TWI745933B - Wave aberration measuring device, measuring method and photoetching machine - Google Patents
Wave aberration measuring device, measuring method and photoetching machine Download PDFInfo
- Publication number
- TWI745933B TWI745933B TW109112864A TW109112864A TWI745933B TW I745933 B TWI745933 B TW I745933B TW 109112864 A TW109112864 A TW 109112864A TW 109112864 A TW109112864 A TW 109112864A TW I745933 B TWI745933 B TW I745933B
- Authority
- TW
- Taiwan
- Prior art keywords
- grating
- object surface
- aforementioned
- array
- small hole
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
- G01M11/0242—Testing optical properties by measuring geometrical properties or aberrations
- G01M11/0271—Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Geometry (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
本發明提供一種波像差測量裝置、測量方法及光刻機,波像差測量裝置包含:照明系統,被設置為產生照明光束;物面小孔板,位於照明系統的出光側,固定在光罩台上,物面小孔板上設置有複數個物面小孔,每一物面小孔包含g個不同光柵方向的物面小孔標記,g為大於或者等於2的正整數,物面小孔板上的複數個物面小孔標記陣列排布;同一陣列行中的物面小孔標記具有相同的光柵方向;沿陣列行方向上,同一陣列行中相鄰兩個物面小孔標記之間的距離為h1;沿陣列行方向上,光柵方向相同的兩陣列行中距離最近的兩個物面小孔標記之間的最小距離為h2,h1=m×h2,m為大於或者等於2的正整數;光柵方向相同的任意兩行物面小孔標記陣列式排布。 The present invention provides a wave aberration measuring device, a measuring method and a lithography machine. The wave aberration measuring device includes: an illumination system, which is set to generate an illumination light beam; On the cover table, a plurality of object surface small holes are arranged on the object surface small hole plate, and each object surface small hole contains g object surface small hole marks with different grating directions, and g is a positive integer greater than or equal to 2. A plurality of object surface small hole marks on the small hole plate are arranged in an array; the object surface small hole marks in the same array row have the same grating direction; along the array row direction, two adjacent object surface small hole marks in the same array row The distance between is h1; along the array row direction, the smallest distance between two small hole marks on the object surface in two array rows with the same grating direction is h2, h1=m×h2, m is greater than or equal to 2 A positive integer; any two rows of small hole marks on the object surface with the same grating direction are arranged in an array.
Description
本發明係關於光刻技術,例如係關於一種波像差測量裝置、測量方法及光刻機。 The present invention relates to lithography technology, for example, to a wave aberration measuring device, a measuring method and a lithography machine.
半導體行業的一個目標是在單個集成線路(IC)中集成更多的電子元件。要實現這個目標需不斷地縮小元件尺寸,即不斷地提高光刻投影系統的解析度。物鏡波像差是限制投影系統解析度的重要因素,也是造成線寬變化的重要原因。雖然物鏡在加工製造及裝配過程中皆經過了嚴格的檢驗及優化,使物鏡波像差最小化,但在物鏡系統集成到光刻機後進行線上的波像差測量仍然必要。此是因為鏡片材料的老化或者物鏡熱效應會造成波像差,因此,在光刻機工作過程中需經常的測量波像差,並根據測量結果調整物鏡中特定鏡片的位置以減小波像差。若需在短時間範圍內校正物鏡熱效應,則需更頻繁地進行波像差測量,此時波像差測量的即時性尤為重要。 One goal of the semiconductor industry is to integrate more electronic components in a single integrated circuit (IC). To achieve this goal, it is necessary to continuously reduce the component size, that is, to continuously improve the resolution of the lithography projection system. The wave aberration of the objective lens is an important factor that limits the resolution of the projection system, and is also an important cause of linewidth changes. Although the objective lens has undergone strict inspection and optimization during the manufacturing and assembly processes to minimize the objective wave aberration, it is still necessary to perform on-line wave aberration measurement after the objective lens system is integrated into the lithography machine. This is because the aging of the lens material or the thermal effect of the objective lens will cause wave aberration. Therefore, it is necessary to frequently measure the wave aberration during the working process of the lithography machine, and adjust the position of the specific lens in the objective lens according to the measurement result to reduce the wave aberration. If the thermal effect of the objective lens needs to be corrected within a short time range, the wave aberration measurement needs to be performed more frequently. At this time, the immediacy of the wave aberration measurement is particularly important.
線上測量波像差的一種方法是移相剪切干涉法。該方法使用照明光束進行測量,在物面使用小孔產生探測光源,小孔經物鏡成像到像面剪切光柵並在遠場產生剪切干涉條紋,使用二維陣列光敏元件在物鏡 光瞳的共軛面記錄干涉圖像。測量過程中需改變光源與光柵的相對位置(移相)以獲得不同移相條件下的干涉條紋,分析這些干涉圖像可得到物鏡波像差。為了重建完整的波前資訊,需在每個視場點同時測量兩個相互垂直方向上的位相資訊,也可測量複數個方向上的位相資訊,例如測量夾角互為120度的三個方向上的位相資訊。同時,為了獲得整個物鏡視場範圍內的波像差資訊,需對選定的場點進行逐個測量。如此,使用該方法對整個視場進行波像差測量的時間正比於以下幾個因素:1.場點數目Nf;2.測量的方向數(至少2個)Nd;3.每個方向上的移相步數Np,則理論測量時間Ttheory與Nf×Nd×Np成正比例。為了保證一定的測量精度,前述每個項目的測量數量必須保持在一定的下限以上。以往的移相剪切法測波像差採用串行測量的方法,即依次測量每個視場點,在測量每個視場點時依次測量該視場點的兩個方向,在測量每個方向時依次進行移相操作。因此,實際測量時間Tmeasure>=理論測量時間Ttheory。由於無法進一步縮短波像差測量的時間,此種串行測量方法將影響光刻機產率及波像差測量的即時性。 One method of measuring wave aberration online is phase-shifting shearing interferometry. This method uses an illuminating beam for measurement, uses a small hole on the object surface to generate a detection light source, and the small hole is imaged by the objective lens to the image surface shearing grating and produces shearing interference fringes in the far field. A two-dimensional array of photosensitive elements is used in the objective lens. The conjugate surface of the pupil records the interference image. In the measurement process, the relative position (phase shift) of the light source and the grating needs to be changed to obtain interference fringes under different phase shift conditions, and the wave aberration of the objective lens can be obtained by analyzing these interference images. In order to reconstruct the complete wavefront information, it is necessary to measure the phase information in two mutually perpendicular directions at each point of view at the same time. It can also measure the phase information in multiple directions, such as measuring the three directions with an angle of 120 degrees each other. Phase information. At the same time, in order to obtain the wave aberration information in the entire field of view of the objective lens, it is necessary to measure the selected field points one by one. In this way, the time taken to measure wave aberration for the entire field of view using this method is proportional to the following factors: 1. The number of field points Nf; 2. The number of measurement directions (at least 2) Nd; 3. Each direction If the number of phase shifting steps is Np, the theoretical measurement time Ttheory is proportional to Nf×Nd×Np. In order to ensure a certain measurement accuracy, the measurement quantity of each item mentioned above must be kept above a certain lower limit. The previous phase-shift shearing method used a serial measurement method to measure wave aberration, that is, measure each field of view point in turn, and measure the two directions of the field of view point in turn when measuring each field of view point. The phase shift operation is carried out in sequence during the direction. Therefore, the actual measurement time Tmeasure>=theoretical measurement time Ttheory. Since the time of wave aberration measurement cannot be further shortened, this serial measurement method will affect the productivity of the lithography machine and the instantaneity of wave aberration measurement.
相關技術中用移相剪切法串行測量每個視場點的波像差,不能滿足光刻裝置對波像差測量的即時性要求,檢測效率低。且對於大數值孔徑的投影物鏡進行波像差檢測時,容易發生訊號串擾。 In the related art, the phase-shifting shearing method is used to serially measure the wave aberration of each field of view point, which cannot meet the immediate requirements of the lithography device for the wave aberration measurement, and the detection efficiency is low. And when the wave aberration detection is performed on a projection objective with a large numerical aperture, signal crosstalk is prone to occur.
本發明實施例提供一種波像差測量裝置、測量方法及光刻 機,以實現提高檢測效率,以及避免訊號串擾。 The embodiment of the present invention provides a wave aberration measuring device, a measuring method and lithography Machine to improve detection efficiency and avoid signal crosstalk.
本發明提供一種波像差測量裝置,包含: The present invention provides a wave aberration measuring device, which includes:
照明系統,被設置為產生照明光束; The lighting system is set to generate an illuminating beam;
物面小孔板,位於前述照明系統的出光側,固定在光罩台上,前述物面小孔板上設置有複數個物面小孔,每一前述物面小孔包含g個不同光柵方向的物面小孔標記,g為大於或者等於2的正整數,前述物面小孔板上的複數個前述物面小孔標記陣列排布; The object surface aperture plate is located on the light-emitting side of the aforementioned illumination system and is fixed on the mask stage. The object surface aperture plate is provided with a plurality of object surface apertures, and each of the aforementioned object surface apertures contains g different grating directions. The small hole mark on the object surface, g is a positive integer greater than or equal to 2, and the plurality of small hole marks on the object surface are arranged in an array on the small orifice plate of the object surface;
同一陣列行中的前述物面小孔標記具有相同的光柵方向;沿陣列行方向上,同一陣列行中相鄰兩個前述物面小孔標記之間的距離為h1;沿前述陣列行方向上,光柵方向相同的兩陣列行中距離最近的兩個前述物面小孔標記之間的最小距離為h2,h1=m×h2,m為大於或者等於2的正整數;光柵方向相同的任意兩行前述物面小孔標記陣列式排布; The aforementioned object-surface small hole marks in the same array row have the same grating direction; along the array row direction, the distance between two adjacent object-surface small hole marks in the same array row is h1; along the aforementioned array row direction, the grating The minimum distance between the two aforementioned small hole marks on the object surface in two array rows with the same direction is h2, h1=m×h2, where m is a positive integer greater than or equal to 2; any two rows with the same grating direction. Array arrangement of small hole marks on the object surface;
投影物鏡,位於前述物面小孔板遠離前述照明系統一側; The projection objective lens is located on the side of the small orifice plate on the object surface away from the illumination system;
像面剪切光柵板,位於前述投影物鏡遠離前述物面小孔板一側,固定在工件台上; The image cutting grating plate is located on the side of the aforementioned projection objective lens away from the aforementioned small orifice plate of the object plane, and is fixed on the workpiece table;
二維陣列光敏元件及數據處理單元,前述二維陣列光敏元件位於前述投影物鏡的光瞳的共軛面上,前述二維陣列光敏元件用於接收形成在前述二維陣列光敏元件上的剪切干涉圖案,前述數據處理單元用於根據前述剪切干涉圖案計算前述投影物鏡的波像差。 A two-dimensional array photosensitive element and a data processing unit, the aforementioned two-dimensional array photosensitive element is located on the conjugate plane of the pupil of the aforementioned projection objective lens, and the aforementioned two-dimensional array photosensitive element is used to receive the shear formed on the aforementioned two-dimensional array photosensitive element The interference pattern, the data processing unit is used to calculate the wave aberration of the projection objective lens according to the shear interference pattern.
可選地,前述物面小孔包含第一光柵方向的物面小孔標記 及第二光柵方向的物面小孔標記,前述第一光柵方向與前述第二光柵方向垂直; Optionally, the aforesaid object surface small holes include object surface small hole marks in the first grating direction And a small hole mark on the object surface in the second grating direction, the first grating direction is perpendicular to the second grating direction;
同一前述物面小孔中,前述第一光柵方向的物面小孔標記及前述第二光柵方向的物面小孔標記間隔m-1個陣列行;或者, In the same aforementioned object surface small hole, the object surface small hole mark in the first grating direction and the object surface small hole mark in the second grating direction are arrayed at intervals of m-1; or,
同一前述物面小孔中,前述第一光柵方向的物面小孔標記及前述第二光柵方向的物面小孔標記沿陣列列方向依次設置。 In the same object surface small holes, the object surface small hole marks in the first grating direction and the object surface small hole marks in the second grating direction are sequentially arranged along the array column direction.
可選地,前述第一光柵方向平行於前述陣列行方向;或者,前述第一光柵方向與前述陣列行方向的夾角為45°。 Optionally, the aforementioned first grating direction is parallel to the aforementioned array row direction; or, the angle between the aforementioned first grating direction and the aforementioned array row direction is 45°.
可選地,前述像面剪切光柵板上設置有複數個像面剪切光柵,每一前述像面剪切光柵包含g個不同光柵方向的像面剪切光柵標記,前述像面剪切光柵板上的複數個前述像面剪切光柵標記陣列排布;同一陣列行中的前述像面剪切光柵標記具有相同的光柵方向;同一個物面小孔中g個不同光柵方向的物面小孔標記與同一個像面剪切光柵中g個不同光柵方向的像面剪切光柵標記一一對應,一一對應的物面小孔標記的光柵方向與像面剪切光柵標記的光柵方向垂直。 Optionally, a plurality of image-cutting gratings are arranged on the aforementioned image-cutting grating plate, each of the aforementioned image-cutting gratings includes g image-cutting grating marks of different grating directions, and the aforementioned image-cutting gratings A plurality of the aforementioned image-cutting grating mark arrays on the board are arranged; the aforementioned image-cutting grating marks in the same array row have the same grating direction; the same object surface hole has g different grating directions on the object surface. The hole marks correspond one-to-one with g image-cutting grating marks of different grating directions in the same image-cutting grating, and the grating direction of the corresponding small hole marks on the object surface is perpendicular to the grating direction of the image-cutting grating mark. .
可選地,一陣列行中前述像面剪切光柵標記的數量,大於或者等於一陣列行中前述物面小孔標記的數量。 Optionally, the number of the aforementioned image-cut raster marks in an array row is greater than or equal to the number of the aforementioned object-surface small hole marks in an array row.
可選地,前述像面剪切光柵板包含棋格狀光柵陣列,前述棋格狀光柵陣列包含複數個透光單元格及複數個非透光單元格;沿前述棋格狀光柵陣列的行方向以及列方向,前述透光單元格及前述非透光單元格皆間隔排列。 Optionally, the aforementioned image-cutting grating plate includes a checkered grating array, and the aforementioned checkered grating array includes a plurality of light-transmitting cells and a plurality of non-light-transmitting cells; along the row direction of the aforementioned checker-shaped grating array And in the column direction, the light-transmitting unit cells and the non-light-transmitting unit cells are arranged at intervals.
可選地,前述棋格狀光柵陣列的行方向與前述物面小孔標 記的陣列行方向之間的夾角為45°。 Optionally, the row direction of the aforementioned checkered grating array is the same as the aforementioned small hole mark on the object surface. The angle between the row directions of the array is 45°.
可選地,前述投影物鏡的數值孔徑大於或等於0.85。 Optionally, the numerical aperture of the aforementioned projection objective lens is greater than or equal to 0.85.
本發明提供一種光刻機,包含前述的波像差測量裝置。 The present invention provides a lithography machine comprising the aforementioned wave aberration measuring device.
本發明提供一種波像差測量方法,由前述的波像差測量裝置執行,前述方法包含: The present invention provides a wave aberration measuring method, which is executed by the aforementioned wave aberration measuring device, and the aforementioned method includes:
照明系統產生的照明光束逐行掃描照射物面小孔板的物面小孔標記陣列形成測量光束,前述測量光束通過投影物鏡後照射到像面剪切光柵板,以形成剪切干涉圖案; The illumination beam generated by the illumination system scans and illuminates the object surface small hole mark array of the object surface small hole plate by line to form a measurement beam. The aforementioned measurement beam passes through the projection objective lens and irradiates the image shearing grating plate to form a shearing interference pattern;
二維陣列光敏元件逐行接收前述剪切干涉圖案,並發送至數據處理單元;前述數據處理單元根據前述剪切干涉圖案計算前述投影物鏡的波像差; The two-dimensional array photosensitive element receives the aforementioned shearing interference pattern row by row and sends it to the data processing unit; the aforementioned data processing unit calculates the wave aberration of the aforementioned projection objective lens according to the aforementioned shearing interference pattern;
其中,沿陣列行方向上,前述照明系統產生的照明光束相鄰兩次照射讀取的兩個物面小孔標記之間間隔至少一個視場點。 Wherein, along the array row direction, the illumination beam generated by the aforementioned illumination system irradiates and reads two small hole marks on the object surface with at least one field of view point.
可選地,前述照明系統產生的照明光束逐行掃描照射物面小孔板的物面小孔標記陣列形成測量光束,前述測量光束通過投影物鏡後照射到像面剪切光柵板,以形成剪切干涉圖案;包含: Optionally, the illumination beam generated by the aforementioned illumination system scans and illuminates the object surface small aperture mark array of the object surface small aperture plate to form a measurement beam. Cut interference pattern; contains:
前述照明系統產生的照明光束照射至物面小孔板的物面小孔標記陣列上的一陣列行物面小孔標記形成測量光束,前述測量光束通過投影物鏡後照射到與該陣列行前述物面小孔標記一一對應且與該陣列行前述物面小孔標記光柵方向垂直的像面剪切光柵標記以形成剪切干涉圖案; The illumination beam generated by the aforementioned illumination system irradiates an array of the object surface small hole marks on the object surface small hole mark array of the object surface small hole plate to form a measurement beam. The surface small hole marks correspond one-to-one and the image surface shearing grating marks perpendicular to the aforementioned object surface small hole mark grating direction of the array row to form a shearing interference pattern;
移動以下至少之一的裝置,以使前述照明光束掃描所有陣列行的前述物面小孔標記:光罩台及工件台; Move at least one of the following devices so that the aforementioned illumination beam scans the aforementioned small hole marks on the object surface in all array rows: the mask stage and the workpiece stage;
其中,前述像面剪切光柵板上設置有複數個像面剪切光柵,每一前述像面剪切光柵包含g個不同光柵方向的像面剪切光柵標記,前述像面剪切光柵板上的複數個前述像面剪切光柵標記陣列排布;同一陣列行中的前述像面剪切光柵標記具有相同的光柵方向;同一個物面小孔中g個不同光柵方向的物面小孔標記與同一個像面剪切光柵中g個不同光柵方向的像面剪切光柵標記一一對應,一一對應的物面小孔標記的光柵方向與像面剪切光柵標記的光柵方向垂直。 Wherein, the aforementioned image-cutting grating plate is provided with a plurality of image-cutting gratings, each of the aforementioned image-cutting gratings includes g image-cutting grating marks of different grating directions, and the aforementioned image-cutting grating plate The plurality of aforementioned image-cutting grating marks are arranged in an array; the aforementioned image-cutting grating marks in the same array row have the same grating direction; g object-face hole marks with different grating directions in the same object-face hole There is a one-to-one correspondence with g image-cutting grating marks of different grating directions in the same image-cutting grating, and the grating direction of the small hole mark of the corresponding object plane is perpendicular to the grating direction of the image-cutting grating mark.
可選地,前述照明系統產生的照明光束逐行掃描照射物面小孔板的物面小孔標記陣列形成測量光束,前述測量光束通過投影物鏡後照射到像面剪切光柵板,以形成剪切干涉圖案;包含: Optionally, the illumination beam generated by the aforementioned illumination system scans and illuminates the object surface small aperture mark array of the object surface small aperture plate to form a measurement beam. Cut interference pattern; contains:
前述照明系統產生的照明光束照射至物面小孔板的物面小孔標記陣列上的一陣列行物面小孔標記形成測量光束,前述測量光束通過投影物鏡後照射到棋格狀光柵陣列以形成剪切干涉圖案; The illumination beam generated by the aforementioned illumination system irradiates an array of the object surface small hole marks on the object surface small hole mark array of the object surface small hole plate to form a measurement beam. Form a shear interference pattern;
移動以下至少之一的裝置,以使前述照明光束掃描所有陣列行的前述物面小孔標記:光罩台及工件台; Move at least one of the following devices so that the aforementioned illumination beam scans the aforementioned small hole marks on the object surface in all array rows: the mask stage and the workpiece stage;
其中,前述棋格狀光柵陣列包含複數個透光單元格及複數個非透光單元格;沿前述棋格狀光柵陣列的行方向以及列方向,前述透光單元格及前述非透光單元格皆間隔排列。 Wherein, the aforementioned checkerboard grating array includes a plurality of light-transmitting unit cells and a plurality of non-light-transmitting unit cells; along the row direction and column direction of the aforementioned checkerboard grating array, the aforementioned light-transmitting unit cells and the aforementioned non-light-transmitting unit cells All are arranged at intervals.
本發明實施例提供一種波像差測量裝置,波像差測量裝置的物面小孔板上設置有陣列排布的物面小孔標記,照明系統發出的照明光 束掃描照射一行的物面小孔標記,從而提高了檢測效率。如果在每個視場點設置一個物面小孔標記,則對於大數值孔徑的投影物鏡進行波像差檢測時,相鄰視場點的照明光束在二維陣列光敏元件上形成的光斑容易產生重疊,造成訊號串擾。本發明實施例中,同一陣列行中相鄰兩個物面小孔標記之間間隔m-1個視場點,避免對於大數值孔徑的投影物鏡進行波像差檢測時的訊號串擾。 The embodiment of the present invention provides a wave aberration measuring device, the object surface small hole plate of the wave aberration measuring device is provided with an array of object surface small hole marks, and the illumination light emitted by the illumination system The beam scanning illuminates a row of small hole marks on the object surface, thereby improving the detection efficiency. If a small hole mark on the object surface is set at each field of view point, when performing wave aberration detection for a projection objective with a large numerical aperture, the light spot formed by the illumination beam of the adjacent field of view point on the two-dimensional array photosensitive element is easy to produce Overlap, causing signal crosstalk. In the embodiment of the present invention, there are m-1 field points of view between two adjacent small hole marks on the object plane in the same array row, so as to avoid signal crosstalk during wave aberration detection for a projection objective with a large numerical aperture.
10:照明系統 10: Lighting system
20:光罩台 20: Mask stage
30:物面小孔板 30: Small orifice plate on the surface
31:物面小孔 31: Small holes on the surface
40:投影物鏡 40: Projection objective
41:投影物鏡光瞳 41: Projection objective pupil
50:工件台 50: Workpiece table
60:像面剪切光柵板 60: Image cut grating plate
61:像面剪切光柵 61: Image cut raster
70:二維陣列光敏元件 70: Two-dimensional array photosensitive element
80:數據處理單元 80: data processing unit
310:物面小孔標記 310: Small hole mark on the object surface
601:非透光單元格 601: non-transparent cell
602:透光單元格 602: Translucent cell
610:像面剪切光柵標記 610: Image cut raster mark
【圖1】為本發明實施例提供的一種波像差測量裝置的結構示意圖。 Fig. 1 is a schematic structural diagram of a wave aberration measuring device provided by an embodiment of the present invention.
【圖2】為本發明實施例提供的一種物面小孔板的示意圖。 [Figure 2] is a schematic diagram of a small orifice plate on an object surface provided by an embodiment of the present invention.
【圖3】為本發明實施例提供的另一種物面小孔板的示意圖。 [Fig. 3] is a schematic diagram of another small orifice plate provided by an embodiment of the present invention.
【圖4】為本發明實施例提供的一種像面剪切光柵板的示意圖。 [Fig. 4] is a schematic diagram of an image cutting grating plate provided by an embodiment of the present invention.
【圖5】為本發明實施例提供的另一種物面小孔板的示意圖。 [Figure 5] is a schematic diagram of another small orifice plate provided by an embodiment of the present invention.
【圖6】為本發明實施例提供的另一種像面剪切光柵板的示意圖。 [Fig. 6] is a schematic diagram of another image shearing grating plate provided by an embodiment of the present invention.
【圖7】為本發明實施例提供的另一種像面剪切光柵板的示意圖。 [Fig. 7] is a schematic diagram of another image shearing grating plate provided by an embodiment of the present invention.
【圖8】為本發明實施例提供的一種波像差測量方法的流程圖。 [Fig. 8] is a flowchart of a method for measuring wave aberration according to an embodiment of the present invention.
【圖9】為本發明實施例提供的另一種物面小孔板的示意圖。 [Fig. 9] is a schematic diagram of another small orifice plate provided by an embodiment of the present invention.
以下結合圖式及實施例對本發明作進一步的詳細說明。圖1為本發明實施例提供的一種波像差測量裝置的結構示意圖,圖2為本發
明實施例提供的一種物面小孔板的示意圖,參考圖1及圖2,波像差測量裝置包含照明系統10、光罩台20、物面小孔板30、投影物鏡40、工件台50、像面剪切光柵板60、二維陣列光敏元件70及數據處理單元80。照明系統10產生照明光束。物面小孔板30位於照明系統10的出光側,且固定在光罩台20上。物面小孔板30上設置有複數個物面小孔31,每一物面小孔31包含g個不同光柵方向的物面小孔標記310,g為大於或者等於2的正整數,物面小孔板30上的複數個物面小孔標記310陣列排布。複數個物面小孔標記310構成的陣列行方向平行於X方向,複數個物面小孔標記310構成的陣列列方向平行於Y方向。同一陣列行中的物面小孔標記310具有相同的光柵方向。沿陣列行方向上,同一陣列行中相鄰兩個物面小孔標記310之間的距離為h1;沿陣列行方向上,光柵方向相同的兩陣列行中距離最近的兩個物面小孔標記310之間的最小距離為h2,h1=m×h2,m為大於或者等於2的正整數。光柵方向相同的任意兩行物面小孔標記310陣列式排布。可選地,光柵方向相同的任意兩行物面小孔標記310交錯排列。
The present invention will be further described in detail below with reference to the drawings and embodiments. FIG. 1 is a schematic structural diagram of a wave aberration measuring device provided by an embodiment of the present invention, and FIG. 2 is a schematic diagram of the present invention
A schematic diagram of a small orifice plate on an object surface provided by the embodiment. Referring to FIGS. 1 and 2, the wave aberration measuring device includes an
示例性地,參考圖2,g=2,m=2,一個物面小孔31包含2個不同光柵方向的物面小孔標記310。第一陣列行中的物面小孔標記及第二陣列行中的物面小孔標記的光柵方向皆沿X方向,第三陣列行中的物面小孔標記及第四陣列行中的物面小孔標記的光柵方向皆沿Y方向。第一陣列行中的物面小孔標記及第二陣列行中的物面小孔標記陣列式排布。第三陣列行中的物面小孔標記及第四陣列行中的物面小孔標記陣列式排布。物面小孔標記O1U1及物面小孔標記O1V1構成一個物面小孔31,物面小孔
標記O5U1及物面小孔標記O5V1構成另一個物面小孔31。第一陣列行中的物面小孔標記O1U1及物面小孔標記O3U1沿X方向上的距離為h1,第一陣列行中的物面小孔標記O1U1及第二陣列行中的物面小孔標記O2U2沿X方向上的距離為h2,h1=2×h2。
Exemplarily, referring to FIG. 2, g=2, m=2, an object surface
參考圖1,投影物鏡40位於物面小孔板30遠離照明系統10一側。像面剪切光柵板60位於投影物鏡40遠離物面小孔板30一側,並固定在工件台50上。二維陣列光敏元件70位於投影物鏡40的光瞳41的共軛面上,二維陣列光敏元件70用於接收形成在二維陣列光敏元件70上的剪切干涉圖案,剪切干涉圖案由照明光束通過物面小孔板30、投影物鏡40及像面剪切光柵板60後形成。數據處理單元80用於根據剪切干涉圖案計算投影物鏡40的波像差。
Referring to FIG. 1, the
物面小孔板30位於照明系統10的下方,且位於投影物鏡40的物面上,物面小孔板30與光罩台20連接,並能隨光罩台20一起運動。物面小孔板30接收來自照明系統10的照明光束,通過物面小孔31產生理想點光源,理想點光源發出的測量光束進入投影物鏡40。攜帶投影物鏡光瞳41的波像差資訊的測量光束被投影物鏡40匯聚到像面剪切光柵板60。像面剪切光柵板60位於投影物鏡40的像面,與工件台50連接,並能隨工件台50一起運動。匯聚的測量光束經過像面剪切光柵板60後形成剪切干涉圖案,被位於遠場的二維陣列光敏元件70探測到。藉由前述測量流程,在每個視場點測量不同方向、不同移相位置的干涉圖案,並傳輸到數據處理單元80,經過計算處理獲得投影物鏡光瞳41的波像差資訊。在具體實施方式中,藉由改變物面小孔板30及像面剪切光柵板60的
相對位置進行移相,即藉由運動光罩台20或工件台50,或同時運動光罩台20及工件台50,改變與運動光罩台20連接的物面小孔板30及與工件台50連接的像面剪切光柵板60的相對位置。由於二維陣列光敏元件70位於像面剪切光柵板60的遠場探測面,即夫琅和費衍射近似區,因此二維陣列光敏元件70的探測面與像面剪切光柵板60之間為傅立葉轉換關係。如此,像面剪切光柵板60上測量標記的位置變化等同於二維陣列光敏元件70上接收光束的位相變化。
The object-
本發明實施例提供一種波像差測量裝置,波像差測量裝置的物面小孔板30上設置有陣列排布的物面小孔標記310,照明系統10發出的照明光束掃描照射一行的物面小孔標記310,從而提高了檢測效率。如果在每個視場點設置一個物面小孔標記310,則對於大數值孔徑的投影物鏡40進行波像差檢測時,相鄰視場點的照明光束在二維陣列光敏元件70上形成的光斑容易產生重疊,造成訊號串擾。本發明實施例中,同一陣列行中相鄰兩個物面小孔標記310之間間隔m-1個視場點,避免對於大數值孔徑的投影物鏡進行波像差檢測時的訊號串擾。前述視場點為物面小孔板上的虛擬觀察點,例如可以在每一個視場點的位置上佈置一個物面小孔標記310,從而使照明光束照射該視場點處的物面小孔標記以形成一個檢測光斑圖像。也可以在某些視場點不佈置物面小孔標記。
The embodiment of the present invention provides a wave aberration measuring device. The object surface
參考圖2,物面小孔31包含第一光柵方向的物面小孔標記310及第二光柵方向的物面小孔標記310,第一光柵方向與第二光柵方向垂直。同一物面小孔31中,第一光柵方向的物面小孔標記310及第二光柵方向的物面小孔標記310間隔m-1個陣列行。在其他實施方式中,第一
光柵方向與第二光柵方向之間可以具有一大於0°且小於90°的夾角,本發明實施例對此不做限定。本發明實施例中,設置第一光柵方向與第二光柵方向垂直,可以降低後期計算複雜度,從而降低了測量的難度。
Referring to FIG. 2, the
示例性地,參考圖2,物面小孔標記O1U1位於第一行(本發明中的行指的是陣列的行,本發明中的列指的是陣列的列),物面小孔標記O1U1具有第一光柵方向,物面小孔標記O1V1位於第三行,物面小孔標記O1V1具有第二光柵方向,物面小孔標記O1U1及物面小孔標記O1V1屬於同一物面小孔31,且物面小孔標記O1U1及物面小孔標記O1V1間隔一個陣列行。
Exemplarily, referring to Fig. 2, the object surface hole mark O1U1 is located in the first row (the row in the present invention refers to the row of the array, and the column in the present invention refers to the column of the array), and the object surface hole mark O1U1 It has a first grating direction, the object surface small hole mark O1V1 is located in the third row, the object surface small hole mark O1V1 has a second grating direction, the object surface small hole mark O1U1 and the object surface small hole mark O1V1 belong to the same object surface
圖3為本發明實施例提供的另一種物面小孔板的示意圖,參考圖3,物面小孔31包含第一光柵方向的物面小孔標記310及第二光柵方向的物面小孔標記310,第一光柵方向與第二光柵方向垂直。第一光柵方向與第二光柵方向也可以不垂直設置,但相應的會增加後期計算複雜度。同一物面小孔31中,第一光柵方向的物面小孔標記310及第二光柵方向的物面小孔標記310沿陣列列方向依次設置。
FIG. 3 is a schematic diagram of another object surface small hole plate provided by an embodiment of the present invention. Referring to FIG. 3, the object surface
示例性地,參考圖3,物面小孔標記O1U1位於第一行,物面小孔標記O1U1具有第一光柵方向,物面小孔標記O1V1位於第二行,物面小孔標記O1V1具有第二光柵方向,物面小孔標記O1U1及物面小孔標記O1V1屬於同一物面小孔31,且物面小孔標記O1U1及物面小孔標記O1V1沿Y方向依次設置。物面小孔標記O1U1及物面小孔標記O1V1之間未間隔第二光柵方向的物面小孔標記310。
Exemplarily, referring to Fig. 3, the object surface small hole mark O1U1 is located in the first row, the object surface small hole mark O1U1 has the first grating direction, the object surface small hole mark O1V1 is located in the second row, and the object surface small hole mark O1V1 has the first row. In the two grating directions, the object surface small hole mark O1U1 and the object surface small hole mark O1V1 belong to the same object surface
可選地,參考圖2及圖3,第一光柵方向平行於X方向, 第二光柵方向平行於Y方向。第一光柵方向平行於陣列行方向,第二光柵方向平行於陣列列方向。在其他實施方式中,第一光柵方向與陣列行方向的夾角亦可以為45°。 Optionally, referring to FIGS. 2 and 3, the first grating direction is parallel to the X direction, The second grating direction is parallel to the Y direction. The first grating direction is parallel to the array row direction, and the second grating direction is parallel to the array column direction. In other embodiments, the angle between the first grating direction and the array row direction may also be 45°.
圖4為本發明實施例提供的一種像面剪切光柵板的示意圖,參考圖2、圖3及圖4,像面剪切光柵板60上設置有複數個像面剪切光柵61,每一像面剪切光柵61包含g個不同光柵方向的像面剪切光柵標記610,像面剪切光柵板60上的複數個像面剪切光柵標記610陣列排布。物面小孔板30上物面小孔標記310構成陣列的陣列行方向與像面剪切光柵板60上像面剪切光柵標記透徹陣列的陣列行方向相同。物面小孔板30上物面小孔標記310構成陣列的陣列列方向與像面剪切光柵板60上像面剪切光柵標記透徹陣列的陣列列方向相同。同一陣列行中的像面剪切光柵標記610具有相同的光柵方向。圖4中示例性地,像面剪切光柵標記610形成陣列的陣列行方向平行於X方向,像面剪切光柵標記610形成陣列的陣列列方向平行於Y方向。同一個物面小孔31中g個不同光柵方向的物面小孔標記310與同一個像面剪切光柵61中g個不同光柵方向的像面剪切光柵標記610一一對應,一一對應的物面小孔標記310的光柵方向與像面剪切光柵標記610的光柵方向垂直。
FIG. 4 is a schematic diagram of an image shearing grating plate provided by an embodiment of the present invention. Referring to FIG. 2, FIG. 3 and FIG. 4, the image shearing grating
示例性地,參考圖2及圖4,同一個物面小孔31中包含2個不同光柵方向的物面小孔標記310,例如物面小孔標記O1U1及物面小孔標記O1V1。同一個像面剪切光柵61中包含2個不同光柵方向的像面剪切光柵標記610,例如像面剪切光柵標記IV11及像面剪切光柵標記IU12。物面小孔標記O1U1與像面剪切光柵標記IV11對應,物面小孔標
記O1U1的光柵方向與像面剪切光柵標記IV11的光柵方向垂直。物面小孔標記O1V1與像面剪切光柵標記IU12對應,物面小孔標記O1V1的光柵方向與像面剪切光柵標記IU12的光柵方向垂直。
Exemplarily, referring to FIGS. 2 and 4, the same object surface
參考圖2、圖3及圖4,沿X方向上,物面小孔板30上陣列設置了n個第一光柵方向的物面小孔標記310及n個第二光柵方向的物面小孔標記310,n為大於或者等於2的正整數。每一陣列行包含個物面小孔標記310,且為大於或者等於2的正整數。為了對物面小孔板30上一陣列行的物面小孔標記310同時檢測,需要設置像面剪切光柵板60上一陣列行中像面剪切光柵標記610的數量至少為個。即,一陣列行中像面剪切光柵標記610的數量大於或者等於一陣列行中物面小孔標記310的數量。另外,像面剪切光柵板60上一陣列行中像面剪切光柵標記610的數量最多可以佈置n個。
Referring to Figures 2, 3 and 4, along the X direction, the object surface
圖5為本發明實施例提供的另一種物面小孔板的示意圖,圖6為本發明實施例提供的另一種像面剪切光柵板的示意圖,參考圖5及圖6,物面小孔標記O1U1具有第一光柵方向,物面小孔標記O1V1具有第二光柵方向,物面小孔標記O1U1及物面小孔標記O1V1屬於同一物面小孔31。本發明實施例中,第一光柵方向與陣列行方向的夾角為45°,第二光柵方向與陣列行方向的夾角為45°。在其他實施方式中,第一光柵方向與陣列行方向的夾角亦可以為10°、20°、30°、40°、50°、60°、70°或者80°,具體需要根據產品而定,本發明實施例對於第一光柵方向與陣列行方向的夾角不做限定。本發明實施例中,藉由設置第二光柵方向與陣列行方向的夾角為45°,可以降低測量的難度。
FIG. 5 is a schematic diagram of another object surface small hole plate provided by an embodiment of the present invention, and FIG. 6 is a schematic diagram of another image shearing grating plate provided by an embodiment of the present invention. Referring to FIG. 5 and FIG. 6, object surface small hole The mark O1U1 has a first grating direction, and the object surface small hole mark O1V1 has a second grating direction. The object surface small hole mark O1U1 and the object surface small hole mark O1V1 belong to the same object surface
物面小孔標記310形成陣列的陣列行方向平行於X方向,物面小孔標記310形成陣列的陣列列方向平行於Y方向。物面小孔標記O1U1與像面剪切光柵標記IV11對應,物面小孔標記O1U1的光柵方向與像面剪切光柵標記IV11的光柵方向垂直。物面小孔標記O1V1與像面剪切光柵標記IU12對應,物面小孔標記O1V1的光柵方向與像面剪切光柵標記IU12的光柵方向垂直。 The array row direction of the small hole marks 310 on the object plane is parallel to the X direction, and the array column direction of the small hole marks 310 on the object plane is parallel to the Y direction. The object surface small hole mark O1U1 corresponds to the image surface cropping grating mark IV11, and the grating direction of the object surface small hole mark O1U1 is perpendicular to the image surface cropping grating mark IV11. The object surface small hole mark O1V1 corresponds to the image surface cropping grating mark IU12, and the grating direction of the object surface small hole mark O1V1 is perpendicular to the image surface cropping grating mark IU12.
圖7為本發明實施例提供的另一種像面剪切光柵板的示意圖,參考圖7,像面剪切光柵板60包含棋格狀光柵陣列,棋格狀光柵陣列包含複數個透光單元格602及複數個非透光單元格601。沿棋格狀光柵陣列的行方向以及列方向,透光單元格602及非透光單元格601皆間隔排列。本發明實施例提供的像面剪切光柵板60上不再設置g個不同光柵方向的像面剪切光柵標記610,而是採用了棋格狀光柵陣列。藉由棋格狀光柵陣列與陣列排布的物面小孔標記310的配合使用實現對投影物鏡波像差的測量。
FIG. 7 is a schematic diagram of another image shearing grating plate provided by an embodiment of the present invention. Referring to FIG. 7, the image shearing grating
參考圖7,棋格狀光柵陣列的行方向與物面小孔標記310的陣列行方向之間的夾角為45°。物面小孔標記310的陣列行方向平行於X方向,棋格狀光柵陣列的行方向與X方向的夾角為45°,棋格狀光柵陣列的列方向與X方向的夾角為45°。 Referring to FIG. 7, the angle between the row direction of the checkerboard grating array and the array row direction of the small hole marks 310 on the object plane is 45°. The array row direction of the small hole marks 310 on the object plane is parallel to the X direction, the angle between the row direction of the checkerboard grating array and the X direction is 45°, and the angle between the column direction of the checkerboard grating array and the X direction is 45°.
參考圖1,投影物鏡40的數值孔徑大於或等於0.85。在光刻機領域,數值孔徑大於或等於0.85的投影物鏡40為大數值孔徑的投影物鏡。可以理解的是,本發明實施例中投影物鏡40的數值孔徑指的是投影物鏡40可以達到的最大數值孔徑。對於數值孔徑大於或者等於0.85的
投影物鏡40,可以藉由調節投影物鏡40中的光闌等元件來使投影物鏡40的數值孔徑實現小於0.85的任一個數值,例如可以實現數值孔徑為8。在其他實施方式中,投影物鏡40的數值孔徑可以小於0.85,具體需要根據產品需求而定。由於大數值孔徑的投影物鏡40進行波像差檢測時容易出現訊號串擾,且對於數值孔徑大於或等於0.85的投影物鏡40的干擾越容易發生。因此,本發明實施例中,藉由設置投影物鏡40的數值孔徑大於或等於0.85,避免對於大數值孔徑的投影物鏡進行波像差檢測時的訊號串擾。
Referring to FIG. 1, the numerical aperture of the
本發明實施例亦提供一種光刻機,包含前述任一實施例中的的波像差測量裝置。本發明實施例提供光刻機中,波像差測量裝置的物面小孔板上設置有陣列排布的物面小孔標記,照明系統發出的照明光束掃描照射一行的物面小孔標記,從而提高了檢測效率。同一陣列行中相鄰兩個物面小孔標記之間間隔m-1個視場點,避免對於大數值孔徑的投影物鏡進行波像差檢測時的訊號串擾。 An embodiment of the present invention also provides a lithography machine including the wave aberration measuring device in any of the foregoing embodiments. In the lithography machine provided in the embodiment of the present invention, the object surface small hole mark of the wave aberration measuring device is provided with an array of object surface small hole marks, and the illumination beam emitted by the illumination system scans and illuminates a row of object surface small hole marks, Thereby improving the detection efficiency. There are m-1 field of view points between two adjacent small hole marks on the object surface in the same array row to avoid signal crosstalk during wave aberration detection for projection objectives with large numerical apertures.
圖8為本發明實施例提供的一種波像差測量方法的流程圖,參考圖1至圖8,波像差測量方法包含以下步驟: FIG. 8 is a flowchart of a method for measuring wave aberration according to an embodiment of the present invention. Referring to FIG. 1 to FIG. 8, the method for measuring wave aberration includes the following steps:
S110,照明系統10產生的照明光束逐行掃描照射物面小孔板30的物面小孔標記310陣列形成測量光束,測量光束通過投影物鏡40後照射到像面剪切光柵板60,以形成剪切干涉圖案。
S110, the illumination beam generated by the
S120,二維陣列光敏元件70逐行接收剪切干涉圖案,並發送至數據處理單元80。數據處理單元80根據剪切干涉圖案計算投影物鏡40的波像差。
S120, the two-dimensional array
其中,沿陣列行方向上,前述照明系統產生的照明光束相鄰兩次照射讀取的兩個物面小孔標記之間間隔至少一個視場點。 Wherein, along the array row direction, the illumination beam generated by the aforementioned illumination system irradiates and reads two small hole marks on the object surface with at least one field of view point.
波像差測量方法由前述任一實施例中的波像差測量裝置執行時,每一物面小孔31包含g個不同光柵方向的物面小孔標記310,g為大於或者等於2的正整數,物面小孔板30上的複數個物面小孔標記310陣列排布。複數個物面小孔標記310構成的陣列行方向為X方向,複數個物面小孔標記310構成的陣列列方向為Y方向。同一陣列行中的物面小孔標記310具有相同的光柵方向。沿陣列行方向上,同一陣列行中相鄰兩個物面小孔標記310之間的距離為h1;沿陣列行方向上,光柵方向相同的兩陣列行中距離最近的兩個物面小孔標記310之間的最小距離為h2,h1=m×h2,m為大於或者等於2的正整數。光柵方向相同的任意兩行物面小孔標記310陣列式排布。本發明實施例中,沿陣列行方向上,相鄰兩個物面小孔標記之間間隔至少一個視場點。沿陣列行方向上的每次掃描,照明系統產生的照明光束逐個照射讀取該陣列行上所有的物面小孔標記。
When the wave aberration measuring method is implemented by the wave aberration measuring device in any of the foregoing embodiments, each
可選地,照明系統10產生的照明光束逐行掃描照射物面小孔板30的物面小孔標記310陣列形成測量光束,測量光束通過投影物鏡40後照射到像面剪切光柵板60,以形成剪切干涉圖案;(即步驟S110)包含以下子步驟:
Optionally, the illumination beam generated by the
S1111,照明系統10產生的照明光束照射至物面小孔板30的物面小孔標記310陣列上的一陣列行物面小孔標記310形成測量光束,測量光束通過投影物鏡40後照射到與該陣列行物面小孔標記310一一對應且與該陣列行物面小孔標記310光柵方向垂直的像面剪切光柵標記610以形成剪
切干涉圖案。
S1111, the illumination beam generated by the
S1112,移動以下至少之一的裝置,以使照明光束掃描所有陣列行的物面小孔標記310:光罩台20及工件台50。
S1112, move at least one of the following devices, so that the illuminating beam scans the small hole marks 310 of the object surface of all the array rows: the
像面剪切光柵板60上設置有複數個像面剪切光柵61,每一像面剪切光柵61包含g個不同光柵方向的像面剪切光柵標記610,像面剪切光柵板60上的複數個像面剪切光柵標記610陣列排布。同一陣列行中的像面剪切光柵標記610具有相同的光柵方向。像面剪切光柵標記610形成陣列的陣列行方向平行於X方向,像面剪切光柵標記610形成陣列的陣列列方向平行於Y方向。同一個物面小孔31中g個不同光柵方向的物面小孔標記310與同一個像面剪切光柵61中g個不同光柵方向的像面剪切光柵標記610一一對應,一一對應的物面小孔標記310的光柵方向與像面剪切光柵標記610的光柵方向垂直。
A plurality of image-cutting
示例性地,採用如圖2所示的物面小孔板30及如圖4所示的像面剪切光柵板60配合進行投影物鏡40的波像差檢測的過程如下:
Exemplarily, the process of using the object-plane
第一步,照明光束通過光柵方向平行於X方向的第一行的物面小孔標記310(物面小孔標記O1U1、物面小孔標記O3U1、物面小孔標記O5U1......)照射到光柵方向平行於Y方向的像面剪切光柵標記610(像面剪切光柵標記IV11、像面剪切光柵標記IV21......像面剪切光柵標記IVn1)上進行測量。第二步,照明光束通過光柵方向平行於X方向的第二行物面小孔標記310(物面小孔標記O2U2、物面小孔標記O4U2......物面小孔標記OnU2)照射到光柵方向平行於Y方向的像面剪切光柵標記610(像面剪切光柵標記IV11、像面剪切光柵標記IV21......像面剪切光柵標
記IVn1)上進行測量。第三步,照明光束通過光柵方向平行於Y方向的第三行物面小孔標記310(物面小孔標記O1V1、物面小孔標記O3V1、物面小孔標記O5V1......)照射到光柵方向平行於X方向的像面剪切光柵標記610(像面剪切光柵標記IU12、像面剪切光柵標記IU22......像面剪切光柵標記IUn2)上進行測量。第四步,照明光束通過光柵方向平行於Y方向的第四行物面小孔標記310(物面小孔標記O2V2、物面小孔標記O4V2......物面小孔標記OnV2)照射到光柵方向平行於X方向的像面剪切光柵標記610(像面剪切光柵標記IU12、像面剪切光柵標記IU22......像面剪切光柵標記IUn2)上進行測量。
In the first step, the illuminating beam passes through the object surface hole mark 310 (object surface hole mark O1U1, object surface hole mark O3U1, object surface hole mark O5U1... .) is irradiated on the image cut raster mark 610 (image cut raster mark IV11, image cut raster mark IV21...Image cut raster mark IVn1) whose grating direction is parallel to the Y direction. Measurement. In the second step, the illuminating beam passes through the second row of the object
示例性地,採用如圖3所示的物面小孔板30及如圖4所示的像面剪切光柵板60配合進行投影物鏡的波像差檢測的過程如下:
Exemplarily, the process of using the
第一步,照明光束通過光柵方向平行於X方向的第一行的物面小孔標記310(物面小孔標記O1U1、物面小孔標記O3U1、物面小孔標記O5U1......)照射到光柵方向平行於Y方向的像面剪切光柵標記610(像面剪切光柵標記IV11、像面剪切光柵標記IV21......像面剪切光柵標記IVn1)上進行測量。第二步,照明光束通過光柵方向平行於Y方向第二行物面小孔標記310(物面小孔標記O1V1、物面小孔標記O3V1、物面小孔標記O5V1......)照射到光柵方向平行於X方向的像面剪切光柵標記610(像面剪切光柵標記IU12、像面剪切光柵標記IU22......像面剪切光柵標記IUn2)上進行測量。第三步,照明光束通過光柵方向平行於X方向的第三行物面小孔標記310(物面小孔標記O2U2、物面小孔標記O4U2......物面小孔標記OnU2)照射到光柵方向平行於Y方向的像面剪切光柵標記
610(像面剪切光柵標記IV11、像面剪切光柵標記IV21......像面剪切光柵標記IVn1)上進行測量。第四步,照明光束通過Y方向的第四行物面小孔標記310(物面小孔標記O2V2、物面小孔標記O4V2......物面小孔標記OnV2)照射到X方向的像面剪切光柵標記610(像面剪切光柵標記IU12、像面剪切光柵標記IU22......像面剪切光柵標記IUn2)上進行測量。
In the first step, the illuminating beam passes through the object surface hole mark 310 (object surface hole mark O1U1, object surface hole mark O3U1, object surface hole mark O5U1... .) is irradiated on the image cut raster mark 610 (image cut raster mark IV11, image cut raster mark IV21...Image cut raster mark IVn1) whose grating direction is parallel to the Y direction. Measurement. In the second step, the illuminating beam passes the grating direction parallel to the Y direction. The second row of the object surface small hole mark 310 (object surface small hole mark O1V1, object surface small hole mark O3V1, object surface small hole mark O5V1...) It is irradiated on the image cutting raster mark 610 (image cutting raster mark IU12, image cutting raster mark IU22...image cutting raster mark IUn2) whose grating direction is parallel to the X direction for measurement. In the third step, the illumination beam passes through the third row of the object
可選地,照明系統10產生的照明光束逐行掃描照射物面小孔板30的物面小孔標記310陣列形成測量光束,測量光束通過投影物鏡40後照射到像面剪切光柵板60,以形成剪切干涉圖案;(即步驟S110)包含以下子步驟:
Optionally, the illumination beam generated by the
S1121,照明系統10產生的照明光束照射至物面小孔板30的物面小孔標記陣列上的一陣列行物面小孔標記310形成測量光束,測量光束通過投影物鏡40後照射到棋格狀光柵陣列以形成剪切干涉圖案。
S1121: The illumination beam generated by the
S1122,移動以下至少之一的裝置,以使照明光束掃描所有陣列行的物面小孔標記310:光罩台20及工件台50。
S1122, move at least one of the following devices, so that the illuminating beam scans the small hole marks 310 of the object surface of all the array rows: the
其中,像面剪切光柵板60包含棋格狀光柵陣列,棋格狀光柵陣列包含複數個透光單元格602及複數個非透光單元格601。沿棋格狀光柵陣列的行方向以及列方向,透光單元格602及非透光單元格601皆間隔排列。
The image shearing grating
示例性地,採用如圖2所示的物面小孔板30及如圖7所示的像面剪切光柵板60配合進行投影物鏡的波像差檢測的過程如下:
Exemplarily, the process of using the
第一步,照明光束通過光柵方向平行於X方向的第一行的物面小孔標記310(物面小孔標記O1U1、物面小孔標記O3U1、物面小孔標記
O5U1......)照射到棋格狀光柵陣列上進行測量。第二步,照明光束通過光柵方向平行於X方向的第二行物面小孔標記310(物面小孔標記O2U2、物面小孔標記O4U2......物面小孔標記OnU2)照射到棋格狀光柵陣列上進行測量。第三步,照明光束通過光柵方向平行於Y方向的第三行物面小孔標記310(物面小孔標記O1V1、物面小孔標記O3V1、物面小孔標記O5V1......)照射到棋格狀光柵陣列上進行測量。第四步,照明光束通過光柵方向平行於Y方向第四行的物面小孔標記310(物面小孔標記O2V2、物面小孔標記O4V2......物面小孔標記OnV2)照射到棋格狀光柵陣列上進行測量。
In the first step, the illuminating beam passes through the object
在其他實施方式中,波像差測量方法亦可以由前述實施例之外的波像差測量裝置執行。圖9為本發明實施例提供的另一種物面小孔板的示意圖,每一個視場點設置有一個物面小孔標記310。沿陣列行方向(即X方向)上,照明系統產生的照明光束相鄰兩次照射讀取的兩個物面小孔標記310之間間隔至少一個物面小孔標記310。本發明實施例中,沿陣列行方向上,相鄰兩個物面小孔標記之間間隔至少一個視場點。沿陣列行方向上的每次掃描,照明系統產生的照明光束間隔照射讀取該陣列行上部分物面小孔標記。該陣列行上所有的物面小孔標記需要多次掃描讀取。
In other embodiments, the wave aberration measurement method can also be performed by a wave aberration measurement device other than the foregoing embodiment. FIG. 9 is a schematic diagram of another object surface small hole plate provided by an embodiment of the present invention, and each field of view point is provided with an object surface
示例性地,參考圖9,採用如圖9所示的物面小孔板30及如圖7所示的像面剪切光柵板60配合進行投影物鏡的波像差檢測的過程如下:
Exemplarily, referring to FIG. 9, the process of using the
第一步,照明光束通過光柵方向平行於X方向的第一行的一部分物面小孔標記310(物面小孔標記O1U1、物面小孔標記O3U1、物面小孔標記
O5U1......)照射到棋格狀光柵陣列上進行測量。第二步,照明光束通過光柵方向平行於X方向的第一行的另一部分物面小孔標記310(物面小孔標記O2U1、物面小孔標記O4U1......物面小孔標記OnU1)照射到棋格狀光柵陣列上進行測量。第三步,照明光束通過光柵方向平行於Y方向的第二行的一部分物面小孔標記310(物面小孔標記O1V1、物面小孔標記O3V1、物面小孔標記O5V1......)照射到棋格狀光柵陣列上進行測量。第四步,照明光束通過光柵方向平行於Y方向的第二行的另一部分物面小孔標記310(物面小孔標記O2V1、物面小孔標記O4V1、物面小孔標記OnV1......)照射到棋格狀光柵陣列上進行測量。
In the first step, the illumination beam passes through a part of the object surface hole mark 310 (object surface hole mark O1U1, object surface hole mark O3U1, object surface hole mark
O5U1......) is irradiated on the checkerboard grating array for measurement. In the second step, the illumination beam passes through the other part of the object surface
本發明要求在2019年5月31日提交中國專利局、申請號為201910471627.8的中國專利申請的優先權,以上申請的全部內容通過引用結合在本發明中。 The present invention claims the priority of a Chinese patent application filed with the Chinese Patent Office with an application number of 201910471627.8 on May 31, 2019. The entire content of the above application is incorporated into the present invention by reference.
31:物面小孔 31: Small holes on the surface
310:物面小孔標記 310: Small hole mark on the object surface
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910471627.8 | 2019-05-31 | ||
CN201910471627.8A CN112014070B (en) | 2019-05-31 | 2019-05-31 | Wave aberration measuring device, wave aberration measuring method and photoetching machine |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202046020A TW202046020A (en) | 2020-12-16 |
TWI745933B true TWI745933B (en) | 2021-11-11 |
Family
ID=73506800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109112864A TWI745933B (en) | 2019-05-31 | 2020-04-16 | Wave aberration measuring device, measuring method and photoetching machine |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN112014070B (en) |
TW (1) | TWI745933B (en) |
WO (1) | WO2020238316A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008135745A (en) * | 2007-11-22 | 2008-06-12 | Nikon Corp | Wave front aberration measuring device and projection aligner |
JP2011142279A (en) * | 2010-01-08 | 2011-07-21 | Nikon Corp | Wavefront aberration measuring method and device, exposing method, and aligner |
CN102608870A (en) * | 2011-01-21 | 2012-07-25 | 上海微电子装备有限公司 | Wave aberration measuring device and method |
TW201832020A (en) * | 2016-02-22 | 2018-09-01 | 荷蘭商Asml荷蘭公司 | Separation of contributions to metrology data |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101236362B (en) * | 2008-01-29 | 2010-06-23 | 北京理工大学 | Photo-etching machine projection objective wave aberration on-line detection method |
JP2010109160A (en) * | 2008-10-30 | 2010-05-13 | Canon Inc | Measuring instrument, exposure device and method of manufacturing device |
CN102768471B (en) * | 2011-05-05 | 2014-11-12 | 上海微电子装备有限公司 | Device for measuring wave aberration of projection lens and method thereof |
CN102269937B (en) * | 2011-07-16 | 2013-11-06 | 北京理工大学 | Online detection device and method for wave aberration of projection objective of photoetching machine |
CN102368139B (en) * | 2011-11-07 | 2013-07-03 | 中国科学院长春光学精密机械与物理研究所 | High-precision method for detecting wave aberration of system |
CN102681365B (en) * | 2012-05-18 | 2015-01-14 | 中国科学院光电技术研究所 | Projection objective wave aberration detection device and method |
CN105259738A (en) * | 2015-11-09 | 2016-01-20 | 中国科学院上海光学精密机械研究所 | Parallel detection device for multiple field point wave aberrations of lithographic projection objective lens and detection method |
-
2019
- 2019-05-31 CN CN201910471627.8A patent/CN112014070B/en active Active
-
2020
- 2020-03-09 WO PCT/CN2020/078349 patent/WO2020238316A1/en active Application Filing
- 2020-04-16 TW TW109112864A patent/TWI745933B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008135745A (en) * | 2007-11-22 | 2008-06-12 | Nikon Corp | Wave front aberration measuring device and projection aligner |
JP2011142279A (en) * | 2010-01-08 | 2011-07-21 | Nikon Corp | Wavefront aberration measuring method and device, exposing method, and aligner |
CN102608870A (en) * | 2011-01-21 | 2012-07-25 | 上海微电子装备有限公司 | Wave aberration measuring device and method |
TW201832020A (en) * | 2016-02-22 | 2018-09-01 | 荷蘭商Asml荷蘭公司 | Separation of contributions to metrology data |
Also Published As
Publication number | Publication date |
---|---|
CN112014070B (en) | 2021-10-26 |
CN112014070A (en) | 2020-12-01 |
TW202046020A (en) | 2020-12-16 |
WO2020238316A1 (en) | 2020-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8654352B1 (en) | Chromatic confocal scanning apparatus | |
TWI775331B (en) | Method and system for optical three-dimensional topography measurement | |
TW202028874A (en) | Metrology sensor for position metrology | |
KR20230044149A (en) | Gray-mode scanning scatterometry overlay metrology | |
JP2009539109A (en) | Order-selected overlay measurement | |
KR19980018477A (en) | Exposure condition measurement method | |
KR101114729B1 (en) | High throughput across-wafer-variation mapping | |
US9760020B2 (en) | In-situ metrology | |
CN104335021A (en) | Method and device for measuring wavefront, and exposure method and device | |
JP4090860B2 (en) | 3D shape measuring device | |
CN103154819A (en) | Projection exposure tool for microlithography and method for microlithographic imaging | |
TWI745933B (en) | Wave aberration measuring device, measuring method and photoetching machine | |
KR101116295B1 (en) | Apparatus for measurment of three-dimensional shape | |
JP6410618B2 (en) | Defect inspection equipment | |
JP2008058248A (en) | Diffracted light detector and inspection system | |
KR102427648B1 (en) | Method of inspecting defects and defects inspecting apparatus | |
WO2016201788A1 (en) | In-situ multichannel imaging quality detection device and method for mask aligner | |
WO2023191980A1 (en) | Scanning scatterometry overlay metrology | |
CN111649693B (en) | Sample morphology measuring device and method | |
WO2023105664A1 (en) | Workpiece measurement device and workpiece measurement method | |
JPH1038514A (en) | Position detecting device | |
CN111855662B (en) | Wafer defect detection device and method | |
KR20190045645A (en) | Hybrid moire measuring device for 3d inspection | |
CN110296666B (en) | Three-dimensional measuring device | |
JP2011181715A (en) | Exposure device |