JP2010206033A - Wavefront aberration measuring device, method of calibrating the same, and aligner - Google Patents

Wavefront aberration measuring device, method of calibrating the same, and aligner Download PDF

Info

Publication number
JP2010206033A
JP2010206033A JP2009051405A JP2009051405A JP2010206033A JP 2010206033 A JP2010206033 A JP 2010206033A JP 2009051405 A JP2009051405 A JP 2009051405A JP 2009051405 A JP2009051405 A JP 2009051405A JP 2010206033 A JP2010206033 A JP 2010206033A
Authority
JP
Japan
Prior art keywords
optical system
mask
measurement
calibration
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009051405A
Other languages
Japanese (ja)
Inventor
Ikuso Ake
郁葱 朱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009051405A priority Critical patent/JP2010206033A/en
Publication of JP2010206033A publication Critical patent/JP2010206033A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain measurement errors when performing wavefront measurement, for example, by shearing interference systems. <P>SOLUTION: In a method of calibrating a wavefront measuring device 8, illumination light EL passing through a pattern for measurement and a projection optical system PO is divided via a diffraction grating 10, and wavefront aberration of the projection optical system PO is measured, based on interference fringes 22 obtained by allowing divided luminous flux to interfere. In this case, a pattern 7 for calibration is disposed at an object surface side of the projection optical system PO, a grating 11 for calibration, where a pattern corresponding to the pattern for measurement is formed, is disposed at an image plane side of the projection optical system PO, the luminous flux passing through the pattern 7 for calibration and the projection optical system PO is received via the grating 11 for calibration and diffraction grating 10, and the measurement error is obtained based on the light reception result. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えばシアリング干渉で生成される干渉縞に基づいて被検光学系の波面収差情報を計測する波面収差計測装置、その校正方法、及びその波面収差計測装置を備えた露光装置に関する。   The present invention relates to a wavefront aberration measuring apparatus that measures wavefront aberration information of a test optical system based on, for example, interference fringes generated by shearing interference, a calibration method thereof, and an exposure apparatus provided with the wavefront aberration measuring apparatus.

半導体デバイス等の微細化に応じて、露光装置においては解像度を高めるために露光光の短波長化が進み、最近では露光光として波長が100nm程度以下の軟X線を含む極端紫外光(Extreme Ultraviolet Light:以下、EUV光という)を用いる露光装置(EUV露光装置)も開発されている。EUV光については現状ではそれを透過する光学材料がないため、EUV露光装置の照明光学系及び投影光学系は、特定のフィルタ等を除いて反射光学部材から構成される。   In accordance with the miniaturization of semiconductor devices and the like, in exposure apparatuses, the exposure light has been shortened in order to increase the resolution. Recently, extreme ultraviolet light including soft X-rays having a wavelength of about 100 nm or less as exposure light (Extreme Ultraviolet). An exposure apparatus (EUV exposure apparatus) using a light (hereinafter referred to as EUV light) has also been developed. Since there is no optical material that transmits EUV light at present, the illumination optical system and the projection optical system of the EUV exposure apparatus are configured by reflective optical members except for specific filters and the like.

また、EUV光を用いる投影光学系の波面収差は例えば0.5nmRMS程度以下であることが求められており、投影光学系の波面収差の計測精度は0.1nmRMS程度が要求されている。このように高精度な波面収差の計測装置として、投影光学系の物体面に一つ若しくは複数のピンホール又は一つ若しくは複数のスリットパターンを配置し、そのピンホール等から発生する球面波等を投影光学系及び回折格子に通し、回折格子から発生する複数の回折光による横ずれした波面の干渉縞を撮像素子で受光するシアリング干渉方式の計測装置が知られている(例えば、特許文献1参照)。
特開2006−269578号公報
Further, the wavefront aberration of a projection optical system using EUV light is required to be, for example, about 0.5 nm RMS or less, and the measurement accuracy of the wavefront aberration of the projection optical system is required to be about 0.1 nm RMS. Thus, as a highly accurate wavefront aberration measuring device, one or a plurality of pinholes or one or a plurality of slit patterns are arranged on the object plane of the projection optical system, and spherical waves generated from the pinholes, etc. There is known a shearing interference type measuring apparatus that receives interference fringes of wavefronts shifted laterally due to a plurality of diffracted lights generated from a diffraction grating through an optical projection system and a diffraction grating by an image sensor (see, for example, Patent Document 1). .
JP 2006-269578 A

従来のシアリング干渉方式の計測装置では、回折格子や撮像素子の僅かな傾斜(チルト)に起因する非点収差が被検波面に混入して計測誤差要因となる恐れがあった。また、EUV露光装置は一般に真空チャンバ内に設置されるため、例えばその計測装置をEUV露光装置に組み込んだ場合に、その露光装置中の計測装置の回折格子及び撮像素子の実際の傾斜角を計測することは困難である。   In a conventional shearing interference type measuring apparatus, astigmatism due to a slight tilt of the diffraction grating or the image pickup element may be mixed into the wavefront to be measured and cause a measurement error. In addition, since the EUV exposure apparatus is generally installed in a vacuum chamber, for example, when the measurement apparatus is incorporated in the EUV exposure apparatus, the actual tilt angles of the diffraction grating and the imaging device of the measurement apparatus in the exposure apparatus are measured. It is difficult to do.

本発明は、このような事情に鑑み、例えばシアリング干渉方式で波面計測を行う場合の計測誤差を求めることができる校正方法及び波面収差計測装置、並びにこの波面収差計測装置を備えた露光装置を提供することを目的とする。   In view of such circumstances, the present invention provides a calibration method and a wavefront aberration measuring apparatus capable of obtaining a measurement error when performing wavefront measurement using, for example, a shearing interference method, and an exposure apparatus including the wavefront aberration measuring apparatus. The purpose is to do.

本発明による波面収差計測装置の校正方法は、計測用マスク及び被検光学系を通過した計測用の光束を回折格子を介して分割し、分割したその光束を干渉させて得られる干渉縞に基づいてその被検光学系の波面収差情報を計測する波面収差計測装置の校正方法であって、その被検光学系の物体面側に、その計測用マスクと異なる第1の校正用マスクを配置し、その被検光学系の像面側にその計測用マスクのパターンに対応するパターンが形成された第2の校正用マスクを配置し、その第1の校正用マスク及びその被検光学系を通過した光束をその第2の校正用マスク及びその回折格子を介して受光し、該受光結果に基づいてその波面収差計測装置の計測誤差情報を求めるものである。   The wavefront aberration measuring apparatus calibration method according to the present invention is based on interference fringes obtained by dividing a measurement light beam that has passed through a measurement mask and a test optical system through a diffraction grating and causing the divided light beam to interfere with each other. A calibration method of a wavefront aberration measuring apparatus for measuring wavefront aberration information of the test optical system, wherein a first calibration mask different from the measurement mask is arranged on the object plane side of the test optical system. A second calibration mask on which a pattern corresponding to the pattern of the measurement mask is formed is disposed on the image plane side of the test optical system, and passes through the first calibration mask and the test optical system. The received light flux is received through the second calibration mask and the diffraction grating, and measurement error information of the wavefront aberration measuring device is obtained based on the light reception result.

また、本発明による波面収差計測装置は、計測用マスク及び被検光学系を通過した計測用の光束を回折格子を介して分割し、分割したその光束を干渉させて得られる干渉縞に基づいてその被検光学系の波面収差情報を計測する波面収差計測装置であって、その干渉縞を検出する受光器と、その被検光学系の物体面側にその計測用マスクと異なる第1の校正用マスクを配置する第1のマスク配置部と、その被検光学系の像面側にその計測用マスクのパターンに対応するパターンが形成された第2の校正用マスクを配置する第2のマスク配置部と、その第1の校正用マスク及びその被検光学系を通過した光束をその第2の校正用マスク及びその回折格子を介してその受光器で受光させ、その受光器の受光結果に基づいて計測誤差情報を求める制御部と、を備えるものである。   The wavefront aberration measuring apparatus according to the present invention is based on interference fringes obtained by dividing a measurement light beam that has passed through a measurement mask and a test optical system via a diffraction grating and causing the divided light beam to interfere with each other. A wavefront aberration measuring apparatus for measuring wavefront aberration information of the test optical system, a light receiver for detecting the interference fringes, and a first calibration different from the measurement mask on the object plane side of the test optical system And a second mask for arranging a second calibration mask having a pattern corresponding to the pattern of the measurement mask formed on the image plane side of the test optical system. The light beam that has passed through the placement unit, the first calibration mask, and the optical system to be detected is received by the light receiver through the second calibration mask and the diffraction grating, and the light reception result of the light receiver is obtained. Control to obtain measurement error information based on And, those with a.

また、本発明による露光装置は、露光光でパターンを照明し、その露光光でそのパターン及び投影光学系を介して基板を露光する露光装置において、その投影光学系の波面収差情報を計測するために、本発明の波面収差計測装置を備えるものである。   An exposure apparatus according to the present invention illuminates a pattern with exposure light, and measures wavefront aberration information of the projection optical system in the exposure apparatus that exposes the substrate with the exposure light through the pattern and the projection optical system. In addition, the wavefront aberration measuring apparatus of the present invention is provided.

本発明によれば、第1の校正用マスク及び被検光学系を通過した光束を第2の校正用マスク及び回折格子を介して受光することで、第2の校正用マスクは被検光学系に収差がない場合の計測用マスクの理想的な像として作用する。従って、その受光結果より、被検光学系以外の部材に起因する収差量である計測誤差情報を求めることができ、この結果を用いて例えばシアリング干渉方式の波面収差計測装置の校正を行うことができる。   According to the present invention, the second calibration mask receives the light beam that has passed through the first calibration mask and the test optical system via the second calibration mask and the diffraction grating, so that the second calibration mask is the test optical system. Acts as an ideal image of a measurement mask when there is no aberration. Therefore, measurement error information that is an aberration amount caused by a member other than the optical system to be measured can be obtained from the light reception result, and for example, a shearing interference type wavefront aberration measuring apparatus can be calibrated using this result. it can.

本発明の実施形態の一例につき図1〜図4を参照して説明する。
図1は、本実施形態の露光装置100の全体構成を概略的に示す図である。露光装置100は、露光用の照明光EL(露光光)として、波長が100nm程度以下で例えば11〜15nm程度の範囲内のEUV光(Extreme Ultraviolet Light)を用いるEUV露光装置である。照明光ELの波長は一例として13.5nmである。図1において、露光装置100は、照明光ELを発生するレーザプラズマ光源と、その照明光ELでミラー2を介してレチクルR(マスク)のパターン面(ここでは下面)上の照明領域を照明する照明光学系とを含む照明装置ILSと、レチクルRをレチクルホルダRHを介して保持して移動するレチクルステージRSTと、レチクルRの照明領域内のパターンの像をレジスト(感光材料)が塗布されたウエハW(感光基板)上に投影する投影光学系POとを備えている。さらに、露光装置100は、ウエハWを保持して移動するウエハステージWSTと、装置全体の動作を統括的に制御するコンピュータを含む主制御系16と、ステージの駆動機構(不図示)等とを備え、ウエハステージWSTには投影光学系POの波面収差を計測する波面計測装置8が装着されている。
An example of an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a view schematically showing the overall configuration of the exposure apparatus 100 of the present embodiment. The exposure apparatus 100 is an EUV exposure apparatus that uses EUV light (Extreme Ultraviolet Light) within a wavelength range of, for example, about 11 to 15 nm as the illumination light EL (exposure light) for exposure. The wavelength of the illumination light EL is 13.5 nm as an example. In FIG. 1, an exposure apparatus 100 illuminates an illumination area on a pattern surface (here, the lower surface) of a reticle R (mask) through a mirror 2 with a laser plasma light source that generates illumination light EL and the illumination light EL. A resist (photosensitive material) is applied to an illumination device ILS including an illumination optical system, a reticle stage RST that moves while holding the reticle R via the reticle holder RH, and an image of a pattern in the illumination area of the reticle R. And a projection optical system PO that projects onto a wafer W (photosensitive substrate). Further, exposure apparatus 100 includes wafer stage WST that holds and moves wafer W, main control system 16 that includes a computer that comprehensively controls the operation of the entire apparatus, a stage drive mechanism (not shown), and the like. In addition, a wavefront measuring device 8 for measuring the wavefront aberration of the projection optical system PO is mounted on the wafer stage WST.

本実施形態では、照明光ELとしてEUV光が使用されているため、照明光学系ILS及び投影光学系POは、特定のフィルタ等(不図示)を除いて複数のミラー等の反射光学部材より構成され、レチクルRも反射型である。その反射光学部材は、例えば、石英(又は高耐熱性の金属等)よりなる部材の表面を所定の曲面又は平面に高精度に加工した後、その表面に例えばモリブデン(Mo)とシリコン(Si)との多層膜(EUV光の反射膜)を形成して反射面としたものである。また、レチクルRは例えば石英の基板の表面に多層膜を形成して反射面とした後、その反射面に、タンタル(Ta)、ニッケル(Ni)、又はクロム(Cr)等のEUV光を吸収する材料よりなる吸収層によって転写用のパターンを形成したものである。   In the present embodiment, since EUV light is used as the illumination light EL, the illumination optical system ILS and the projection optical system PO are configured by reflective optical members such as a plurality of mirrors except for a specific filter or the like (not shown). The reticle R is also a reflection type. The reflective optical member is obtained by, for example, processing the surface of a member made of quartz (or a metal having high heat resistance) into a predetermined curved surface or plane with high accuracy, and then, for example, molybdenum (Mo) and silicon (Si) on the surface. And a multilayer film (an EUV light reflecting film) is formed as a reflecting surface. The reticle R, for example, forms a multilayer film on the surface of a quartz substrate to form a reflective surface, and then absorbs EUV light such as tantalum (Ta), nickel (Ni), or chromium (Cr) on the reflective surface. A transfer pattern is formed by an absorption layer made of a material to be transferred.

また、EUV光の気体による吸収を防止するため、露光装置100はほぼ全体として箱状の真空チャンバ(不図示)内に収容されている。
以下、図1において、ウエハステージWSTが移動する面(本実施形態ではほぼ水平面)内で図1の紙面に垂直にX軸を、図1の紙面に平行にY軸を取り、その面に垂直にZ軸を取って説明する。本実施形態では、レチクルR上での照明光ELの照明領域は、X方向(非走査方向)に細長い円弧状であり、露光時にレチクルR及びウエハWは投影光学系POに対してY方向(走査方向)に同期して走査される。
Further, in order to prevent the EUV light from being absorbed by the gas, the exposure apparatus 100 is accommodated in a box-shaped vacuum chamber (not shown) as a whole.
In FIG. 1, the X axis is perpendicular to the plane of FIG. 1 and the Y axis is parallel to the plane of FIG. 1 within the plane (substantially horizontal plane in the present embodiment) on which wafer stage WST moves. The explanation will be given by taking the Z axis. In the present embodiment, the illumination area of the illumination light EL on the reticle R has an arc shape elongated in the X direction (non-scanning direction), and the reticle R and the wafer W are exposed to the projection optical system PO in the Y direction (at the time of exposure). Scanning is performed in synchronization with the scanning direction.

先ず、照明装置ILS中の照明光学系は、オプティカルインテグレータ、可変開口絞り、レチクルブラインド、及びコンデンサ光学系等から構成されている。また、投影光学系POは、物体面(第1面)のパターンの縮小像を像面(第2面)に形成し、投影光学系POの投影倍率βは例えば1/4であり、像側の開口数NAは例えば0.25である。この場合、投影光学系POの物体側の開口数NAinは0.0625(=0.25/4)である。   First, the illumination optical system in the illumination device ILS includes an optical integrator, a variable aperture stop, a reticle blind, a condenser optical system, and the like. The projection optical system PO forms a reduced image of the pattern on the object plane (first surface) on the image plane (second surface), and the projection magnification β of the projection optical system PO is, for example, ¼, and the image side For example, the numerical aperture NA is 0.25. In this case, the numerical aperture NAin on the object side of the projection optical system PO is 0.0625 (= 0.25 / 4).

投影光学系POは、一例として、6枚の例えば非球面のミラーM1〜M6を不図示の鏡筒で保持することによって構成され、物体面(レチクルRのパターン面)側に非テレセントリックで、像面(ウエハWの表面)側にほぼテレセントリックの反射光学系である。また、投影光学系PO内に開口絞り(不図示)が設けられている。なお、投影光学系POの構成は任意である。レチクルRの照明領域で反射された照明光ELが、投影光学系POを介してウエハW上の露光領域(照明領域と共役な領域)に、レチクルRのパターンの一部の縮小像を形成する。   As an example, the projection optical system PO is configured by holding six aspherical mirrors M1 to M6, for example, by a lens barrel (not shown), and is non-telecentric on the object plane (pattern surface of the reticle R) side. It is a substantially telecentric reflective optical system on the surface (the surface of the wafer W) side. An aperture stop (not shown) is provided in the projection optical system PO. The configuration of the projection optical system PO is arbitrary. The illumination light EL reflected by the illumination area of the reticle R forms a reduced image of a part of the pattern of the reticle R in the exposure area (area conjugate to the illumination area) on the wafer W via the projection optical system PO. .

ウエハW上の1つのダイ(ショット領域)を露光するときには、照明光ELが照明装置ILSによりミラー2を介してレチクルRの照明領域に照射され、レチクルRとウエハWとは投影光学系POに対して投影倍率β(縮小倍率)に従った所定の速度比でY方向に同期して移動する(同期走査される)。このようにして、レチクルRのパターンの像はウエハW上の一つのダイに露光される。その後、ウエハステージWSTを駆動してウエハWをX方向、Y方向にステップ移動した後、ウエハW上の次のダイに対してレチクルRのパターンが走査露光される。このようにステップ・アンド・スキャン方式でウエハW上の複数のダイに対して順次レチクルRのパターンの像が露光される。   When one die (shot area) on the wafer W is exposed, the illumination light EL is irradiated to the illumination area of the reticle R via the mirror 2 by the illumination device ILS, and the reticle R and the wafer W are directed to the projection optical system PO. On the other hand, it moves synchronously in the Y direction at a predetermined speed ratio according to the projection magnification β (reduction magnification) (synchronized scanning). In this way, the pattern image of the reticle R is exposed to one die on the wafer W. Thereafter, the wafer stage WST is driven to move the wafer W stepwise in the X and Y directions, and then the pattern of the reticle R is scanned and exposed to the next die on the wafer W. In this way, the pattern R image of the reticle R is sequentially exposed to a plurality of dies on the wafer W by the step-and-scan method.

次に、本実施形態の波面計測装置8の構成及び投影光学系POの波面収差の計測原理につき説明する。ウエハステージWST内の波面計測装置8は、XY平面にほぼ平行に配置されて、2次元の格子パターンが形成された回折格子10と、この回折格子10からの複数の回折光によるシアリング干渉の干渉縞を検出するCCD型又はCMOS型等の2次元の撮像素子14と、波面計測装置8の校正時に使用される校正用格子11とを備えている。さらに、波面計測装置8は、その校正時に、回折格子10の上方の投影光学系POの像面と同じ高さの位置に校正用格子11を設置する回転モータを含む駆動機構12を備えている。撮像素子14の検出信号は主制御系16内の演算部に供給される。   Next, the configuration of the wavefront measuring apparatus 8 of the present embodiment and the principle of measuring the wavefront aberration of the projection optical system PO will be described. The wavefront measuring apparatus 8 in the wafer stage WST is arranged substantially parallel to the XY plane and has a diffraction grating 10 on which a two-dimensional grating pattern is formed, and interference of shearing interference by a plurality of diffracted lights from the diffraction grating 10. A CCD-type or CMOS-type two-dimensional imaging device 14 for detecting fringes and a calibration grid 11 used when the wavefront measuring device 8 is calibrated are provided. Further, the wavefront measuring apparatus 8 includes a drive mechanism 12 including a rotation motor that sets the calibration grating 11 at the same height as the image plane of the projection optical system PO above the diffraction grating 10 at the time of calibration. . The detection signal of the image sensor 14 is supplied to a calculation unit in the main control system 16.

投影光学系POの波面収差計測時には、ウエハステージWSTを駆動して波面計測装置8の回折格子10の上方に投影光学系POの露光領域が設定される。主制御系16内の演算部は撮像素子14の検出信号から投影光学系POの波面収差を求める。さらに、波面計測装置8の校正時に、主制御系16は、駆動機構12を介して回折格子10の上方に校正用格子11を配置して波面収差を計測する(詳細後述)。   At the time of measuring the wavefront aberration of the projection optical system PO, the exposure stage of the projection optical system PO is set above the diffraction grating 10 of the wavefront measuring apparatus 8 by driving the wafer stage WST. A calculation unit in the main control system 16 obtains the wavefront aberration of the projection optical system PO from the detection signal of the image sensor 14. Further, during calibration of the wavefront measuring apparatus 8, the main control system 16 measures the wavefront aberration by disposing the calibration grating 11 above the diffraction grating 10 via the drive mechanism 12 (details will be described later).

また、その波面収差計測時には、不図示のレチクルローダ系を介してレチクルステージRST上のレチクルRが計測用レチクル4と交換され、計測用レチクル4のパターン面が照明装置ILSの照明領域に設定される。計測用レチクル4のパターン面には後述のピンホールアレー6及び校正用パターン7が形成されている。ピンホールアレー6及び校正用パターン7は、一例として、EUV光の反射膜上にピンホールとなる部分を除いて吸収層を形成することによって製造できる。計測用レチクル4は、波面計測装置8の一部とみなすことも可能である。以下の説明では、便宜上、計測用レチクル4及び投影光学系POを1つの光軸上に配置された透過光学系で表現する。しかしながら、この計測原理は反射光学系でも同様に成立する。   At the time of measuring the wavefront aberration, the reticle R on the reticle stage RST is exchanged with the measurement reticle 4 via a reticle loader system (not shown), and the pattern surface of the measurement reticle 4 is set as the illumination area of the illumination device ILS. The A pinhole array 6 and a calibration pattern 7 described later are formed on the pattern surface of the measurement reticle 4. As an example, the pinhole array 6 and the calibration pattern 7 can be manufactured by forming an absorption layer on a reflective film for EUV light, except for a portion that becomes a pinhole. The measurement reticle 4 can also be regarded as a part of the wavefront measuring apparatus 8. In the following description, for convenience, the measurement reticle 4 and the projection optical system PO are expressed by a transmission optical system arranged on one optical axis. However, this measurement principle holds true for the reflective optical system as well.

図2(A)は、図1の波面計測装置8で投影光学系POの波面収差を計測中の光学系を透過光学系で表現したものである。図2(A)の光学系は、シアリング干渉を行うタルボ(Talbot)干渉計である。図2(A)において、投影光学系POの物体面に計測用レチクル4のピンホールアレー6が設置され、ピンホールアレー6が照明光ELで照明される。
図2(B)に拡大図で示すように、ピンホールアレー6は、複数個のピンホール6aを含むピンホール群6SをX方向、Y方向に周期(ピッチ)Ps/βで配列したものである。この場合、βは投影光学系POの投影倍率であり、ピンホールアレー6を投影光学系POを介して投影した像(ピンホール群の像6SP)のX方向、Y方向の周期はPsである。個々のピンホール6aの直径は、次のように一例として回折限界以下程度である。照明光ELの波長λ、投影光学系POの物体側の開口数NAinを用いると、回折限界はλ/(2NAin)である。
FIG. 2A shows the optical system in which the wavefront aberration of the projection optical system PO is being measured by the wavefront measuring apparatus 8 of FIG. 1 as a transmission optical system. The optical system in FIG. 2A is a Talbot interferometer that performs shearing interference. In FIG. 2A, the pinhole array 6 of the measurement reticle 4 is installed on the object plane of the projection optical system PO, and the pinhole array 6 is illuminated with the illumination light EL.
As shown in an enlarged view in FIG. 2B, the pinhole array 6 is formed by arranging pinhole groups 6S including a plurality of pinholes 6a in the X direction and the Y direction at a period (pitch) Ps / β. is there. In this case, β is the projection magnification of the projection optical system PO, and the period in the X direction and Y direction of the image (the pinhole group image 6SP) obtained by projecting the pinhole array 6 through the projection optical system PO is Ps. . The diameter of each pinhole 6a is about the diffraction limit or less as an example as follows. If the wavelength λ of the illumination light EL and the numerical aperture NAin on the object side of the projection optical system PO are used, the diffraction limit is λ / (2NAin).

ピンホール6aの直径≦λ/(2NAin) …(1)
ここで、波長λを13.5nm、開口数NAinを0.0625とすると、回折限界はほぼ108nmとなるため、ピンホール6aの直径は100nm程度又はこれより小さい。
また、ピンホール群6S内での複数のピンホール6aの間隔は、一例として照明光ELのコヒーレンス係数が0となる距離以上であればよい。波長λ及び照明光学系の開口数NAILを用いて、コヒーレンス係数が0となる最短距離は0.61λ/NAIL、即ちこの場合には132nm程度になる。このような多数のピンホールが周期的に形成されたピンホールアレー6を使用することで、撮像素子14上での干渉縞の光量が大きくなるため、高いSN比でシアリング干渉方式の波面計測を行うことができる。
Diameter of pinhole 6a ≦ λ / (2NAin) (1)
Here, when the wavelength λ is 13.5 nm and the numerical aperture NAin is 0.0625, the diffraction limit is approximately 108 nm, so the diameter of the pinhole 6a is about 100 nm or smaller.
Moreover, the space | interval of the several pinhole 6a in the pinhole group 6S should just be more than the distance from which the coherence coefficient of illumination light EL becomes 0 as an example. Using the wavelength λ and the numerical aperture NA IL of the illumination optical system, the shortest distance at which the coherence coefficient becomes 0 is 0.61λ / NA IL , that is, about 132 nm in this case. By using such a pinhole array 6 in which a large number of pinholes are periodically formed, the amount of interference fringes on the image sensor 14 increases, so shearing interference wavefront measurement can be performed with a high S / N ratio. It can be carried out.

また、ピンホールアレー6の周期Ps/βは、照明光ELの空間的コヒーレンス長以上である。本実施形態のように空間的コヒーレンシィが低いレーザプラズマ光源を使用する場合、照明光学系の射出側の開口数NAIL及び波長λを用いて、その空間的コヒーレンス長は高々、λ/NAILである。従って、周期Ps/βは次の条件を満たせばよい。
Ps/β≧λ/NAIL≒λ/NAin …(2)
この場合、波長λを13.5nm、開口数NAinを0.0625とすると、空間的コヒーレンス長はほぼ216nmとなるため、周期Ps/βは200nm程度より大きければよい。ただし、後述のようにピンホールアレー6の像の周期Psは、さらに所定の条件を満たす必要があるとともに、製造技術上の問題もあるため、周期Psは例えば1μm程度以上となる。この場合、投影倍率βを1/4とすると、ピンホールアレー6の周期Ps/βはほぼ4μm程度以上となり、式(2)の条件は十分に満たされる。
Further, the period Ps / β of the pinhole array 6 is not less than the spatial coherence length of the illumination light EL. When using the spatial coherency is low laser plasma light source as in this embodiment, by using the numerical aperture NA IL and wavelength of the exit side of the illumination optical system lambda, its spatial coherence length at most, lambda / NA IL It is. Therefore, the period Ps / β only needs to satisfy the following condition.
Ps / β ≧ λ / NA IL ≈λ / NAin (2)
In this case, when the wavelength λ is 13.5 nm and the numerical aperture NAin is 0.0625, the spatial coherence length is approximately 216 nm, and therefore the period Ps / β only needs to be greater than about 200 nm. However, as will be described later, the period Ps of the image of the pinhole array 6 needs to satisfy a predetermined condition and has a problem in manufacturing technology. Therefore, the period Ps is, for example, about 1 μm or more. In this case, if the projection magnification β is ¼, the period Ps / β of the pinhole array 6 is about 4 μm or more, and the condition of the expression (2) is sufficiently satisfied.

また、図2(A)において、ピンホールアレー6の投影光学系POによる像が像面18上に形成され、この像面18から−Z方向に距離Lgの位置に回折格子10が配置され、この下方で像面18から距離Lcの位置に撮像素子14の受光面が配置される。
回折格子10には、図2(D)に示すように、遮光膜(又は吸収層)を背景として照明光ELを通す多数の開口パターン10aがX方向、Y方向に周期Pgで形成されている。ピンホールアレー6を通過した照明光ELが投影光学系POを介して回折格子10に入射し、回折格子10から発生する0次光(0次回折光)20、+1次回折光20A、及び−1次回折光20B等によって撮像素子14の受光面に、図2(E)に示すようなシアリング干渉の干渉縞(フーリエ像)22が形成される。
In FIG. 2A, an image formed by the projection optical system PO of the pinhole array 6 is formed on the image plane 18, and the diffraction grating 10 is disposed at a distance Lg from the image plane 18 in the −Z direction. Below this, the light receiving surface of the image sensor 14 is disposed at a distance Lc from the image plane 18.
In the diffraction grating 10, as shown in FIG. 2D, a large number of opening patterns 10a through which the illumination light EL passes with a light shielding film (or absorption layer) as a background are formed with a period Pg in the X and Y directions. . The illumination light EL that has passed through the pinhole array 6 enters the diffraction grating 10 via the projection optical system PO, and the 0th-order light (0th-order diffracted light) 20, the + 1st-order diffracted light 20A, and the −1st order generated from the diffraction grating 10. An interference fringe (Fourier image) 22 of shearing interference as shown in FIG. 2 (E) is formed on the light receiving surface of the image sensor 14 by the folded light 20B or the like.

回折格子10の周期Pgは、回折光の所望の横ずれ量(シア量)に応じて設定されるが、実際には製造上の限界もあるため、例えば数100nm〜数μm程度で、例えば1μm程度に設定される。
この場合、撮像素子14の受光面に干渉縞22が形成されるためには、回折格子10の像面18からの距離Lg、及び撮像素子14の受光面の像面18からの距離Lcは、露光波長λ、回折格子10の周期Pg、及びタルボ次数nを用いて、次の条件(タルボ条件)を満たす必要がある。なお、タルボ条件(Talbot条件)の詳細は、「応用光学1(鶴田)」(p.178-181,培風館,1990年)に記載されている。
The period Pg of the diffraction grating 10 is set according to a desired lateral shift amount (shear amount) of the diffracted light. However, since there is actually a manufacturing limit, it is about several hundred nm to several μm, for example, about 1 μm. Set to
In this case, in order for the interference fringes 22 to be formed on the light receiving surface of the image sensor 14, the distance Lg from the image surface 18 of the diffraction grating 10 and the distance Lc from the image surface 18 of the light receiving surface of the image sensor 14 are: Using the exposure wavelength λ, the period Pg of the diffraction grating 10, and the Talbot order n, it is necessary to satisfy the following condition (Talbot condition). Details of the Talbot condition (Talbot condition) are described in “Applied Optics 1 (Tsuruta)” (p.178-181, Baifukan, 1990).

Figure 2010206033
なお、n=0,0.5,1,1.5,2,…である。即ち、タルボ次数nは整数又は半整数である。
本実施形態では、Lc≫Lgが成立するため、式(3)の代わりに次の近似式を使用することができる。
Figure 2010206033
Note that n = 0, 0.5, 1, 1.5, 2,. That is, the Talbot degree n is an integer or a half integer.
In this embodiment, since Lc >> Lg is satisfied, the following approximate expression can be used instead of Expression (3).

Lg=2n×Pg2/λ …(4)
さらに、撮像素子14上に干渉縞が高いコントラストで形成されるためには、ピンホールアレー6の像の周期Psは、周期Pg、距離Lg、距離Lc、及び所定の整数m(例えば2又は4)を用いて次の条件を満たす必要がある。この条件については、例えば特開2006−269578号公報に開示されている。
Lg = 2n × Pg 2 / λ (4)
Further, in order to form interference fringes with high contrast on the image sensor 14, the period Ps of the image of the pinhole array 6 is the period Pg, the distance Lg, the distance Lc, and a predetermined integer m (for example, 2 or 4). ) To satisfy the following conditions: About this condition, it is disclosed by Unexamined-Japanese-Patent No. 2006-269578, for example.

Figure 2010206033
この条件は、図2(A)において、撮像素子14上の干渉縞22上の或る点22aに、ピンホールアレー6の一つのピンホール群の像6SPからの光束E1が到達する場合に、他のピンホール群の像6SPからの光束E2も達する条件である。言い換えると、この条件によって、高いコントラストの干渉縞22が形成される。
Figure 2010206033
This condition is shown in FIG. 2A when a light beam E1 from an image 6SP of one pinhole group of the pinhole array 6 reaches a certain point 22a on the interference fringe 22 on the image sensor 14. This is a condition that the light beam E2 from the image 6SP of the other pinhole group also reaches. In other words, the high-contrast interference fringes 22 are formed under this condition.

なお、Lg/Lcは1よりもかなり小さい値であるため、式(5)の代わりに次の近似式を使用してもよい。
Ps=Pg×m …(6)
この式において周期Pgを1μm、mを2とすると、ピンホールアレー6の像の周期Psは2μmとなる。この場合、投影倍率βを1/4として、ピンホールアレー6の周期は8μmとなる。
Since Lg / Lc is a value considerably smaller than 1, the following approximate expression may be used instead of Expression (5).
Ps = Pg × m (6)
In this equation, when the period Pg is 1 μm and m is 2, the period Ps of the image of the pinhole array 6 is 2 μm. In this case, the projection magnification β is 1/4, and the period of the pinhole array 6 is 8 μm.

式(4)及び式(6)の条件のもとで、撮像素子14の受光面に形成される干渉縞22の強度分布を図1の主制御系16の演算部に取り込み、その強度分布をフーリエ変換することでシアリング波面の位相分布(フーリエ像の縞の歪み)が求められる。さらにその演算部は、その位相分布から投影光学系POの波面、ひいてはその波面収差を求めることができる。   Under the conditions of the equations (4) and (6), the intensity distribution of the interference fringes 22 formed on the light receiving surface of the image sensor 14 is taken into the arithmetic unit of the main control system 16 in FIG. The phase distribution of the shearing wavefront (Fourier image fringe distortion) is obtained by Fourier transform. Further, the calculation unit can obtain the wavefront of the projection optical system PO and, consequently, the wavefront aberration from the phase distribution.

次に、波面計測装置8の校正(キャリブレーション)を行う場合には、計測用レチクル4の校正用パターン7が照明光ELの照明領域に配置され、図1の駆動機構12によって回折格子10の上方の像面18に校正用格子11が配置される。
図3(A)は、波面計測装置8の校正を行うときの波面計測装置8の配置を示す。図3(A)の校正用パターン7は、図3(B)に示すように、複数のピンホール7aを含むピンホール群7SをX方向、Y方向に周期Pca/β(βは投影光学系POの投影倍率)で配置したものである。ピンホール7aの大きさ及びピンホール群7S内のピンホール7aの間隔は、図2(B)のピンホール6aと同じである。また、校正用パターン7の投影光学系POによる像(ピンホール群の像7SP)の周期Pcaは、回折格子10の周期Pg、回折格子10の像面18からの距離Lg、撮像素子14の受光面の像面18からの距離Lc、及び半整数xを用いて次の条件を満たすように設定される。
Next, when the wavefront measuring device 8 is calibrated, the calibration pattern 7 of the measurement reticle 4 is arranged in the illumination area of the illumination light EL, and the drive mechanism 12 in FIG. The calibration grid 11 is arranged on the upper image plane 18.
FIG. 3A shows the arrangement of the wavefront measuring device 8 when the wavefront measuring device 8 is calibrated. As shown in FIG. 3B, the calibration pattern 7 shown in FIG. 3A has a pinhole group 7S including a plurality of pinholes 7a in a period Pca / β (β is a projection optical system) in the X direction and the Y direction. (PO projection magnification). The size of the pinhole 7a and the interval between the pinholes 7a in the pinhole group 7S are the same as those of the pinhole 6a in FIG. Further, the period Pca of the image (pinhole group image 7SP) of the calibration pattern 7 by the projection optical system PO is the period Pg of the diffraction grating 10, the distance Lg from the image plane 18 of the diffraction grating 10, and the light reception of the image sensor 14. The distance Lc from the image surface 18 of the surface and the half integer x are used to satisfy the following condition.

Figure 2010206033
ここで、整数i(i=1,2,3,4,…)を用いて半整数xは次のように表すことができる。
x=i+0.5 …(8)
また、校正用格子11には、図3(C)に示すように、遮光膜(又は吸収層)を背景として照明光ELを通す多数の開口パターン11aがX方向、Y方向に周期Pcbで形成されている。校正用格子11の周期Pcbは、図3(D)に示す回折格子10の周期Pg、距離Lg、及び距離Lcを用いて次の条件を満たすように設定される。
Figure 2010206033
Here, a half integer x can be expressed as follows using an integer i (i = 1, 2, 3, 4,...).
x = i + 0.5 (8)
Further, as shown in FIG. 3C, a large number of opening patterns 11a through which the illumination light EL passes with the light shielding film (or absorption layer) as a background are formed in the calibration grid 11 with a period Pcb in the X direction and the Y direction. Has been. The period Pcb of the calibration grating 11 is set so as to satisfy the following condition using the period Pg, the distance Lg, and the distance Lc of the diffraction grating 10 shown in FIG.

Figure 2010206033
式(5)と式(9)との比較より、式(9)の校正用格子11の周期Pcbは、投影光学系POの収差計測時に使用されるピンホールアレー6の像の式(5)の周期Psのm分の1(整数分の1)であることが分かる。これは、校正用格子11の周期Pcbをピンホールアレー6の像の周期Psの可能な最小値と等しくすることを意味している。なお、次式のように、校正用格子11の周期Pcbをピンホールアレー6の像の周期Psと等しく設定することも可能である。
Figure 2010206033
From the comparison between Expression (5) and Expression (9), the period Pcb of the calibration grating 11 in Expression (9) is the expression (5) of the image of the pinhole array 6 used when measuring the aberration of the projection optical system PO. It can be seen that this is 1 / m (an integer) of the period Ps. This means that the period Pcb of the calibration grating 11 is made equal to the minimum possible value of the period Ps of the image of the pinhole array 6. It is also possible to set the period Pcb of the calibration grating 11 equal to the period Ps of the image of the pinhole array 6 as in the following equation.

Pcb=Ps …(10)
式(7)が成立する場合、図3(A)において、撮像素子14上の干渉縞22上の或る点22aに、校正用パターン7の一つのピンホール群の像7SPからの光束E1が到達する場合に、他のピンホール群の像7SPからの光束E3は回折格子10によって遮光されて、高いコントラストの干渉縞22は形成されない。言い換えると、校正用パターン7及び投影光学系POを通過した照明光ELは、投影光学系POの波面収差の情報を含まない照明光として校正用格子11を照明する。この場合、校正用格子11は、実質的に計測用のピンホールアレー6の理想的な像、即ち投影光学系POからの波面収差のない光束として作用するため、撮像素子14の検出信号を処理することによって、投影光学系PO以外の波面計測装置8(校正用格子11及び/又は撮像素子14の傾斜角のずれ等)のシステム誤差に相当する計測誤差を求めることができる。
Pcb = Ps (10)
When Expression (7) is satisfied, in FIG. 3A, a light beam E1 from an image 7SP of one pinhole group of the calibration pattern 7 is at a certain point 22a on the interference fringe 22 on the image sensor 14. When reaching, the light flux E3 from the image 7SP of the other pinhole group is shielded by the diffraction grating 10, and the high-contrast interference fringes 22 are not formed. In other words, the illumination light EL that has passed through the calibration pattern 7 and the projection optical system PO illuminates the calibration grating 11 as illumination light that does not include information on the wavefront aberration of the projection optical system PO. In this case, the calibration grating 11 substantially acts as an ideal image of the pinhole array 6 for measurement, that is, a light beam without wavefront aberration from the projection optical system PO, and therefore processes the detection signal of the image sensor 14. By doing so, it is possible to obtain a measurement error corresponding to the system error of the wavefront measuring device 8 other than the projection optical system PO (such as the deviation of the tilt angle of the calibration grating 11 and / or the image sensor 14).

次に、波面計測装置8の計測誤差を求めて波面計測装置8の校正を行う方法の一例につき図4(A)のフローチャートを参照して説明する。その方法は主制御系16によって制御される。この校正は例えば定期的に実行される。
先ず、図4(A)のステップ101で、図1において不図示のレチクルローダ系を介してレチクルステージRSTのレチクルRを計測用レチクル4と交換した後、レチクルステージRSTを駆動することによって、図3(A)に示すように計測用レチクル4の校正用パターン7を投影光学系POの物体面に配置し、投影光学系POの像面側に波面計測装置8の回折格子10が配置される。次に、駆動機構12を介して、回折格子10の上方の投影光学系POの像面18に校正用格子11を設定する(ステップ102)。その後、照明光ELを校正用パターン7に照射して、波面計測装置8の撮像素子14上に形成される干渉縞22の強度分布を計測する(ステップ103)。その強度分布に基づいて、主制御系16の演算部は例えばフーリエ変換法によって波面を求める(ステップ105)。
Next, an example of a method for calibrating the wavefront measuring apparatus 8 by obtaining the measurement error of the wavefront measuring apparatus 8 will be described with reference to the flowchart of FIG. The method is controlled by the main control system 16. This calibration is performed periodically, for example.
First, in step 101 of FIG. 4A, the reticle R of the reticle stage RST is exchanged with the measurement reticle 4 via the reticle loader system (not shown in FIG. 1), and then the reticle stage RST is driven. 3A, the calibration pattern 7 of the measurement reticle 4 is arranged on the object plane of the projection optical system PO, and the diffraction grating 10 of the wavefront measuring device 8 is arranged on the image plane side of the projection optical system PO. . Next, the calibration grating 11 is set on the image plane 18 of the projection optical system PO above the diffraction grating 10 via the drive mechanism 12 (step 102). Thereafter, the illumination light EL is irradiated onto the calibration pattern 7 to measure the intensity distribution of the interference fringes 22 formed on the image sensor 14 of the wavefront measuring device 8 (step 103). Based on the intensity distribution, the calculation unit of the main control system 16 obtains a wavefront by, for example, a Fourier transform method (step 105).

この場合、y軸に沿った一次元の例で説明すると、校正用パターン7、投影光学系PO、及び回折格子10を介してシアリング干渉によって計測される被検波面W’(y)のシア波面は{W’(y+Δy)−W’(y)}である。なお、Δyはシア量である。また、タルボ干渉計よりなる波面計測装置8のシステム誤差を計測誤差Sとすると、ステップ105で求められる波面の計測結果WT1は、次のようになる。 In this case, to explain with a one-dimensional example along the y-axis, the shear wavefront of the wavefront to be detected W ′ (y) measured by the shearing interference via the calibration pattern 7, the projection optical system PO, and the diffraction grating 10. Is {W ′ (y + Δy) −W ′ (y)}. Δy is the shear amount. Further, when the system error of the wavefront measuring device 8 composed of the Talbot interferometer is a measurement error S, the wavefront measurement result W T1 obtained in step 105 is as follows.

T1={W’(y+Δy)−W’(y)}+S …(11)
この場合、校正用パターン7の像の周期Pcaは式(7)の条件を満たしており、上述のように被検波面W’(y)には投影光学系POの収差情報は含まれないため、シア波面{W’(y+Δy)−W’(y)}はほぼ0となる。従って、計測結果WT1は次のように計測誤差Sのみとなる。
W T1 = {W ′ (y + Δy) −W ′ (y)} + S (11)
In this case, since the period Pca of the image of the calibration pattern 7 satisfies the condition of the equation (7), the wavefront W ′ (y) to be detected does not include the aberration information of the projection optical system PO as described above. The shear wavefront {W ′ (y + Δy) −W ′ (y)} is almost zero. Accordingly, the measurement result W T1 is only the measurement error S as follows.

T1=S …(12)
そこで、主制御系16の演算部はステップ104で求めた計測結果WT1である計測誤差Sを校正データとして主制御系16内の記憶部に記憶する(ステップ105)。その後、図1の駆動機構12によって校正用格子11は照明光ELが照射されない位置に退避される。
W T1 = S (12)
Therefore, the calculation unit of the main control system 16 stores the measurement error S, which is the measurement result W T1 obtained in step 104, in the storage unit in the main control system 16 as calibration data (step 105). Thereafter, the calibration grid 11 is retracted to a position where the illumination light EL is not irradiated by the drive mechanism 12 of FIG.

その後、露光中に投影光学系POの波面収差を計測する場合には、図4(B)のステップ110で、図2(A)に示すように計測用レチクル4のピンホールアレー6が計測用パターンとして投影光学系POの物体面に配置され、投影光学系POの像面側に波面計測装置8の回折格子10が配置される。次に、照明光ELをピンホールアレー6に照射して、波面計測装置8の撮像素子14上に形成される干渉縞22の強度分布を計測する(ステップ111)。さらに、その強度分布に基づいて、主制御系16の演算部は例えばフーリエ変換法によって波面である計測結果WT2を求める(ステップ112)。 Thereafter, when the wavefront aberration of the projection optical system PO is measured during exposure, the pinhole array 6 of the measurement reticle 4 is used for measurement in step 110 of FIG. 4B as shown in FIG. The pattern is arranged on the object plane of the projection optical system PO, and the diffraction grating 10 of the wavefront measuring device 8 is arranged on the image plane side of the projection optical system PO. Next, the illumination light EL is irradiated onto the pinhole array 6 to measure the intensity distribution of the interference fringes 22 formed on the image sensor 14 of the wavefront measuring device 8 (step 111). Furthermore, based on the intensity distribution, the calculation unit of the main control system 16 obtains a measurement result W T2 that is a wavefront by, for example, a Fourier transform method (step 112).

この場合も、y軸に沿った一次元の例で説明すると、ピンホールアレー6、投影光学系PO、及び回折格子10を介してシアリング干渉によって計測される被検波面は、投影光学系POの真の波面W(y)とシステム誤差に相当する部分とに分かれる。従って、真の波面W(y)のシア波面{W(y+Δy)−W(y)}を用いると、計測結果WT2は次のようにシア波面と計測誤差Sとの和になる。 In this case as well, in a one-dimensional example along the y-axis, the wavefront to be measured measured by shearing interference via the pinhole array 6, the projection optical system PO, and the diffraction grating 10 is the projection optical system PO's. It is divided into a true wavefront W (y) and a part corresponding to a system error. Therefore, when the shear wavefront {W (y + Δy) −W (y)} of the true wavefront W (y) is used, the measurement result W T2 is the sum of the shear wavefront and the measurement error S as follows.

T2={W(y+Δy)−W(y)}+S …(13)
そこで、主制御系16の演算部では、計測結果WT2からステップ105で記憶されている計測誤差(校正データ)Sを差し引くことで、次のように投影光学系POの真の波面のシア波面W0 を求めることができる(ステップ113)。
0 =WT2−S=W(y+Δy)−W(y) …(14)
このシア波面W0 を用いることによって、主制御系16の演算部は投影光学系PLの波面収差を求めることができる。
W T2 = {W (y + Δy) -W (y)} + S ... (13)
Therefore, the arithmetic unit of the main control system 16 subtracts the measurement error (calibration data) S stored in step 105 from the measurement result W T2 to obtain a shear wavefront of the true wavefront of the projection optical system PO as follows. W 0 can be determined (step 113).
W 0 = W T2 −S = W (y + Δy) −W (y) (14)
By using this shear wavefront W 0 , the calculation unit of the main control system 16 can obtain the wavefront aberration of the projection optical system PL.

本実施形態の作用効果等は以下の通りである。
(1)本実施形態のシアリング干渉方式の波面計測装置8は、計測用レチクル4のピンホールアレー6(計測用マスク)及び投影光学系PO(被検光学系)を通過した照明光ELを回折格子10を介して分割し、分割した照明光ELを干渉させて得られる干渉縞22に基づいて投影光学系POの波面収差を計測する計測装置であって、干渉縞22を検出する2次元の撮像素子14と、投影光学系POの物体面側にピンホールアレー6と異なる校正用パターン7(第1校正用マスク)を配置するレチクルステージRST(第1のマスク配置部)と、投影光学系POの像面側に計測用レチクル4のピンホールアレー6に対応するパターンが形成された校正用格子11(第2校正用マスク)を配置する駆動機構12(第2のマスク配置部)と、校正用パターン7及び投影光学系POを通過した光束を校正用格子11及び回折格子10を介して撮像素子14で受光させ、この受光結果に基づいて計測誤差を求める主制御系16(演算部)と、を備えている。
Effects and the like of this embodiment are as follows.
(1) The shearing interference type wavefront measuring apparatus 8 of the present embodiment diffracts the illumination light EL that has passed through the pinhole array 6 (measurement mask) and the projection optical system PO (test optical system) of the measurement reticle 4. A measuring device that measures the wavefront aberration of the projection optical system PO based on an interference fringe 22 obtained by dividing the grating 10 and causing the divided illumination light EL to interfere with each other. Image sensor 14, reticle stage RST (first mask placement unit) for placing calibration pattern 7 (first calibration mask) different from pinhole array 6 on the object plane side of projection optical system PO, and projection optical system A drive mechanism 12 (second mask placement section) for placing a calibration grid 11 (second calibration mask) in which a pattern corresponding to the pinhole array 6 of the measurement reticle 4 is formed on the image plane side of PO; Proofreading A main control system 16 (calculation unit) that receives the light beam that has passed through the pattern 7 and the projection optical system PO by the imaging element 14 via the calibration grating 11 and the diffraction grating 10 and obtains a measurement error based on the light reception result; It has.

また、その波面計測装置8の校正方法は、投影光学系POの物体面側に校正用パターン7を配置し(ステップ101)、投影光学系POの像面側に校正用格子11を配置し(ステップ102)、校正用パターン7及び投影光学系POを通過した光束を校正用格子11及び回折格子10を介して受光し、この受光結果に基づいて波面計測装置8の計測誤差を求めるものである(ステップ103〜105)。   Further, in the calibration method of the wavefront measuring apparatus 8, the calibration pattern 7 is arranged on the object plane side of the projection optical system PO (step 101), and the calibration grid 11 is arranged on the image plane side of the projection optical system PO ( Step 102), the light beam that has passed through the calibration pattern 7 and the projection optical system PO is received through the calibration grating 11 and the diffraction grating 10, and the measurement error of the wavefront measuring device 8 is obtained based on the light reception result. (Steps 103-105).

本実施形態によれば、校正用パターン7及び投影光学系POを通過した光束を回折格子10に照射して得られる光束は、投影光学系POの波面収差の情報を実質的に含まない。また、校正用格子11は、実質的に投影光学系POの収差がない場合のピンホールアレー6の理想的な像の強度分布を生成している。従って、この校正用格子11を介して回折格子10を照明することで、投影光学系PO以外の部分に起因する波面収差である計測誤差を容易に求めることができる。従って、例えば定期的に計測誤差を求めることで、波面計測装置8の校正を容易に行うことができる。   According to the present embodiment, the light beam obtained by irradiating the diffraction grating 10 with the light beam that has passed through the calibration pattern 7 and the projection optical system PO substantially does not include information on the wavefront aberration of the projection optical system PO. The calibration grating 11 generates an ideal image intensity distribution of the pinhole array 6 when there is substantially no aberration of the projection optical system PO. Therefore, by illuminating the diffraction grating 10 via the calibration grating 11, a measurement error that is a wavefront aberration caused by a portion other than the projection optical system PO can be easily obtained. Therefore, for example, the wavefront measuring device 8 can be easily calibrated by periodically obtaining a measurement error.

(2)また、ピンホールアレー6の周期Ps/βは式(5)のβ倍であり、校正用パターン7の周期Pca/βは式(7)のβ倍である。従って、校正用パターン7はピンホールアレー6と同様に容易に製造できるとともに、校正用パターン7と回折格子10とを組み合わせることで、投影光学系POの波面収差の情報を含まない光束を高精度に生成できる。   (2) Further, the period Ps / β of the pinhole array 6 is β times the expression (5), and the period Pca / β of the calibration pattern 7 is β times the expression (7). Therefore, the calibration pattern 7 can be easily manufactured in the same manner as the pinhole array 6, and by combining the calibration pattern 7 and the diffraction grating 10, a light beam that does not include information on the wavefront aberration of the projection optical system PO can be obtained with high accuracy. Can be generated.

なお、校正用パターン7の像の周期Pcaは正確に式(7)を満たす必要はなく、近似的に式(7)を満たすのみでもよい。
(3)また、ピンホールアレー6は周期的なパターンであり、校正用格子11は、投影光学系POの像面18に配置され、校正用格子11の周期Pcbは、ピンホールアレー6の像の周期と同一か、又は整数分の1である。従って、校正用格子11は、投影光学系POが無収差である場合のピンホールアレー6の理想的な像とみなすことが可能であり、校正用格子11を用いることで計測誤差のみを容易に計測できる。
Note that the period Pca of the image of the calibration pattern 7 does not need to satisfy the equation (7) exactly, and may only approximately satisfy the equation (7).
(3) The pinhole array 6 has a periodic pattern. The calibration grating 11 is disposed on the image plane 18 of the projection optical system PO, and the period Pcb of the calibration grating 11 is an image of the pinhole array 6. The period is the same as or a whole number. Therefore, the calibration grating 11 can be regarded as an ideal image of the pinhole array 6 when the projection optical system PO has no aberration, and only the measurement error can be easily obtained by using the calibration grating 11. It can be measured.

(4)また、本実施形態の露光装置100は、照明光ELでレチクルRのパターンを照明し、照明光ELでそのパターン及び投影光学系POを介してウエハWを露光する露光装置において、投影光学系POの波面収差を計測するために、上記の波面計測装置8を備えている。従って、オンボディで投影光学系POの波面収差を効率的に計測できるとともに、例えば定期的に校正を行うことによって、常に高精度にその波面収差を計測できる。   (4) In addition, the exposure apparatus 100 of the present embodiment illuminates the pattern of the reticle R with the illumination light EL and exposes the wafer W with the illumination light EL through the pattern and the projection optical system PO. In order to measure the wavefront aberration of the optical system PO, the wavefront measuring device 8 is provided. Therefore, the wavefront aberration of the projection optical system PO can be efficiently measured on-body, and the wavefront aberration can always be measured with high accuracy by, for example, performing regular calibration.

また、本実施形態の波面計測装置8で投影光学系POの波面収差を計測した結果を用いることによって、高性能の投影光学系POを製造することも可能である。また、投影光学系POの波面収差の計測結果から、露光装置100においてレチクルRのパターンをウエハW上に露光する際の所定のパラメータの最適化を行うことも可能である。
なお、上記の実施形態では、次のような変形が可能である。
Further, by using the result of measuring the wavefront aberration of the projection optical system PO with the wavefront measuring apparatus 8 of the present embodiment, it is possible to manufacture a high-performance projection optical system PO. It is also possible to optimize predetermined parameters when the exposure apparatus 100 exposes the pattern of the reticle R onto the wafer W from the measurement result of the wavefront aberration of the projection optical system PO.
In the above embodiment, the following modifications are possible.

(1)先ず、投影光学系POの物体面側の計測用マスクとして、図2(B)の複数のピンホールをX方向、Y方向に周期的に配列したピンホールアレー6の代わりに、図2(C)に示すように、単一のピンホール6aをX方向、Y方向に周期Ps/βで配列したピンホールアレー6Hを計測用マスクとして使用することも可能である。
さらに、ピンホールアレー6の代わりに、一つのピンホール6aのみを用いることも可能であり、この場合には干渉縞の強度は低下するが、式(2)の条件は必要ない。
(1) First, as a measurement mask on the object plane side of the projection optical system PO, instead of the pinhole array 6 in which a plurality of pinholes in FIG. 2B are periodically arranged in the X and Y directions, FIG. As shown in FIG. 2C, a pinhole array 6H in which single pinholes 6a are arranged in the X direction and the Y direction at a period Ps / β can be used as a measurement mask.
Furthermore, instead of the pinhole array 6, it is possible to use only one pinhole 6a. In this case, although the intensity of the interference fringes is reduced, the condition of the expression (2) is not necessary.

(2)また、波面計測装置の校正を行うために投影光学系POの物体面側に配置される校正用パターンとしては、図3(B)に示す周期的な校正用パターン7の代わりに、図5(B)に示すように、ランダムに多数のピンホール7DAaが形成された校正用パターン7Dを使用してもよい。図5(B)において、ピンホール7Daの大きさ及び間隔の最小値は、図3(B)の校正用パターン7を構成するピンホール群7S内のピンホール7aの大きさ及びその間隔の最小値と同じである。   (2) Further, as a calibration pattern disposed on the object plane side of the projection optical system PO in order to calibrate the wavefront measuring apparatus, instead of the periodic calibration pattern 7 shown in FIG. As shown in FIG. 5B, a calibration pattern 7D in which a large number of pinholes 7DAa are randomly formed may be used. In FIG. 5B, the minimum value of the size and interval of the pinhole 7Da is the minimum size of the pinhole 7a in the pinhole group 7S constituting the calibration pattern 7 of FIG. Same as value.

図5(A)は、ピンホールアレー6及び図5(B)の校正用パターン7Dが形成された計測用レチクル4Aを用いる波面計測装置8Aを示す。図5(A)において、校正用パターン7D以外の構成は図3(A)の波面計測装置8と同様である。波面計測装置8Aの計測誤差を計測してその校正を行う場合には、図5(A)に示すように、投影光学系POの物体面側に校正用パターン7Dが配置され、投影光学系POの像面18に校正用格子11が配置される。この場合、校正用パターン7Dの投影光学系POによる像は、像面18上にランダムに配置される多数のピンホールの像7DaPであるため、校正用格子11は、実質的に投影光学系POの波面収差の影響がない照明光ELで照明される。従って、撮像素子14の検出信号を用いることで、投影光学系PO以外の光学部材に起因する波面である計測誤差を求めることができ、ひいては波面計測装置8Aの校正を正確に行うことができる。   FIG. 5A shows a wavefront measuring apparatus 8A that uses the measurement reticle 4A on which the pinhole array 6 and the calibration pattern 7D shown in FIG. 5B are formed. 5A, the configuration other than the calibration pattern 7D is the same as that of the wavefront measuring apparatus 8 in FIG. When the measurement error of the wavefront measuring apparatus 8A is measured and calibrated, the calibration pattern 7D is arranged on the object plane side of the projection optical system PO as shown in FIG. The calibration grid 11 is arranged on the image plane 18. In this case, since the image of the calibration pattern 7D by the projection optical system PO is a large number of pinhole images 7DaP randomly arranged on the image plane 18, the calibration grating 11 substantially has the projection optical system PO. The illumination light EL is not affected by the wavefront aberration. Therefore, by using the detection signal of the image sensor 14, a measurement error that is a wavefront caused by an optical member other than the projection optical system PO can be obtained, and as a result, the wavefront measuring device 8A can be accurately calibrated.

なお、投影光学系PO(被検光学系)の物体面側の校正用パターンとしては、ランダムな校正用パターン7Dのみならず、X方向、Y方向に周期性の無い任意の非周期的なパターンを使用することが可能である。
また、その校正用パターンとしては、照明光ELをランダムに拡散する拡散板等も使用可能である。
As a calibration pattern on the object plane side of the projection optical system PO (test optical system), not only a random calibration pattern 7D but also an arbitrary aperiodic pattern having no periodicity in the X direction and the Y direction. Can be used.
Further, as the calibration pattern, a diffusion plate or the like that diffuses the illumination light EL at random can be used.

(3)また、上記の実施形態の波面計測装置8では、投影光学系POの像面18と撮像素子14との間(像面18の下方)に回折格子10を配置している。しかしながら、図6の波面計測装置8Bで示すように、投影光学系POの像面18と投影光学系POとの間(像面18の上方)に回折格子10を配置しても、同様にシアリング干渉による波面計測を行うことができる。ただし、この場合には、式(3)及び式(5)における像面18と回折格子10との距離Lgを負の値とみなす必要がある。この場合に波面計測装置8Bの校正を行うためには、例えば図6のピンホールアレー6の代わりに図3(A)の校正用パターン7を配置して、投影光学系POの像面18上に図3(A)の校正用格子11を配置すればよい。   (3) In the wavefront measuring apparatus 8 of the above-described embodiment, the diffraction grating 10 is disposed between the image plane 18 of the projection optical system PO and the image sensor 14 (below the image plane 18). However, as shown by the wavefront measuring device 8B in FIG. 6, even if the diffraction grating 10 is arranged between the image plane 18 of the projection optical system PO and the projection optical system PO (above the image plane 18), the shearing is similarly performed. Wavefront measurement by interference can be performed. However, in this case, the distance Lg between the image plane 18 and the diffraction grating 10 in the equations (3) and (5) needs to be regarded as a negative value. In this case, in order to calibrate the wavefront measuring apparatus 8B, for example, the calibration pattern 7 shown in FIG. 3A is arranged instead of the pinhole array 6 shown in FIG. The calibration grid 11 shown in FIG.

(4)上記の実施形態では、波面計測中には回折格子10を静止させ、一つの干渉縞の強度分布からフーリエ変換法で波面を求めているが、例えば図2(A)の回折格子10をY方向に所定量(例えば周期Pgの1/4)ずつ移動させながら撮像素子14によって複数個の干渉縞の強度分布を取り込んでもよい。この場合には、位相シフト法によって波面を求めることができる。これは波面計測装置8等の校正を行う場合も同様である。   (4) In the above embodiment, the diffraction grating 10 is stationary during the wavefront measurement, and the wavefront is obtained by the Fourier transform method from the intensity distribution of one interference fringe. For example, the diffraction grating 10 in FIG. The image sensor 14 may capture the intensity distribution of a plurality of interference fringes while moving the image by a predetermined amount (for example, 1/4 of the period Pg) in the Y direction. In this case, the wavefront can be obtained by the phase shift method. The same applies to the calibration of the wavefront measuring device 8 or the like.

(5)上記の実施形態では、回折格子10には2次元の周期的パターンが形成されているため、1回の計測で投影光学系POの2次元の波面を求めることができる。しかしながら、回折格子10の代わりに例えばX方向にのみ周期性を持つパターンが形成されたX軸の1次元の回折格子を使用してもよい。この場合、この回折格子を用いた計測後に、Y方向に周期性を持つパターンが形成されたY軸の1次元の回折格子を用いた計測を行うことによって、投影光学系POの2次元の波面を求めることができる。   (5) In the above embodiment, since the two-dimensional periodic pattern is formed on the diffraction grating 10, the two-dimensional wavefront of the projection optical system PO can be obtained by one measurement. However, instead of the diffraction grating 10, for example, an X-axis one-dimensional diffraction grating in which a pattern having periodicity only in the X direction may be used. In this case, the measurement using the diffraction grating is followed by the measurement using the Y-axis one-dimensional diffraction grating in which the pattern having periodicity in the Y direction is formed, thereby obtaining the two-dimensional wavefront of the projection optical system PO. Can be requested.

なお、本発明は、タルボ干渉計以外の任意の干渉計を用いてシアリング干渉等による干渉縞を検出して被検光学系の波面収差を計測する場合に適用可能である。
また、上述の実施形態では、EUV光源としてレーザプラズマ光源を用いるものとしたが、これに限らず、SOR(Synchrotron Orbital Radiation)リング、ベータトロン光源、ディスチャージド光源(放電励起プラズマ光源、回転型放電励起プラズマ光源など)、X線レーザなどのいずれを用いても良い。
The present invention can be applied to the case where an interference fringe due to shearing interference or the like is detected using an arbitrary interferometer other than the Talbot interferometer and the wavefront aberration of the optical system to be measured is measured.
In the above-described embodiment, the laser plasma light source is used as the EUV light source. However, the present invention is not limited to this, but a SOR (Synchrotron Orbital Radiation) ring, a betatron light source, a discharged light source (discharge excitation plasma light source, rotary discharge) Any of an excitation plasma light source or the like) or an X-ray laser may be used.

また、図1の実施形態では、露光光としてEUV光を用い、複数枚のミラーから成るオール反射の投影光学系を用いる場合について説明したが、これは一例である。例えば露光光としてArFエキシマレーザ光(波長193nm)等を用いて反射屈折系又は屈折系からなる投影光学系を用いる場合にも、その波面収差を計測するために本発明を適用可能である。   In the embodiment of FIG. 1, the case where EUV light is used as exposure light and an all-reflection projection optical system including a plurality of mirrors is used is described as an example. For example, the present invention can be applied to measure the wavefront aberration even when a projection optical system composed of a catadioptric system or a refractive system using ArF excimer laser light (wavelength 193 nm) or the like as exposure light.

さらに、本発明は、露光装置の投影光学系以外の光学系、例えば顕微鏡の対物レンズ、又はカメラの対物レンズ等の波面収差を計測する場合にも適用可能である。
なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
Furthermore, the present invention can also be applied to measuring wavefront aberration of an optical system other than the projection optical system of the exposure apparatus, for example, an objective lens of a microscope or an objective lens of a camera.
In addition, this invention is not limited to the above-mentioned embodiment, A various structure can be taken in the range which does not deviate from the summary of this invention.

実施形態の一例の波面計測装置を備えた露光装置を示す一部を切り欠いた図である。It is the figure which notched a part which shows the exposure apparatus provided with the wavefront measuring device of an example of embodiment. (A)は図1中の投影光学系PO及び波面計測装置8を透過光学系として示す図、(B)は図2(A)のピンホールアレー6の一部を示す拡大図、(C)はピンホールアレーの別の例を示す拡大図、(D)は図2(A)の回折格子10の一部を示す拡大図、図2(E)は計測される干渉縞の一例を示す図である。1A is a view showing the projection optical system PO and the wavefront measuring device 8 in FIG. 1 as a transmission optical system, FIG. 2B is an enlarged view showing a part of the pinhole array 6 in FIG. 2A, and FIG. Is an enlarged view showing another example of a pinhole array, (D) is an enlarged view showing a part of the diffraction grating 10 of FIG. 2 (A), and FIG. 2 (E) is a view showing an example of interference fringes to be measured. It is. (A)は波面計測装置の校正を行う場合の光学系の配置を示す図、(B)は図3(A)の校正用パターン7の一部を示す拡大図、(C)は図3(A)の校正用格子11の一部を示す拡大図、(D)は図3(A)の回折格子10の一部を示す拡大図である。(A) is a diagram showing the arrangement of the optical system when the wavefront measuring apparatus is calibrated, (B) is an enlarged view showing a part of the calibration pattern 7 of FIG. 3 (A), and (C) is FIG. (A) is an enlarged view showing a part of the calibration grating 11, (D) is an enlarged view showing a part of the diffraction grating 10 of FIG. 3 (A). (A)は波面計測装置の校正方法の一例を示すフローチャート、(B)は波面収差の計測方法の一例を示すフローチャートである。(A) is a flowchart showing an example of a calibration method for the wavefront measuring apparatus, and (B) is a flowchart showing an example of a wavefront aberration measuring method. (A)は実施形態の変形例の波面計測装置及び投影光学系を透過光学系として示す図、(B)は図5(A)の校正用パターン7Dの一部を示す拡大図である。(A) is a figure which shows the wavefront measuring device and projection optical system of the modification of embodiment as a transmission optical system, (B) is an enlarged view which shows a part of calibration pattern 7D of FIG. 5 (A). 実施形態の別の変形例の波面計測装置及び投影光学系を示す図である。It is a figure which shows the wavefront measuring device and projection optical system of another modification of embodiment.

ILS…照明装置、R…レチクル、PO…投影光学系、W…ウエハ、4…計測用レチクル、6…ピンホールアレー、7…校正用パターン、8,8A,8B…波面計測装置、10…回折格子、11…校正用格子、12…駆動機構、14…撮像素子、16…主制御系、18…像面   ILS ... illumination device, R ... reticle, PO ... projection optical system, W ... wafer, 4 ... reticle for measurement, 6 ... pinhole array, 7 ... pattern for calibration, 8,8A, 8B ... wavefront measurement device, 10 ... diffraction Grating 11 Calibration grid 12 Driving mechanism 14 Image sensor 16 Main control system 18 Image plane

Claims (10)

計測用マスク及び被検光学系を通過した計測用の光束を回折格子を介して分割し、分割した前記光束を干渉させて得られる干渉縞に基づいて前記被検光学系の波面収差情報を計測する波面収差計測装置の校正方法であって、
前記被検光学系の物体面側に、前記計測用マスクと異なる第1の校正用マスクを配置し、
前記被検光学系の像面側に前記計測用マスクのパターンに対応するパターンが形成された第2の校正用マスクを配置し、
前記第1の校正用マスク及び前記被検光学系を通過した光束を前記第2の校正用マスク及び前記回折格子を介して受光し、該受光結果に基づいて前記波面収差計測装置の計測誤差情報を求めることを特徴とする波面収差計測装置の校正方法。
Measurement light wave aberration information of the test optical system is measured based on interference fringes obtained by dividing the measurement light beam that has passed through the measurement mask and the test optical system via a diffraction grating and causing the divided light beam to interfere with each other. A wavefront aberration measuring device calibration method,
Disposing a first calibration mask different from the measurement mask on the object plane side of the test optical system,
A second calibration mask having a pattern corresponding to the pattern of the measurement mask formed on the image plane side of the test optical system;
The light flux that has passed through the first calibration mask and the optical system to be tested is received through the second calibration mask and the diffraction grating, and measurement error information of the wavefront aberration measuring device based on the light reception result A method for calibrating a wavefront aberration measuring apparatus, characterized by:
前記計測用マスクは、長さをPM、整数をmで表したとき、周期PM×mで配列された周期的なパターンを有し、
前記第1の校正用マスクは、半整数をxで表したとき、前記計測用マスクの前記周期的なパターンの配列方向と同じ方向に、周期PM×xを持つ周期的なパターンを有することを特徴とする請求項1に記載の波面収差計測装置の校正方法。
The measurement mask has a periodic pattern arranged with a period of PM × m, when the length is represented by PM and the integer is represented by m,
The first calibration mask has a periodic pattern having a period PM × x in the same direction as the arrangement direction of the periodic pattern of the measurement mask when a half integer is represented by x. The wavefront aberration measuring device calibration method according to claim 1, wherein the wavefront aberration measuring device is calibrated.
前記第1の校正用マスクは、非周期的なパターンを有することを特徴とする請求項1に記載の波面収差計測装置の校正方法。   The wavefront aberration measuring apparatus calibration method according to claim 1, wherein the first calibration mask has an aperiodic pattern. 前記計測用マスクは周期的なパターンを有し、
前記第2の校正用マスクは、前記被検光学系の像面に配置され、前記計測用マスクのパターンの前記被検光学系による像の周期と同一か、又は整数分の1の周期のパターンを有することを特徴とする請求項1から請求項3のいずれか一項に記載の波面収差計測装置の校正方法。
The measurement mask has a periodic pattern;
The second calibration mask is arranged on the image plane of the test optical system, and the pattern of the measurement mask pattern is the same as the period of the image by the test optical system or a pattern with a period of a fraction of an integer. The wavefront aberration measuring device calibration method according to claim 1, wherein the wavefront aberration measuring device is calibrated.
計測用マスク及び被検光学系を通過した計測用の光束を回折格子を介して分割し、分割した前記光束を干渉させて得られる干渉縞に基づいて前記被検光学系の波面収差情報を計測する波面収差計測装置であって、
前記干渉縞を検出する受光器と、
前記被検光学系の物体面側に前記計測用マスクと異なる第1の校正用マスクを配置する第1のマスク配置部と、
前記被検光学系の像面側に前記計測用マスクのパターンに対応するパターンが形成された第2の校正用マスクを配置する第2のマスク配置部と、
前記第1の校正用マスク及び前記被検光学系を通過した光束を前記第2の校正用マスク及び前記回折格子を介して前記受光器で受光させ、前記受光器の受光結果に基づいて計測誤差情報を求める制御部と、
を備えることを特徴とする波面収差計測装置。
Measurement light wave aberration information of the test optical system is measured based on interference fringes obtained by dividing the measurement light beam that has passed through the measurement mask and the test optical system via a diffraction grating and causing the divided light beam to interfere with each other. A wavefront aberration measuring device,
A light receiver for detecting the interference fringes;
A first mask placement section for placing a first calibration mask different from the measurement mask on the object plane side of the test optical system;
A second mask placement section for placing a second calibration mask having a pattern corresponding to the pattern of the measurement mask formed on the image plane side of the test optical system;
The light beam that has passed through the first calibration mask and the optical system to be tested is received by the light receiver through the second calibration mask and the diffraction grating, and a measurement error based on the light reception result of the light receiver. A control unit for seeking information;
A wavefront aberration measuring apparatus comprising:
前記計測用マスクは、長さをPM、整数をmで表したとき、周期PM×mを持つ周期的なパターンを有し、
前記第1の校正用マスクは、半整数をxで表したときて、前記計測用マスクの前記周期的なパターンの配列方向と同じ方向に、周期PM×xを持つ周期的なパターンを有することを特徴とする請求項5に記載の波面収差計測装置。
The measurement mask has a periodic pattern having a period of PM × m when the length is represented by PM and the integer is represented by m.
The first calibration mask has a periodic pattern having a period PM × x in the same direction as the arrangement direction of the periodic pattern of the measurement mask, when a half integer is represented by x. The wavefront aberration measuring apparatus according to claim 5.
前記第1の校正用マスクは、非周期的なパターンを有することを特徴とする請求項5に記載の波面収差計測装置。   6. The wavefront aberration measuring apparatus according to claim 5, wherein the first calibration mask has an aperiodic pattern. 前記計測用マスクは周期的なパターンを有し、
前記第2の校正用マスクは、前記計測用マスクのパターンの前記被検光学系による像の周期と同一か、又は整数分の1の周期のパターンを有し、
前記第2のマスク配置部は、前記第2の校正用マスクを、前記被検光学系の像面に配置することを特徴とする請求項5から請求項7のいずれか一項に記載の波面収差計測装置。
The measurement mask has a periodic pattern;
The second calibration mask has a pattern having the same period as the image of the measurement mask pattern by the optical system to be detected or a period of an integer.
The wavefront according to any one of claims 5 to 7, wherein the second mask arrangement unit arranges the second calibration mask on an image plane of the optical system to be measured. Aberration measuring device.
露光光でパターンを照明し、前記露光光で前記パターン及び投影光学系を介して基板を露光する露光装置において、
前記投影光学系の波面収差情報を計測するために、請求項5から請求項8のいずれか一項に記載の波面収差計測装置を備えることを特徴とする露光装置。
In an exposure apparatus that illuminates a pattern with exposure light and exposes the substrate through the pattern and the projection optical system with the exposure light,
An exposure apparatus comprising the wavefront aberration measuring device according to any one of claims 5 to 8, in order to measure wavefront aberration information of the projection optical system.
前記露光光はEUV光であり、
前記波面収差計測装置は、前記露光光を前記計測用の光束として使用することを特徴とする請求項9に記載の露光装置。
The exposure light is EUV light;
The exposure apparatus according to claim 9, wherein the wavefront aberration measuring apparatus uses the exposure light as the measurement light beam.
JP2009051405A 2009-03-04 2009-03-04 Wavefront aberration measuring device, method of calibrating the same, and aligner Pending JP2010206033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009051405A JP2010206033A (en) 2009-03-04 2009-03-04 Wavefront aberration measuring device, method of calibrating the same, and aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009051405A JP2010206033A (en) 2009-03-04 2009-03-04 Wavefront aberration measuring device, method of calibrating the same, and aligner

Publications (1)

Publication Number Publication Date
JP2010206033A true JP2010206033A (en) 2010-09-16

Family

ID=42967217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051405A Pending JP2010206033A (en) 2009-03-04 2009-03-04 Wavefront aberration measuring device, method of calibrating the same, and aligner

Country Status (1)

Country Link
JP (1) JP2010206033A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076724A (en) * 2013-02-01 2013-05-01 中国科学院光电研究院 Projection objective wave aberration on-line detection device and method based on double-beam interference
KR20150048226A (en) * 2012-08-30 2015-05-06 케이엘에이-텐코 코포레이션 Wave front aberration metrology of optics of euv mask inspection system
US20150160073A1 (en) * 2012-05-30 2015-06-11 Nikon Corporation Method and device for measuring wavefront, and exposure method and device
WO2016179926A1 (en) * 2015-05-12 2016-11-17 中国科学院上海光学精密机械研究所 Fast and high-spatial resolution wave aberration in-situ detection apparatus and method for lithography machine
WO2016201788A1 (en) * 2015-06-15 2016-12-22 中国科学院上海光学精密机械研究所 In-situ multichannel imaging quality detection device and method for mask aligner
KR20180084959A (en) * 2015-12-22 2018-07-25 칼 짜이스 에스엠테 게엠베하 Devices and methods for wavefront analysis
WO2019025218A1 (en) * 2017-07-31 2019-02-07 Carl Zeiss Smt Gmbh Method and device for determining wavefront aberrations caused by a projection objective
JP2020527736A (en) * 2017-05-31 2020-09-10 エーエスエムエル ネザーランズ ビー.ブイ. Methods and devices for predicting the performance of measurement methods, measurement methods and devices

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097666A (en) * 1998-09-22 2000-04-07 Nikon Corp Interferometer for measuring shape of surface, wavefront aberration measuring machine, manufacture of projection optical system using this interferometer and machine, and method for calibrating this interferometer
JP2003254725A (en) * 2002-03-04 2003-09-10 Nikon Corp Method and instrument for measuring wave front aberration
JP2005156403A (en) * 2003-11-27 2005-06-16 Canon Inc Measurement method and apparatus utilizing shearing interference, exposure method and apparatus utilizing the same, and device-manufacturing method
JP2006030016A (en) * 2004-07-16 2006-02-02 Nikon Corp Calibration method for wavefront aberration measurement apparatus, wavefront aberration measurement method and apparatus, projection optical system, manufacturing method of same, projection exposure apparatus, manufacturing method of same, microdevice, manufacturing method of same
JP2006030057A (en) * 2004-07-20 2006-02-02 Nikon Corp Method for calibrating shearing interference measuring device, method and device for measuring shearing interference, method for manufacturing projection optical system and projection exposure apparatus, the projection exposure apparatus, and method for manufacturing micro device, and microdevice
JP2006148102A (en) * 2004-11-16 2006-06-08 Asml Netherlands Bv Lithography apparatus, method for measuring properties of lithography apparatus, and computer program
JP2006269578A (en) * 2005-03-23 2006-10-05 Nikon Corp Method and device of measuring wavefront aberration, projection aligner, and method of manufacturing projection optical system
JP2007173461A (en) * 2005-12-21 2007-07-05 Nikon Corp Wave front aberration measuring device, pin hole mask, projection exposure system, and method for manufacturing projection optical system
JP2007234685A (en) * 2006-02-28 2007-09-13 Canon Inc Measuring device, exposure device therewith and method of manufacturing the same
JP2007281003A (en) * 2006-04-03 2007-10-25 Canon Inc Measuring method and device, and exposure device
JP2008135745A (en) * 2007-11-22 2008-06-12 Nikon Corp Wave front aberration measuring device and projection aligner
JP2008198799A (en) * 2007-02-13 2008-08-28 Canon Inc Device and method for measuring wavefront aberration, and exposure device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097666A (en) * 1998-09-22 2000-04-07 Nikon Corp Interferometer for measuring shape of surface, wavefront aberration measuring machine, manufacture of projection optical system using this interferometer and machine, and method for calibrating this interferometer
JP2003254725A (en) * 2002-03-04 2003-09-10 Nikon Corp Method and instrument for measuring wave front aberration
JP2005156403A (en) * 2003-11-27 2005-06-16 Canon Inc Measurement method and apparatus utilizing shearing interference, exposure method and apparatus utilizing the same, and device-manufacturing method
JP2006030016A (en) * 2004-07-16 2006-02-02 Nikon Corp Calibration method for wavefront aberration measurement apparatus, wavefront aberration measurement method and apparatus, projection optical system, manufacturing method of same, projection exposure apparatus, manufacturing method of same, microdevice, manufacturing method of same
JP2006030057A (en) * 2004-07-20 2006-02-02 Nikon Corp Method for calibrating shearing interference measuring device, method and device for measuring shearing interference, method for manufacturing projection optical system and projection exposure apparatus, the projection exposure apparatus, and method for manufacturing micro device, and microdevice
JP2006148102A (en) * 2004-11-16 2006-06-08 Asml Netherlands Bv Lithography apparatus, method for measuring properties of lithography apparatus, and computer program
JP2006269578A (en) * 2005-03-23 2006-10-05 Nikon Corp Method and device of measuring wavefront aberration, projection aligner, and method of manufacturing projection optical system
JP2007173461A (en) * 2005-12-21 2007-07-05 Nikon Corp Wave front aberration measuring device, pin hole mask, projection exposure system, and method for manufacturing projection optical system
JP2007234685A (en) * 2006-02-28 2007-09-13 Canon Inc Measuring device, exposure device therewith and method of manufacturing the same
JP2007281003A (en) * 2006-04-03 2007-10-25 Canon Inc Measuring method and device, and exposure device
JP2008198799A (en) * 2007-02-13 2008-08-28 Canon Inc Device and method for measuring wavefront aberration, and exposure device
JP2008135745A (en) * 2007-11-22 2008-06-12 Nikon Corp Wave front aberration measuring device and projection aligner

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10288489B2 (en) * 2012-05-30 2019-05-14 Nikon Corporation Method and device for measuring wavefront using light-exit section causing light amount distribution in at least one direction
US20150160073A1 (en) * 2012-05-30 2015-06-11 Nikon Corporation Method and device for measuring wavefront, and exposure method and device
US10571340B2 (en) 2012-05-30 2020-02-25 Nikon Corporation Method and device for measuring wavefront using diffraction grating, and exposure method and device
KR20150048226A (en) * 2012-08-30 2015-05-06 케이엘에이-텐코 코포레이션 Wave front aberration metrology of optics of euv mask inspection system
JP2015529855A (en) * 2012-08-30 2015-10-08 ケーエルエー−テンカー コーポレイション Measurement of wavefront aberration of optical system of EUV mask inspection system
KR102100001B1 (en) * 2012-08-30 2020-04-10 케이엘에이 코포레이션 Wave front aberration metrology of optics of euv mask inspection system
JP2018028670A (en) * 2012-08-30 2018-02-22 ケーエルエー−テンカー コーポレイション Wave front aberration metrology of optics of euv mask inspection system
CN103076724A (en) * 2013-02-01 2013-05-01 中国科学院光电研究院 Projection objective wave aberration on-line detection device and method based on double-beam interference
WO2016179926A1 (en) * 2015-05-12 2016-11-17 中国科学院上海光学精密机械研究所 Fast and high-spatial resolution wave aberration in-situ detection apparatus and method for lithography machine
WO2016201788A1 (en) * 2015-06-15 2016-12-22 中国科学院上海光学精密机械研究所 In-situ multichannel imaging quality detection device and method for mask aligner
US10386728B2 (en) 2015-12-22 2019-08-20 Carl Zeiss Smt Gmbh Device and method for wavefront analysis
KR20180084959A (en) * 2015-12-22 2018-07-25 칼 짜이스 에스엠테 게엠베하 Devices and methods for wavefront analysis
KR102110913B1 (en) * 2015-12-22 2020-05-14 칼 짜이스 에스엠테 게엠베하 Devices and methods for wavefront analysis
JP2020527736A (en) * 2017-05-31 2020-09-10 エーエスエムエル ネザーランズ ビー.ブイ. Methods and devices for predicting the performance of measurement methods, measurement methods and devices
US11391677B2 (en) 2017-05-31 2022-07-19 Asml Netherlands B. V. Methods and apparatus for predicting performance of a measurement method, measurement method and apparatus
WO2019025218A1 (en) * 2017-07-31 2019-02-07 Carl Zeiss Smt Gmbh Method and device for determining wavefront aberrations caused by a projection objective

Similar Documents

Publication Publication Date Title
KR100579616B1 (en) A lithographic projection apparatus, a grating module, a sensor module, a method of measuring wave front aberrations
US7952726B2 (en) Measurement apparatus, exposure apparatus having the same, and device manufacturing method
KR100911223B1 (en) Measuring apparatus, exposure apparatus and method, and device manufacturing method
JP2010206033A (en) Wavefront aberration measuring device, method of calibrating the same, and aligner
JP2019184614A (en) Wave front measurement method and device, light exposure method and device, and device manufacturing method
JP4266673B2 (en) Aberration measuring device
JP2010161261A (en) Wavefront-aberration-measuring device and exposure apparatus
KR101920008B1 (en) Flare-measuring mask, flare-measuring method, and exposure method
CN109416514A (en) The method and apparatus and critical dimension sensor irradiated for pupil in alignment
US20040095662A1 (en) Adjustment method and apparatus of optical system, and exposure apparatus
JP2009210466A (en) Position measuring device, position measuring method, and exposure device
JP5434147B2 (en) Wavefront aberration measuring apparatus, calibration method for the apparatus, and exposure apparatus
JP2011108974A (en) Wavefront measuring method and apparatus, and exposure method and apparatus
JP2005244126A (en) Exposure device equipped with measuring device
JP2006303370A (en) Aligner and device manufacturing method using it
US20070242256A1 (en) Lithographic apparatus, lens interferometer and device manufacturing method
JP4724558B2 (en) Measuring method and apparatus, exposure apparatus
JP2011142279A (en) Wavefront aberration measuring method and device, exposing method, and aligner
JP2011108696A (en) Method and device for measuring wavefront, and alignment method and aligner
JP2008186912A (en) Method for evaluating aberration, adjusting method, exposure device, exposure method and manufacturing method for device
CN112771449B (en) Method and apparatus for measuring pupil shape
JP2004146454A (en) Method of measuring optical characteristics
JP4414327B2 (en) Diffraction grating patch structure, lithographic apparatus and test method
JP2005197731A (en) Overlay detector
JP2008198799A (en) Device and method for measuring wavefront aberration, and exposure device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140121