JP2011142279A - Wavefront aberration measuring method and device, exposing method, and aligner - Google Patents

Wavefront aberration measuring method and device, exposing method, and aligner Download PDF

Info

Publication number
JP2011142279A
JP2011142279A JP2010003405A JP2010003405A JP2011142279A JP 2011142279 A JP2011142279 A JP 2011142279A JP 2010003405 A JP2010003405 A JP 2010003405A JP 2010003405 A JP2010003405 A JP 2010003405A JP 2011142279 A JP2011142279 A JP 2011142279A
Authority
JP
Japan
Prior art keywords
measurement
order
wavefront aberration
optical system
wavefronts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010003405A
Other languages
Japanese (ja)
Inventor
Ikuso Ake
郁葱 朱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010003405A priority Critical patent/JP2011142279A/en
Publication of JP2011142279A publication Critical patent/JP2011142279A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To highly accurately measure the wavefront information of an optical system to be expected by suppressing an influence of unwanted diffracted light based on an interference fringe obtained using a two-dimensional diffraction grating. <P>SOLUTION: In a wavefront aberration measuring method of making luminous flux passing through a reticle 4 for measurement and a projection optical system PO incident upon the two-dimensional grating 10 to obtain the wavefront aberration information of the projection optical system PO based on the interference fringe 22 having the luminous flux generated from the diffraction grating 10, the diffraction grating 10 is moved in X and Y directions by mutually different moving amounts to measure the intensity distribution of the interference fringe 22 (L+M) times (L is the number of wavefronts of the order of a measuring object, M is the number of wavefronts of the order of a non-measuring object) to obtain the wavefront information of the order of the measuring object from a result of measurement. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えばシアリング干渉で生成される干渉縞に基づいて被検光学系の波面収差情報を計測する波面収差計測技術、及びその波面収差計測技術を用いる露光技術に関する。   The present invention relates to a wavefront aberration measurement technique for measuring wavefront aberration information of a test optical system based on, for example, interference fringes generated by shearing interference, and an exposure technique using the wavefront aberration measurement technique.

半導体デバイス等の微細化に応じて、露光装置においては解像度を高めるために露光光の短波長化が進み、最近では露光光として波長が100nm程度以下の軟X線を含む極端紫外光(Extreme Ultraviolet Light:以下、EUV光という)を用いる露光装置(EUV露光装置)も開発されている。EUV光が使用される反射光学部材よりなる投影光学系の波面収差の計測精度は0.1nmRMS程度が要求されている。   In accordance with the miniaturization of semiconductor devices and the like, in exposure apparatuses, the exposure light has been shortened in order to increase the resolution. Recently, extreme ultraviolet light including soft X-rays having a wavelength of about 100 nm or less as exposure light (Extreme Ultraviolet). An exposure apparatus (EUV exposure apparatus) using a light (hereinafter referred to as EUV light) has also been developed. The measurement accuracy of wavefront aberration of a projection optical system composed of a reflective optical member using EUV light is required to be about 0.1 nm RMS.

このように高精度な波面収差の計測装置として、投影光学系の物体面に一つ若しくは複数のピンホール又は一つ若しくは複数のスリットパターンを配置し、そのピンホール等から発生する球面波等を投影光学系及び回折格子に通し、回折格子から発生する複数の回折光による横ずれした波面の干渉縞を撮像素子で受光するシアリング干渉方式の計測装置が知られている(例えば、特許文献1参照)。   Thus, as a highly accurate wavefront aberration measuring device, one or a plurality of pinholes or one or a plurality of slit patterns are arranged on the object plane of the projection optical system, and spherical waves generated from the pinholes, etc. There is known a shearing interference type measuring apparatus that receives interference fringes of wavefronts shifted laterally due to a plurality of diffracted lights generated from a diffraction grating through an optical projection system and a diffraction grating by an image sensor (see, for example, Patent Document 1). .

このような計測装置における従来の干渉縞の解析方法として、干渉縞から発生する特定次数の回折光を用いて波面情報を抜き出すフーリエ変換法が知られている(例えば、非特許文献1参照)。また、従来の別の干渉縞の解析方法として、直交する方向にそれぞれ周期性を持つ2つの1次元の回折格子を使用し、2つの回折格子をそれぞれ周期方向に走査して、干渉縞の明暗の時間変化からシアリング波面を求め、この2つのシアリング波面から元の波面を復元する位相シフト法が知られている。   As a conventional method for analyzing interference fringes in such a measuring apparatus, a Fourier transform method for extracting wavefront information using diffracted light of a specific order generated from the interference fringes is known (for example, see Non-Patent Document 1). As another conventional method for analyzing interference fringes, two one-dimensional diffraction gratings each having periodicity in orthogonal directions are used, and the two diffraction gratings are scanned in the periodic direction, respectively. There is known a phase shift method in which a shearing wavefront is obtained from the time change of the above and the original wavefront is restored from these two shearing wavefronts.

特開2006−269578号公報JP 2006-269578 A

K. A. Goldberg and J. Bokor, "Fourier-transform method of phase-shift determination": APPLIED OPTICS /Vol.40, No. 17/ pp.2886-2894 (2001)K. A. Goldberg and J. Bokor, "Fourier-transform method of phase-shift determination": APPLIED OPTICS /Vol.40, No. 17 / pp.2886-2894 (2001)

従来の干渉縞の解析方法のうちのフーリエ変換法では、干渉縞に輝度むらがあるとそれが計測誤差になるという問題がある。
また、従来の位相シフト法では、1次元の回折格子を用いて2方向に走査する必要があり、計測時間が長くなるとともに、2回の走査の間に回折格子の高さが僅かに変化することによって、非点収差の誤差が発生するという問題があった。また、単に2次元の回折格子を用いると、不要な回折光が多数発生して、波面の復元に必要な回折光に起因する光強度分布のみを抽出するのが困難であるという問題があった。
In the Fourier transform method of the conventional interference fringe analysis methods, there is a problem that if there is uneven luminance in the interference fringes, it becomes a measurement error.
Further, in the conventional phase shift method, it is necessary to scan in two directions using a one-dimensional diffraction grating, and the measurement time becomes long and the height of the diffraction grating slightly changes between the two scans. As a result, there is a problem that an astigmatism error occurs. In addition, when a two-dimensional diffraction grating is simply used, a lot of unnecessary diffracted light is generated, and it is difficult to extract only the light intensity distribution caused by diffracted light necessary for wavefront restoration. .

本発明は、このような事情に鑑み、2次元の回折格子を用いて得られる干渉縞に基づいて、不要な回折光の影響を抑制して、被検光学系の波面情報を高精度に計測することを目的とする。   In view of such circumstances, the present invention suppresses the influence of unnecessary diffracted light on the basis of interference fringes obtained using a two-dimensional diffraction grating, and measures wavefront information of a test optical system with high accuracy. The purpose is to do.

本発明の第1の態様によれば、計測用マスク及び被検光学系を通過した計測用の光束を互いに直交する第1方向及び第2方向に周期性を持つ2次元の回折格子を介して分割し、分割したその光束を干渉させて得られる干渉縞に基づいてその被検光学系の波面収差情報を計測する波面収差計測方法が提供される。この波面収差計測方法は、その干渉縞のうち計測対象の次数の波面の数をL(Lは2以上の整数)、その計測対象とは異なる次数の波面の数をM(Mは1以上の整数)として、その回折格子を実質的にその第1方向及びその第2方向に互いに異なる移動量で移動させて、その干渉縞の光強度分布を(L+M)回計測する工程と、その干渉縞の光強度分布の(L+M)個の計測結果よりその計測対象の次数の波面を求める工程と、その計測対象の次数の波面よりその被検光学系の波面収差情報を求める工程と、を含むものである。   According to the first aspect of the present invention, the measurement light beam that has passed through the measurement mask and the test optical system is passed through the two-dimensional diffraction grating having periodicity in the first direction and the second direction orthogonal to each other. There is provided a wavefront aberration measuring method for measuring wavefront aberration information of the optical system under test based on interference fringes obtained by dividing and interfering the divided light beams. In this wavefront aberration measuring method, the number of wavefronts of the order of the measurement object among the interference fringes is L (L is an integer of 2 or more), and the number of wavefronts of an order different from the measurement object is M (M is 1 or more). (Integer integer), moving the diffraction grating substantially in the first direction and the second direction with different movement amounts, and measuring the light intensity distribution of the interference fringe (L + M) times, and the interference fringe A step of obtaining the wavefront of the order of the measurement target from the (L + M) measurement results of the light intensity distribution, and a step of obtaining the wavefront aberration information of the optical system to be measured from the wavefront of the order of the measurement target. .

また、本発明の第2の態様によれば、露光光でパターンを照明し、その露光光でそのパターン及び投影光学系を介して基板を露光する露光方法において、その投影光学系の波面収差情報を計測するために、本発明の波面収差計測方法を用いる露光方法が提供される。
また、本発明の第3の態様によれば、計測用マスク及び被検光学系を通過した計測用の光束を互いに直交する第1方向及び第2方向に周期性を持つ2次元の回折格子を介して分割し、分割したその光束を干渉させて得られる干渉縞に基づいてその被検光学系の波面収差情報を計測する波面収差計測装置が提供される。この波面収差計測装置は、その干渉縞の光強度分布を検出する受光器と、その回折格子をその第1方向及びその第2方向に移動する移動機構と、その受光器の検出結果よりその被検光学系の波面収差情報を求める制御装置と、を備え、その干渉縞のうち計測対象の次数の波面の数をL(Lは2以上の整数)、その計測対象とは異なる次数の波面の数をM(Mは1以上の整数)として、その制御装置は、その移動機構を介してその回折格子を実質的にその第1方向及びその第2方向に互いに異なる移動量で移動させ、それぞれその受光器を介して(L+M)回計測されるその干渉縞の光強度分布の計測結果よりその計測対象の次数の波面を求め、該計測対象の次数の波面よりその被検光学系の波面収差情報を求めるものである。
According to the second aspect of the present invention, in the exposure method in which the pattern is illuminated with the exposure light and the substrate is exposed with the exposure light through the pattern and the projection optical system, the wavefront aberration information of the projection optical system In order to measure the above, an exposure method using the wavefront aberration measuring method of the present invention is provided.
According to the third aspect of the present invention, the two-dimensional diffraction grating having periodicity in the first direction and the second direction perpendicular to each other of the measurement light beam that has passed through the measurement mask and the test optical system is provided. And a wavefront aberration measuring apparatus for measuring wavefront aberration information of the optical system under test based on interference fringes obtained by causing the divided light beams to interfere with each other. The wavefront aberration measuring device includes a light receiver that detects the light intensity distribution of the interference fringes, a moving mechanism that moves the diffraction grating in the first direction and the second direction, and a detection result of the light receiver. And a control device for obtaining wavefront aberration information of the optical detection system, wherein the number of wavefronts of the order of the measurement target among the interference fringes is L (L is an integer of 2 or more), and the wavefront of the order different from that of the measurement target The number is M (M is an integer equal to or greater than 1), and the control device moves the diffraction grating through the moving mechanism substantially in the first direction and the second direction with different amounts of movement, The wavefront of the order of the measurement target is obtained from the measurement result of the light intensity distribution of the interference fringe measured (L + M) times through the light receiver, and the wavefront aberration of the optical system to be measured is determined from the wavefront of the order of the measurement target. It seeks information.

また、本発明の第4の態様によれば、露光光でパターンを照明し、その露光光でそのパターン及び投影光学系を介して基板を露光する露光装置において、その投影光学系の波面収差情報を計測するために、本発明の波面収差計測装置を備える露光装置が提供される。   According to the fourth aspect of the present invention, in the exposure apparatus that illuminates the pattern with the exposure light and exposes the substrate with the exposure light through the pattern and the projection optical system, the wavefront aberration information of the projection optical system In order to measure, an exposure apparatus provided with the wavefront aberration measuring apparatus of the present invention is provided.

本発明によれば、2次元の回折格子を2次元的に移動させて(L+M)回、干渉縞の強度分布を計測しているため、この計測結果から、L個の計測対象の次数の波面に対応する波面情報を求めることができる。従って、不要な回折光の影響を抑制して、被検光学系の波面情報を高精度に計測できる。   According to the present invention, since the intensity distribution of the interference fringes is measured by moving the two-dimensional diffraction grating two-dimensionally (L + M) times, from this measurement result, the wavefronts of the order of L measurement objects are obtained. Wavefront information corresponding to can be obtained. Accordingly, it is possible to measure the wavefront information of the optical system to be measured with high accuracy while suppressing the influence of unnecessary diffracted light.

第1の実施形態の波面収差計測装置30を備えた露光装置を示す一部が切り欠かれた図である。1 is a partially cutaway view showing an exposure apparatus provided with a wavefront aberration measuring apparatus 30 according to a first embodiment. FIG. (A)は図1中の投影光学系PO及び計測本体部8を透過光学系として示す図、(B)は図2(A)のピンホールアレー6の一部を示す拡大図、(C)はピンホールアレーの別の例の一部を示す拡大図、(D)は図2(A)の回折格子10の一部を示す拡大図、(E)は図2(A)中の干渉縞22の一例を示す図である。1A is a view showing the projection optical system PO and the measurement main body 8 in FIG. 1 as a transmission optical system, FIG. 2B is an enlarged view showing a part of the pinhole array 6 in FIG. 2A, and FIG. Is an enlarged view showing a part of another example of the pinhole array, (D) is an enlarged view showing a part of the diffraction grating 10 of FIG. 2 (A), and (E) is an interference fringe in FIG. 2 (A). FIG. (A)は図2(A)の回折格子10から発生する複数の回折光のスペクトルの一例を示す図、(B)は回折格子10の移動方法の一例を示す図、(C)は第1実施例の回折格子10の移動経路を示す図である。(A) is a figure which shows an example of the spectrum of the several diffracted light which generate | occur | produces from the diffraction grating 10 of FIG. 2 (A), (B) is a figure which shows an example of the moving method of the diffraction grating 10, (C) is 1st It is a figure which shows the movement path | route of the diffraction grating 10 of an Example. 投影光学系POの波面収差の計測動作の一例を示すフローチャートである。It is a flowchart which shows an example of the measurement operation | movement of the wavefront aberration of projection optical system PO. 第2実施例の回折格子10の移動経路を示す図である。It is a figure which shows the movement path | route of the diffraction grating 10 of 2nd Example. (A)は計測本体部の第1変形例を示す図、(B)は計測本体部の第2変形例を示す図である。(A) is a figure which shows the 1st modification of a measurement main-body part, (B) is a figure which shows the 2nd modification of a measurement main-body part. (A)は第2の実施形態の投影光学系PO及び計測本体部8Aを透過光学系として示す図、(B)は図7(A)のピンホールアレー6Aの一部を示す拡大図、(C)はピンホールアレーの別の例の一部を示す拡大図、(D)は図7(A)の回折格子10Aの一部を示す拡大図、(E)は図7(A)中の干渉縞22Aの一例を示す図である。(A) is a diagram showing the projection optical system PO and the measurement main body 8A of the second embodiment as a transmission optical system, (B) is an enlarged view showing a part of the pinhole array 6A of FIG. (C) is an enlarged view showing a part of another example of the pinhole array, (D) is an enlarged view showing a part of the diffraction grating 10A in FIG. 7 (A), and (E) is in FIG. 7 (A). It is a figure which shows an example of 22 A of interference fringes. (A)は回折格子10Aから発生する複数の回折光のスペクトルの一例を示す図、(B)は回折格子10Aの移動経路の一例を示す図である。(A) is a figure which shows an example of the spectrum of the several diffracted light which generate | occur | produces from the diffraction grating 10A, (B) is a figure which shows an example of the movement path | route of the diffraction grating 10A.

[第1の実施形態]
本発明の第1の実施形態につき図1〜図6を参照して説明する。
図1は、本実施形態の露光装置100の全体構成を概略的に示す図である。露光装置100は、露光用の照明光EL(露光光)として、波長が100nm程度以下で例えば11〜15nm程度の範囲内のEUV光(Extreme Ultraviolet Light)を用いるEUV露光装置である。照明光ELの波長は一例として13.5nmである。図1において、露光装置100は、照明光ELを発生するレーザプラズマ光源と、その照明光ELでミラー2を介してレチクルR(マスク)のパターン面(ここでは下面)の照明領域を照明する照明光学系とを含む照明装置ILSと、レチクルRを保持して移動するレチクルステージRSTと、レチクルRの照明領域内のパターンの像をレジスト(感光材料)が塗布されたウエハW(感光基板)の上面に投影する投影光学系POとを備えている。さらに、露光装置100は、ウエハベースWBの上面でウエハWを保持して移動するウエハステージWSTと、装置全体の動作を統括的に制御するコンピュータを含む主制御系16と、投影光学系POの波面収差を計測する波面収差計測装置30と、その他の駆動系等とを備えている。ウエハステージWSTに、波面収差計測装置30(詳細後述)のうちの計測本体部8が装着されている。
[First Embodiment]
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a view schematically showing the overall configuration of the exposure apparatus 100 of the present embodiment. The exposure apparatus 100 is an EUV exposure apparatus that uses EUV light (Extreme Ultraviolet Light) within a wavelength range of, for example, about 11 to 15 nm as the illumination light EL (exposure light) for exposure. The wavelength of the illumination light EL is 13.5 nm as an example. In FIG. 1, an exposure apparatus 100 illuminates a laser plasma light source that generates illumination light EL and illumination area on a pattern surface (here, the lower surface) of a reticle R (mask) through the mirror 2 with the illumination light EL. An illumination device ILS including an optical system, a reticle stage RST that holds and moves the reticle R, and an image of a pattern in the illumination area of the reticle R on a wafer W (photosensitive substrate) coated with a resist (photosensitive material). And a projection optical system PO that projects onto the upper surface. The exposure apparatus 100 further includes a wafer stage WST that holds and moves the wafer W on the upper surface of the wafer base WB, a main control system 16 that includes a computer that controls the overall operation of the apparatus, and a projection optical system PO. A wavefront aberration measuring device 30 for measuring wavefront aberration and other drive systems are provided. Measurement main body 8 of wavefront aberration measuring apparatus 30 (described later in detail) is attached to wafer stage WST.

本実施形態では、照明光ELとしてEUV光が使用されているため、照明光学系及び投影光学系POは、特定のフィルタ等(不図示)を除いて複数のミラー等の反射光学部材より構成され、レチクルRも反射型である。その反射光学部材は、例えば、石英(又は高耐熱性の金属等)よりなる部材の表面を所定の曲面又は平面に高精度に加工した後、その表面に例えばモリブデン(Mo)とシリコン(Si)との多層膜(EUV光の反射膜)を形成して反射面としたものである。また、レチクルRは例えば石英の基板の表面に多層膜を形成して反射面とした後、その反射面に、タンタル(Ta)、ニッケル(Ni)、又はクロム(Cr)等のEUV光を吸収する材料よりなる吸収層によって転写用のパターンを形成したものである。   In the present embodiment, since EUV light is used as the illumination light EL, the illumination optical system and the projection optical system PO are configured by reflective optical members such as a plurality of mirrors except for a specific filter or the like (not shown). The reticle R is also of a reflective type. The reflective optical member is obtained by, for example, processing the surface of a member made of quartz (or a metal having high heat resistance) into a predetermined curved surface or plane with high accuracy, and then, for example, molybdenum (Mo) and silicon (Si) on the surface. And a multilayer film (an EUV light reflecting film) is formed as a reflecting surface. The reticle R, for example, forms a multilayer film on the surface of a quartz substrate to form a reflective surface, and then absorbs EUV light such as tantalum (Ta), nickel (Ni), or chromium (Cr) on the reflective surface. A transfer pattern is formed by an absorption layer made of a material to be transferred.

また、EUV光の気体による吸収を防止するため、露光装置100はほぼ全体として箱状の真空チャンバ(不図示)内に収容されている。
以下、図1において、ウエハステージWSTが移動する面(本実施形態ではほぼ水平面)内で図1の紙面に垂直にX軸を、図1の紙面に平行にY軸を取り、その面に垂直にZ軸を取って説明する。本実施形態では、レチクルRのパターン面での照明光ELの照明領域は、X方向(非走査方向)に細長い円弧状であり、露光時にレチクルR及びウエハWは投影光学系POに対してY方向(走査方向)に同期して走査される。
Further, in order to prevent the EUV light from being absorbed by the gas, the exposure apparatus 100 is accommodated in a box-shaped vacuum chamber (not shown) as a whole.
In FIG. 1, the X axis is perpendicular to the plane of FIG. 1 and the Y axis is parallel to the plane of FIG. 1 within the plane (substantially horizontal plane in the present embodiment) on which wafer stage WST moves. The explanation will be given by taking the Z axis. In the present embodiment, the illumination area of the illumination light EL on the pattern surface of the reticle R has an arc shape elongated in the X direction (non-scanning direction), and the reticle R and the wafer W are Y with respect to the projection optical system PO during exposure. Scanning is performed in synchronization with the direction (scanning direction).

先ず、照明装置ILS中の照明光学系は、オプティカルインテグレータ、可変開口絞り、レチクルブラインド、及びコンデンサ光学系等から構成されている。照明装置ILSからの照明光ELが、ミラー2を介してレチクルRのパターン面のX方向に細長い円弧状の照明領域を下方から斜めに均一な照度分布で照明する。
レチクルRは、レチクルステージRSTの底面に静電チャックRHを介して吸着保持されている。レチクルステージRSTは、レーザ干渉計(不図示)の計測値及び主制御系16の制御情報に基づいて、駆動系(不図示)によってY方向に所定ストロークで駆動されるとともに、X方向及びθz方向(Z軸に平行な軸の回りの回転方向)等にも微小量駆動される。
First, the illumination optical system in the illumination device ILS includes an optical integrator, a variable aperture stop, a reticle blind, a condenser optical system, and the like. Illumination light EL from the illumination device ILS illuminates a circular arc-shaped illumination area elongated in the X direction on the pattern surface of the reticle R through the mirror 2 with a uniform illuminance distribution obliquely from below.
The reticle R is attracted and held on the bottom surface of the reticle stage RST via the electrostatic chuck RH. Reticle stage RST is driven with a predetermined stroke in the Y direction by a drive system (not shown) based on the measurement value of a laser interferometer (not shown) and control information of main control system 16, and in the X direction and θz direction. Also, it is driven by a minute amount (rotational direction around an axis parallel to the Z axis).

レチクルRで反射された照明光ELが、投影光学系POを介してウエハWの上面の露光領域(照明領域と共役な領域)に、レチクルRのパターンの一部の像を形成する。投影光学系POは、物体面(第1面)のパターンの縮小像を像面(第2面)に形成し、投影光学系POの投影倍率βは例えば1/4であり、その像側の開口数NAは例えば0.25である。   The illumination light EL reflected by the reticle R forms an image of a part of the pattern of the reticle R on the exposure area (area conjugate to the illumination area) on the upper surface of the wafer W via the projection optical system PO. The projection optical system PO forms a reduced image of the pattern on the object plane (first surface) on the image plane (second surface), and the projection magnification β of the projection optical system PO is, for example, ¼. The numerical aperture NA is, for example, 0.25.

投影光学系POは、一例として、6枚の例えば非球面のミラーM1〜M6を不図示の鏡筒で保持することによって構成され、物体面(レチクルRのパターン面)側に非テレセントリックで、像面(ウエハWの表面)側にほぼテレセントリックの反射光学系である。投影光学系PO内の瞳面の近傍に開口絞り(不図示)が設けられている。また、投影光学系POには、所定のミラーの位置及び傾斜度を調整して波面収差を補正する結像特性補正機構(不図示)も設けられている。なお、投影光学系POの構成は任意である。   As an example, the projection optical system PO is configured by holding six aspherical mirrors M1 to M6, for example, by a lens barrel (not shown), and is non-telecentric on the object plane (pattern surface of the reticle R) side. It is a substantially telecentric reflective optical system on the surface (the surface of the wafer W) side. An aperture stop (not shown) is provided in the vicinity of the pupil plane in the projection optical system PO. The projection optical system PO is also provided with an imaging characteristic correction mechanism (not shown) that corrects the wavefront aberration by adjusting the position and inclination of a predetermined mirror. The configuration of the projection optical system PO is arbitrary.

一方、ウエハWは、静電チャック(不図示)を介してウエハステージWSTの上部に吸着保持されている。ウエハステージWSTは、レーザ干渉計(不図示)の計測値及び主制御系16の制御情報に基づいて、ウエハステージ制御系17及び駆動機構(不図示)によってX方向及びY方向に所定ストロ−クで駆動され、必要に応じてθz方向等にも駆動される。また、レチクルR及びウエハWのアライメントを行うアライメント系(不図示)が備えられている。   On the other hand, wafer W is attracted and held on top of wafer stage WST via an electrostatic chuck (not shown). Wafer stage WST performs predetermined strokes in the X and Y directions by wafer stage control system 17 and a drive mechanism (not shown) based on measurement values of a laser interferometer (not shown) and control information of main control system 16. And is also driven in the θz direction or the like as necessary. An alignment system (not shown) for aligning the reticle R and the wafer W is also provided.

ウエハWを露光するときには、照明光ELが照明装置ILSによりレチクルRの照明領域に照射され、レチクルRとウエハWとは投影光学系POに対して投影倍率β(縮小倍率)に従った所定の速度比でY方向に同期して移動する(同期走査される)。このようにして、レチクルRのパターンの像はウエハWの一つのショット領域(ダイ)に露光される。その後、ウエハステージWSTを駆動してウエハWをX方向、Y方向にステップ移動した後、ウエハWの次のショット領域に対してレチクルRのパターンが走査露光される。このようにステップ・アンド・スキャン方式でウエハWの複数のショット領域に対して順次レチクルRのパターンの像が露光される。   When exposing the wafer W, the illumination light EL is irradiated onto the illumination area of the reticle R by the illumination device ILS, and the reticle R and the wafer W are set to a predetermined magnification according to the projection magnification β (reduction magnification) with respect to the projection optical system PO. It moves synchronously in the Y direction at the speed ratio (synchronized scanning) In this way, the pattern image of the reticle R is exposed to one shot area (die) of the wafer W. Thereafter, the wafer stage WST is driven to move the wafer W stepwise in the X and Y directions, and then the reticle R pattern is scanned and exposed to the next shot area of the wafer W. In this way, a pattern image of the reticle R is sequentially exposed to a plurality of shot areas of the wafer W by the step-and-scan method.

このような露光に際しては、投影光学系POの波面収差が所定の許容範囲内に収まっている必要がある。そのためには、まず投影光学系POの波面収差を高精度に計測する必要がある。
以下、本実施形態の波面収差計測装置30の構成及び投影光学系POの波面収差の計測方法につき説明する。波面収差計測装置30は、ウエハステージWSTのウエハWの近傍に設けられた計測本体部8と、計測本体部8からの検出信号を処理する演算装置12とを備えている。また、本実施形態では、計測本体部8を投影光学系POに対して移動するために使用されるウエハステージWST(移動機構)も、波面収差計測装置30の一部を構成している。
In such exposure, the wavefront aberration of the projection optical system PO needs to be within a predetermined allowable range. For this purpose, it is first necessary to measure the wavefront aberration of the projection optical system PO with high accuracy.
Hereinafter, the configuration of the wavefront aberration measuring apparatus 30 of the present embodiment and the wavefront aberration measuring method of the projection optical system PO will be described. The wavefront aberration measuring apparatus 30 includes a measurement main body 8 provided in the vicinity of the wafer W of the wafer stage WST, and an arithmetic unit 12 that processes a detection signal from the measurement main body 8. In the present embodiment, the wafer stage WST (movement mechanism) used for moving the measurement main body 8 with respect to the projection optical system PO also constitutes a part of the wavefront aberration measuring apparatus 30.

まず、計測本体部8は、XY平面にほぼ平行に配置されて、2次元の格子パターンが形成された回折格子10と、回折格子10からの複数の回折光によるシアリング干渉の干渉縞を検出するCCD型又はCMOS型等の2次元の撮像素子14と、回折格子10及び撮像素子14を保持する保持部材8aとを備えている。撮像素子14の検出信号は演算装置12に供給される。   First, the measurement main body 8 detects a fringe of shearing interference caused by a plurality of diffracted lights from the diffraction grating 10 that is arranged substantially parallel to the XY plane and has a two-dimensional grating pattern formed thereon. A two-dimensional imaging element 14 such as a CCD type or a CMOS type, and a holding member 8 a that holds the diffraction grating 10 and the imaging element 14 are provided. A detection signal from the image sensor 14 is supplied to the arithmetic unit 12.

投影光学系POの波面収差計測時には、ウエハステージWSTを駆動して計測本体部8の回折格子10の上方に投影光学系POの露光領域が設定される。さらに、不図示のレチクルローダ系を介してレチクルステージRSTで保持されるレチクルRが計測用レチクル4と交換され、計測用レチクル4のパターン面が照明装置ILSの照明領域に設定される。計測用レチクル4のパターン面にはピンホールアレー6が形成されている。ピンホールアレー6は、一例として、EUV光の反射膜上にピンホールとなる部分を除いて吸収層を形成することによって製造できる。計測用レチクル4は、波面収差計測装置30の一部とみなすことも可能である。以下の説明では、便宜上、計測用レチクル4及び投影光学系POを1つの光軸上に配置された透過光学系で表現する。しかしながら、この計測原理は反射光学系でも同様に成立する。   At the time of measuring the wavefront aberration of the projection optical system PO, the exposure stage of the projection optical system PO is set above the diffraction grating 10 of the measurement main body 8 by driving the wafer stage WST. Further, the reticle R held by the reticle stage RST is exchanged with the measurement reticle 4 via a reticle loader system (not shown), and the pattern surface of the measurement reticle 4 is set in the illumination area of the illumination device ILS. A pinhole array 6 is formed on the pattern surface of the measurement reticle 4. As an example, the pinhole array 6 can be manufactured by forming an absorption layer on the EUV light reflecting film except for a portion serving as a pinhole. The measurement reticle 4 can also be regarded as a part of the wavefront aberration measuring device 30. In the following description, for convenience, the measurement reticle 4 and the projection optical system PO are expressed by a transmission optical system arranged on one optical axis. However, this measurement principle holds true for the reflective optical system as well.

図2(A)は、図1の計測本体部8で投影光学系POの波面収差を計測中の光学系を透過光学系で表現したものである。図2(A)の光学系は、シアリング干渉を行うタルボ(Talbot)干渉計である。図2(A)において、投影光学系POの物体面に計測用レチクル4のピンホールアレー6が設置され、ピンホールアレー6が照明光ELで照明される。
図2(B)に拡大図で示すように、ピンホールアレー6は、複数個のピンホール6a(実際には微小ミラーである)を含むピンホール群6SをX方向、Y方向に周期(ピッチ)Ps/βで配列したものである。この場合、βは投影光学系POの投影倍率であり、ピンホールアレー6を投影光学系POを介して投影した像(ピンホール群の像6SP)のX方向、Y方向の周期はPsである。個々のピンホール6aの直径は、次のように一例として回折限界以下程度である。照明光ELの波長λ、投影光学系POの物体側の開口数NAinを用いると、回折限界はλ/(2NAin)である。
FIG. 2A shows a transmission optical system representing an optical system that is measuring the wavefront aberration of the projection optical system PO in the measurement main body 8 of FIG. The optical system in FIG. 2A is a Talbot interferometer that performs shearing interference. In FIG. 2A, the pinhole array 6 of the measurement reticle 4 is installed on the object plane of the projection optical system PO, and the pinhole array 6 is illuminated with the illumination light EL.
As shown in an enlarged view in FIG. 2B, the pinhole array 6 includes a pinhole group 6S including a plurality of pinholes 6a (actually micromirrors) having a period (pitch) in the X direction and the Y direction. ) Ps / β sequence. In this case, β is the projection magnification of the projection optical system PO, and the period in the X direction and Y direction of the image (the pinhole group image 6SP) obtained by projecting the pinhole array 6 through the projection optical system PO is Ps. . The diameter of each pinhole 6a is about the diffraction limit or less as an example as follows. If the wavelength λ of the illumination light EL and the numerical aperture NAin on the object side of the projection optical system PO are used, the diffraction limit is λ / (2NAin).

ピンホール6aの直径≦λ/(2NAin) …(1)
ここで、波長λを13.5nm、開口数NAinを0.0625とすると、回折限界はほぼ108nmとなるため、ピンホール6aの直径は100nm程度又はこれより小さい。
また、ピンホール群6S内での複数のピンホール6aの間隔は、一例として照明光ELのコヒーレンス係数が0となる距離以上であればよい。波長λ及び照明光学系の開口数NAILを用いて、コヒーレンス係数が0となる最短距離は0.61λ/NAIL、即ちこの場合には132nm程度になる。このような多数のピンホールが周期的に形成されたピンホールアレー6を使用することで、撮像素子14上での干渉縞の光量が大きくなるため、高いSN比でシアリング干渉方式の波面計測を行うことができる。
Diameter of pinhole 6a ≦ λ / (2NAin) (1)
Here, when the wavelength λ is 13.5 nm and the numerical aperture NAin is 0.0625, the diffraction limit is approximately 108 nm, so the diameter of the pinhole 6a is about 100 nm or smaller.
Moreover, the space | interval of the several pinhole 6a in the pinhole group 6S should just be more than the distance from which the coherence coefficient of illumination light EL becomes 0 as an example. Using the wavelength λ and the numerical aperture NA IL of the illumination optical system, the shortest distance at which the coherence coefficient becomes 0 is 0.61λ / NA IL , that is, about 132 nm in this case. By using such a pinhole array 6 in which a large number of pinholes are periodically formed, the amount of interference fringes on the image sensor 14 increases, so shearing interference wavefront measurement can be performed with a high S / N ratio. It can be carried out.

また、ピンホールアレー6の周期Ps/βは、照明光ELの空間的コヒーレンス長以上である。本実施形態のように空間的コヒーレンシィが低いレーザプラズマ光源を使用する場合、照明光学系の射出側の開口数NAIL及び波長λを用いて、その空間的コヒーレンス長は高々、λ/NAILである。従って、周期Ps/βは次の条件を満たせばよい。
Ps/β≧λ/NAIL≒λ/NAin …(2)
この場合、波長λを13.5nm、開口数NAinを0.0625とすると、空間的コヒーレンス長はほぼ216nmとなるため、周期Ps/βは200nm程度より大きければよい。ただし、後述のようにピンホールアレー6の像の周期Psは、さらに所定の条件を満たす必要があるとともに、製造技術上の問題もあるため、周期Psは例えば1μm程度以上となる。この場合、投影倍率βを1/4とすると、ピンホールアレー6の周期Ps/βはほぼ4μm程度以上となり、式(2)の条件は十分に満たされる。
Further, the period Ps / β of the pinhole array 6 is not less than the spatial coherence length of the illumination light EL. When a laser plasma light source with low spatial coherency is used as in this embodiment, the spatial coherence length is at most λ / NA IL using the numerical aperture NA IL and wavelength λ on the exit side of the illumination optical system. It is. Therefore, the period Ps / β only needs to satisfy the following condition.
Ps / β ≧ λ / NA IL ≈λ / NAin (2)
In this case, when the wavelength λ is 13.5 nm and the numerical aperture NAin is 0.0625, the spatial coherence length is approximately 216 nm, and therefore the period Ps / β only needs to be greater than about 200 nm. However, as will be described later, the period Ps of the image of the pinhole array 6 needs to satisfy a predetermined condition and has a problem in manufacturing technology. Therefore, the period Ps is, for example, about 1 μm or more. In this case, if the projection magnification β is ¼, the period Ps / β of the pinhole array 6 is about 4 μm or more, and the condition of the expression (2) is sufficiently satisfied.

また、図2(A)において、ピンホールアレー6の投影光学系POによる像が像面18上に形成され、この像面18から−Z方向に距離Lgの位置に回折格子10が配置され、この下方で像面18から距離Lcの位置に撮像素子14の受光面が配置される。
回折格子10には、図2(D)に示すように、遮光膜(又は吸収層)を背景として照明光ELを通す多数の開口パターン10aがX方向、Y方向に周期Pgで形成されている。ピンホールアレー6を通過した照明光ELが投影光学系POを介して回折格子10に入射し、回折格子10から発生する0次光(0次回折光)20、+1次回折光20A、及び−1次回折光20B等によって撮像素子14の受光面に、図2(E)に示すようなシアリング干渉の干渉縞(フーリエ像)22が形成される。
In FIG. 2A, an image formed by the projection optical system PO of the pinhole array 6 is formed on the image plane 18, and the diffraction grating 10 is disposed at a distance Lg from the image plane 18 in the −Z direction. Below this, the light receiving surface of the image sensor 14 is disposed at a distance Lc from the image plane 18.
In the diffraction grating 10, as shown in FIG. 2D, a large number of opening patterns 10a through which the illumination light EL passes with a light shielding film (or absorption layer) as a background are formed with a period Pg in the X and Y directions. . The illumination light EL that has passed through the pinhole array 6 enters the diffraction grating 10 via the projection optical system PO, and the 0th-order light (0th-order diffracted light) 20, the + 1st-order diffracted light 20A, and the −1st order generated from the diffraction grating 10. An interference fringe (Fourier image) 22 of shearing interference as shown in FIG. 2 (E) is formed on the light receiving surface of the image sensor 14 by the folded light 20B or the like.

回折格子10の周期Pgは、回折光の所望の横ずれ量(シア量)に応じて設定されるが、実際には製造上の限界もあるため、例えば数100nm〜数μm程度で、例えば1μm程度に設定される。
この場合、撮像素子14の受光面に干渉縞22が形成されるためには、回折格子10の像面18からの距離Lg、及び撮像素子14の受光面の像面18からの距離Lcは、露光波長λ、回折格子10の周期Pg、及びタルボ次数nを用いて、次の条件(タルボ条件)を満たす必要がある。なお、タルボ条件(Talbot条件)の詳細は、「応用光学1(鶴田)」(p.178-181,培風館,1990年)に記載されている。
The period Pg of the diffraction grating 10 is set according to a desired lateral shift amount (shear amount) of the diffracted light. However, since there is actually a manufacturing limit, it is about several hundred nm to several μm, for example, about 1 μm. Set to
In this case, in order for the interference fringes 22 to be formed on the light receiving surface of the image sensor 14, the distance Lg from the image surface 18 of the diffraction grating 10 and the distance Lc from the image surface 18 of the light receiving surface of the image sensor 14 are: Using the exposure wavelength λ, the period Pg of the diffraction grating 10, and the Talbot order n, it is necessary to satisfy the following condition (Talbot condition). Details of the Talbot condition (Talbot condition) are described in “Applied Optics 1 (Tsuruta)” (p.178-181, Baifukan, 1990).

Figure 2011142279
なお、n=0,0.5,1,1.5,2,…である。即ち、タルボ次数nは整数又は半整数である。
本実施形態では、Lc≫Lgが成立するため、式(3)の代わりに次の近似式を使用することができる。
Figure 2011142279
Note that n = 0, 0.5, 1, 1.5, 2,. That is, the Talbot degree n is an integer or a half integer.
In this embodiment, since Lc >> Lg is satisfied, the following approximate expression can be used instead of Expression (3).

Lg=2n×Pg2/λ …(4)
さらに、撮像素子14上に干渉縞が高いコントラストで形成されるためには、ピンホールアレー6の像の周期Psは、周期Pg、距離Lg、距離Lc、及び所定の整数m(例えば2又は4)を用いて次の条件を満たす必要がある。この条件については、例えば特開2006−269578号公報に開示されている。
Lg = 2n × Pg 2 / λ (4)
Further, in order to form interference fringes with high contrast on the image sensor 14, the period Ps of the image of the pinhole array 6 is the period Pg, the distance Lg, the distance Lc, and a predetermined integer m (for example, 2 or 4). ) To satisfy the following conditions: About this condition, it is disclosed by Unexamined-Japanese-Patent No. 2006-269578, for example.

Figure 2011142279
この条件は、図2(A)において、撮像素子14上の干渉縞22上の或る点22aに、ピンホールアレー6の一つのピンホール群の像6SPからの光束E1が到達する場合に、他のピンホール群の像6SPからの光束E2も達する条件である。言い換えると、この条件によって、高いコントラストの干渉縞22が形成される。
Figure 2011142279
This condition is shown in FIG. 2A when a light beam E1 from an image 6SP of one pinhole group of the pinhole array 6 reaches a certain point 22a on the interference fringe 22 on the image sensor 14. This is a condition that the light beam E2 from the image 6SP of the other pinhole group also reaches. In other words, the high-contrast interference fringes 22 are formed under this condition.

なお、Lg/Lcは1よりもかなり小さい値であるため、式(5)の代わりに次の近似式を使用してもよい。
Ps=Pg×m …(5A)
この式において周期Pgを1μm、mを2とすると、ピンホールアレー6の像の周期Psは2μmとなる。この場合、投影倍率βを1/4として、ピンホールアレー6の周期は8μmとなる。
Since Lg / Lc is a value considerably smaller than 1, the following approximate expression may be used instead of Expression (5).
Ps = Pg × m (5A)
In this equation, when the period Pg is 1 μm and m is 2, the period Ps of the image of the pinhole array 6 is 2 μm. In this case, the projection magnification β is 1/4, and the period of the pinhole array 6 is 8 μm.

例えば式(4)及び式(5A)の条件のもとで、撮像素子14の受光面に形成される干渉縞22の強度分布の情報を図1の演算装置12に取り込み、その強度分布に後述の演算を施すことで、投影光学系POの波面とこれをX方向にずらした波面とのシアリング波面(以下、X方向のシア波面という)ΔWX、及び投影光学系POの波面とこれをY方向にずらした波面とのシアリング波面(Y方向のシア波面)ΔWYを求めることができる。さらに、演算装置12は、これらのシア波面ΔWX及びΔWYから投影光学系POの波面、ひいてはその波面収差を求め、この波面収差の情報を主制御系16に出力する。 For example, information on the intensity distribution of the interference fringes 22 formed on the light receiving surface of the imaging device 14 under the conditions of the expressions (4) and (5A) is taken into the arithmetic unit 12 in FIG. , The shearing wavefront (hereinafter referred to as the shear wavefront in the X direction) ΔW X between the wavefront of the projection optical system PO and the wavefront shifted in the X direction, and the wavefront of the projection optical system PO and Y A shearing wavefront (Y-direction shear wavefront) ΔW Y with the wavefront shifted in the direction can be obtained. Further, the arithmetic unit 12 obtains the wavefront of the projection optical system PO and thus the wavefront aberration from these shear wavefronts ΔW X and ΔW Y, and outputs information on the wavefront aberration to the main control system 16.

なお、図6(A)の第1変形例で示すように、回折格子10は、投影光学系POの像面18の上方に距離Lgの位置に配置することも可能である。この場合には、距離Lgを負の値として扱えばよい。
また、特に照明光ELとしてArFエキシマレーザ光(波長193nm)のような紫外光が使用される場合には、光学系を透過系として、図6(B)の第2変形例で示すように、回折格子10を投影光学系POの像面18に配置することも可能である。この場合には、上記のタルボ条件は満たす必要がない。
As shown in the first modification of FIG. 6A, the diffraction grating 10 can also be disposed at a distance Lg above the image plane 18 of the projection optical system PO. In this case, the distance Lg may be handled as a negative value.
Further, particularly when ultraviolet light such as ArF excimer laser light (wavelength 193 nm) is used as illumination light EL, the optical system is used as a transmission system, as shown in the second modification of FIG. It is also possible to arrange the diffraction grating 10 on the image plane 18 of the projection optical system PO. In this case, it is not necessary to satisfy the above Talbot condition.

また、図2(A)の回折格子10から発生する主な複数の回折光のスペクトルは図3(A)に示すようになる。図3(A)において、回折格子10から発生する0次光L0、X方向の±1次回折光LX1,LX(-1)、±2次回折光LX2,LX(-2)、±3次回折光LX3,LX(-3)、Y方向の±1次回折光LY1,LY(-1)、±2次回折光LY2,LY(-2)、±3次回折光LY3,LY(-3)、及びX方向、Y方向の両方に±1次の回折光L(1,1),L(-1,1),L(1,-1),L(-1,-1)よりなる17個の回折光が表されている。これら17個の回折光のうちで、シア波面ΔWX,ΔWYを求めるために有効な次数(計測対象の次数)の回折光は、±1次回折光LX1,LX(-1)、及び±1次回折光LY1,LY(-1)の4個である。 Further, the spectrum of main diffracted lights generated from the diffraction grating 10 of FIG. 2A is as shown in FIG. 3A, 0th-order light L0 generated from the diffraction grating 10, ± first-order diffracted light LX1, LX (-1) in the X direction, ± second-order diffracted light LX2, LX (-2), and ± third-order diffracted light LX3. , LX (-3), ± 1st order diffracted light LY1, LY (-1) in the Y direction, ± 2nd order diffracted light LY2, LY (-2), ± 3rd order diffracted light LY3, LY (-3), and X direction, There are 17 diffracted lights of ± 1st order diffracted light L (1,1), L (-1,1), L (1, -1), L (-1, -1) in both Y directions. It is represented. Of these 17 diffracted lights, the diffracted lights of the order (order of measurement object) effective for obtaining the shear wave fronts ΔW X and ΔW Y are ± 1st order diffracted lights LX1, LX (−1), and ± 1. There are four pieces of next diffracted light LY1, LY (-1).

従って、X方向、Y方向のシア波面を求める場合の計測対象の次数の波面の数L(Lは2以上の整数)は4である。さらに、図3(A)の17個の回折光の寄与を全部考慮する場合、数Lと計測対象とは異なる次数の波面の数M(Mは1以上の整数)との和は次のように17であり、数Mは13である。
L+M=17 …(6A)
また、図3(A)において、±1次を超える次数の回折光の光量が小さいと仮定して、点線の枠LXYで囲まれた9個の回折光の寄与のみを考慮することも可能である。この場合にも、X方向、Y方向のシア波面を求めるものとすると、計測対象の次数の波面の数Lは4である。そして、この数Lと、計測対象とは異なる次数の波面の数Mとの和は次のように9であり、数Mは5である。
Therefore, the number L of the wavefronts of the order of the measurement target when obtaining the shear wavefronts in the X direction and the Y direction (L is an integer of 2 or more) is 4. Furthermore, when all the contributions of the 17 diffracted lights in FIG. 3A are considered, the sum of the number L and the number M of wavefronts of orders different from the measurement target (M is an integer of 1 or more) is as follows: 17 and the number M is 13.
L + M = 17 (6A)
In FIG. 3A, it is also possible to consider only the contribution of nine diffracted lights surrounded by a dotted line frame LXY, assuming that the amount of diffracted light of orders exceeding ± 1st order is small. is there. Also in this case, if the shear wavefronts in the X direction and the Y direction are to be obtained, the number L of wavefronts of the order of the measurement target is 4. The sum of the number L and the number M of wavefronts of orders different from the measurement target is 9, and the number M is 5.

L+M=9 …(6B)
さらに、図3(A)の点線の枠LXY内で、X方向、Y方向に±1次の回折光L(1,1),L(-1,1),L(1,-1),L(-1,-1)の光量が小さいと仮定して、0次光L0、±1次回折光LX1,LX(-1)、及び±1次回折光LY1,LY(-1)の寄与のみを考慮することも可能である。この場合には、シア波面を求めるのに有効な計測対象の次数の波面の数Lは4であり、計測対象とは異なる次数(ここでは0次光L0)の波面の数Mは1であり、数Lと数Mとの和は次のように5である。
L + M = 9 (6B)
Further, within the dotted frame LXY in FIG. 3A, the ± first-order diffracted lights L (1,1), L (-1,1), L (1, -1), Assuming that the light quantity of L (-1, -1) is small, only the contribution of the 0th order light L0, ± 1st order diffracted light LX1, LX (-1), and ± 1st order diffracted light LY1, LY (-1) It is also possible to consider. In this case, the number L of wavefronts of the order of the measurement target effective for obtaining the shear wavefront is 4, and the number M of wavefronts of the order different from the measurement target (here, the 0th-order light L0) is 1. The sum of the number L and the number M is 5 as follows.

L+M=5 …(6C)
なお、例えばX方向のシア波面ΔWXのみを求めることも可能であり、この場合には、計測対象の次数(±1次回折光LX1,LX(-1))の波面の数Lは2となる。
以下、本実施形態の露光装置100において、波面収差計測装置30を用いて投影光学系POの波面収差を計測する動作の一例につき図4のフローチャートを参照して説明する。この計測動作は主制御系16によって制御される。
L + M = 5 (6C)
For example, it is possible to obtain only the shear wave front ΔW X in the X direction. In this case, the number L of wave fronts of the order of the measurement target (± first-order diffracted light LX1, LX (−1)) is 2. .
Hereinafter, an example of the operation of measuring the wavefront aberration of the projection optical system PO using the wavefront aberration measuring apparatus 30 in the exposure apparatus 100 of the present embodiment will be described with reference to the flowchart of FIG. This measurement operation is controlled by the main control system 16.

先ず、ステップ102において、図1のレチクルステージRSTに計測用レチクル4をロードし、計測用レチクル4のピンホールアレー6を照明装置ILSの照明領域に移動する。次のステップ104おいて、ウエハステージ制御系17を介してウエハステージWSTを駆動し、図2(A)に示すように、計測本体部8の回折格子10の中心をピンホールアレー6の像の中心に移動する。   First, in step 102, the measurement reticle 4 is loaded onto the reticle stage RST of FIG. 1, and the pinhole array 6 of the measurement reticle 4 is moved to the illumination area of the illumination device ILS. In the next step 104, wafer stage WST is driven via wafer stage control system 17, and as shown in FIG. 2A, the center of diffraction grating 10 of measurement main body 8 is centered on the image of pinhole array 6. Move to the center.

次のステップ106において、主制御系16は、制御用のパラメータkの値を1にセットする(初期化する)。次のステップ108において、照明装置ILSからピンホールアレー6に照明光ELを照射し、回折格子10から発生する0次光を含む複数の回折光によるk番目のシアリング干渉の干渉縞22の強度分布Ikを撮像素子14で検出する。検出結果は演算装置12内の記憶装置に記憶される(ステップ110)。 In the next step 106, the main control system 16 sets (initializes) the value of the control parameter k to 1. In the next step 108, the illumination light EL is irradiated from the illumination device ILS to the pinhole array 6, and the intensity distribution of the interference fringes 22 of the k-th shearing interference due to a plurality of diffracted lights including the zeroth order light generated from the diffraction grating 10 is obtained. I k is detected by the image sensor 14. The detection result is stored in a storage device in the arithmetic device 12 (step 110).

次のステップ112において、主制御系16は、パラメータkが予め定められた計測回数を示すNに達したか否かを判断する。この計測回数Nは、次のように、上記の計測対象の次数の波面の数Lと計測対象とは異なる次数の波面の数Mとの和に等しく設定されている。
N=L+M …(6D)
この段階では、パラメータkはNより小さく、パラメータkはNではないため、動作はステップ114に移行して、主制御系16はパラメータkの値に1を加算する。
In the next step 112, the main control system 16 determines whether or not the parameter k has reached N indicating a predetermined number of measurements. The number N of times of measurement is set equal to the sum of the number L of wavefronts of the order of the measurement target and the number M of wavefronts of a different order from the measurement target as follows.
N = L + M (6D)
At this stage, since the parameter k is smaller than N and the parameter k is not N, the operation shifts to step 114, and the main control system 16 adds 1 to the value of the parameter k.

次のステップ116において、主制御系16は、ウエハステージ制御系17を介してウエハステージWSTを駆動して、図3(B)に示すように、計測本体部8の回折格子10をX方向にΔXk及びY方向にΔYkだけ移動する。この場合、一例として、1回目の計測時の移動量ΔX1及びΔY1は(0,0)とみなされる。ただし、1回目の計測時の移動量ΔX1及びΔY1を(0,0)以外の値に設定することも可能であり、このためには、パラメータkの初期値を0として、最初の計測値を無視すればよい。また、各計測時の移動量ΔXk及び移動量ΔYkは通常は互いに異なっているが、N回の移動中に1回程度は移動量ΔXkと移動量ΔYkとが一致してもよい。言い換えると、移動量ΔXkと移動量ΔYkとは実質的に互いに異なっていればよい。さらに、2回目以降の計測時の移動量ΔXk,ΔYkの一方が0の場合もあり得る。   In the next step 116, the main control system 16 drives the wafer stage WST via the wafer stage control system 17, and moves the diffraction grating 10 of the measurement main body 8 in the X direction as shown in FIG. Move by ΔYk in ΔXk and Y direction. In this case, as an example, the movement amounts ΔX1 and ΔY1 during the first measurement are regarded as (0, 0). However, the movement amounts ΔX1 and ΔY1 at the time of the first measurement can be set to values other than (0, 0). For this purpose, the initial value of the parameter k is set to 0, and the first measured value is set to 0. Ignore it. Further, the movement amount ΔXk and the movement amount ΔYk at the time of each measurement are usually different from each other, but the movement amount ΔXk and the movement amount ΔYk may coincide with each other during N times of movement. In other words, the movement amount ΔXk and the movement amount ΔYk may be substantially different from each other. Furthermore, one of the movement amounts ΔXk and ΔYk during the second and subsequent measurements may be zero.

この後、ステップ108に戻り、回折格子10から発生する回折光によるk番目のシアリング干渉の干渉縞22の強度分布Ikの検出、及びこの光強度分布の記憶(ステップ110)を繰り返す。このステップ108及び110は、N回繰り返される。
その後、ステップ112において、パラメータkがNに達しているときには、動作はステップ118に移行する。そして、演算装置12は、内部の記憶装置からN個の干渉縞の強度分布Ik(k=1〜N)の情報を読み出し、上記の各計測毎の回折格子10の移動量ΔXk,ΔYkの組み合わせ(移動経路)に応じて予め求められているk番目の係数の組であるAk,Bk,A’k,B’k(k=1〜N)と強度分布Ikとを用いて、次式よりX方向のシア波面ΔWX及びY方向のシア波面ΔWYを計算する。このシア波面は、撮像素子14の各画素の検出信号(光強度)毎に計算される位相分布である。
Thereafter, returning to step 108, the detection of the intensity distribution I k of the interference fringe 22 of the k-th shearing interference by the diffracted light generated from the diffraction grating 10 and the storage of the light intensity distribution (step 110) are repeated. Steps 108 and 110 are repeated N times.
Thereafter, when the parameter k has reached N in step 112, the operation proceeds to step 118. Then, the arithmetic unit 12 reads the information of the intensity distributions I k (k = 1 to N) of N interference fringes from the internal storage device, and calculates the movement amounts ΔXk and ΔYk of the diffraction grating 10 for each measurement. Using k k coefficient coefficients A k , B k , A ′ k , B ′ k (k = 1 to N) and the intensity distribution I k that are obtained in advance according to the combination (movement path). The X direction shear wave front ΔW X and the Y direction shear wave front ΔW Y are calculated from the following equations. This shear wavefront is a phase distribution calculated for each detection signal (light intensity) of each pixel of the image sensor 14.

Figure 2011142279
次のステップ120において、演算装置12は、X方向及びY方向のシア波面より投影光学系POを通過する照明光の波面を求め、さらにこの波面から波面収差を求める。ここで求められた波面収差の情報は主制御系16に供給される。次のステップ122において、主制御系16は、必要に応じて、図示しない結像特性補正機構を用いて投影光学系POの波面収差を補正する。この後、ステップ124においてレチクルステージRSTに実際の露光用のレチクル4をロードし、ステップ126においてウエハステージRSTに順次載置されるウエハの複数のショット領域にレチクル4のパターン像を走査露光する。
次に、上記の計測動作における回折格子10の移動量ΔXk,ΔYk(k=1〜N)の組み合わせ(移動経路)、及びこの移動経路に対する係数の組(Ak,Bk,A’k,B’k)(k=1〜N)の複数の実施例につき説明する。
Figure 2011142279
In the next step 120, the arithmetic unit 12 obtains the wavefront of the illumination light that passes through the projection optical system PO from the shear wavefronts in the X direction and the Y direction, and further obtains the wavefront aberration from the wavefront. The information on the wavefront aberration obtained here is supplied to the main control system 16. In the next step 122, the main control system 16 corrects the wavefront aberration of the projection optical system PO using an imaging characteristic correction mechanism (not shown) as necessary. Thereafter, in step 124, the reticle 4 for actual exposure is loaded on the reticle stage RST, and in step 126, the pattern image of the reticle 4 is scanned and exposed on a plurality of shot areas of the wafer sequentially placed on the wafer stage RST.
Next, a combination (movement path) of the movement amounts ΔXk and ΔYk (k = 1 to N) of the diffraction grating 10 in the above measurement operation, and a set of coefficients (A k , B k , A ′ k , A plurality of embodiments of B ′ k ) (k = 1 to N) will be described.

[第1実施例]
この第1実施例では、図3(A)の回折光のうち、計測対象の次数の波面の数Lは4、計測対象とは異なる次数の波面の数Mは13であり、式(6A)及び(6D)が成立しているため、ステップ112における計測回数Nは17である。また、N回の各計測時のステップ116における回折格子10のX方向、Y方向の移動量ΔXk,ΔYkに応じたX方向、Y方向のシア波面の位相の変化をδXk,δYkとする(k=1〜N)。この場合、X方向、Y方向のそれぞれの+1次回折光と−1次回折光との干渉縞の位相をΔWXn1,ΔWYn1、それら干渉縞の位相の変化をδXn1k,δYn1kとすると、この位相の変化は次のようになる。
[First embodiment]
In the first embodiment, among the diffracted light in FIG. 3A, the number L of wavefronts of the order of the measurement object is 4, and the number M of wavefronts of the order different from the measurement object is 13, and the equation (6A) Since (6D) is established, the number of measurements N in step 112 is 17. Further, changes in the shear wavefront phase in the X and Y directions according to the movement amounts ΔXk and ΔYk of the diffraction grating 10 in the X direction and the Y direction in step 116 at each measurement of N times are denoted by δ Xk and δ Yk . (K = 1 to N). In this case, if the phase of the interference fringes between the + 1st order diffracted light and the −1st order diffracted light in the X direction and the Y direction are ΔW Xn1 and ΔW Yn1 , and the phase changes of these interference fringes are δ Xn1k and δ Yn1k The changes are as follows.

δXn1k=2δXk, δYn1k=2δYk …(8A)
また、X方向、Y方向のそれぞれの0次光と3次回折光との干渉縞の位相をΔWXn2,ΔWYn2、それらの干渉縞の位相の変化をδXn2k,δYn2kとすると、この位相の変化は次のようになる。
δXn2k=3δXk, δYn2k=3δYk …(8B)
また、X方向の1次回折光とY方向の±1次回折光との干渉縞の位相をΔWXYn1,ΔWXYn2、それらの干渉縞の位相の変化をδXYn1k,δXYn2kとすると、この位相の変化は次のようになる。
δ Xn1k = 2δ Xk , δ Yn1k = 2δ Yk (8A)
Further, X-direction, each of the 0 order light and third-order the phase of the interference fringes between diffracted light [Delta] W Xn2 in the Y direction, [Delta] W Yn2, a change in the phase of their fringe [delta] Xn2k, when the [delta] Yn2k, this phase The changes are as follows:
δ Xn2k = 3δ Xk , δ Yn2k = 3δ Yk (8B)
Also, if the phase of the interference fringes between the first-order diffracted light in the X direction and the ± first-order diffracted light in the Y direction are ΔW XYn1 and ΔW XYn2 , and the phase changes of these interference fringes are δ XYn1k and δ XYn2k Is as follows.

δXYn1k=δXk−δYk, δXYn2k=δXk+δYk …(8C)
このとき、図2(A)の干渉縞22のk番目に計測される強度分布Ikは次のように表される。なお、干渉縞の直流成分DC及び干渉縞の強度の振幅a〜hはそれぞれ未知の定数である。
k=DC+acos(ΔWXXk)+bcos(ΔWYYk)+ccos(ΔWXn1Xn1k)+dcos(ΔWYn1Yn1k)+ecos(ΔWXn2Xn2k)+fcos(ΔWYn2Yn2k)+gcos(ΔWXYn1XYn1k)+hcos(ΔWXYn2XYn2k) …(9)
式(8A)〜(8C)を用いると、式(9)は次の行列とベクトルとの演算式で書き換えることができる。
δ XYn1k = δ Xk -δ Yk, δ XYn2k = δ Xk + δ Yk ... (8C)
At this time, the k-th measured intensity distribution I k of the interference fringes 22 in FIG. 2A is expressed as follows. The DC component DC of the interference fringes and the amplitudes a to h of the interference fringes are unknown constants.
I k = DC + acos (ΔW X + δ Xk) + bcos (ΔW Y + δ Yk) + ccos (ΔW Xn1 + δ Xn1k) + dcos (ΔW Yn1 + δ Yn1k) + ecos (ΔW Xn2 + δ Xn2k) + fcos (ΔW Yn2 + δ Yn2k ) + Gcos (ΔW XYn1 + δ XYn1k ) + hcos (ΔW XYn2 + δ XYn2k ) (9)
Using the equations (8A) to (8C), the equation (9) can be rewritten by the following matrix and vector arithmetic expression.

Figure 2011142279
この式(10)を解くことによって、DC,acos(ΔWX),asin(ΔWX),bcos(ΔWY),bcos(ΔWY)をそれぞれ算出できる。従って、計測対象とは異なる次数の回折光(ノイズ回折光)の影響を受けることなく、シア波面ΔWXとシア波面ΔWYとを分離した形で求めることができる。
Figure 2011142279
By solving the equation (10), DC, acos (ΔW X ), asin (ΔW X ), bcos (ΔW Y ), and bcos (ΔW Y ) can be calculated. Therefore, the shear wave front ΔW X and the shear wave front ΔW Y can be obtained in a separated form without being affected by diffracted light of a different order (noise diffracted light) from the measurement target.

また、この実施例では、ステップ116における2回目以降の計測時における回折格子10の移動量ΔXkと移動量ΔYkとの比を、図3(B)に示すように、回折格子10の移動方向のX軸に対する角度θを用いて次のように設定する。なお、tanθ=Aとおいている。
ΔXk:ΔYk=1:tanθ=1:A …(8D)
この場合、角度θ(rad)は、次のようにπ、π/2、及びπ/4の整数倍にはならないように選択される。なお、k1は任意の整数である。
Further, in this embodiment, the ratio of the movement amount ΔXk and the movement amount ΔYk of the diffraction grating 10 at the time of the second and subsequent measurements in step 116 is the ratio of the movement direction of the diffraction grating 10 as shown in FIG. The angle θ with respect to the X axis is set as follows. Note that tan θ = A.
ΔXk: ΔYk = 1: tan θ = 1: A (8D)
In this case, the angle θ (rad) is selected so as not to be an integral multiple of π, π / 2, and π / 4 as follows. Note that k1 is an arbitrary integer.

θ≠k1・π,θ≠k1・π/2,θ≠k1・π/4 …(8E)
また、k=2〜9の範囲では、回折格子10の周期Pgに対して、移動量ΔXk=Pg/8、移動量ΔYk=A×Pg/8である。この場合、干渉縞22のX方向の移動量Pg/8に対応する位相シフト量δXk(rad)及びY方向の移動量A×Pg/8に対応する位相シフト量δYk(rad)は次のようになる。
θ ≠ k1 · π, θ ≠ k1 · π / 2, θ ≠ k1 · π / 4 (8E)
In the range of k = 2 to 9, the movement amount ΔXk = Pg / 8 and the movement amount ΔYk = A × Pg / 8 with respect to the period Pg of the diffraction grating 10. In this case, the phase shift amount δXk (rad) corresponding to the movement amount Pg / 8 in the X direction of the interference fringe 22 and the phase shift amount δYk (rad) corresponding to the movement amount A × Pg / 8 in the Y direction are as follows. become.

δXk=π/4,δYk=A×π/4 (k=2〜9) …(8F)
従って、1回目から9回目の計測時までの回折格子10の移動による位相シフト量(δXk,δYk)の積算値は、(0,0),(π/4,A×π/4),(π/2,A×π/2),…,(4π,A×4π)となる。このX方向、Y方向の位相シフト量の積算値を周期Pg単位で表した図が図3(C)である。
δXk = π / 4, δYk = A × π / 4 (k = 2 to 9) (8F)
Accordingly, the integrated values of the phase shift amounts (δXk, δYk) due to the movement of the diffraction grating 10 from the first measurement to the ninth measurement are (0, 0), (π / 4, A × π / 4), ( π / 2, A × π / 2),..., (4π, A × 4π). FIG. 3C is a diagram in which the integrated value of the phase shift amounts in the X direction and the Y direction is expressed in units of the period Pg.

また、一例として、図3(C)に示すように、A=1.25として、上記の式(10)を解いてacos(ΔWX),asin(ΔWX),bcos(ΔWY),bcos(ΔWY)を求めることによって、X方向のシア波面ΔWX及びY方向のシア波面ΔWYは次のようになる。 As an example, as shown in FIG. 3C, when A = 1.25, the above equation (10) is solved to obtain acos (ΔW X ), asin (ΔW X ), bcos (ΔW Y ), bcos. By obtaining (ΔW Y ), the shear wave front ΔW X in the X direction and the shear wave front ΔW Y in the Y direction are as follows.

Figure 2011142279
この場合、式(7A)における係数A1=−0.0002,…,A17=0.0002,B1=0.0006,…,B17=0.0006であり、式(7B)における係数A’1=−0.0002,…,A’17=−0.0002,B’1=−0.0001,…,B’17=0.0001である。
Figure 2011142279
In this case, the coefficients A 1 = −0.0002,..., A 17 = 0.0002, B 1 = 0.0006,..., B 17 = 0.0006 in the expression (7A), and the coefficients in the expression (7B) a '1 = -0.0002, ..., a' 17 = -0.0002, B '1 = -0.0001, ..., B' is 17 = 0.0001.

[第2実施例]
この第2実施例では、図3(A)の回折光のうち、計測対象の次数の波面の数Lは4、計測対象とは異なる次数の波面の数Mは5であり、式(6B)及び(6D)が成立しているため、ステップ112における計測回数Nは9である。従って、図3(A)の回折光のうちで点線の枠LXY内の±1次以下の回折光のみが支配的であると仮定されている。また、ステップ116における回折格子10のX方向、Y方向の移動量ΔXk,ΔYkに応じたX方向、Y方向のシア波面の位相の変化をδXk,δYkとすると(k=1〜N)、X方向、Y方向のそれぞれの+1次回折光と−1次回折光との干渉縞の位相の変化δXn1k,δYn1kに関して上記の式(8A)が成立している。また、X方向の1次回折光とY方向の±1次回折光との干渉縞の位相の変化δXYn1k,δXYn2kに関して、上記の式(8C)が成立している。
[Second Embodiment]
In the second embodiment, among the diffracted light in FIG. 3A, the number L of wavefronts of the order of the measurement object is 4, and the number M of wavefronts of the order different from the measurement object is 5, and the equation (6B) Since (6D) is established, the number of measurements N in step 112 is 9. Therefore, it is assumed that only the diffracted light of ± 1st order or less within the dotted line frame LXY is dominant among the diffracted light in FIG. Further, assuming that changes in the shear wavefront phase in the X and Y directions according to the movement amounts ΔXk and ΔYk of the diffraction grating 10 in the X and Y directions in step 116 are δ Xk and δ Yk (k = 1 to N). The above equation (8A) is established with respect to changes δ Xn1k and δYn1k of interference fringes between the + 1st order diffracted light and the −1st order diffracted light in the X direction and the Y direction, respectively. Further , the above equation (8C) is established with respect to the phase variations δ XYn1k and δ XYn2k of the interference fringes between the first-order diffracted light in the X direction and the ± first-order diffracted light in the Y direction.

このとき、図2(A)の干渉縞22のk番目に計測される強度分布Ikは、式(9)において定数e,fをそれぞれ0とした式で表されるとともに、式(10)に対応して、9行×9列の行列と要素が9個のベクトルとの演算式が成立する。この演算式を解くことによって、X方向、Y方向のシア波面の関数acos(ΔWX),asin(ΔWX),bcos(ΔWY),bcos(ΔWY)をそれぞれ算出できるため、これらの関数からシア波面を計算できる。 At this time, the k-th measured intensity distribution I k of the interference fringe 22 in FIG. 2A is expressed by an expression in which constants e and f are 0 in Expression (9), and Expression (10). , An arithmetic expression of a 9 × 9 matrix and a vector with 9 elements is established. By solving this arithmetic expression, the functions acos (ΔW X ), asin (ΔW X ), bcos (ΔW Y ), bcos (ΔW Y ) of the shear wavefront in the X direction and Y direction can be calculated. The shear wavefront can be calculated from

また、この実施例においても、ステップ116における2回目以降の計測時における回折格子10の移動量ΔXkと移動量ΔYkとの比を、式(8D)と同様に次のように設定する。
ΔXk:ΔYk=1:tanθ=1:A …(12A)
なお、角度θ(rad)については、式(8E)の関係が成立している。また、k=2〜9の範囲では、回折格子10のX方向、Y方向の周期Pgに対して、移動量ΔXk=Pg/8、移動量ΔYk=A×Pg/8である。このとき、干渉縞22のX方向の移動量Pg/8に対応する位相シフト量δXk(rad)及びY方向の移動量A×Pg/8に対応する位相シフト量δYk(rad)は次のようになる。
Also in this embodiment, the ratio of the movement amount ΔXk and the movement amount ΔYk of the diffraction grating 10 at the time of the second and subsequent measurements in step 116 is set as follows similarly to the equation (8D).
ΔXk: ΔYk = 1: tan θ = 1: A (12A)
Regarding the angle θ (rad), the relationship of Expression (8E) is established. In the range of k = 2 to 9, the movement amount ΔXk = Pg / 8 and the movement amount ΔYk = A × Pg / 8 with respect to the period Pg of the diffraction grating 10 in the X direction and the Y direction. At this time, the phase shift amount δXk (rad) corresponding to the movement amount Pg / 8 in the X direction of the interference fringe 22 and the phase shift amount δYk (rad) corresponding to the movement amount A × Pg / 8 in the Y direction are as follows. become.

δXk=π/4,δYk=A×π/4 (k=2〜9) …(12B)
従って、1回目から9回目の計測時までの回折格子10の移動による位相シフト量(δXk,δYk)の積算値は、(0,0),(π/4,A×π/4),(π/2,A×π/2),…,(2π,A×2π)となる。このX方向、Y方向の位相シフト量の積算値を周
期Pg単位で表した図が図5である。
δXk = π / 4, δYk = A × π / 4 (k = 2 to 9) (12B)
Accordingly, the integrated values of the phase shift amounts (δXk, δYk) due to the movement of the diffraction grating 10 from the first measurement to the ninth measurement are (0, 0), (π / 4, A × π / 4), ( π / 2, A × π / 2),..., (2π, A × 2π). FIG. 5 shows an integrated value of the phase shift amounts in the X direction and the Y direction in units of the period Pg.

また、一例として、図5に示すように、A=0.8として、上記の式(10)に対応する式を解いてacos(ΔWX),asin(ΔWX),bcos(ΔWY),bcos(ΔWY)を求めることによって、X方向のシア波面ΔWX及びY方向のシア波面ΔWYは次のようになる。 Further, as an example, as shown in FIG. 5, when A = 0.8, the equation corresponding to the above equation (10) is solved to obtain acos (ΔW X ), asin (ΔW X ), bcos (ΔW Y ), By obtaining bcos (ΔW Y ), the shear wave front ΔW X in the X direction and the shear wave front ΔW Y in the Y direction are as follows.

Figure 2011142279
Figure 2011142279

本実施形態の効果等は以下の通りである。
(1)本実施形態の波面収差計測装置30による波面収差計測方法は、計測用レチクル4及び投影光学系PO(被検光学系)を通過した光束を互いに直交するX方向(第1方向)及びY方向(第2方向)に周期(ピッチ)Pgを持つ2次元の回折格子10を介して分割し、分割した光束による干渉縞22に基づいて投影光学系POの波面収差を計測する方法である。この方法は、回折格子10を実質的にX方向及びY方向に互いに異なる移動量ΔXk,ΔYkで移動させて、干渉縞22の光強度分布を(L+M)回計測するステップ108〜116と(Lは計測対象の次数の波面の数、Mは計測対象と異なる次数の波面の数)、干渉縞22の光強度分布の(L+M)個の計測結果よりその計測対象の次数の回折光である、X方向の±1次回折光、及びY方向の±1次回折光の波面(シア波面ΔWX,ΔWY)を求めるステップ118と、そのシア波面より投影光学系POの波面収差を求めるステップ120と、を有する。
The effects and the like of this embodiment are as follows.
(1) The wavefront aberration measuring method by the wavefront aberration measuring apparatus 30 of the present embodiment is based on the X direction (first direction) in which the light beams that have passed through the measurement reticle 4 and the projection optical system PO (test optical system) are orthogonal to each other; This is a method in which the wavefront aberration of the projection optical system PO is measured based on the interference fringes 22 generated by the division by the two-dimensional diffraction grating 10 having the period (pitch) Pg in the Y direction (second direction). . In this method, steps 108 to 116 for measuring the light intensity distribution of the interference fringe 22 (L + M) times by moving the diffraction grating 10 substantially in the X direction and the Y direction with different movement amounts ΔXk and ΔYk, and (L Is the number of wavefronts of the order of the measurement object, M is the number of wavefronts of the order different from that of the measurement object), and (L + M) measurement results of the light intensity distribution of the interference fringes 22 are the diffracted light of the order of the measurement object. A step 118 for obtaining wavefronts (shear wavefronts ΔW X , ΔW Y ) of the ± 1st order diffracted light in the X direction and the ± 1st order diffracted light in the Y direction, and a step 120 for obtaining the wavefront aberration of the projection optical system PO from the shear wavefront; Have

また、波面収差計測装置30は、干渉縞22の強度分布を検出する撮像素子14(検出器)と、回折格子10をX方向及びY方向に移動するウエハステージWST(移動機構)と、回折格子10をウエハステージWSTを介してX方向及びY方向へ実質的に互いに異なる移動量で移動させながら、それぞれ撮像素子14を介して(L+M)回計測される干渉縞22の強度分布よりその計測対象の次数の波面を求め、この計測対象の次数の波面より投影光学系POの波面収差を求める演算装置12とを備えている。   The wavefront aberration measuring apparatus 30 includes an imaging element 14 (detector) that detects the intensity distribution of the interference fringes 22, a wafer stage WST (movement mechanism) that moves the diffraction grating 10 in the X direction and the Y direction, and a diffraction grating. 10 is measured from the intensity distribution of the interference fringes 22 measured (L + M) times through the image sensor 14 while moving the wafer 10 in the X direction and the Y direction through the wafer stage WST with substantially different movement amounts. And an arithmetic unit 12 for obtaining the wavefront aberration of the projection optical system PO from the wavefront of the order to be measured.

本実施形態によれば、2次元の回折格子10を2次元的に移動させて(L+M)回、干渉縞22の強度分布を計測しているため、この計測結果から、L個の計測対象の次数の波面に対応する波面情報を求めることができる。従って、不要な回折光の影響を抑制して、投影光学系POの波面収差を高精度に計測できる。
また、本実施形態では、2次元の回折格子10の1回の走査データから上記の計測方法を用いて、位相シフト解析を行うことによって、波面計測を行うことができる。これにより、回折格子10等に付着する異物等による輝度むらに影響されない計測が可能となる。また、1種類の回折格子10を1回走査するのみでよいため、非点収差の誤差が発生しない状態で波面計測が可能となる。
According to the present embodiment, since the intensity distribution of the interference fringes 22 is measured by moving the two-dimensional diffraction grating 10 two-dimensionally (L + M) times, from this measurement result, L measurement objects are measured. Wavefront information corresponding to the order wavefront can be obtained. Therefore, the influence of unnecessary diffracted light can be suppressed and the wavefront aberration of the projection optical system PO can be measured with high accuracy.
Further, in the present embodiment, wavefront measurement can be performed by performing phase shift analysis using the above measurement method from one-time scanning data of the two-dimensional diffraction grating 10. As a result, it is possible to perform measurement that is not affected by luminance unevenness due to foreign matter or the like adhering to the diffraction grating 10 or the like. Further, since only one type of diffraction grating 10 needs to be scanned once, wavefront measurement can be performed in a state where no astigmatism error occurs.

(2)本実施形態では、回折格子10のX方向及びY方向の周期は互いに等しいため、計測対象の次数の波面を求める演算が容易であるが、回折格子10のX方向、Y方向の周期は互いに異なっていてもよい。
(3)また、本実施形態の露光方法は、照明光EL(露光光)でレチクルRのパターンを照明し、照明光ELでそのパターン及び投影光学系POを介してウエハW(基板)を露光する露光方法において、投影光学系POの波面収差を計測するために、本実施形態の波面計測方法を用いている。
(2) In this embodiment, since the periods of the diffraction grating 10 in the X direction and the Y direction are equal to each other, it is easy to calculate the wavefront of the order to be measured. May be different from each other.
(3) Further, in the exposure method of the present embodiment, the pattern of the reticle R is illuminated with illumination light EL (exposure light), and the wafer W (substrate) is exposed with the illumination light EL via the pattern and the projection optical system PO. In this exposure method, the wavefront measuring method of this embodiment is used to measure the wavefront aberration of the projection optical system PO.

また、本実施形態の露光装置100は、投影光学系POの波面収差を計測するために波面収差計測装置30を備えている。
従って、露光装置の投影光学系POの波面収差を露光波長で高精度に評価できる。また、この計測結果を投影光学系POの各光学部材のアラインメントに使用することで、優れた性能の投影光学系を製造することもできる。さらに、オンボディで投影光学系POのフルフィールドでの干渉計データを取得し、投影光学系POの光学部材の波面収差を計測することで、露光装置の重要なパラメータをモニタするための最適化ソリューションを提供することができる。
In addition, the exposure apparatus 100 of this embodiment includes a wavefront aberration measuring device 30 for measuring the wavefront aberration of the projection optical system PO.
Therefore, the wavefront aberration of the projection optical system PO of the exposure apparatus can be evaluated with high accuracy at the exposure wavelength. Further, by using this measurement result for alignment of each optical member of the projection optical system PO, it is possible to manufacture a projection optical system with excellent performance. In addition, the interferometer data in the full field of the projection optical system PO is acquired on-body, and the wavefront aberration of the optical member of the projection optical system PO is measured to optimize the monitoring of important parameters of the exposure apparatus. A solution can be provided.

なお、上記の実施形態では、計測用レチクル4にピンホールアレー6(光源)が形成されている場合の干渉計における波面解析を説明したが、本発明は、周期面光源を用いたインコヒーレント照明計測系にも適用できる。また、本発明は、単一ピンホールを用いたコヒーレント照明計測系にも適用できる。   In the above embodiment, the wavefront analysis in the interferometer in the case where the pinhole array 6 (light source) is formed on the measurement reticle 4 has been described. However, the present invention provides incoherent illumination using a periodic surface light source. It can also be applied to measurement systems. The present invention can also be applied to a coherent illumination measurement system using a single pinhole.

[第2の実施形態]
次に、本発明の第2の実施形態につき図7及び図8を参照して説明する。本実施形態の波面収差計測装置の基本的な構成は図1の波面収差計測装置30と同様であるが、本実施形態では、計測用レチクルのパターン(光源)及び回折格子のパターンが市松格子である点が異なっている。以下、図7(A)〜図7(D)において、図2(A)〜図2(D)に対応する部分には同一符号を付してその詳細な説明を省略又は簡略化する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS. The basic configuration of the wavefront aberration measuring apparatus of the present embodiment is the same as that of the wavefront aberration measuring apparatus 30 of FIG. 1, but in this embodiment, the measurement reticle pattern (light source) and diffraction grating pattern are checkered gratings. There are some differences. In the following, in FIGS. 7A to 7D, portions corresponding to those in FIGS. 2A to 2D are denoted by the same reference numerals, and detailed description thereof is omitted or simplified.

図7(A)は、本実施形態の波面収差計測装置の計測本体部8A、計測用レチクル4、及び投影光学系POを透過光学系として示す図である。本実施形態では、計測用レチクル4には、図7(B)に示すように、ピンホール群6SをX方向、Y方向に周期(ピッチ)Ps/βで市松格子状に配列したピンホールアレー6Aが形成されている。この場合にも、ピンホールアレー6Aの代わりに、図7(C)の市松格子状のピンホールアレー6AHを使用可能である。   FIG. 7A is a diagram showing the measurement main body 8A, the measurement reticle 4 and the projection optical system PO of the wavefront aberration measurement apparatus of the present embodiment as a transmission optical system. In the present embodiment, as shown in FIG. 7B, the measurement reticle 4 includes a pinhole array in which pinhole groups 6S are arranged in a checkered pattern with a period (pitch) Ps / β in the X and Y directions. 6A is formed. Also in this case, the checkered pinhole array 6AH of FIG. 7C can be used instead of the pinhole array 6A.

また、計測本体部8Aの回折格子10Aには、図7(D)に示すように、開口パターン10aがX方向、Y方向に周期Pgで市松格子状に形成されている。従って、計測本体部8Aの撮像素子14の受光面には、0次光20A、+1次回折光20AA、及び−1次回折光20AB等による干渉縞22A(図7(E)参照)が形成される。
回折格子10Aからの複数の回折光のスペクトルは、図8(A)に示すように、0次光L0、X軸上の2つの回折光LA,LB、及びY軸上の2つの回折光LC,LDが支配的である。そこで、計測対象の次数の波面の数Lを4、計測対象と異なる次数の波面の数Mを1とする。
Further, as shown in FIG. 7D, the opening pattern 10a is formed in the diffraction grating 10A of the measurement main body 8A in a checkered pattern with a period Pg in the X direction and the Y direction. Accordingly, interference fringes 22A (see FIG. 7E) due to the 0th-order light 20A, the + 1st-order diffracted light 20AA, the -1st-order diffracted light 20AB, and the like are formed on the light receiving surface of the imaging element 14 of the measurement main body 8A.
As shown in FIG. 8 (A), the spectrum of the plurality of diffracted lights from the diffraction grating 10A includes a zero-order light L0, two diffracted lights LA and LB on the X axis, and two diffracted lights LC on the Y axis. , LD is dominant. Therefore, the number L of wavefronts of the order of the measurement target is 4, and the number M of wavefronts of the order different from the measurement target is 1.

本実施形態においても、図4の計測動作と同様の動作によって、投影光学系POのX方向のシア波面ΔWX及びY方向のシア波面ΔWYを求める。この場合、図4のステップ112に対応する工程における干渉縞22Aの強度分布Ikの計測回数N(=L+M)は5である。また、ステップ116に対応する工程における1回目〜5回目の回折格子10AのX方向、Y方向の移動量(ΔXk,ΔYk)に対応するシア波面ΔWX,ΔWYの位相の変化を(0,0),(δ2X,δ2Y),…,(δ5X,δ5Y)とする。このとき、干渉縞22Aのk回目に計測される強度分布Ik(k=1〜5)は、未知の直流成分DC及び係数a,bを用いて次のようになる。 Also in this embodiment, the shear wave front ΔW X in the X direction and the shear wave front ΔW Y in the Y direction of the projection optical system PO are obtained by the same operation as the measurement operation in FIG. In this case, the number N (= L + M) of measurement of the intensity distribution I k of the interference fringes 22A in the process corresponding to step 112 in FIG. Further, the phase changes of the shear wave fronts ΔW X and ΔW Y corresponding to the movement amounts (ΔXk, ΔYk) of the first to fifth diffraction gratings 10A in the X- and Y-directions in the process corresponding to Step 116 are (0, 0), (δ 2X , δ 2Y ), ..., (δ 5X , δ 5Y ). At this time, the intensity distribution I k (k = 1 to 5) measured at the k-th time of the interference fringe 22A is as follows using the unknown DC component DC and the coefficients a and b.

1=DC+acos(ΔWX)+bcos(ΔWY) …(21A)
2=DC+acos(ΔWX2X)+bcos(ΔWY2Y) …(21B)
3=DC+acos(ΔWX3X)+bcos(ΔWY3Y) …(21C)
4=DC+acos(ΔWX4X)+bcos(ΔWY4Y) …(21D)
5=DC+acos(ΔWX5X)+bcos(ΔWY5Y) …(21E)
これらの式(21A)〜(21E)は次の行列とベクトルとの演算式で表すことができる。
I 1 = DC + acos (ΔW X ) + bcos (ΔW Y ) (21A)
I 2 = DC + acos (ΔW X + δ 2X ) + bcos (ΔW Y + δ 2Y ) (21B)
I 3 = DC + acos (ΔW X + δ 3X ) + bcos (ΔW Y + δ 3Y ) (21C)
I 4 = DC + acos (ΔW X + δ 4X ) + bcos (ΔW Y + δ 4Y ) (21D)
I 5 = DC + acos (ΔW X + δ 5X ) + bcos (ΔW Y + δ 5Y ) (21E)
These equations (21A) to (21E) can be expressed by the following arithmetic expressions of matrices and vectors.

Figure 2011142279
この式(22)からacos(ΔWX),asin(ΔWX)を算出できるため、これらを用いて、X方向のシア波面ΔWXは次の式(23A)となる。同様に式(22)からbcos(ΔWY),bcos(ΔWY)を算出できるため、これらを用いて、Y方向のシア波面ΔWYは次の式(23B)となる。
Figure 2011142279
Since acos (ΔW X ) and asin (ΔW X ) can be calculated from this equation (22), the shear wave front ΔW X in the X direction is expressed by the following equation (23A). Similarly, since bcos (ΔW Y ) and bcos (ΔW Y ) can be calculated from the equation (22), the shear wave front ΔW Y in the Y direction is expressed by the following equation (23B).

Figure 2011142279
一例として、図4のステップ116に対応する工程における1回目の計測時の回折格子10AのX方向、Y方向の移動量(ΔXk,ΔYk)を(0,0)とする。また、2回目以降の計測時における回折格子10Aの移動量ΔXkと移動量ΔYkとの比を1:tanθと一定とする(k=2〜5)。tanθ(=A)については式(8E)が成立している。
Figure 2011142279
As an example, the amount of movement (ΔXk, ΔYk) in the X direction and Y direction of the diffraction grating 10A at the first measurement in the process corresponding to step 116 in FIG. 4 is (0, 0). Further, the ratio of the movement amount ΔXk and the movement amount ΔYk of the diffraction grating 10A in the second and subsequent measurements is constant at 1: tan θ (k = 2 to 5). For tan θ (= A), equation (8E) holds.

また、k=2〜5の範囲では、回折格子10AのX方向、Y方向の周期Pgに対して、移動量ΔXk=Pg/4、移動量ΔYk=A×Pg/4である。また、移動量(ΔXk,ΔYk)に対応する干渉縞の位相の変化(位相シフト量)をδX,δYとすると、δX=π/2、δY=A×π/2であり、式(21A)〜(21E)における位相の変化は次のようになる。 In the range of k = 2 to 5, the movement amount ΔXk = Pg / 4 and the movement amount ΔYk = A × Pg / 4 with respect to the period Pg in the X direction and the Y direction of the diffraction grating 10A. Further, assuming that the phase change (phase shift amount) of the interference fringes corresponding to the movement amount (ΔXk, ΔYk) is δ X , δ Y , δ X = π / 2, δ Y = A × π / 2, The phase change in the equations (21A) to (21E) is as follows.

δkX=(k−1)δX, δkY=(k−1)δY …(24)
これらの位相シフト量の積算値を周期Pgを単位として表した図(回折格子10Aの移動経路)が図8(B)である。また、図8(B)に示すように、A=1/2とした場合には、式(24)を式(22)に適用することによって、式(23A)、(23B)に対応してX方向、Y方向のシア波面ΔWX,ΔWYは次のようになる。
δ kX = (k-1) δ X, δ kY = (k-1) δ Y ... (24)
FIG. 8B is a diagram (movement path of the diffraction grating 10A) in which the integrated values of these phase shift amounts are expressed in units of the period Pg. Further, as shown in FIG. 8B, when A = 1/2, the expression (24) is applied to the expression (22) to correspond to the expressions (23A) and (23B). The shear wave fronts ΔW X and ΔW Y in the X direction and the Y direction are as follows.

Figure 2011142279
Figure 2011142279

なお、本発明は、タルボ干渉計以外の任意の干渉計を用いてシアリング干渉等による干渉縞を検出して被検光学系の波面収差を計測する場合に適用可能である。
また、上述の実施形態では、EUV光源としてレーザプラズマ光源を用いるものとしたが、これに限らず、SOR(Synchrotron Orbital Radiation)リング、ベータトロン光源、ディスチャージド光源(放電励起プラズマ光源、回転型放電励起プラズマ光源など)、X線レーザなどのいずれを用いても良い。
The present invention can be applied to the case where an interference fringe due to shearing interference or the like is detected using an arbitrary interferometer other than the Talbot interferometer and the wavefront aberration of the optical system to be measured is measured.
In the above-described embodiment, the laser plasma light source is used as the EUV light source. However, the present invention is not limited to this, but a SOR (Synchrotron Orbital Radiation) ring, a betatron light source, a discharged light source (discharge excitation plasma light source, rotary discharge) Any of an excitation plasma light source or the like) or an X-ray laser may be used.

また、図1の実施形態では、露光光としてEUV光を用い、複数枚のミラーから成るオール反射の投影光学系を用いる場合について説明したが、これは一例である。例えば露光光としてArFエキシマレーザ光(波長193nm)等を用いて反射屈折系又は屈折系からなる投影光学系を用いる場合にも、その波面収差を計測するために本発明を適用可能である。   In the embodiment of FIG. 1, the case where EUV light is used as exposure light and an all-reflection projection optical system including a plurality of mirrors is used is described as an example. For example, the present invention can be applied to measure the wavefront aberration even when a projection optical system composed of a catadioptric system or a refractive system using ArF excimer laser light (wavelength 193 nm) or the like as exposure light.

さらに、本発明は、露光装置の投影光学系以外の光学系、例えば顕微鏡の対物レンズ、又はカメラの対物レンズ等の波面収差を計測する場合にも適用可能である。
なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
Furthermore, the present invention can also be applied to measuring wavefront aberration of an optical system other than the projection optical system of the exposure apparatus, for example, an objective lens of a microscope or an objective lens of a camera.
In addition, this invention is not limited to the above-mentioned embodiment, A various structure can be taken in the range which does not deviate from the summary of this invention.

ILS…照明装置、R…レチクル、RST…レクチルステージ、PO…投影光学系、W…ウエハ、WST…ウエハステージ、WB…ウエハベース、4…計測用レチクル、6…ピンホールアレー、8…計測本体部、10…回折格子、12…演算装置、14…撮像素子、16…主制御系、17…ウエハステージ制御系、30…波面収差計測装置、100…露光装置   ILS ... illumination device, R ... reticle, RST ... reticle stage, PO ... projection optical system, W ... wafer, WST ... wafer stage, WB ... wafer base, 4 ... reticle for measurement, 6 ... pinhole array, 8 ... measuring body , 10 ... diffraction grating, 12 ... arithmetic unit, 14 ... imaging device, 16 ... main control system, 17 ... wafer stage control system, 30 ... wavefront aberration measuring device, 100 ... exposure device

Claims (13)

計測用マスク及び被検光学系を通過した計測用の光束を互いに直交する第1方向及び第2方向に周期性を持つ2次元の回折格子を介して分割し、分割した前記光束を干渉させて得られる干渉縞に基づいて前記被検光学系の波面収差情報を計測する波面収差計測方法であって、
前記干渉縞のうち計測対象の次数の波面の数をL(Lは2以上の整数)、前記計測対象とは異なる次数の波面の数をM(Mは1以上の整数)として、
前記回折格子を実質的に前記第1方向及び前記第2方向に互いに異なる移動量で移動させて、前記干渉縞の光強度分布を(L+M)回計測する工程と、
前記干渉縞の光強度分布の(L+M)個の計測結果より前記計測対象の次数の波面を求める工程と、
前記計測対象の次数の波面より前記被検光学系の波面収差情報を求める工程と、
を含むことを特徴とする波面収差計測方法。
A measurement light beam that has passed through a measurement mask and a test optical system is divided through a two-dimensional diffraction grating having periodicity in a first direction and a second direction orthogonal to each other, and the divided light beam is caused to interfere. A wavefront aberration measuring method for measuring wavefront aberration information of the test optical system based on an obtained interference fringe,
Of the interference fringes, the number of wavefronts of the order of the measurement object is L (L is an integer of 2 or more), and the number of wavefronts of an order different from the measurement object is M (M is an integer of 1 or more).
Measuring the light intensity distribution of the interference fringes (L + M) times by moving the diffraction grating substantially in the first direction and the second direction with different movement amounts;
Obtaining a wavefront of the order of the measurement object from (L + M) measurement results of the light intensity distribution of the interference fringes;
Obtaining wavefront aberration information of the optical system under test from the wavefront of the order of the measurement object;
A wavefront aberration measuring method comprising:
前記計測対象の次数の波面の数Lは4、前記計測対象とは異なる次数の波面の数Mは1であることを特徴とする請求項1に記載の波面収差計測方法。   The wavefront aberration measuring method according to claim 1, wherein the number L of wavefronts of the order of the measurement target is 4, and the number M of wavefronts of a different order from the measurement target is 1. 前記計測対象の次数の波面の数Lは4、前記計測対象とは異なる次数の波面の数Mは13であることを特徴とする請求項1に記載の波面収差計測方法。   The wavefront aberration measuring method according to claim 1, wherein the number L of wavefronts of the order of the measurement target is 4, and the number M of wavefronts of a different order from the measurement target is 13. 前記計測用マスクには前記第1方向及び前記第2方向に対応する方向に周期性を持つ第1の市松格子が形成され、
前記回折格子は第2の市松格子であり、
前記計測対象の次数の波面の数Lは4、前記計測対象とは異なる次数の波面の数Mは1であることを特徴とする請求項1に記載の波面収差計測方法。
The measurement mask is formed with a first checkered lattice having periodicity in a direction corresponding to the first direction and the second direction,
The diffraction grating is a second checkered grating;
The wavefront aberration measuring method according to claim 1, wherein the number L of wavefronts of the order of the measurement target is 4, and the number M of wavefronts of a different order from the measurement target is 1.
前記回折格子の前記第1方向及び前記第2方向の周期は互いに等しいことを特徴とする請求項1から請求項4のいずれか一項に記載の波面収差計測方法。   5. The wavefront aberration measuring method according to claim 1, wherein periods of the diffraction grating in the first direction and the second direction are equal to each other. 露光光でパターンを照明し、前記露光光で前記パターン及び投影光学系を介して基板を露光する露光方法において、
前記投影光学系の波面収差情報を計測するために、請求項1から請求項5のいずれか一項に記載の波面収差計測方法を用いることを特徴とする露光方法。
In an exposure method of illuminating a pattern with exposure light and exposing the substrate with the exposure light through the pattern and a projection optical system,
An exposure method using the wavefront aberration measuring method according to any one of claims 1 to 5, in order to measure wavefront aberration information of the projection optical system.
前記露光光はEUV光であり、
前記露光光を前記計測用の光束として使用することを特徴とする請求項6に記載の露光方法。
The exposure light is EUV light;
The exposure method according to claim 6, wherein the exposure light is used as the measurement light beam.
計測用マスク及び被検光学系を通過した計測用の光束を互いに直交する第1方向及び第2方向に周期性を持つ2次元の回折格子を介して分割し、分割した前記光束を干渉させて得られる干渉縞に基づいて前記被検光学系の波面収差情報を計測する波面収差計測装置であって、
前記干渉縞の光強度分布を検出する受光器と、
前記回折格子を前記第1方向及び前記第2方向に移動する移動機構と、
前記受光器の検出結果より前記被検光学系の波面収差情報を求める制御装置と、
を備え、
前記干渉縞のうち計測対象の次数の波面の数をL(Lは2以上の整数)、前記計測対象とは異なる次数の波面の数をM(Mは1以上の整数)として、
前記制御装置は、
前記移動機構を介して前記回折格子を実質的に前記第1方向及び前記第2方向に互いに異なる移動量で移動させ、それぞれ前記受光器を介して(L+M)回計測される前記干渉縞の光強度分布の計測結果より前記計測対象の次数の波面を求め、該計測対象の次数の波面より前記被検光学系の波面収差情報を求めることを特徴とする波面収差計測装置。
A measurement light beam that has passed through a measurement mask and a test optical system is divided through a two-dimensional diffraction grating having periodicity in a first direction and a second direction orthogonal to each other, and the divided light beam is caused to interfere. A wavefront aberration measuring apparatus for measuring wavefront aberration information of the test optical system based on an obtained interference fringe,
A light receiver for detecting the light intensity distribution of the interference fringes;
A moving mechanism for moving the diffraction grating in the first direction and the second direction;
A control device for obtaining wavefront aberration information of the optical system to be detected from a detection result of the light receiver;
With
Of the interference fringes, the number of wavefronts of the order of the measurement object is L (L is an integer of 2 or more), and the number of wavefronts of an order different from the measurement object is M (M is an integer of 1 or more).
The controller is
The light of the interference fringes measured by (L + M) times through the light receiver, respectively, by moving the diffraction grating substantially differently in the first direction and the second direction through the moving mechanism. A wavefront aberration measuring apparatus, wherein a wavefront of the order of the measurement target is obtained from a measurement result of the intensity distribution, and wavefront aberration information of the optical system to be measured is obtained from the wavefront of the order of the measurement target.
前記計測対象の次数の波面の数Lは4、前記計測対象とは異なる次数の波面の数Mは1であることを特徴とする請求項8に記載の波面収差計測装置。   9. The wavefront aberration measuring apparatus according to claim 8, wherein the number L of wavefronts of the order of the measurement object is 4, and the number M of wavefronts of an order different from the measurement object is 1. 前記計測対象の次数の波面の数Lは4、前記計測対象とは異なる次数の波面の数Mは13であることを特徴とする請求項8に記載の波面収差計測装置。   The wavefront aberration measuring apparatus according to claim 8, wherein the number L of wavefronts of the order of the measurement target is 4, and the number M of wavefronts of a different order from the measurement target is 13. 前記計測用マスクには前記第1方向及び前記第2方向に対応する方向に周期性を持つ第1の市松格子が形成され、
前記回折格子は第2の市松格子であり、
前記計測対象の次数の波面の数Lは4、前記計測対象とは異なる次数の波面の数Mは1であることを特徴とする請求項8に記載の波面収差計測装置。
The measurement mask is formed with a first checkered lattice having periodicity in a direction corresponding to the first direction and the second direction,
The diffraction grating is a second checkered grating;
9. The wavefront aberration measuring apparatus according to claim 8, wherein the number L of wavefronts of the order of the measurement object is 4, and the number M of wavefronts of an order different from the measurement object is 1.
前記回折格子の前記第1方向及び前記第2方向の周期は互いに等しいことを特徴とする請求項8から請求項11のいずれか一項に記載の波面収差計測装置。   The wavefront aberration measuring device according to any one of claims 8 to 11, wherein the periods of the diffraction grating in the first direction and the second direction are equal to each other. 露光光でパターンを照明し、前記露光光で前記パターン及び投影光学系を介して基板を露光する露光装置において、
前記投影光学系の波面収差情報を計測するために、請求項8から請求項12のいずれか一項に記載の波面収差計測装置を備えることを特徴とする露光装置。
In an exposure apparatus that illuminates a pattern with exposure light and exposes the substrate through the pattern and the projection optical system with the exposure light,
An exposure apparatus comprising the wavefront aberration measuring device according to any one of claims 8 to 12 for measuring wavefront aberration information of the projection optical system.
JP2010003405A 2010-01-08 2010-01-08 Wavefront aberration measuring method and device, exposing method, and aligner Withdrawn JP2011142279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010003405A JP2011142279A (en) 2010-01-08 2010-01-08 Wavefront aberration measuring method and device, exposing method, and aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010003405A JP2011142279A (en) 2010-01-08 2010-01-08 Wavefront aberration measuring method and device, exposing method, and aligner

Publications (1)

Publication Number Publication Date
JP2011142279A true JP2011142279A (en) 2011-07-21

Family

ID=44457912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010003405A Withdrawn JP2011142279A (en) 2010-01-08 2010-01-08 Wavefront aberration measuring method and device, exposing method, and aligner

Country Status (1)

Country Link
JP (1) JP2011142279A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018521337A (en) * 2015-05-12 2018-08-02 中国科学院上海光学精密机械研究所 Lithographic in-situ high speed and high spatial resolution wavefront aberration measuring device and measuring method
CN110441992A (en) * 2019-07-23 2019-11-12 中国科学院上海光学精密机械研究所 Projection objective wave aberration detection device and detection method
JP2019533174A (en) * 2016-09-30 2019-11-14 ファシックPhasics Method and apparatus for analyzing electromagnetic waves with high definition
KR20200050464A (en) * 2017-09-08 2020-05-11 나발 그룹 Device for monitoring insulation and / or non-disconnection of at least one electrical cable and associated monitoring method
CN111856885A (en) * 2019-04-30 2020-10-30 上海微电子装备(集团)股份有限公司 Wave aberration measuring device and photoetching machine
WO2020238316A1 (en) * 2019-05-31 2020-12-03 上海微电子装备(集团)股份有限公司 Wave aberration measurement device, measurement method, and photolithography machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018521337A (en) * 2015-05-12 2018-08-02 中国科学院上海光学精密机械研究所 Lithographic in-situ high speed and high spatial resolution wavefront aberration measuring device and measuring method
JP2019533174A (en) * 2016-09-30 2019-11-14 ファシックPhasics Method and apparatus for analyzing electromagnetic waves with high definition
JP7373399B2 (en) 2016-09-30 2023-11-02 ファシック Method and apparatus for analyzing electromagnetic waves with high definition
KR20200050464A (en) * 2017-09-08 2020-05-11 나발 그룹 Device for monitoring insulation and / or non-disconnection of at least one electrical cable and associated monitoring method
KR102626581B1 (en) 2017-09-08 2024-01-17 나발 그룹 Device and associated monitoring method for monitoring insulation and/or non-breakage of at least one electrical cable
CN111856885A (en) * 2019-04-30 2020-10-30 上海微电子装备(集团)股份有限公司 Wave aberration measuring device and photoetching machine
CN111856885B (en) * 2019-04-30 2021-08-03 上海微电子装备(集团)股份有限公司 Wave aberration measuring device and photoetching machine
WO2020238316A1 (en) * 2019-05-31 2020-12-03 上海微电子装备(集团)股份有限公司 Wave aberration measurement device, measurement method, and photolithography machine
TWI745933B (en) * 2019-05-31 2021-11-11 大陸商上海微電子裝備(集團)股份有限公司 Wave aberration measuring device, measuring method and photoetching machine
CN110441992A (en) * 2019-07-23 2019-11-12 中国科学院上海光学精密机械研究所 Projection objective wave aberration detection device and detection method

Similar Documents

Publication Publication Date Title
JP6774039B2 (en) Wave surface measurement method and equipment, exposure method and equipment, and device manufacturing method
KR100579616B1 (en) A lithographic projection apparatus, a grating module, a sensor module, a method of measuring wave front aberrations
JP5522944B2 (en) Measuring apparatus, measuring method and exposure apparatus
US8004691B2 (en) Measuring apparatus, exposure apparatus and method, and device manufacturing method
US7952726B2 (en) Measurement apparatus, exposure apparatus having the same, and device manufacturing method
JP4266673B2 (en) Aberration measuring device
JP2006324311A (en) Wavefront aberration measuring device and exposing device therewith
US7576870B2 (en) Measurement apparatus, exposure apparatus, and device fabrication method
EP1536287B1 (en) Measuring method and apparatus using a shearing interferometer, exposure method and apparatus using the same, and device manufacturing method
JP2011142279A (en) Wavefront aberration measuring method and device, exposing method, and aligner
JP2010206033A (en) Wavefront aberration measuring device, method of calibrating the same, and aligner
JP2011108974A (en) Wavefront measuring method and apparatus, and exposure method and apparatus
JP5434147B2 (en) Wavefront aberration measuring apparatus, calibration method for the apparatus, and exposure apparatus
JP2011108696A (en) Method and device for measuring wavefront, and alignment method and aligner
JP2004146454A (en) Method of measuring optical characteristics
JP4280521B2 (en) Aberration measuring apparatus and projection exposure apparatus
JP2013214637A (en) Wavefront measurement method and device and exposure method and device
JP2008198799A (en) Device and method for measuring wavefront aberration, and exposure device
JP2010034319A (en) Method for measuring wavefront aberration
JP2011040470A (en) Wavefront aberration measuring apparatus, wavefront aberration measuring method, method of adjusting optical system, exposure apparatus, and device manufacturing method
NL1035999A1 (en) Lithographic Apparatus and Method.
JP2013217723A (en) Method and apparatus for measuring optical characteristic and exposure method and apparatus
JP2014036123A (en) Optical characteristics measurement method and device, and exposure method and device
JP2008211075A (en) Measuring device, exposure apparatus and method for manufacturing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130402