このような短波長の光線を制御してウエハ
ー7面に回路パターンを投影するにはその波長に応じた
光学的精度を持つ投影光学系6が必要になる。そのため
に、投影光学系6からの出射光の波面収差が実用上許容
される波面収差であるかないかを判定することによっ
て、投影光学系6が用いられる露光装置1が露光装置と
して必要な光学的精度を満たしているかどうかを審査・
評価するための装置が、本発明に係る波面収差計測機1
0である。以下図2を参照しながら本発明の好ましい実
施形態に係る波面収差計測機10の構成を説明する。
In order to control such a short-wavelength light beam and project a circuit pattern on the wafer 7 surface, a projection optical system 6 having an optical precision corresponding to the wavelength is required. Therefore, by determining whether or not the wavefront aberration of the light emitted from the projection optical system 6 is a wavefront aberration that is practically allowed, the exposure apparatus 1 using the projection optical system 6 can be used as an optical exposure apparatus required as an exposure apparatus. Examining whether it meets the accuracy
A device for evaluation is a wavefront aberration measuring device 1 according to the present invention.
It is 0. Hereinafter, the configuration of the wavefront aberration measuring device 10 according to the preferred embodiment of the present invention will be described with reference to FIG.

【0042】この波面収差計測機10は、上記露光装置
1を構成する投影光学系6の波面収差を計測するための
ものであり、EUVの光を供給する光源からの光線11
を反射させて集光する集光部材12と、集光部材12か
らの光を通過させて球面波の光を発生させるピンホール
を有したピンホール部材13と、審査・評価の対象とな
る投影光学系6を所定位置に保持し球面波の光を投影光
学系6に照射させるとともに投影光学系6から反射光を
出射させる図示しない被検光学系保持装置と、投影光学
系6からの出射光を受ける位置に配置され移動部材18
により格子のピッチ方向に移動できる回折格子14と、
回折格子14から出射される光を受ける位置に配置され
たマスク部材16と、マスク部材16からの回折光の干
渉稿を測定する検出光学系(CCD17)と、マスク部
材16が所定次数の回折光のみを選択的に透過させる回
折光選択手段とを有する構成をなしている。
The wavefront aberration measuring device 10 is for measuring the wavefront aberration of the projection optical system 6 constituting the exposure apparatus 1, and is a light beam 11 from a light source for supplying EUV light.
Condensing member 12 for reflecting and condensing light, pinhole member 13 having a pinhole for transmitting light from the condensing member 12 and generating spherical wave light, and a projection to be examined / evaluated An optical system holding device (not shown) that holds the optical system 6 at a predetermined position, irradiates the projection optical system 6 with spherical wave light, and emits reflected light from the projection optical system 6, and light emitted from the projection optical system 6. The moving member 18 is arranged at a position for receiving
The diffraction grating 14 that can be moved in the pitch direction of the grating by
The mask member 16 arranged at a position for receiving the light emitted from the diffraction grating 14, a detection optical system (CCD 17) for measuring an interference pattern of the diffracted light from the mask member 16, and the mask member 16 diffracted light of a predetermined order. And a diffracted light selection unit that selectively transmits only the light.

【0043】上記構成物の役割等の詳細を説明する。E
UV光源は、特定波長(例えば13.4nm)の光を供
給するものならばシンクロトロン放射光源かレーザプラ
ズマ光源あるいは放電プラズマ光源のいずれかでもかま
わない。集光部材12は図2に見るように凹面鏡から構
成されており、屈折型光学素子では集光することに適さ
ないEUV光を集光し光の強度(光量)をあげている。
ピンホール部材13は集光部材12によって集光された
光がピンホールを通過することによって理想的な球面波
を発生させることができる。この理想的球面波は被検光
学系を審査・評価する際の基準となる。投影光学系6
は、例として図2では2面の凸面鏡6a、6cと2面の
凹面鏡6b、6dから構成された、ミラー(反射)型縮
小光学系を形成している。理想的球面波をなすEUV光
が投影光学系6を経過することにより、投影光学系6内
の情報を含んだEUV光となり射出される。図示のよう
に射出されたEUV光が回折格子14に入射し、投影光
学系6内の情報(より具体的には光学鏡面6a、6b、
6c、6dの歪み等)を反映した歪みを伴った光波面を
横ずらしして出射されている。マスク部材16は、投影
光学系6により集光される球面波の焦点位置(即ち、露
光装置1におけるウエハー7が配設される位置)に配置
されている。これは回折光選択手段においてマスク部材
16によって回折光のうち所定次数のものを選択的に分
離する際に、その選択性を向上させることができる。
The details of the role of the above components will be described. E
The UV light source may be either a synchrotron radiation light source, a laser plasma light source, or a discharge plasma light source as long as it supplies light of a specific wavelength (for example, 13.4 nm). As shown in FIG. 2, the condensing member 12 is composed of a concave mirror, and condenses EUV light that is not suitable for condensing in the refractive optical element to increase the intensity (light amount) of the light.
The pinhole member 13 can generate an ideal spherical wave by the light condensed by the condensing member 12 passing through the pinhole. This ideal spherical wave serves as a reference when examining and evaluating the optical system under test. Projection optical system 6
For example, in FIG. 2, a mirror (reflection) type reduction optical system is formed by two convex mirrors 6a and 6c and two concave mirrors 6b and 6d. When the EUV light forming an ideal spherical wave passes through the projection optical system 6, it becomes EUV light containing information in the projection optical system 6 and is emitted. The EUV light emitted as shown in the figure enters the diffraction grating 14, and the information in the projection optical system 6 (more specifically, the optical mirror surfaces 6a, 6b,
6c, 6d and the like) are emitted with the light wavefronts having the distortions reflected sideways. The mask member 16 is arranged at the focal position of the spherical wave condensed by the projection optical system 6 (that is, the position where the wafer 7 in the exposure apparatus 1 is arranged). This can improve the selectivity of the diffracted light selecting means when the mask member 16 selectively separates the diffracted light of a predetermined order.

【0044】マスク部材16は、図3に示すようにEU
V光線を透過する窓部16aと16bと、図3における
網掛け部で示されタンタル(Ta)薄膜等によってなる
EUV光線遮断部とを有して構成されている。この窓部
16a、16bは孔であっても良い。この窓部16aと
16bとを透過する+1次光と−1次光の干渉稿を生成
することになる。(窓部16a、16bの開口位置や窓
の大きさの決め方については後で説明し、透過させる+
1次光と−1次光とであることをいかに同定するかとい
ったこともさらに後で説明する。)+1次光と−1次回
折光だけを透過させるのは波面収差を解析して見積もる
際に、0次光や(±)2次光以上の高次光といった、必
要以上の回折光の寄与を遮断するためである。(0次光
及び+2次光以上もしくは−2次光以下の高次光を遮断
することの妥当性は、本発明の発明者による特開200
0−146706(特願平10−312824)に述べ
られている。)投影光学系6内の波面収差の情報を網羅
するために、ここに+1次光と−1次光の位相差はπ/
2(λ/4)づつ位相シフトさせる。移動部材18は、
回折格子14をピッチ方向に解析に必要な制御精度で移
動させるためのものである。最後にCCD17は、マス
ク部材16の2つの窓16a、16bからそれぞれ出射
される回折光の+1次、−1次の2つの光波を干渉させ
た干渉稿を投影させる検出器として用いている。
As shown in FIG. 3, the mask member 16 is made of EU.
It is configured to have windows 16a and 16b that transmit V rays, and an EUV ray blocking section made of a tantalum (Ta) thin film or the like, which is shown by a meshed section in FIG. The windows 16a and 16b may be holes. An interference pattern of + 1st-order light and -1st-order light transmitted through the windows 16a and 16b is generated. (How to determine the opening positions of the window portions 16a and 16b and the size of the window will be described later, and the transmission is made +
How to identify the primary light and the minus first light will be further described later. ) Transmitting only the + 1st-order light and the -1st-order diffracted light blocks the contribution of unnecessary diffracted light such as the 0th-order light and the high-order light of (±) second-order light or more when analyzing and estimating the wavefront aberration. This is because. (The validity of blocking the 0th-order light and the higher-order light above the + 2nd-order light or below the -2nd-order light is appropriate by the inventor of the present invention.
No. 0-146706 (Japanese Patent Application No. 10-31824). ) In order to cover the information on the wavefront aberration in the projection optical system 6, the phase difference between the + 1st order light and the −1st order light is π /
The phase is shifted by 2 (λ / 4). The moving member 18 is
This is for moving the diffraction grating 14 in the pitch direction with the control accuracy required for analysis. Finally, the CCD 17 is used as a detector for projecting an interference pattern in which two + first-order and −1st-order light waves of the diffracted light emitted from the two windows 16a and 16b of the mask member 16 are projected.

【0045】図4にはこの本発明に係る波面収差計測機
10の構成部材の寸法を決定する際のアルゴリズム50
が示されている。全部で3段階あり、第1段階目は波面
収差計測機10に求められる分解能とCCD17の分解
能から最終的に観測される干渉光の本数を決定する段階
51と、第2段階目は前段階51の結果を受けてマスク
部材に窓の間隔を決定する段階52と、最後に第3段階
目はピンホールの直径及びそれに基づいてマスク部材の
窓のサイズを決定する段階53である。以下、具体的に
各段階の内容を説明する。
FIG. 4 shows an algorithm 50 for determining the dimensions of the constituent members of the wavefront aberration measuring instrument 10 according to the present invention.
It is shown. There are three stages in total, the first stage is a stage 51 for determining the number of interference light beams finally observed from the resolution required for the wavefront aberration measuring device 10 and the resolution of the CCD 17, and the second stage is a previous stage 51. Based on the result of the above, the step 52 of determining the distance between the windows of the mask member, and finally the third step is the step 53 of determining the diameter of the pinhole and the size of the window of the mask member based on the diameter. The contents of each stage will be specifically described below.

【0046】第1段階において、EUV露光装置の投影
光学系6による波面の歪みを見るためには波面収差計測
機10の分解能は前述のように少なくとも0.5nmが
必要である。一方検出光学系として用いられるCCD1
7は画素数が1024×1024画素あり、1画素一辺
の実寸法が10μm程度となっている。原理的には干渉
稿1本あたりの幅が4画素以下の干渉稿は判別できない
ことになるが、実際に必要な測定の精度を考慮するとC
CD17の画面上に最大約80本の回折干渉稿を投影す
ることとなる。
In the first stage, in order to see the wavefront distortion by the projection optical system 6 of the EUV exposure apparatus, the resolution of the wavefront aberration measuring instrument 10 must be at least 0.5 nm as described above. On the other hand, CCD 1 used as a detection optical system
In No. 7, the number of pixels is 1024 × 1024, and the actual size of one side of each pixel is about 10 μm. In principle, an interfering manuscript with a width of 4 pixels or less per interfering manuscript cannot be discriminated, but in consideration of the actually required measurement accuracy, C
A maximum of about 80 diffraction interference patterns will be projected on the screen of the CD 17.

【0047】第2段階において、マスク部材16の窓の
間隔の決定を行う。いまマスク部材16として図3に示
すような2つ窓16a、16bを開いたものを考える。
この二つの窓16a、16bは回折格子14からの回折
光の+1次光と−1次光を選択的に透過するためのもの
である。2つの窓の間隔は以下のように決定する。まず
+1次光用の窓16aからCCD画面までの距離と−1
次光用の窓16bからCCD17画面までの距離との差
を光路差OPD(Optical Path Difference)とすると
CCD17画面上に投影される回折干渉稿の数Nとの関
係は、次式(5)で与えられる。
In the second step, the window spacing of the mask member 16 is determined. Consider now that the mask member 16 has two windows 16a and 16b as shown in FIG.
The two windows 16a and 16b are for selectively transmitting the + 1st order light and the −1st order light of the diffracted light from the diffraction grating 14. The spacing between the two windows is determined as follows. First, the distance from the window 16a for the + 1st order light to the CCD screen and -1
When the difference from the distance from the window 16b for the next light to the screen of the CCD 17 is defined as the optical path difference OPD (Optical Path Difference), the relationship with the number N of diffraction interference images projected on the screen of the CCD 17 is expressed by the following equation (5). Given.

【0048】[0048]

【数5】OPD=(N/2)λ …(5)## EQU5 ## OPD = (N / 2) λ (5)

【0049】また投影光学系6の開口数NAと2つの窓
間の間隔dとOPDとの関係は、次式(6)で与えられ
る。
The relationship between the numerical aperture NA of the projection optical system 6, the distance d between the two windows and the OPD is given by the following equation (6).

【0050】[0050]

【数6】OPD/d=NA …(6)## EQU6 ## OPD / d = NA (6)

【0051】式(5)と式(6)からOPDを消去すれ
ば、次の関係式(7)が得られる。
If OPD is eliminated from the equations (5) and (6), the following relational equation (7) is obtained.

【0052】[0052]

【数7】(N/2)λ=d×NA …(7)(7) (N / 2) λ = d × NA (7)

【0053】光源がEUV(λ=13.4nm)で、C
CD17画面上の干渉稿の本数がN=80で投影光学系
6の開口数NAが0.25の4倍縮小投影光学である場
合、式(7)からd=2144nmが得られる。このよ
うにしてマスク部材に空ける窓の間隔を決定することが
できる。
The light source is EUV (λ = 13.4 nm) and C
When the number of interference drafts on the CD17 screen is N = 80 and the projection optical system 6 is a 4 × reduction projection optical system with a numerical aperture NA of 0.25, d = 2144 nm is obtained from the equation (7). In this way, the distance between the windows in the mask member can be determined.

【0054】第3段階において、ピンホール部材13に
開いたピンホールの直径Φを決定する。ピンホールの直
径Φは、次式(8)で与えられ、投影光学系6で開口数
NAが0.25である場合約107nmとなる。
In the third step, the diameter Φ of the pinhole opened in the pinhole member 13 is determined. The diameter Φ of the pinhole is given by the following equation (8), and is about 107 nm when the numerical aperture NA is 0.25 in the projection optical system 6.

【0055】[0055]

【数8】Φ=λ/(2×(NA/4)) …(8)Φ = λ / (2 × (NA / 4)) (8)

【0056】またマスク上に現れるスポットの大きさは
この4倍縮小投影光学系である場合、ピンホール部材1
3に空けられたピンホールの直径をΦとするとΦ/4と
なる。するとスポットの大きさは約27nmとなる。こ
れは収差のない理想的な場合であり、実際収差の有る場
合はさらに大きなスポットとなる。以上のことを考慮し
て0次光や±2次以上の高次光が遮断され、かつ±1次
光が十二分に窓を通過するよう、本実施の形態ではに窓
の大きさlを一辺約250nm程度としている。
In the case of this 4 × reduction projection optical system, the size of the spot appearing on the mask is the pinhole member 1
If the diameter of the pinhole formed in 3 is Φ, then Φ / 4. Then, the spot size becomes about 27 nm. This is an ideal case where there is no aberration, and when there is actually aberration, the spot becomes even larger. In consideration of the above, in order to block 0th-order light and high-order light of ± 2nd-order or more and to allow ± 1st-order light to pass through the window more than enough, in the present embodiment, the window size 1 is set to one side. It is about 250 nm.

【0057】以上のようにして光源の波長λや、被検光
学系の開口数や、被検光学系の審査・評価に必要な分解
能から本発明の波面収差計測機10のCCD17画面上
での回折干渉稿の本数や、マスク部材16の窓の間隔及
びサイズや、ピンホールの直径を決定することができ
る。
As described above, from the wavelength λ of the light source, the numerical aperture of the optical system to be tested, and the resolution required for the examination / evaluation of the optical system to be tested, the wavefront aberration measuring instrument 10 of the present invention can display the image on the CCD 17 screen. The number of diffraction interference patterns, the interval and size of the windows of the mask member 16, and the diameter of the pinhole can be determined.

【0058】ここで回折光選択手段について説明する。
本実施の形態において回折光選択手段はマスク部材16
に開口した窓16a及び16bがそれぞれ回折光の+1
次光及び−1次光を確実に通過させることである。その
ためには回折光の0次光のスポット像を見つけ出し、そ
れを確実にマスク部材16の開口した窓16a、と窓1
6bの中間部16cに照射することが求められる。0次
光の像は、回折格子14を外した場合の投影光学系6の
焦点位置に形成されるので、光路中の回折格子14を一
度外し焦点位置にマスク部材16の0次光照射位置に集
光されたEUV光が照射されるように光学装置を組み上
げればよい。次に回折格子14を設置して、上記マスク
部材16の開口窓16a及び16bの略中央位置に+1
次光及び−1次光が入射するように、回折格子14を移
動させて調整する。このように光学機器を設置すれば、
CCD17画面上に投影光学系6の歪みを反映した干渉
稿が現れ、解析が容易で必要な分解能を有した波面収差
計測装置10を得ることができる。
Here, the diffracted light selection means will be described.
In the present embodiment, the diffracted light selection means is the mask member 16
The windows 16a and 16b opened in the
This is to ensure that the second light and the first light are transmitted. For that purpose, a spot image of the 0th-order light of the diffracted light is found, and the spot image is surely opened in the window 16a of the mask member 16 and the window 1.
It is required to irradiate the intermediate portion 16c of 6b. Since the image of the 0th-order light is formed at the focal position of the projection optical system 6 when the diffraction grating 14 is removed, the diffraction grating 14 in the optical path is once removed and the mask member 16 is irradiated with the 0th-order light at the focal position. The optical device may be assembled so that the condensed EUV light is emitted. Next, the diffraction grating 14 is installed, and the mask member 16 is provided with +1 at substantially the center position of the opening windows 16a and 16b.
The diffraction grating 14 is moved and adjusted so that the second-order light and the −1st-order light are incident. If you install optical equipment like this,
An interference draft reflecting the distortion of the projection optical system 6 appears on the screen of the CCD 17, and the wavefront aberration measuring apparatus 10 that is easy to analyze and has a required resolution can be obtained.

【0059】尚、上記の説明において0次光を特定する
ために、一度回折格子14を外したが、必ずしもそうす
る必要はなく、0次光が他の高次光に比べて強度が一番
強く現れることを用いて0次光を特定する等、他の方法
を用いてもかまわない。
In the above description, the diffraction grating 14 was once removed in order to identify the 0th-order light, but it is not always necessary to do so, and the 0th-order light has the highest intensity as compared with other higher-order lights. Other methods, such as specifying the 0th-order light by using the above, may be used.

【0060】以上の評価手順により算出された波面収差
wが露光装置1の投影光学系6として許容される波面収
差であるかないかが判り、投影光学系6の審査・評価が
精度よくできる。
Whether or not the wavefront aberration w calculated by the above evaluation procedure is the wavefront aberration allowed by the projection optical system 6 of the exposure apparatus 1 can be known, and the projection optical system 6 can be examined and evaluated accurately.

【0061】次に、本発明の第2の実施形態としてマス
ク部材を用いないで被検光学系6を評価する解析手段を
有する波面収差計測機について説明する。(第2実施形
態では、波面収差計測機10の基本的構成は上記のもの
(以下第1実施形態と称する)と同じであるが、マスク
部材16を有しないことを特徴としている。)実際の計
測においては、回折光の強度は概ね(同一回折像内、即
ち回折光強度の同一包絡線内では)0次光、±1次光、
±2次光、…の順で弱まっていくので、解析に用いる±
1次光を抽出する際に±2次光に比べると0次光を排除
することは難しい。そこで、観測される干渉縞強度から
演算手法によって0次光成分を排除しようとするのが、
第2実施形態における解析手段である。
Next, as a second embodiment of the present invention, a wavefront aberration measuring machine having an analyzing means for evaluating the optical system 6 to be tested without using a mask member will be described. (In the second embodiment, the basic configuration of the wavefront aberration measuring device 10 is the same as that described above (hereinafter referred to as the first embodiment), but is characterized in that the mask member 16 is not provided.) In the measurement, the intensities of the diffracted light are approximately (in the same diffraction image, that is, in the same envelope of the diffracted light intensity) zero-order light, ± first-order light,
± 2nd order light, ...
When extracting the primary light, it is more difficult to exclude the 0th light than the ± 2nd light. Therefore, it is attempted to eliminate the 0th-order light component from the observed interference fringe intensity by a calculation method.
It is an analysis means in the second embodiment.

【0062】その解析手段は、まず±2次以上の回折光
は無視するとする、残りの−1次、0次、+1次の回折
光の波動関数は平面波近似でそれぞれ次の式(9)、
(10)、(11)で与えることができる。
The analyzing means first ignores the diffracted light of ± 2nd order or higher. The wave functions of the remaining −1st order, 0th order, and + 1st order diffracted light are expressed by the following equations (9) and
It can be given in (10) and (11).

【0063】[0063]

【数9】 [Equation 9]

【0064】[0064]

【数10】 [Equation 10]

【0065】[0065]

【数11】 [Equation 11]

【0066】ここで、aは振幅成分、kは波数[次元:
1/L]、wは波面収差[次元:L]である。このと
き、実際に観測される干渉縞強度は、次式(12)のよ
うに与えられる。
Here, a is an amplitude component, k is a wave number [dimension:
1 / L] and w are wavefront aberrations [dimension: L]. At this time, the actually observed interference fringe intensity is given by the following equation (12).

【0067】[0067]

【数12】 [Equation 12]

【0068】シアリング干渉計では位相を横にずらすの
で、そのために回折格子14を移動部材18にて格子の
ピッチ方向に移動両Δx移動させる。このときこの移動
量Δxに対応して変化する位相のずれの量を位相シフト
量Δφとする。回折格子周期をpだとすると、1周期移
動させた場合位相シフト量Δφは2πであるため、次の
式(13)および(14)の関係を満たす。ここで、m
は回折光の次数である。
Since the phase is laterally shifted in the shearing interferometer, the diffraction grating 14 is moved by the moving member 18 in the pitch direction of the grating by the moving member 18 for this purpose. At this time, the amount of phase shift that changes corresponding to this movement amount Δx is referred to as the phase shift amount Δφ. Assuming that the diffraction grating period is p, the phase shift amount Δφ is 2π when moved by one period, so that the relationships of the following expressions (13) and (14) are satisfied. Where m
Is the order of diffracted light.

【0069】[0069]

【数13】Δφ= 2πw×Δx … (13)Δφ = 2πw × Δx (13)

【0070】[0070]

【数14】w×p= m … (14)(14) w × p = m (14)

【0071】回折格子の移動量Δxに対して、回折格子
14を格子のピッチ方向にp/8ずつずらした場合(9
ステップにて元に戻るためこの方法を9バケット法と称
する)の0次、±1次の位相シフト量Δφを次の表1に
示す。
When the diffraction grating 14 is shifted by p / 8 in the pitch direction of the grating with respect to the movement amount Δx of the diffraction grating (9
This method is referred to as a 9-bucket method in order to return to the original in step), and the 0th and ± 1st order phase shift amounts Δφ are shown in Table 1 below.

【0072】[0072]

【表1】 [Table 1]

【0073】位相シフト量Δφおよび上の式(13)、
(14)を考慮に入れての第nステップでの干渉縞強度
nは、位相シフト量Δφを波動関数式(9)〜(1
1)の位相部分に加えればよく、すると一般に次の式
(15)のように書ける。ここで、Nは格子移動の分割
数である。例えば9バケット法では8であり、後に示す
7バケット法では6である。後の便宜のために新しい指
標lを導入しておく、N=2lであり、l=3、4、…
である。
The phase shift amount Δφ and the above equation (13),
Interference fringe intensity g n of the n-th step of taking into account the (14), the wave function expression amount of phase shift [Delta] [phi (9) ~ (1
It suffices to add it to the phase portion of 1), and in general, it can be written as the following expression (15). Here, N is the number of divisions of lattice movement. For example, it is 8 in the 9-bucket method and 6 in the 7-bucket method described later. A new index l is introduced for convenience of later, N = 2l, l = 3, 4, ...
Is.

【0074】[0074]

【数15】 [Equation 15]

【0075】表1に示された9バケット法での位相変化
量Δφ式(15)に代入すると、式(12)と同様に干
渉縞強度値g2からg9を表す下記の式(16)〜(2
3)が得られる。
Substituting into the phase change amount Δφ equation (15) in the 9-bucket method shown in Table 1, the following equation (16) representing the interference fringe intensity values g 2 to g 9 is obtained as in the equation (12). ~ (2
3) is obtained.

【0076】[0076]

【数16】 [Equation 16]

【0077】[0077]

【数17】 [Equation 17]

【0078】[0078]

【数18】 [Equation 18]

【0079】[0079]

【数19】 [Formula 19]

【0080】[0080]

【数20】 [Equation 20]

【0081】[0081]

【数21】 [Equation 21]

【0082】[0082]

【数22】 [Equation 22]

【0083】[0083]

【数23】 [Equation 23]

【0084】以上より、次の2式(24)および(2
5)が得られる。
From the above, the following two equations (24) and (2
5) is obtained.

【0085】[0085]

【数24】 (g4+g8)−(g2+g6)=8a+1-1 sin[k(w+1−w-1)] …(24)[Number 24] (g4 + g8) - (g2 + g6) = 8a +1 a -1 sin [k (w +1 -w -1)] ... (24)

【0086】[0086]

【数25】 (g1+g5)−(g3+g7)=8a+1-1 cos[k(w+1−w-1)] …(25)[Number 25] (g1 + g5) - (g3 + g7) = 8a +1 a -1 cos [k (w +1 -w -1)] ... (25)

【0087】式(24)と式(25)から、9バケット
法(8分割)による0次光を除いた位相k(w+1
-1)を求める次の解析式(26)が得られる。
From equations (24) and (25), the phase k (w +1 −) obtained by removing the 0th-order light by the 9-bucket method (8 divisions) is used.
The following analytical expression (26) for obtaining w −1 ) is obtained.

【0088】[0088]

【数26】 [Equation 26]

【0089】または、g1=g9であることを考慮すると
次の9バケット法による0次光の影響を除いた位相k
(w+1−w-1)を求める次の解析式(27)が得られ
る。
Alternatively, considering that g 1 = g 9 , the phase k excluding the influence of the 0th-order light by the following 9-bucket method is used.
The following analytical expression (27) for obtaining (w +1 −w −1 ) is obtained.

【0090】[0090]

【数27】 [Equation 27]

【0091】この式(26)や式(27)から、+1次
光の波面収差w+1と−1次光の波面収差w-1との差Δw
(=w+1−w-1)がわかる。この差Δwを波面収差の微
分値とみなし被検光学系6の波面収差を検出する。
[0091] The difference from the equation (26) or equation (27), + 1-order light of the wavefront aberration w +1 and -1 order light wavefront aberration w -1 [Delta] w
(= W + 1 -w- 1 ) is known. The difference Δw is regarded as the differential value of the wavefront aberration, and the wavefront aberration of the optical system 6 to be detected is detected.

【0092】上に示した格子間隔を8分割した9バケッ
ト法以外にも格子間隔を6分割した(7ステップで同位
相に戻る)7バケット法がある。7バケット法での回折
格子の移動量Δxに対して、回折格子14を格子のピッ
チ方向にp/6ずつずらした場合の0次、±1次の位相
シフト量Δφを次の表2に示す。
There is a 7-bucket method in which the lattice spacing is divided into 6 (returning to the same phase in 7 steps), in addition to the 9-bucket method in which the lattice spacing is divided into 8 parts. Table 2 shows the 0th and ± 1st order phase shift amounts Δφ when the diffraction grating 14 is shifted by p / 6 in the grating pitch direction with respect to the movement amount Δx of the diffraction grating in the 7-bucket method. .

【0093】[0093]

【表2】 [Table 2]

【0094】この表2に示された7バケット法でのパラ
メータを、第nステップでの干渉縞強度gnの一般式
(15)に代入すると次の式(28)〜(34)ように
書ける。ここで、N(=2l)=6である。
Substituting the parameters in the 7-bucket method shown in Table 2 into the general formula (15) of the interference fringe intensity g n at the nth step, the following formulas (28) to (34) can be written. . Here, N (= 2l) = 6.

【0095】[0095]

【数28】 [Equation 28]

【0096】[0096]

【数29】 [Equation 29]

【0097】[0097]

【数30】 [Equation 30]

【0098】[0098]

【数31】 [Equation 31]

【0099】[0099]

【数32】 [Equation 32]

【0100】[0100]

【数33】 [Expression 33]

【0101】[0101]

【数34】 [Equation 34]

【0102】以上の式(28)〜(34)より、次の式
(35)〜(37)が得られる。
From the above equations (28) to (34), the following equations (35) to (37) are obtained.

【0103】[0103]

【数35】 [Equation 35]

【0104】[0104]

【数36】 [Equation 36]

【0105】[0105]

【数37】 [Equation 37]

【0106】これら式(35)〜(37)から次の7バ
ケット法による0次光の影響を除いた位相k(w+1−w
-1)を求める次の解析式(38)が得られる。
From these equations (35) to (37), the phase k (w + 1- w) is obtained by removing the influence of the 0th order light by the following 7-bucket method.
The following analytical expression (38) for obtaining −1 ) is obtained.

【0107】[0107]

【数38】 [Equation 38]

【0108】これまで、9バケット法と7バケット法に
ついて述べてきたが、回折格子の格子間隔を偶数(2
l:l=1、2、3、…)分割するのであれば、一般に
0次光を補整することが出来る。回折格子を1周期移動
させた場合位相シフト量Δφは2πであるため、偶数分
割するとある干渉強度gi(i=1、2、…、l+1)
とさらにπ位相ずれたもの(gi+l)もの和をとると0
次光の成分(a0やw0)の寄与が消える式が得られる。
その式は式(15)に直接代入すれば直接得られ、具体
的に書き下すと次の式(39)のようになる。7バケッ
ト以上では、式(39)から得たいくつかの(gi+g
i+l)を組み合わせると必ず振幅成分a-1、a0、a+1
相k(w+1−w-1)を算出する式が得られる(証明
略)。
Up to this point, the 9-bucket method and the 7-bucket method have been described.
l: l = 1, 2, 3, ...) In general, 0th-order light can be compensated. When the diffraction grating is moved by one cycle, the phase shift amount Δφ is 2π, so that even division results in a certain interference intensity g i (i = 1, 2, ..., L + 1).
And the sum of those (g i + l ) that are further shifted by π phase is 0
An equation is obtained in which the contribution of the next-light component (a 0 or w 0 ) disappears.
The equation can be directly obtained by directly substituting it into the equation (15), and when specifically written down, it becomes the following equation (39). For more than 7 buckets, some (g i + g obtained from equation (39)
When i + l ) is combined, an expression for calculating the amplitude components a -1 , a 0 , a +1 phase k (w +1 -w -1 ) is always obtained (proof not shown).

【0109】[0109]

【数39】 [Formula 39]

【0110】また、9バケット法より細かい分割(11
バケット、13バケット、…)での解析を行った場合、
より少ない分割(バケット)数で同等の波面収差計測を
行うことができることがある。例えば16分割の17バ
ケット法は、8分割の9バケット法をそのまま含んでい
るので、9バケット法で十分である。多分割の方法は、
各干渉縞強度測定が統計的に平均化される点で有益であ
るが、逆に高精度で細かい制御が求められ、コスト的に
も不利である。このため本来の波動関数の振幅を知らな
くとも解析できる点で9バケット法や7バケット法が実
用上有益となる。
Further, a finer division (11
Bucket, 13 buckets, ...)
It may be possible to perform equivalent wavefront aberration measurement with a smaller number of divisions (buckets). For example, the 16-partition 17-bucket method includes the 8-partition 9-bucket method as it is, and thus the 9-bucket method is sufficient. The method of multi-division is
This is advantageous in that each interference fringe intensity measurement is statistically averaged, but on the contrary, high precision and fine control are required, which is also disadvantageous in cost. Therefore, the 9-bucket method and the 7-bucket method are practically useful in that they can be analyzed without knowing the original amplitude of the wave function.

【0111】式(26)、(27)および(38)から
k(w+1−w-1)を求め、さらにそこから波面収差Δw
(=w+1−w-1)を求めることで被検光学系を審査・評
価することができる。
From the equations (26), (27) and (38), k (w +1 −w −1 ) is obtained, and the wavefront aberration Δw is obtained from the obtained value.
The test optical system can be examined and evaluated by obtaining (= w + 1 -w- 1 ).

【0112】以上の評価手順により第2実施形態によっ
て算出された波面収差wが露光装置1の投影光学系6と
して許容される波面収差であるかないかが判り、投影光
学系6の審査・評価が精度よくできる。
By the above evaluation procedure, it is possible to know whether or not the wavefront aberration w calculated by the second embodiment is the wavefront aberration allowed as the projection optical system 6 of the exposure apparatus 1, and the examination / evaluation of the projection optical system 6 is accurate. I can do it well.

【0113】これまで、本発明の第1実施形態として+
1次および−1次回折光を選択的に透過するマスク部材
を設けて構成する波面収差計測機について説明し、第2
実施形態として0次および±1次光の混合から複数のフ
リンジスキャン法によって得られる干渉強度から算術的
に0次光成分を補整する解析手段を有して構成される波
面収差計測機について説明してきた。
Up to now, as the first embodiment of the present invention,
A wavefront aberration measuring device configured by providing a mask member that selectively transmits the 1st-order and -1st-order diffracted light will be described.
As an embodiment, a wavefront aberration measuring machine configured to have an analyzing unit that arithmetically corrects a 0th-order light component from interference intensities obtained by mixing a plurality of fringe scan methods from a mixture of 0th-order light and ± 1st-order light has been described. It was

【0114】次に本発明の第3の実施形態として、ピン
ホール部材13より理想的球面波を作り、被検光学系6
に照射して、被検光学系6からの出射光を回折格子14
にて回折干渉させ、干渉縞を検出光学系(CCD17)
にて観測する、といった第1および第2実施形態に共通
の基本的構成はそのままに、さらに第1実施形態と同様
にマスク部材16を回折格子14とCCD17の間に配
設し、(さらに詳しくは被検光学系の略結像位置に配設
し、)そのマスク部材16を透過した+1次および−1
次の回折光によるCCD17の受光面上に出来る干渉縞
の強度を用いた第2実施形態での解析手段を用いる構成
を有する波面収差計測機を考える。
Next, as a third embodiment of the present invention, an ideal spherical wave is produced from the pinhole member 13 and the optical system 6 under test is detected.
The light emitted from the optical system 6 to be measured is irradiated onto the diffraction grating 14
Optical interference (CCD17)
The basic structure common to the first and second embodiments, such as the observation in step 1, is left as it is, and the mask member 16 is arranged between the diffraction grating 14 and the CCD 17 as in the first embodiment. Is disposed at a substantially image forming position of the optical system to be inspected, and +1 through the mask member 16 and -1 and -1.
Consider a wavefront aberration measuring device having a configuration using the analyzing means in the second embodiment using the intensity of the interference fringes formed on the light receiving surface of the CCD 17 by the next diffracted light.

【0115】マスク部材16によって±2次光以上の回
折光は十分遮蔽されるが、0次光については強度が回折
光中で一番強いことから、マスク部材16の開口窓16
aもしくは16bから0次光の成分が漏れる虞がある。
しかしながら第3の実施形態では、さらに0次光の成分
を解析手段によって補整出来るので十二分な波面収差の
算出ができ、被検光学系6の審査・評価が精度よくでき
る。
The mask member 16 sufficiently blocks the diffracted light of ± 2nd order light or more, but the intensity of the 0th order light is the strongest among the diffracted lights.
The 0th-order light component may leak from a or 16b.
However, in the third embodiment, since the component of the 0th-order light can be further corrected by the analyzing means, the wavefront aberration can be calculated sufficiently, and the examination / evaluation of the optical system 6 to be inspected can be performed with high accuracy.

【0116】尚、第1、第2および第3の実施形態にお
いても上記のように波面収差計測機10を構成し、その
計測結果を上記のように解析するのであるならば、EU
V光(軟X線光)をもたらす光源は必ずしも空間コヒー
レンス性の高いシンクロトロン放射光源でなくともよ
く、それよりも空間コヒーレンス性の低いレーザプラズ
マ光源や放電プラズマ光源であっても波面収差wを算出
することができ、これらEUV光源を用いたEUV露光
装置の審査・評価をすることができる。
In the first, second and third embodiments as well, if the wavefront aberration measuring machine 10 is constructed as described above and the measurement result is analyzed as described above, the EU
The light source that provides V light (soft X-ray light) does not necessarily have to be a synchrotron radiation light source with high spatial coherence, and even if it is a laser plasma light source or discharge plasma light source with lower spatial coherence, the wavefront aberration w It is possible to calculate and evaluate / evaluate the EUV exposure apparatus using these EUV light sources.

【0117】また、第1、第2および第3の実施形態の
構成に、さらにマスク部材16とCCD17の間に球面
波を平面波に変換する非球面波反射鏡を設けてもよい。
横ずれした球面波が干渉する場合、被検光学系が無収差
であっても、配置上の原因によって生じるコマ収差によ
り測定原理誤差を有する干渉稿が形成されるが、球面波
を平面波に変換することにより、配置上の原因によって
生じるコマ収差を除くことができるので、直線状の干渉
稿を形成することができる。そして、開口窓16a及び
16bを有するマスク部材16と切り換え可能なピンホ
ールと開口を有するマスク部材を設けてもよい。マスク
部材16からピンホールと開口を有するマスク部材に切
り換えた場合、ピンホールから参照光として理想的な回
折球面波が生じ、開口からは測定光が生じる点回折干渉
測定方式に切り換えることができる。点回折干渉測定の
場合は、比較的波面収差の小さな被検光学系を高精度に
測定することに適している。一方、シアリング干渉測定
の場合は、大きな波面収差を有する被検光学系であって
も測定することができる。
Further, an aspherical wave reflecting mirror for converting a spherical wave into a plane wave may be provided between the mask member 16 and the CCD 17 in the configurations of the first, second and third embodiments.
When laterally offset spherical waves interfere with each other, even if the optical system under test is aberration-free, an interferogram having a measurement principle error will be formed due to coma aberration caused by the arrangement, but the spherical wave is converted into a plane wave. As a result, it is possible to eliminate coma aberration caused by the arrangement, so that it is possible to form a linear interference pattern. A mask member 16 having the opening windows 16a and 16b and a mask member having a switchable pinhole and an opening may be provided. When the mask member 16 is switched to a mask member having a pinhole and an opening, it is possible to switch to a point diffraction interferometric measurement method in which an ideal diffractive spherical wave is generated from the pinhole as reference light and measurement light is generated from the opening. In the case of point diffraction interferometry, it is suitable for highly accurately measuring an optical system to be tested having a relatively small wavefront aberration. On the other hand, in the case of shearing interferometry, even an optical system under test having a large wavefront aberration can be measured.

【0118】[0118]

【発明の効果】以上説明したように、本発明における波
面収差計測機によれば、ミラー(反射)型光学系に対す
る回折格子シアリング干渉を用いた波面収差計測機を構
成でき、マスク部材および解析手段が0次や±2以上の
高次の回折光を遮断するので、0次及び高次の回折光の
影響による煩瑣な解析を必要とせずに、計測による審査
・評価に必要な分解能を得ることのできる波面収差計測
機を提供することができる。
As described above, according to the wavefront aberration measuring instrument of the present invention, a wavefront aberration measuring instrument using diffraction grating shearing interference with respect to a mirror (reflection) type optical system can be constructed, and a mask member and an analyzing means. Since it blocks diffracted light of 0th order or higher than ± 2, it does not require complicated analysis due to the influence of diffracted light of 0th order or higher order, and obtains the resolution required for examination / evaluation by measurement. It is possible to provide a wavefront aberration measuring device capable of performing the above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態を説明するための(半導
体)露光装置の模式図を示す。
FIG. 1 is a schematic view of a (semiconductor) exposure apparatus for explaining an embodiment of the present invention.

【図2】本発明の一実施の形態における波面収差計測機
を説明するための模式図を示す。
FIG. 2 is a schematic diagram for explaining a wavefront aberration measuring device according to an embodiment of the present invention.

【図3】本発明の一実施の形態における波面収差計測機
のマスク部材を説明するための模式図を示す。
FIG. 3 is a schematic diagram for explaining a mask member of the wavefront aberration measuring device according to the embodiment of the present invention.

【図4】本発明の一実施の形態における波面収差計測機
の構成を決定方法を説明するための流れ図を示す。
FIG. 4 is a flow chart for explaining a method of determining the configuration of the wavefront aberration measuring machine according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 露光装置 2 光源 4 レチクル 6 投影光学系(被検光学系、被検光学系保持装置) 7 ウエハー 10 波面収差計測機 13 ピンホール部材 14 回折格子 16 マスク部材 16a、16b 窓(開口部) 17 CCD(検出光学系) 1 Exposure device 2 light sources 4 reticle 6 Projection optical system (test optical system, test optical system holding device) 7 wafers 10 Wavefront aberration measuring instrument 13 pinhole material 14 diffraction grating 16 Mask member 16a, 16b windows (openings) 17 CCD (detection optical system)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 幹彦 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 (72)発明者 杉崎 克己 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 (72)発明者 村上 勝彦 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 Fターム(参考) 2G086 HH06 2H097 CA15 LA10 5F046 FA10 GA03 GA14 GB01 GB03 GB07 GB09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mikihiko Ishii             Marunouchi 3 2-3 No. 3 shares, Chiyoda-ku, Tokyo             Ceremony Company Nikon (72) Inventor Katsumi Sugisaki             Marunouchi 3 2-3 No. 3 shares, Chiyoda-ku, Tokyo             Ceremony Company Nikon (72) Inventor Katsuhiko Murakami             Marunouchi 3 2-3 No. 3 shares, Chiyoda-ku, Tokyo             Ceremony Company Nikon F term (reference) 2G086 HH06                 2H097 CA15 LA10                 5F046 FA10 GA03 GA14 GB01 GB03                       GB07 GB09

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 所定波長の光を供給する光源と、 前記光源からの光を通過させて球面波の光を発生させる
ピンホールを有したピンホール部材と、 被検光学系を所定位置に保持し、前記球面波の光を前記
被検光学系に照射させるとともに前記被検光学系から光
を出射させる被検光学系保持装置と、 前記被検光学系からの出射光を受ける位置に配置された
回折格子と、 前記被検光学系からの出射光を受けることにより前記回
折格子から出射される光を受ける位置に配置されたマス
ク部材と、 前記マスク部材からの回折光の干渉稿を測定する検出光
学系とからなる回折格子シアリング干渉を用いた波面収
差計測機において、 前記マスク部材が所定次数の回折光のみを選択的に透過
させる回折光選択手段を有することを特徴とする波面収
差計測機。
1. A light source for supplying light of a predetermined wavelength, a pinhole member having a pinhole for transmitting light from the light source to generate light of a spherical wave, and a test optical system held at a predetermined position. Then, a test optical system holding device that irradiates the test optical system with the spherical wave light and emits light from the test optical system, and is arranged at a position for receiving light emitted from the test optical system. A diffraction grating, a mask member arranged at a position for receiving light emitted from the diffraction grating by receiving light emitted from the optical system to be measured, and an interference pattern of diffracted light from the mask member is measured. A wavefront aberration measuring instrument using diffraction grating shearing interference composed of a detection optical system, wherein the mask member has a diffracted light selecting means for selectively transmitting only diffracted light of a predetermined order. .
【請求項2】 前記検出光学系の受光部材が荷電結合素
子(CCD)であることを特徴とする請求項1記載の波
面収差計測機。
2. The wavefront aberration measuring machine according to claim 1, wherein the light receiving member of the detection optical system is a charge coupled device (CCD).
【請求項3】 前記マスク部材が前記被検光学系によっ
て集光された前記球面波の略結像位置に配置されている
ことを特徴とする請求項1又は請求項2に記載の波面収
差計測機。
3. The wavefront aberration measurement according to claim 1 or 2, wherein the mask member is arranged at a substantially image forming position of the spherical wave focused by the optical system to be tested. Machine.
【請求項4】 前記回折光選択手段は、前記マスク部材
に所定個数の開口部を設けて構成されることを特徴とす
る請求項1から請求項3のいずれか一項に記載の波面収
差計測機。
4. The wavefront aberration measurement according to claim 1, wherein the diffracted light selection unit is configured by providing a predetermined number of openings in the mask member. Machine.
【請求項5】 前記マスク部材に設けられた開口部を透
過する回折光が+1次と−1次の回折光であることを特
徴とする請求項4に記載の波面収差計測機。
5. The wavefront aberration measuring device according to claim 4, wherein the diffracted light transmitted through the opening provided in the mask member is diffracted light of + 1st order and −1st order.
【請求項6】 前記被検光学系がレチクル面に描画され
ている回路パターンをウェハー面上に転写する露光投影
系であり、前記被検光学系保持装置により前記被検光学
系が前記所定位置に保持された状態で、前記レチクル面
が配置される位置に前記ピンホール部材を配置し、且つ
前記ウェハー面が配置される位置に前記マスク部材を配
置することを特徴とする請求項1から請求項5のいずれ
か一項に記載の波面収差計測機。
6. The test optical system is an exposure projection system for transferring a circuit pattern drawn on a reticle surface onto a wafer surface, and the test optical system holding device causes the test optical system to move to the predetermined position. 2. The method according to claim 1, wherein the pinhole member is arranged at a position where the reticle surface is arranged, and the mask member is arranged at a position where the wafer surface is arranged while being held by the wafer. Item 6. The wavefront aberration measuring device according to any one of items 5.
【請求項7】 前記光源が、シンクロトロン放射光源、
レーザプラズマ光源あるいは、放電プラズマ光源のいず
れかの1つであることを特徴とする請求項1から請求項
6に記載の波面収差計測機。
7. The light source is a synchrotron radiation source,
7. The wavefront aberration measuring device according to claim 1, wherein the wavefront aberration measuring device is one of a laser plasma light source and a discharge plasma light source.
【請求項8】 前記回折光選択手段と前記受光部材との
間に球面波を平面波に変換する手段を備えたことを特徴
とする請求項1から請求項7のいずれか一項に記載の波
面収差計測機。
8. The wavefront according to claim 1, further comprising means for converting a spherical wave into a plane wave between the diffracted light selecting means and the light receiving member. Aberration measuring machine.
【請求項9】 前記回折光選択手段と切り換え可能なピ
ンホールと開口とを有するマスク部材を備えたことを特
徴とする請求項1から請求項8のいずれか一項に記載の
波面収差計測機。
9. The wavefront aberration measuring device according to claim 1, further comprising a mask member having the diffracted light selection means, a switchable pinhole, and an opening. .
【請求項10】 所定波長の光を供給する光源と、 前記光源からの光を通過させて球面波の光を発生させる
ピンホールを有したピンホール部材と、 被検光学系を所定位置に保持し、前記球面波の光を前記
被検光学系に照射させるとともに前記被検光学系から光
を出射させる被検光学系保持装置と、 前記被検光学系からの出射光を受ける位置に配置された
回折格子と、 前記回折格子からの回折光の干渉稿を測定する検出光学
系とからなる回折格子シアリング干渉を用いた波面収差
計測機において、 所定次数の回折光成分のみを選択的に解析する回折光解
析手段を有することを特徴とする波面収差計測機。
10. A light source for supplying light of a predetermined wavelength, a pinhole member having a pinhole for transmitting light from the light source to generate light of a spherical wave, and an optical system to be tested held at a predetermined position. Then, a test optical system holding device that irradiates the test optical system with the spherical wave light and emits light from the test optical system, and is arranged at a position for receiving light emitted from the test optical system. In a wavefront aberration measuring instrument using diffraction grating shearing interference, which comprises a diffraction grating and a detection optical system for measuring an interference pattern of the diffracted light from the diffraction grating, only a diffracted light component of a predetermined order is selectively analyzed. A wavefront aberration measuring instrument having diffracted light analyzing means.
【請求項11】 前記回折光解析手段が、前記回折格子
を移動させて縞走査を行うフリンジスキャン手段を有す
ることを特徴とする請求項10に記載の波面収差計測
機。
11. The wavefront aberration measuring device according to claim 10, wherein the diffracted light analysis unit includes a fringe scanning unit that moves the diffraction grating to perform fringe scanning.
【請求項12】 前記回折光解析手段は0次の回折光成
分を補整して前記被検光学系の波面収差を算出すること
を特徴とする請求項10または11に記載の波面収差計
測機。
12. The wavefront aberration measuring device according to claim 10, wherein the diffracted light analysis means corrects a 0th-order diffracted light component to calculate a wavefront aberration of the optical system under test.
【請求項13】 前記回折光解析手段は0次および±2
次以上の回折光成分を補整して前記被検光学系の波面収
差を算出することを特徴とする請求項10または11に
記載の波面収差計測機。
13. The diffracted light analysis means is 0 order and ± 2.
The wavefront aberration measuring instrument according to claim 10 or 11, wherein the wavefront aberration of the optical system to be tested is calculated by compensating for diffracted light components of the following or higher order.
【請求項14】 前記0次光の補整を次式 (ここで、a+1、a0、a-1はそれぞれ+1次光、0次
光、−1次光の波動の振幅成分であり、kは波数であ
り、w+1、w-1はそれぞれ+1次光、−1次光の波面収
差であり、gは0次、±1次の3成分もしくは±1次
の2成分の回折光の干渉光強度値であり、指標iは回折
格子の1ピッチを2l(lは3以上の正数)に分割した
場合i=1、2、3、…、l+1である。)で行うこと
特徴とする請求項11から13のいずれかに記載の波面
収差計測機。
14. The compensation of the 0th-order light is expressed by the following equation: (Here, a +1 , a 0 , and a -1 are the amplitude components of the waves of the + 1st order light, the 0th order light, and the -1st order light, respectively, k is the wave number, and w +1 and w -1 are These are wavefront aberrations of the + 1st order light and the −1st order light, respectively, and g i is the interference light intensity value of the diffracted light of the 0th order, ± 1st order three components or ± 1st order 2 components, and the index i is the diffraction grating. 14. When 1 pitch of is divided into 2l (l is a positive number of 3 or more), i = 1, 2, 3, ..., l + 1. Wavefront aberration measuring instrument.
【請求項15】 前記被検光学系の波面収差を (ここで、kは波数であり、w+1、w-1はそれぞれ+1
次光、−1次光の波面収差であり、g1、g2、g3
…、g9は回折格子の1ピッチを8分割した場合の0
次、±1次の3成分もしくは±1次の2成分の回折光の
干渉光強度値である。)で算出すること特徴とする請求
項11から13のいずれかに記載の波面収差計測機。
15. The wavefront aberration of the optical system under test (Where k is the wave number and w +1 and w -1 are +1 respectively
The wavefront aberrations of the second-order light and the first-order light, g 1 , g 2 , g 3 ,
…, G 9 is 0 when 1 pitch of the diffraction grating is divided into 8
Next, it is the interference light intensity value of the diffracted light of the three components of the ± 1st order or the two components of the ± 1st order. ) The wavefront aberration measuring device according to any one of claims 11 to 13, wherein
【請求項16】 前記被検光学系の波面収差を (ここで、kは波数であり、w+1、w-1はそれぞれ+1
次光、−1次光の波面収差であり、g1、g2、g3
…、g7は回折格子の1ピッチを6分割した場合の0
次、±1次の3成分もしくは±1次の2成分の回折光の
干渉光強度値である。)で算出すること特徴とする請求
項11から13のいずれかに記載の波面収差計測機。
16. The wavefront aberration of the optical system to be inspected (Where k is the wave number and w +1 and w -1 are +1 respectively
The wavefront aberrations of the second-order light and the first-order light, g 1 , g 2 , g 3 ,
…, G 7 is 0 when 1 pitch of the diffraction grating is divided into 6
Next, it is the interference light intensity value of the diffracted light of the three components of the ± 1st order or the two components of the ± 1st order. ) The wavefront aberration measuring device according to any one of claims 11 to 13, wherein
【請求項17】 前記検出光学系の受光部材が荷電結合
素子(CCD)であることを特徴とする請求項10から
16のいずれかに記載の波面収差計測機。
17. The wavefront aberration measuring device according to claim 10, wherein the light receiving member of the detection optical system is a charge coupled device (CCD).
【請求項18】 前記被検光学系がレチクル面に描画さ
れている回路パターンをウェハー面上に転写する露光投
影系であり、前記被検光学系保持装置により前記被検光
学系が前記所定位置に保持された状態で、前記レチクル
面が配置される位置に前記ピンホール部材を配置し、且
つ前記ウェハー面が配置される位置に前記受光部材を配
置することを特徴とする請求項10から請求項17のい
ずれか一項に記載の波面収差計測機。
18. The test optical system is an exposure projection system for transferring a circuit pattern drawn on a reticle surface onto a wafer surface, and the test optical system holding device moves the test optical system to the predetermined position. 11. The device according to claim 10, wherein the pinhole member is arranged at a position where the reticle surface is arranged, and the light receiving member is arranged at a position where the wafer surface is arranged while being held by the pinhole member. Item 18. The wavefront aberration measuring device according to any one of items 17.
【請求項19】 前記光源が、シンクロトロン放射光
源、レーザプラズマ光源あるいは、放電プラズマ光源の
いずれかの1つであることを特徴とする請求項10から
請求項17に記載の波面収差計測機。
19. The wavefront aberration measuring device according to claim 10, wherein the light source is one of a synchrotron radiation light source, a laser plasma light source, and a discharge plasma light source.
【請求項20】 前記回折格子と前記受光部材との間に
球面波を平面波に変換する手段を備えたことを特徴とす
る請求項10から請求項19のいずれか一項に記載の波
面収差計測機。
20. The wavefront aberration measurement according to claim 10, further comprising means for converting a spherical wave into a plane wave between the diffraction grating and the light receiving member. Machine.
【請求項21】 所定波長の光を供給する光源と、 前記光源からの光を通過させて球面波の光を発生させる
ピンホールを有したピンホール部材と、 被検光学系を所定位置に保持し、前記球面波の光を前記
被検光学系に照射させるとともに前記被検光学系から光
を出射させる被検光学系保持装置と、 前記被検光学系からの出射光を受ける位置に配置された
回折格子と、 前記被検光学系からの出射光を受けることにより前記回
折格子から出射される光を受ける位置に配置されたマス
ク部材と、 前記マスク部材からの回折光の干渉稿を測定する検出光
学系とからなる回折格子シアリング干渉を用いた波面収
差計測機において、 前記マスク部材が所定次数の回折光のみを選択的に透過
させる回折光選択手段と、所定次数の回折光成分のみを
選択的に解析する回折光解析手段とを有することを特徴
とする波面収差計測機。
21. A light source for supplying light of a predetermined wavelength, a pinhole member having a pinhole for transmitting light from the light source to generate light of a spherical wave, and a test optical system held at a predetermined position. Then, a test optical system holding device for irradiating the test optical system with the light of the spherical wave and emitting light from the test optical system, and a position arranged to receive the light emitted from the test optical system. A diffraction grating, a mask member arranged at a position for receiving light emitted from the diffraction grating by receiving light emitted from the optical system to be measured, and an interference pattern of diffracted light from the mask member is measured. In a wavefront aberration measuring instrument using diffraction grating shearing interference consisting of a detection optical system, the mask member selects diffracted light selection means for selectively transmitting only diffracted light of a predetermined order, and selects only diffracted light component of a predetermined order. To A diffracted light analyzing unit for analyzing the wavefront aberration measuring device.
JP2001355034A 2001-07-04 2001-11-20 Wave aberration measuring device Pending JP2003086501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355034A JP2003086501A (en) 2001-07-04 2001-11-20 Wave aberration measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001203997 2001-07-04
JP2001-203997 2001-07-04
JP2001355034A JP2003086501A (en) 2001-07-04 2001-11-20 Wave aberration measuring device

Publications (1)

Publication Number Publication Date
JP2003086501A true JP2003086501A (en) 2003-03-20

Family

ID=26618151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355034A Pending JP2003086501A (en) 2001-07-04 2001-11-20 Wave aberration measuring device

Country Status (1)

Country Link
JP (1) JP2003086501A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1536287A2 (en) 2003-11-28 2005-06-01 Canon Kabushiki Kaisha Measuring method and apparatus using a shearing interferometer, exposure method and apparatus using the same, and device manufacturing method
JP2005156511A (en) * 2003-11-28 2005-06-16 Canon Inc Measurement method and its device, exposure method and device using it, and device manufacturing method
JP2006112903A (en) * 2004-10-14 2006-04-27 Olympus Corp Ultraviolet light source unit, interferometer using it, and adjusting method of interferometer
JP2006196699A (en) * 2005-01-13 2006-07-27 Nikon Corp Method and device for measuring wavefront aberration, projection exposure device and method for manufacturing projection optical system
JP2006269578A (en) * 2005-03-23 2006-10-05 Nikon Corp Method and device of measuring wavefront aberration, projection aligner, and method of manufacturing projection optical system
JP2006294972A (en) * 2005-04-13 2006-10-26 Nikon Corp Method, equipment, and program for analyzing interference fringe interference measuring device, manufacturing method of projection optical system, projection exposure device, and computer readable recording medium
WO2006115292A1 (en) * 2005-04-25 2006-11-02 Canon Kabushiki Kaisha Measuring apparatus, exposure apparatus and method, and device manufacturing method
JP2006329720A (en) * 2005-05-24 2006-12-07 Fujinon Corp Light beam measuring device
CN1641485B (en) * 2004-01-16 2011-05-25 株式会社东芝 Exposure system method for evaluating lithography process
JP2012511728A (en) * 2008-12-09 2012-05-24 ザイゴ コーポレーション Double grating lateral shearing wavefront sensor
JP2017122716A (en) * 2015-12-07 2017-07-13 ウルトラテック インク Systems and methods of characterizing process-induced wafer shape for process control using cgs interferometry
JP2018521337A (en) * 2015-05-12 2018-08-02 中国科学院上海光学精密机械研究所 Lithographic in-situ high speed and high spatial resolution wavefront aberration measuring device and measuring method
CN110174244A (en) * 2019-06-11 2019-08-27 中国科学技术大学 A kind of the line density test macro and test method of planar substrates Variable line-space gratings

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590181B2 (en) * 2003-11-28 2010-12-01 キヤノン株式会社 Measuring method and apparatus, exposure apparatus, and device manufacturing method
JP2005156511A (en) * 2003-11-28 2005-06-16 Canon Inc Measurement method and its device, exposure method and device using it, and device manufacturing method
EP1536287A3 (en) * 2003-11-28 2007-09-12 Canon Kabushiki Kaisha Measuring method and apparatus using a shearing interferometer, exposure method and apparatus using the same, and device manufacturing method
US7352475B2 (en) 2003-11-28 2008-04-01 Canon Kabushiki Kaisha Measuring method and apparatus using shearing interferometry, exposure method and apparatus using the same, and device manufacturing method
EP1536287A2 (en) 2003-11-28 2005-06-01 Canon Kabushiki Kaisha Measuring method and apparatus using a shearing interferometer, exposure method and apparatus using the same, and device manufacturing method
CN1641485B (en) * 2004-01-16 2011-05-25 株式会社东芝 Exposure system method for evaluating lithography process
JP2006112903A (en) * 2004-10-14 2006-04-27 Olympus Corp Ultraviolet light source unit, interferometer using it, and adjusting method of interferometer
JP2006196699A (en) * 2005-01-13 2006-07-27 Nikon Corp Method and device for measuring wavefront aberration, projection exposure device and method for manufacturing projection optical system
JP4600047B2 (en) * 2005-01-13 2010-12-15 株式会社ニコン Wavefront aberration measuring method, wavefront aberration measuring apparatus, projection exposure apparatus, and projection optical system manufacturing method
JP2006269578A (en) * 2005-03-23 2006-10-05 Nikon Corp Method and device of measuring wavefront aberration, projection aligner, and method of manufacturing projection optical system
JP2006294972A (en) * 2005-04-13 2006-10-26 Nikon Corp Method, equipment, and program for analyzing interference fringe interference measuring device, manufacturing method of projection optical system, projection exposure device, and computer readable recording medium
KR100911223B1 (en) 2005-04-25 2009-08-07 캐논 가부시끼가이샤 Measuring apparatus, exposure apparatus and method, and device manufacturing method
WO2006115292A1 (en) * 2005-04-25 2006-11-02 Canon Kabushiki Kaisha Measuring apparatus, exposure apparatus and method, and device manufacturing method
US8004691B2 (en) 2005-04-25 2011-08-23 Canon Kabushiki Kaisha Measuring apparatus, exposure apparatus and method, and device manufacturing method
JP2006329720A (en) * 2005-05-24 2006-12-07 Fujinon Corp Light beam measuring device
JP4667957B2 (en) * 2005-05-24 2011-04-13 富士フイルム株式会社 Light beam measuring device
JP2012511728A (en) * 2008-12-09 2012-05-24 ザイゴ コーポレーション Double grating lateral shearing wavefront sensor
JP2018521337A (en) * 2015-05-12 2018-08-02 中国科学院上海光学精密机械研究所 Lithographic in-situ high speed and high spatial resolution wavefront aberration measuring device and measuring method
JP2017122716A (en) * 2015-12-07 2017-07-13 ウルトラテック インク Systems and methods of characterizing process-induced wafer shape for process control using cgs interferometry
US9935022B2 (en) 2015-12-07 2018-04-03 Ultratech, Inc. Systems and methods of characterizing process-induced wafer shape for process control using CGS interferometry
CN110174244A (en) * 2019-06-11 2019-08-27 中国科学技术大学 A kind of the line density test macro and test method of planar substrates Variable line-space gratings

Similar Documents

Publication Publication Date Title
US6674511B2 (en) Evaluation mask, focus measuring method and aberration measuring method
US9494483B2 (en) Measuring system for measuring an imaging quality of an EUV lens
US6242754B1 (en) Method of detecting position of mark on substrate, position detection apparatus using this method, and exposure apparatus using this position detection apparatus
KR20200000818A (en) Method for detecting a structure of a lithography mask and device for carrying out the method
US7911624B2 (en) Device and method for the interferometric measurement of phase masks
US6307635B1 (en) Phase-shifting point diffraction interferometer mask designs
US7952726B2 (en) Measurement apparatus, exposure apparatus having the same, and device manufacturing method
Van de Kerkhof et al. Full optical column characterization of DUV lithographic projection tools
KR100869604B1 (en) Measurement method and apparatus, exposure apparatus, and device manufacturing method
JP2006324311A (en) Wavefront aberration measuring device and exposing device therewith
JP3209645B2 (en) Inspection method for phase shift mask and inspection apparatus used for the method
JP2003086501A (en) Wave aberration measuring device
JP4455129B2 (en) Aberration measuring method and projection exposure apparatus using the same
JP2021513096A (en) Two-dimensional diffraction grating
JP2003254725A (en) Method and instrument for measuring wave front aberration
KR20080036927A (en) Projection exposure apparatus, optical member, and device manufacturing method
JP4600047B2 (en) Wavefront aberration measuring method, wavefront aberration measuring apparatus, projection exposure apparatus, and projection optical system manufacturing method
JP2011108696A (en) Method and device for measuring wavefront, and alignment method and aligner
JP2006017485A (en) Device and method for measuring surface shape, manufacturing method of projection optical system, projection optical system, and projection exposing device
JP3796464B2 (en) Aberration measurement method for projection optical system
JP3673783B2 (en) Aberration measuring method and projection exposure apparatus
JP2003309066A (en) Measuring method for aberration of projection optical system
JP2005127981A (en) Interference measuring instrument
JP2001274059A (en) Inspection device and inspection method of projection optical system, mask for measuring image formation characteristics which is used for that, aligner and exposure method thereof
Sugisaki et al. EUVA’s challenges toward 0.1 nm accuracy in EUV at-wavelength interferometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061110