JP6434826B2 - 扁平形アルカリ一次電池及びその製造方法 - Google Patents

扁平形アルカリ一次電池及びその製造方法 Download PDF

Info

Publication number
JP6434826B2
JP6434826B2 JP2015041685A JP2015041685A JP6434826B2 JP 6434826 B2 JP6434826 B2 JP 6434826B2 JP 2015041685 A JP2015041685 A JP 2015041685A JP 2015041685 A JP2015041685 A JP 2015041685A JP 6434826 B2 JP6434826 B2 JP 6434826B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
primary battery
weight
manganese dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015041685A
Other languages
English (en)
Other versions
JP2016162646A (ja
Inventor
充則 伊藤
充則 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2015041685A priority Critical patent/JP6434826B2/ja
Publication of JP2016162646A publication Critical patent/JP2016162646A/ja
Application granted granted Critical
Publication of JP6434826B2 publication Critical patent/JP6434826B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、扁平形アルカリ一次電池及びその製造方法に関する。
コイン形あるいはボタン形の扁平形アルカリ一次電池は、電子腕時計、携帯用電子計算機等の小型電子機器の電源として広く用いられている。
扁平形アルカリ一次電池は、正極合剤を充填した正極缶と、負極合剤を充填した負極缶とがセパレータを介して封口されている構造である。この正極合剤は、酸化銀電池、銀ニッケライト、二酸化マンガン等の正極活物質と、導電助剤である黒鉛等から構成されている。また、耐漏液性や保存性を向上させるために、正極合剤としてランタンニッケル等の水素吸蔵合金が添加される場合もある。正極合剤は、これらの材料を混合し圧縮成形することによりペレット状に形成され、正極缶に収容されている。(例えば、特許文献1参照。)
特開2013−235654号公報
これらコイン形あるいはボタン形の扁平形アルカリ一次電池は、搭載する電子機器の小型化に伴い、より小型の形状のものが望まれてきている。一方で、電池交換の手間が少なく済むよう、長寿命の電池が望まれ、小型であっても十分な放電容量が求められる。このように小型であっても十分な放電容量を確保するためには、正極活物質のうち、特に大きな容量が得られる酸化銀を多く配合することが必要である。また正極合剤のペレットをより高密度に圧縮し形成すれば、より多くの容量を確保することができる。
ところで、正極合剤は、正極活物質、導電助剤、添加剤を混合して圧縮成形される。この場合、高密度に圧縮すればするほど、それぞれの粒子が潰れてくる。特に酸化銀の顆粒に含まれる微粉の粒子が潰れてペレット表面に多量に形成されると、ペレット表面にアルカリ水溶液の電解液が侵入する隙間がなくなってしまう。こうなると、ペレット内部の活物質の大部分が電解液に接しなくなり、十分な放電容量が確保できなくなってしまう問題が生じていた。
本発明は、このような課題を解決するためになされたものであり、その目的は、正極合剤を高密度に成型したとしても電解液の含浸性に優れ、十分な電気容量が得られる扁平形アルカリ一次電池を提供することである。
本発明者は、上記課題を解決する手段として、以下の構成を有する。
本発明における扁平形アルカリ一次電池は、正極缶、負極缶、ガスケットからなる容器に正極、負極、セパレータ、アルカリ水溶液からなる電解液が収容されてなる扁平形アルカリ一次電池において、前記正極は酸化銀、二酸化マンガン、グラファイトを含む正極合剤からなり、密度が5.7g/cm3以上であるペレット状に形成されており、前記正極全体に対する前記酸化銀と前記二酸化マンガンの合計の配合比率が95重量%以上であり、且つ、前記正極全体に対する前記二酸化マンガンの配合比率が2重量%以上かつ5重量%以下であることを特徴とする。
本発明によれば、ペレット表面の隙間を確保できることにより、正極が高密度のペレットであっても電解液の含浸性を充分有することができ、高容量の放電特性を得ることができる。
本発明における扁平形アルカリ一次電池において、前記正極合剤は、平均粒径が5〜15μmの前記酸化銀と、平均粒径が250〜350μmの前記二酸化マンガンと、平均粒径が10〜20μmの前記グラファイトを含むことが好ましい。
本発明によれば、ペレット表面の隙間を充分確保できることにより、さらに高容量の放電特性を得ることができる。
本発明における扁平形アルカリ一次電池において、前記正極はさらに、平均粒径が30〜40μmのランタンニッケル(LaNi5)を含むことが好ましい。
本発明によれば、所定粒径のランタンニッケルを水素吸蔵合金として用いることにより、充分な水素吸蔵能を保持することができる。これにより、負極に汞化亜鉛等を使用することなく、扁平形アルカリ一次電池を無水銀化することができ、かつ、高密度の扁平形アルカリ一次電池を得ることができる。
本発明における扁平形アルカリ一次電池の製造方法は、正極合剤をペレット状に圧縮成形して正極を作製する正極作製工程と、前記正極を正極缶に収容し、前記正極の上にセパレータを載置し、ガスケットを圧入し、前記セパレータの上に負極を載置し、負極缶を被せて前記負極缶の開口縁部をかしめて封口する組立工程とからなり、前記正極作製工程は、酸化銀、二酸化マンガン、グラファイトを含む正極合剤を、密度が5.7g/cm3以上のペレット状に圧縮成形する工程からなり、前記正極全体に対する前記酸化銀と前記二酸化マンガンの合計の配合比率が95重量%以上であり、且つ、前記正極全体に対する前記二酸化マンガンの配合比率が2重量%以上かつ5重量%以下であることを特徴とする。
本発明によれば、作製した正極のペレット表面の隙間を確保することができることにより、正極が高密度のペレットであっても電解液の含浸性を充分有することができ、高容量の放電特性を得ることができる。
本発明における扁平形アルカリ一次電池の製造方法は、前記正極合剤は、平均粒径が5〜15μmの前記酸化銀と、平均粒径が250〜350μmの前記二酸化マンガンと、平均粒径が10〜20μmの前記グラファイトを含むことが好ましい。
本発明によれば、ペレットを高密度に形成できることに加えて、ペレット表面の隙間を充分確保することができる。これにより、さらに高容量の放電特性を得ることができる。
本発明の扁平形アルカリ一次電池によれば、高密度かつ含浸性に優れた正極合剤ペレットを用いることにより、小型であっても必要な放電容量を確保できるアルカリ一次電池を提供することができる。
本発明の実施形態を示す扁平形アルカリ一次電池の断面図である。
以下、本発明に係る扁平形アルカリ一次電池の実施形態について、図面を用いて説明する。
(扁平形アルカリ一次電池の概要)
図1に示す扁平形アルカリ一次電池1は、ボタン形の一次電池である。この扁平形アルカリ一次電池1は、ケース8内に、正極合剤5、セパレータ6、負極合剤7と、アルカリ水溶液からなる電解液とを備えている。
より具体的には、扁平形アルカリ一次電池1は、有底筒状の正極缶2と、正極缶2の開口部にガスケット4を介して固定され、正極缶2との間に密閉空間Sを形成する有底筒状の負極缶3とを有している。そして、この正極缶2の開口部2aをガスケット4に向かってかしめて封口することにより、密閉空間Sを備えたケース8が形成される。この密閉空間S内に、正極合剤5、セパレータ6、負極合剤7が収容され、セパレータ6を挟んで正極缶2側に正極合剤5、負極缶3側に負極合剤7がそれぞれ配置されている。
正極缶2は、ステンレススチール(SUS)にニッケルメッキを施した材質からなり、カップ状に成形されている。この正極缶2は、正極合剤5を収容するとともに、正極端子として機能する。
負極缶3は、ニッケルよりなる外表面層と、ステンレススチール(SUS)よりなる金属層と、銅よりなる集電体層とを有する3層構造のクラッド材からなり、カップ状に成形されている。また、負極缶3は、開口部3aが折り返し形成されており、その開口部3aにはガスケット4が装着されている。
そして、正極缶2の円形の開口部2aに、負極缶3を、ガスケット4を装着した開口部3a側から嵌合させ、この正極缶2の開口部2aをガスケット4に向かってかしめて封口することにより、扁平形(ボタン形又はコイン形)のケース8が形成される。該ケース8の内部には、密閉空間Sが形成されている。
ガスケット4は、図1に示すように、正極缶2の内周面に沿って円環状に形成され、環状の溝部を有している。この環状の溝部は、負極缶3の開口部3aに接している。このようなガスケット4には、例えば材質として、ナイロン等が用いられている。
セパレータ6は、微多孔膜6aと不織布6bの2層構造からなる。この2層構造とすることで、正極と負極との間のバリア性を高め、保存容量性を向上させることができる。加えて、効果的にアルカリ電解液を保持することができることから放電特性を向上させることができる。微多孔膜6aとしては、ポリエチレンフィルム、セロファン、グラフト重合膜等を用いることができる。また、不織布6bとしては、セルロースからなる吸液紙等を用いることができる。
この扁平形アルカリ一次電池1を組み立てる際には、ペレット状に成形された正極合剤5を正極缶2に充填する。そして、セパレータ6の上に、ゲル状の負極合剤を載置し、この上に負極缶3を被せる。さらに、正極缶2の開口縁部をかしめて、ケース8を密閉する。
(正極合剤)
本実施形態において、正極合剤5は、正極活物質、導電助剤、結着剤等からなり、ペレット状に成形されている。このペレット状の正極合剤5に電解液が含浸されることにより、正極活物質と電解液との間で電極反応を生ずることができる。
正極活物質としては、主として、酸化銀(Ag2O)が用いられる。酸化銀は単位質量あたりの理論容量が非常に大きく、扁平形アルカリ一次電池1の出力電圧を放電末期まで安定することができる材料である。酸化銀は粒径が5〜15μmの微粉から形成される75〜300μmの顆粒状で用いられる。正極合剤5中に酸化銀が多く含まれていれば、電池の放電容量を増やすことができる。
本実施形態において、正極合剤5は、約15MPaの高圧力の下でペレット状に圧縮成形される。このとき所定の形状の制約の下でペレット中の酸化銀の量を充分に増やすために、高密度のペレットとする。ペレットの密度は、5.7g/cm3以上であることが好ましい。これより小さい密度の場合には、ペレットに含まれる酸化銀の量が少ないため、電池の放電容量が少なくなり望ましい特性が得られなくなる。
また、図1に示すように、正極合剤5のペレットとセパレータ6は、正極缶2の内側底面とガスケット4の間に配置されている。このように配置することで、電池内の正極合剤の量を高め、高容量化を図ることができる。反面、正極缶2と負極缶3とをかしめて封止する際に、正極合剤5のペレットに充分な強度を必要とする。ペレットの密度が5.7g/cm3よりも小さい場合には、ペレット自体が脆くなることにより封止性が弱まり、電池の漏液などの問題が生じてしまう。
一方で、高い成形圧力の下で高密度にペレットを形成しようとすると、酸化銀の粒子が潰れてペレットに隙間がなくなってしまう。これにより、電解液の含浸性が悪化し、電極反応がペレット内部で起こらなくなるために、放電容量が低下する問題が生じてしまう。
本実施形態では、正極活物質として、酸化銀に加えて、微量の二酸化マンガン(MnO2)が添加されている。二酸化マンガンは、酸化銀よりも単位質量あたりの理論容量が小さいものの正極活物質として機能することができる。また、二酸化マンガンは粒径が大きいことにより、正極合剤5を高密度に圧縮成形する場合であっても、ペレット内の隙間を確保し電解液の含浸性を維持することができる。そのため、酸化銀に微量の二酸化マンガンを添加した正極合剤5を用いることにより、電池の充分な放電容量を確保することができる。
本実施形態で用いる二酸化マンガンは、粒径が250〜350μmのものが用いられる。また、二酸化マンガンは、正極合剤5全体のうち2〜5重量%含まれていることが好ましい。二酸化マンガンがこれより少なければ、作製したペレットの電解液含浸性が悪く、充分な放電容量が得られなくなる。一方で、二酸化マンガンが多すぎても、ペレット中の酸化銀の量が少なくなってしまい、充分な放電容量が得られない。
また、正極合剤5には、正極活物質に加えて、導電性を向上させるための導電助剤や、粒子同士の結着性を高めるための結着剤、電池内で発生する水素ガスを吸着するための水素吸蔵合金等、種々の添加剤を添加することができる。これら正極活物質以外の添加剤は多すぎると充分な放電容量とならないことから、正極合剤5としては、酸化銀及び二酸化マンガンの合計(正極活物質)の割合が正極合剤全体の95重量%以上であることが好ましい。
添加剤として、例えば、正極合剤5には、導電性を向上させるための導電助剤が添加されている。導電助剤としては、例えば黒鉛やグラファイト等が用いられる。導電助剤は添加量が多ければ導電性を充分向上させることができる。一方で、導電助剤が多すぎても正極合剤5中の酸化銀の割合が少なくなることにより電池の放電容量が低下し、更に、正極合剤5のペレットの密度や強度が低下する。このため、導電助剤は正極合剤5中に1〜5重量%含まれていることが好ましい。
また、正極合剤5には、電池の負極合剤7中の亜鉛粉末と電解液との接触に伴い発生する水素ガスを吸収するための水素吸蔵合金を添加することができる。水素吸蔵合金としては、LaNi5等のLa−Ni系合金、Lm−Ni系合金(LmはLa富化ミッシュメタル)等のAB5型水素吸蔵合金、Ti等のAB2型水素吸蔵合金、Mg合金、Ca系合金、銀ニッケル複合酸化物(AgNiO2)等種々の材料を用いることができる。このうちLaNi5は、水素吸蔵能が極めて高いため特に好ましい。水素吸蔵合金は、正極合剤5中0.5〜5重量%含まれていれば上記水素吸蔵能を発揮することができる。ただし、電池の容量を高く保つためには酸化銀の割合が少なくならないよう、正極合剤5中0.5〜2重量%含まれていれば好ましい。水素吸蔵合金の態様としては、10〜50μmの合金粉末が用いられる。
また、結着剤としては、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)、ポリアクリル酸(PA)、カルボキシメチルセルロース(CMC)、ポリイミド(PI)、ポリアミドイミド(PAI)等が挙げられ、これらの1種または2種以上の組合せとして適宜用いることができる。
(負極合剤)
本実施形態において、負極合剤7は、負極活物質、伝導度安定剤、ゲル化剤、及び電解液を含んでいる。
負極活物質としては、亜鉛粉末又は亜鉛合金粉末が用いられる。伝導度安定剤としては、酸化亜鉛(ZnO)等が用いられる。
電解液としては、水酸化カリウム水溶液、水酸化ナトリウム水溶液、又はこれらの混合溶液を用いることができる。
また、ゲル化剤としては、カルボキシメチルセルロース(CMC)、ポリアクリル酸(PAS)、又はこれらの混合物を用いることができる。これらのゲル化剤を用いることにより、負極合剤7の電解液に対する親液性及び保液性を向上することができる。
このうちCMCは、負極合剤7の粘度を適度に保つことができハンドリング性が良好であることから、ゲル化剤として特に用いられている。一方、CMCをゲル化剤として用いた負極合剤7では、ハンドリング性が良好な濃度範囲が狭く、濃度調整のためのプロセスを更に必要とすることから、PASを補完的に添加することが好ましい。
これらを考慮すると、ゲル化剤は負極合剤中2〜5重量%含まれていることが好ましい。また、CMCにPASが補完的に添加されたゲル化剤では、ゲル化剤全体に対しPASが3〜15重量%含まれていれば好ましい。
また、負極合剤7の粘弾性を向上させるために、粘弾性調整材をさらに添加することができる。この粘弾性調整材は、強アルカリ性である電解液と反応しない非金属の絶縁性粉末であることが好ましい。粘弾性調整材としては、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリアミド、ポリエチレン、及びアクリル樹脂等から選ばれる一つもしくは複数からなる樹脂粉末を用いることができ、特にポリエチレンが取り扱い上容易であり特に好ましい。これらの樹脂粉末は、粒径が110〜350μmのものであればよい。また、負極合剤7に添加する場合には、負極合剤7全体中1〜25重量%添加されていれば好ましい。
次に、組成を変更した実施例及び比較例の正極合剤5を用いて扁平形アルカリ一次電池を作製し、本発明の効果を検証した。
(実施例1)
本実施例では、SR626SW型(外径6.8mm、高さ2.6mm)の扁平形アルカリ一次電池を作製した。
負極合剤7を構成する各組成物は、負極合剤中に亜鉛合金粉末66重量%、酸化亜鉛(ZnO)3重量%、カルボキシメチルセルロースを3重量%となるようそれぞれ配合した。また電解液として、濃度28%の水酸化ナトリウムを負極合剤中28重量%となるよう配合した。このとき亜鉛合金粉末の平均粒径は150μmとした。これらの組成物を混合し、ゲル状の負極合剤7を作製した。
正極合剤5を構成する各組成物は、正極合剤中に酸化銀(Ag2O)94重量%、二酸化マンガン(MnO2)2重量%、グラファイト3重量%、ランタンニッケル(LaNi5)1重量%、となるようそれぞれ配合した。なお、レーザー回折法によりそれぞれ求められる、酸化銀の平均粒径は10μm、二酸化マンガンの平均粒径は300μm、グラファイトの平均粒径は15μm、ランタンニッケルの平均粒径は35μmとした。酸化銀は、この平均粒径の微粉からなる、粒径が75〜300μmの顆粒を用いた。
そして、これらの組成物を混合し、ペレット状に圧縮成型することで、正極合剤5を作製した。具体的には、上記の混合物を150mg秤量し、15MPaで圧縮成形して、外径φ6.40mm、高さ0.80mmのペレット状にした。このときのペレット重量は150mg、ペレット密度は5.83g/cm3であった。
このようにして作製された正極合剤5をニッケルメッキが施された鉄製の正極缶2に収容し、その上からセパレータ6を敷設した。また、その正極缶2に圧入となるリング状のガスケット4を挿入した。さらに、セパレータ上に負極合剤7を載置し、この上にガスケット4を介して負極缶3を被せた。そして、正極缶2の開口縁部をかしめることで前述した扁平形アルカリ一次電池1を作製した。
尚、セパレータ6は、ポリエチレンフィルム、セロファン及び不織布から構成され、ガスケット4は、ポリアミド製である。
(実施例2)
実施例1に対し、正極合剤5中の酸化銀の配合割合を93重量%、二酸化マンガンの配合割合を3重量%とした点のみが異なり、その他の構成は、実施例1と同様とした。なお、このときのペレット重量は150mg、ペレット密度は5.83g/cm3であった。
(実施例3)
実施例1に対し、正極合剤中5の酸化銀の配合割合を92重量%、二酸化マンガンの配合割合を4重量%とした点のみが異なり、その他の構成は、実施例1と同様とした。なお、このときのペレット重量は150mg、ペレット密度は5.83g/cm3であった。
(実施例4)
実施例1に対し、正極合剤5中の酸化銀の配合割合を91重量%、二酸化マンガンの配合割合を5重量%とした点のみが異なり、その他の構成は、実施例1と同様とした。なお、このときのペレット重量は150mg、ペレット密度は5.83g/cm3であった。
(比較例1)
実施例1に対し、正極合剤5中の酸化銀の配合割合を90重量%、二酸化マンガンの配合割合を6重量%とした点のみが異なり、その他の構成は、実施例1と同様とした。なお、このときのペレット重量は147mg、ペレット密度は5.71g/cm3であった。
(比較例2)
実施例1に対し、正極合剤5中の酸化銀の配合割合を95重量%、二酸化マンガンの配合割合を1重量%とした点のみが異なり、その他の構成は、実施例1と同様とした。なお、このときのペレット重量は150mg、ペレット密度は5.83g/cm3であった。
(比較例3)
実施例1に対し、正極合剤5中の酸化銀の配合割合を91重量%、二酸化マンガンの配合割合を5重量%とした点のみが異なり、その他の構成は、実施例1と同様とした。なお、このときのペレット重量は145mg、ペレット密度は5.51g/cm3であった。
(評価)
そして、実施例1〜4及び比較例1〜3の正極合剤5及びこれを用いた扁平形アルカリ一次電池1を作製し、正極合剤5への電解液の含浸性、扁平形アルカリ一次電池1の封止性、及び放電容量を次に示す方法で評価した。
(評価1:含浸性評価)
正極缶2に、各実施例及び比較例で用いる正極合剤5を収納し、その上面(ペレット表面)に、電池に用いる電解液を3.5μL滴下し、3分放置した。その後、ペレット表面を目視で観察し、電解液が見られない場合(電解液が正極合剤に含浸している状態)を合格(○で示す)とし、電解液が見られる場合(電解液が正極合剤に含浸していない状態)を不合格(×で示す)とした。
(評価2:封止性)
各実施例及び比較例の扁平形アルカリ一次電池1を組立後、45℃、93%RH(相対湿度)環境下に60日放置し、その後電池外観を顕微鏡観察して、電解液の漏出の有無を確認した。
(評価3:放電容量)
各実施例及び比較例の扁平形アルカリ一次電池1のうち、それぞれ12個を、負荷抵抗24kΩで連続放電させ、1.2Vを終止電圧とした際の放電容量(mAh)を測定した。
(評価結果)
評価1〜3の評価結果を表1に示す。
Figure 0006434826
実施例1〜4では、電解液を滴下して3分経過後、正極合剤5のペレット表面に電解液は見られなかった。このことから、正極合剤5に十分な電解液含浸性を確認することができた。
また、実施例1〜4では、組み立てた扁平形アルカリ一次電池1では、漏液が見られず、充分に封止されていることが確認できた。
更に、実施例1〜4では、電池の放電容量が充分確保することができた。
これに対し、比較例1では、放電容量が実施例1〜4よりも小さくなった。これは、正極合剤5中の酸化銀の割合が少なく、かつ、二酸化マンガンの配合割合が増えペレット密度が小さくなり、ペレット重量自体が小さくなったためである。
比較例2では、電解液を滴下して3分経過後、正極合剤5のペレット表面に残っており、充分な含浸性を確保することができなかった。これにより、組立後の電池で漏液が発生した。これは正極合剤5に含浸せずに電池内部に残った電解液が部材の隙間を通じて漏れたものである。
また、比較例2では、正極合剤中の酸化銀の量が多く、正極活物質と負極活物質の容量が充分大きいにも関わらず、必要な放電容量を得ることができなかった。これは正極合剤5に充分電解液が含浸しないために、放電の途中で電池の内部抵抗が非常に大きくなり放電終止電圧に達してしまうためである。
比較例3は、ペレット密度が小さい正極合剤5となっている。この条件において電解液は正極合剤5に充分含浸した。一方、正極合剤5からなるペレットの密度は小さく、ペレット重量自体が小さいため、正極合剤5に含まれる酸化銀の量は少ない。そのため、各実施例よりも放電容量が小さくなった。
また、比較例3では、組み立てた電池に漏液が見られた。これはペレットの密度が小さく脆いことにより、正極缶2と負極缶3とをかしめて封止したときにペレットが崩れ、電池の封止性が不十分となったためである。
1…扁平形アルカリ一次電池
2…正極缶
3…負極缶
4…ガスケット
5…正極合剤
6…セパレータ
7…負極合剤
8…ケース

Claims (5)

  1. 正極缶、負極缶、ガスケットからなる容器に正極、負極、セパレータ、アルカリ水溶液からなる電解液が収容されてなる扁平形アルカリ一次電池において、
    前記正極は、平均粒径が5〜15μmの酸化銀、平均粒径が250〜350μmの二酸化マンガン、グラファイトを含む正極合剤からなり、密度が5.7g/cm3以上であるペレット状に形成されており、
    前記正極全体に対する前記酸化銀と前記二酸化マンガンの合計の配合比率が95重量%以上であり、且つ、前記正極全体に対する前記二酸化マンガンの配合比率が2重量%以上かつ5重量%以下であることを特徴とする扁平形アルカリ一次電池。
  2. 前記正極合剤は、平均粒径が10〜20μmの前記グラファイトを含むことを特徴とする請求項1に記載の扁平形アルカリ一次電池。
  3. 前記正極はさらに、平均粒径が30〜40μmのランタンニッケル(LaNi5)を含むことを特徴とする請求項1又は請求項2に記載の扁平形アルカリ一次電池。
  4. 正極合剤をペレット状に圧縮成形して正極を作製する正極作製工程と、前記正極を正極缶に収容し、前記正極の上にセパレータを載置し、ガスケットを圧入し、前記セパレータの上に負極を載置し、負極缶を被せて前記負極缶の開口縁部をかしめて封口する組立工程とからなり、
    前記正極作製工程は、平均粒径が5〜15μmの酸化銀、平均粒径が250〜350μmの二酸化マンガン、グラファイトを含む正極合剤を、密度が5.7g/cm3以上のペレット状に圧縮成形する工程からなり、
    前記正極全体に対する前記酸化銀と前記二酸化マンガンの合計の配合比率が95重量%以上であり、且つ、前記正極全体に対する前記二酸化マンガンの配合比率が2重量%以上かつ5重量%以下であることを特徴とする扁平形アルカリ一次電池の製造方法。
  5. 前記正極合剤は、平均粒径が10〜20μmの前記グラファイトを含むことを特徴とする請求項4に記載の扁平形アルカリ一次電池の製造方法。
JP2015041685A 2015-03-03 2015-03-03 扁平形アルカリ一次電池及びその製造方法 Active JP6434826B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041685A JP6434826B2 (ja) 2015-03-03 2015-03-03 扁平形アルカリ一次電池及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015041685A JP6434826B2 (ja) 2015-03-03 2015-03-03 扁平形アルカリ一次電池及びその製造方法

Publications (2)

Publication Number Publication Date
JP2016162646A JP2016162646A (ja) 2016-09-05
JP6434826B2 true JP6434826B2 (ja) 2018-12-05

Family

ID=56845115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041685A Active JP6434826B2 (ja) 2015-03-03 2015-03-03 扁平形アルカリ一次電池及びその製造方法

Country Status (1)

Country Link
JP (1) JP6434826B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6928861B2 (ja) * 2018-03-20 2021-09-01 パナソニックIpマネジメント株式会社 アルカリ乾電池
JP7441092B2 (ja) * 2020-03-25 2024-02-29 日本碍子株式会社 ニッケル亜鉛二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593672A (en) * 1979-01-08 1980-07-16 Matsushita Electric Ind Co Ltd Manufacturing method of positive electrode active substance for cell
JPS5678073A (en) * 1979-11-30 1981-06-26 Matsushita Electric Ind Co Ltd Alkaline battery
JPS63232266A (ja) * 1987-03-20 1988-09-28 Toshiba Battery Co Ltd アルカリ乾電池
JPH08171904A (ja) * 1994-12-19 1996-07-02 Matsushita Electric Ind Co Ltd 酸化銀電池
JP2006302597A (ja) * 2005-04-19 2006-11-02 Sii Micro Parts Ltd ボタン形アルカリ電池
JP2010218710A (ja) * 2009-03-13 2010-09-30 Hitachi Maxell Ltd 扁平形酸化銀電池

Also Published As

Publication number Publication date
JP2016162646A (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
US3870564A (en) Alkaline cell
JP5240897B2 (ja) アルカリ電池
AU2006317436A1 (en) Rechargeable alkaline manganese cell having reduced capacity fade and improved cycle life
JP5999968B2 (ja) 扁平形一次電池、扁平形一次電池用負極合剤及びその製造方法
EP0581275B1 (en) A pasted type nickel electrode for an alkaline storage battery and an alkaline storage battery
JP6434826B2 (ja) 扁平形アルカリ一次電池及びその製造方法
JP6883441B2 (ja) 扁平形アルカリ一次電池
JP6548417B2 (ja) 扁平形アルカリ一次電池
JP6734155B2 (ja) アルカリ電池
JP2010044906A (ja) 扁平形一次電池、扁平形一次電池の負極合剤及びその製造方法
JP2008210720A (ja) 扁平形アルカリ一次電池
JPS6166366A (ja) 水素吸蔵電極
WO2024105934A1 (ja) アルカリ電池及びアルカリ電池の製造方法
WO2024171535A1 (ja) アルカリ乾電池
JP2002117859A (ja) アルカリ電池
JP5135579B2 (ja) 扁平形アルカリ電池
JP2010040334A (ja) アルカリ一次電池及びアルカリ一次電池の製造方法
JP4964468B2 (ja) ポケット式水素吸蔵合金極の製造法
JP6130012B2 (ja) 扁平形一次電池、扁平形一次電池用負極合剤及びその製造方法
WO2006001302A1 (ja) アルカリ電池
US20090291362A1 (en) Flat-type alkaline primary battery
JP2007095675A (ja) アルカリ電池
JP2008210719A (ja) 扁平形アルカリ一次電池
JP5464651B2 (ja) 扁平形アルカリ一次電池及びその正極合剤
JP2002343327A (ja) 電池用セパレータ

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181109

R150 Certificate of patent or registration of utility model

Ref document number: 6434826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250