JP6424786B2 - 電動車両の電源システム - Google Patents

電動車両の電源システム Download PDF

Info

Publication number
JP6424786B2
JP6424786B2 JP2015189771A JP2015189771A JP6424786B2 JP 6424786 B2 JP6424786 B2 JP 6424786B2 JP 2015189771 A JP2015189771 A JP 2015189771A JP 2015189771 A JP2015189771 A JP 2015189771A JP 6424786 B2 JP6424786 B2 JP 6424786B2
Authority
JP
Japan
Prior art keywords
power
switching
reactor
duty ratio
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015189771A
Other languages
English (en)
Other versions
JP2017070007A (ja
Inventor
敏和 大野
敏和 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015189771A priority Critical patent/JP6424786B2/ja
Publication of JP2017070007A publication Critical patent/JP2017070007A/ja
Application granted granted Critical
Publication of JP6424786B2 publication Critical patent/JP6424786B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

この発明は、電動車両の電源システムに関し、より特定的には、電源システム内の平滑コンデンサの残留電荷を放電するための制御に関する。
電動車両駆動用電動機を搭載した電動車両の電源システムでは、蓄電装置からの直流電圧と、電動機の交流電圧との間での電力変換が実行される。したがって、電源システム内には、直流電圧を平滑化するためのコンデンサが配置されている。
特開2004−201439号公報(特許文献1)には、コンバータのスイッチング制御によって、平滑コンデンサの残留電荷を放電するための制御が記載されている。具体的には、昇圧チョッパで構成されたコンバータの入力側および出力側にそれぞれ接続された2個の平滑コンデンサC1,C2の残留電荷を、スイッチング素子のオンオフによって形成される電流経路上で徐々に消費する制御(以下、残留電荷放電制御とも称する)が記載されている。
特開2004−201439号公報
特許文献1では、昇圧チョッパの下アーム素子をオン(上アーム素子をオフ)することにより入力側の平滑コンデンサC1の残留電荷を消費する昇圧動作と、昇圧チョッパの上アーム素子をオン(下アーム素子をオフ)することにより出力側の平滑コンデンサC2の残留電荷を消費する降圧動作とを交互に行うことによって、残留電荷放電制御が実行される。特許文献1による残留電荷放電制御によれば、平滑コンデンサに対して放電抵抗を設けることなく残留電荷を消費することができる。
一方で、残留電荷放電制御については、残留電荷をなるべく短時間で放電することが好ましい。このため、特許文献1に記載された残留電荷放電制御においても、放電所要時間をさらに短縮することが望ましい。
この発明はこのような問題点を解決するためになされたものであって、この発明の目的は、昇圧チョッパで構成されたコンバータのスイッチング制御による平滑コンデンサの残留電荷の放電所要時間を短縮することである。
この発明のある局面に従えば、車両駆動用の電動機を搭載した電動車両の電源システムは、第1から第3の電力線と、蓄電装置と、第1および第2の平滑コンデンサと、コンバータと、開閉器と、制御装置とを備える。電動機を含む電気負荷は、高電圧側の第1電力線および低電圧側の第2の電力線と接続される。蓄電装置は、第3の電力線および第2の電力線の間に接続される。第1の平滑コンデンサは、蓄電装置と並列に第3および第2の電力線と接続される。第2の平滑コンデンサは、電気負荷と並列に第1および第2の電力線と接続される。コンバータは、第1および第2の平滑コンデンサの間に接続される。コンバータは、第1および第2のスイッチング素子と、リアクトルとを含む。第1および第2のスイッチング素子は、第1および第2の電力線の間に直列に接続される。リアクトルは、第1および第2のスイッチング素子の接続ノードと第2の電力線との間に、第2の平滑コンデンサと直列に電気的に接続される。開閉器は、第3および第2の電力線に介挿接続される。制御装置は、開閉器の遮断時において、第1のスイッチング素子をオフするとともに第2のスイッチング素子をオンする第1の期間と、第2のスイッチング素子をオフするとともに第1のスイッチング素子をオンする第2の期間とを交互に設けることによって、第1および第2の平滑コンデンサの残留電荷を消費するようにコンバータを制御する。さらに、制御装置は、開閉器の遮断時におけるコンバータの制御において、第1および第2の期間の長さの比であるデューティ比を規定するデューティ比を、前記コンバータにおける電力損失を最大化するように制御する。
上記電動車両の電源システムによれば、開閉器の遮断時において、第1および/または第2の平滑コンデンサとリアクトルとによって形成されるLC回路に電流(リアクトル電流)を生じさせることで、コンバータのスイッチング制御によって第1および第2の平滑コンデンサの残留電荷を消費できる。特に、コンバータのスイッチング制御において、コンバータの電力損失を最大化するようにデューティ比を制御することによって、第1および第2のコンデンサの残留電荷を早期に消費して、放電所要時間を短縮することができる。
たとえば、デューティ比は、(1)連続する昇圧動作期間および降圧動作期間での構成される1周期内でのリアクトル電流の変化幅(直流電流の電流リップル、または、交流電流のピーク−ピーク値)が最大化されることでリアクトルでの電力損失が増加するように、または、(2)予め定められた損失特性に従って、現在の第1および第2の平滑コンデンサの電圧および現在のリアクトル電流の下で、スイッチング素子およびリアクトルの電力損失が最大化されるように設定することができる。
この発明によれば、昇圧チョッパで構成されたコンバータのスイッチング制御による平滑コンデンサの残留電荷の放電所要時間を短縮することができる。
本実施の形態に従う電動車両の全体構成図である。 残留電荷放電制御における電気的な等価回路図である。 昇圧動作時における電流経路を示す等価回路図である。 降圧動作時における電流経路を示す等価回路図である。 実施の形態1に従う残留電荷放電制御の動作を説明するための波形図である。 実施の形態2に従う残留電荷放電制御を説明する機能ブロック図である。 実施の形態2に従う残留電荷放電制御におけるデューティ比の制御を説明する概念図である。 実施の形態2に従う残留電荷放電制御のための制御処理を説明するフローチャートである。 実施の形態3に従う残留電荷放電制御を説明する機能ブロック図である。 図9に示された損失マップ370の特性を示す概略図である。 図9に示されたデューティ比制御部によるデューティ比の設定を説明する概念図である。 実施の形態4に従う残留電荷放電制御でのリアクトル電流の概念的な波形図である。 実施の形態4に従う残留電荷放電制御のための制御処理を説明するフローチャートである。
以下において、本発明の実施の形態について、図面を参照して詳細に説明する。なお、以下では、図中の同一または相当部分について同一符号を付し、その説明は原則的に繰り返さないものとする。
[実施の形態1]
(車両構成)
図1には、本実施の形態に従う電動車両100の全体構成図が示される。本実施の形態1においては、電動車両100としてエンジンおよびモータジェネレータを搭載したハイブリッド電動車両を例として説明するが、電動車両100の構成はこれに限定されるものではなく、蓄電装置からの電力によって走行可能な電動車両であれば適用可能である。電動車両100としては、ハイブリッド電動車両以外にたとえば電気自動車や燃料電池自動車などが含まれる。また、蓄電装置からの電力によって走行可能でなくとも、電力変換装置を備える電動車両においても適用可能である。
図1を参照して、電動車両100は、リレーSR1,SR2と、蓄電装置150と、と、平滑コンデンサC1,C2と、モータジェネレータMG1,MG2と、動力分割機構250と、エンジン220と、駆動輪260と、ECU(Electronic Control Unit)300と備える。
蓄電装置150は、充放電可能に構成された電力貯蔵要素である。蓄電装置150は、たとえば、リチウムイオン電池、ニッケル水素電池あるいは鉛蓄電池などの二次電池、電気二重層キャパシタなどの蓄電素子によって構成することができる。
蓄電装置150は、電力線PL1および電力線NL1によって電力変換装置115に接続される。そして、蓄電装置150は、モータジェネレータMG1,MG2を駆動するための直流電力を電力変換装置115へ供給する。また、蓄電装置150は、モータジェネレータMG1,MG2によって発生され、電力変換装置115を介して供給される電力を蓄電する。蓄電装置150から供給される電圧は、たとえば200V程度である。
リレーSR1,SR2は、蓄電装置150と電力変換装置115(コンバータ110)とを接続する電力線PL1および電力線NL1の途中に介挿接続される。リレーSR1,SR2は、蓄電装置150から電力変換装置115へ電力の供給と遮断とを切替える。
電力変換装置115は、蓄電装置150からの直流電圧を交流電圧に変換して、モータジェネレータMG1,MG2に供給する。また、電力変換装置115は、モータジェネレータMG1,MG2によって発生した交流電圧を、直流電圧に変換して蓄電装置150を充電する。
モータジェネレータMG1,MG2は、たとえば、永久磁石が埋設されたロータと中性点でY結線された三相コイルを有するステータとを備える三相交流電動発電機で構成される。モータジェネレータMG1,MG2は、電力変換装置115から供給される交流電圧を受けて電動車両推進のための回転駆動力を発生する。また、モータジェネレータMG1,MG2は、外部から回転力を受けて交流電力を発電するとともに、ECU300からの回生トルク指令によって回生制動力を電動車両100に発生する。
また、モータジェネレータMG1,MG2は、動力分割機構250を介してエンジン220にも連結される。そして、エンジン220の発生する駆動力とモータジェネレータMG1,MG2の発生する駆動力とが最適な比率となるように制御される。また、モータジェネレータMG1,MG2のいずれか一方を専ら電動機として機能させ、他方のモータジェネレータを専ら発電機として機能させてもよい。
動力分割機構250には、エンジン220の動力を、駆動輪260とモータジェネレータMG1との両方に振り分けるために、遊星歯車機構(プラネタリーギヤ)が使用される。
電力変換装置115は、コンバータ110およびインバータ120を含む。また、インバータ120は、モータジェネレータMG1を駆動するためのインバータ121およびモータジェネレータMG2を駆動するためのインバータ122を含む。
コンバータ110は、電力線PL1およびHPLの間に接続される。コンバータ110は、いわゆる昇圧チョッパ回路の構成を有しており、リアクトルL1と、電力用半導体スイッチング素子(以下、単に「スイッチング素子」と称する。)Q1,Q2と、ダイオードD1,D2とを含む。
インバータ121は、いわゆる三相インバータの回路構成を有し、コンバータ110およびモータジェネレータMG1の間に接続される。インバータ121は、U相アーム123と、V相アーム124と、W相アーム125とを含む。U相アーム123、V相アーム124およびW相アーム125は、電力線HPLおよび電力線NL1の間に並列に接続される。U相アーム123は、直列に接続されたスイッチング素子Q3,Q4を含む。V相アーム124は、直列に接続されたスイッチング素子Q5,Q6を含む。W相アーム125は、直列に接続されたスイッチング素子Q7,Q8を含む。各相アームの中間点は、モータジェネレータMG1のステータコア(図示せず)に巻回されたU相、V相およびW相のコイルの一方端にそれぞれ接続されている。U相、V相およびW相のコイルの他方端は、中性点で相互接続されている。
インバータ121は、コンバータ110から昇圧された電圧を受けて、たとえばエンジン220を始動させるためにモータジェネレータMG1を駆動する。また、インバータ121は、エンジン220から伝達される機械的動力によってモータジェネレータMG1で発電された回生電力をコンバータ110に出力する。このときコンバータ110は、AC/DC変換器として動作するようにMG−ECU300によって制御される。インバータ121は、MG−ECU300から出力される制御信号PWI1に従ってスイッチング素子Q3〜Q8のゲート信号をオンまたはオフさせることによって、コンバータ110から供給される直流電圧を所望の交流電圧に変換することができる。
インバータ122は、コンバータ110およびモータジェネレータMG2の間に接続される。インバータ122の回路構成は、インバータ121と同様であるので詳細な説明は繰り返さない。インバータ122は、MG−ECU300から出力される制御信号PWI2に従って制御される。
インバータ122は駆動輪260を駆動するモータジェネレータMG2に対してコンバータ110の出力する直流電圧を三相交流に変換して出力する。またインバータ122は、回生制動に伴い、モータジェネレータMG2において発電された回生電力をAC/DC変換してコンバータ110に出力する。
図1の構成例において、モータジェネレータMG1,MG2は、「電動機」の一実施例に対応する。インバータ121および122は、電力線HPL上の直流電圧を、モータジェネレータMG1,MG2を駆動するための交流電圧に変換することができる。すなわち、電力線HPLは「第1の電力線」に対応し、電力線NL1は「第2の電力線」に対応し、電力線PL1は「第3の電力線」に対応する。また、インバータ120以降の構成要素によって、「電動機」を含む「電気負荷」が構成される。
平滑コンデンサC1は、コンバータ110の低圧側(すなわち、蓄電装置150側)の電力線PL1と電力線NL1間に接続されて、直流電圧の交流成分を除去する。これにより、電力線PL1上の直流電圧から、スイッチング素子Q1,Q2のスイッチング時のリップル電圧を吸収することができる。
同様に、平滑コンデンサC2は、コンバータ110の高圧側(すなわち、インバータ120側)の電力線HPLと電力線NL1間に接続されて、直流電圧の交流成分を除去する。これにより、コンバータ110およびインバータ120でスイッチング時に発生するリップル電圧を吸収することができる。平滑コンデンサC1およびC2は、コンバータ110の入力側および出力側にそれぞれ接続されている。このように、平滑コンデンサC1は「第1の平滑コンデンサ」に対応し、平滑コンデンサC2は「第2のコンデンサ」に対応する。
電圧センサ170は、平滑コンデンサC1の両端間の直流電圧VLを検出し、その検出した電圧VLをECU300へ出力する。また、電圧センサ180は、平滑コンデンサC2の両端間の直流電圧VH、すなわち、コンバータ110の出力電圧(インバータ120の入力電圧に相当)を検出し、その検出した電圧VLをECU300へ出力する。
ECU300は、各種センサの出力に基づいて、電動車両100をドライバ操作に従って走行するように、車載各機器の動作を制御する。代表的には、HV−ECU400には、イグニッションスイッチ(IGスイッチ)410の操作信号、アクセルペダル420の開度(アクセル開度ACC)およびブレーキペダル430の操作量(ブレーキ操作量BRK)、および、車速センサ440よって検出される車速Vsが入力される。ECU300は、車速Vsおよびアクセル開度ACC、ブレーキ操作量BRKに基づいて、エンジン220およびモータジェネレータMG1,MG2の動作指令を生成する。
また、ECU300は、イグニッションスイッチ410がオンされたIGオン時にはリレーSR1,SR2をオンする。リレーSR1,SR2のオンにより、蓄電装置150の電力をモータジェネレータMG1,MG2で使用可能な状態が形成される。一方で、HV−ECU400は、IGオフ時には、リレーSR1,SR2をオフする。これにより、蓄電装置150とモータジェネレータMG1,MG2との間は、電気的に切り離される。
ECU300は、電圧センサ170,180から直流電圧VL,VHの検出値を受けるとともに、図示しない電流センサからモータジェネレータMG1,MG2の電流検出値(相電流)を受ける。そして、ECU400は、設定した動作指令(代表的にはトルク指令値)に従ってモータジェネレータMG1,MG2の出力が制御されるように、コンバータ110およびインバータ120における電力変換を制御する制御信号PWC,PWI1,PWI2を生成する。
コンバータ110およびインバータ120は、制御信号PWC,PWI1,PWI2に従って電力変換を実行する。また、エンジン220では、ECU300からの動作指令(たとえば、目標エンジン回転数および目標エンジントルク)に従って、エンジン220での燃料噴射量、点火タイミング、バルブタイミング等が制御される。この結果、ドライバによるアクセルペダル420およびブレーキペダル430の操作に応じた、車両駆動力または車両制動力が、エンジン220およびモータジェネレータMG1,MG2からの出力によって確保される。
(残留電荷放電制御)
ドライバによるIGスイッチ410のオフ、または、図示しないGセンサ等による電動車両100の衝突件数に応じて、ECU300は、リレーSR1,SR2をオフする。これにより、電動車両100は、電気システムへの蓄電装置150からの給電が停止されて、走行不能な状態(Ready−OFF状態)となる。
Ready−OFF状態では、SR1,SR2がオフされた時点において平滑コンデンサC1,C2に蓄積された残留電荷は、特許文献1と同様にコンバータ110のスイッチング制御によって放電される。
図2には、残留電荷放電制御における電気的な等価回路図が示される。
図2を参照して、コンバータ110は、ノードN1を介して、電力線HPLおよびNL1の間に直列接続されたスイッチング素子Q1およびQ2を有する。スイッチング素子Q1は「上アーム素子」、スイッチング素子Q2は「下アーム素子」とも称される。
さらに、リアクトルL1は、ノードN1と電力線NL1との間に、平滑コンデンサC1と直列に接続される。以下では、リアクトルL1を流れる電流を、リアクトル電流ILとも称する。リアクトル電流ILは、平滑コンデンサC1からノードN1へ向かう方向(図中での左から右へ向かう方向)を正電流(IL>0)とする。リアクトルL1は、通常、磁性材料で形成されたコア(図示せず)に、リアクトル電流ILが通過するコイル(図示せず)を巻回することで構成される。
残留電荷放電制御の実行時には、平滑コンデンサC1は蓄電装置150(図1)から電気的に切離されている。コンバータ110の入力側の電圧VLは、平滑コンデンサC1の残留電荷量に応じた電圧となる。同様に、コンバータ110の出力側の電圧VHは、平滑コンデンサC2の残留電荷量に応じた電圧となる。
残留電荷放電制御は、特許文献1と同様に、コンバータ110が昇圧動作および降圧動作を交互に繰返すことによって実行される。
図3は、昇圧動作時における電流経路を示す等価回路図であり、図4は降圧動作時における電流経路を示す等価回路図である。
図3を参照して、昇圧動作時には下アーム素子(スイッチング素子Q2)がオンされる一方で、上アーム素子(スイッチング素子Q1)がオフされる。これにより、平滑コンデンサC1およびリアクトルL1が直列接続されたLC回路によって、平滑コンデンサC1の残留電荷による電流経路310が形成される。この際のスイッチング素子Q1による電力損失(スイッチング損失および導通損失)と、リアクトルL1における電力損失によって、平滑コンデンサC1の電荷を消費することができる。
図4を参照して、降圧動作時には上アーム素子(スイッチング素子Q1)がオンされる一方で、下アーム素子(スイッチング素子Q2)がオフされる。これにより、平滑コンデンサC1,C2およびリアクトルL1が直列接続されたLC回路によって、平滑コンデンサC2の残留電荷による電流経路320が形成される。この際のスイッチング素子Q2による電力損失(スイッチング損失および導通損失)と、リアクトルL1における電力損失によって、平滑コンデンサC2の電荷を消費することができる。
なお、図3および図4の回路状態をそれぞれ継続すると、直列LC回路での電荷の移動に伴って交流電流(振動電流)が発生し、当該交流電流の周期は、リアクトルL1のリアクタンス値および平滑コンデンサC1,C2のキャパシタンス値から決まる。ただし、実施の形態1による残留電荷放電制御では、スイッチング周期Tを、上記交流電流の周期よりも短く設定することで、リアクトル電流ILは、電流リップルを含む直流電流とされる。スイッチング周期は、一般には、スイッチング周波数f(f=1/T)が可聴周波数帯から外れるように、かつ、リアクトルL1のインピーダンス(ω・L1)が想定通り得られるように考慮して、予め設定される。
図5は、実施の形態1に従う残留電荷放電制御の動作を説明するための波形図である。
図5を参照して、図3に示した昇圧動作と、図4に示した降圧動作とを交互に実行することによって本発明の実施の形態に従う残留電荷放電制御が実行される。図5の例では、時刻t1以前およびt2〜t3間において昇圧動作が実行され、時刻t1〜t2間およびt4以降において降圧動作が実行されている。以下では、連続する1回ずつの昇圧動作および降圧動作の期間長の和は、スイッチング素子Q1,Q2のスイッチング周期Tに相当する。スイッチング周期Tの逆数が、スイッチング素子Q1,Q2のスイッチング周波数f(f=1/T)に相当する。
昇圧動作期間では、図3の等価回路図から理解されるように、リアクトル電流ILは上昇する。このときの傾き(dIL/dt)をk1とすると、k1=VL/L1で表わすことができる。
一方で、降圧動作期間では、図4の等価回路図から理解されるように、リアクトル電流ILは低下する。このときの傾き(dIL/dt)をk2とすると、k2=(VL−VH)/L1で表わすことができる。
昇圧動作から降圧動作への切換タイミング(時刻t1,t3)において、リアクトル電流ILは、上昇から低下に転じることにより極大点を取る。同様に、昇圧動作から降圧動作への切換タイミング(時刻t2,t4)において、リアクトル電流ILは、低下から上昇に転じることにより極小点を取る。
リアクトル電流ILが上昇する昇圧動作期間と、リアクトル電流ILが低下する降圧動作間とを交互に設けることにより、各スイッチング周期において、リアクトル電流ILには極大点および極小点が生じる。この結果、リアクトル電流ILには、スイッチング周期内の電流変化幅に相当する電流リップルILrpが生じる。
電流リップルILrpは、リアクトル電流ILの交流成分に相当する。したがって、電流リップルILrpが大きくなる程、リアクトルL1での電力損失(主に、コアによる鉄損)が増加する。
実施の形態1に従う残留電荷放電制御では、スイッチング周期Tにおける昇圧動作期間および降圧動作期間の長さの比を、電流リップルILrpが最大となるように設定することによって、コンバータでの電力損失の最大化が図られる。なお、以下では、スイッチング周期Tに対する降圧動作期間(上アームオン期間)の比をデューティ比Dと定義する。したがって、スイッチング周期Tに対する昇圧動作期間(下アームオン期間)の比は、(1−D)で示される。このように、デューティ比Dによって、昇圧動作期間および降圧動作期間の長さの比が規定される。なお、昇圧チョッパ回路における理論電圧変換比として、入力電圧(VL)および出力電圧(VH)とデューティ比Dとの間には、D=VL/VHの関係が成立することが知られている。
実施の形態1では、電流リップルILrpが最大となる理論デューティ比に従って、各スイッチング周期におけるデューティ比Dを設定する。
昇圧動作期間のデューティ比(1−D)を用いると、電流リップルILrpは、下記の式(1)で示される。
ILrp=k1×T×(1−D)
=VL/L1×T×(1−VL/VH)
=T/(L1×VH)×(VL/VH−VL2) …(1)
式(1)をVLの2次関数として変形すると、下記(2)式が得られる。
ILrp=−T/(L1×VH)×{(VL−VH/2)2−VH2/4} …(2)
式(2)より、VL=VH/2のとき、すなわち、D=VL/VH=0.5のときに、電流リップルILrpが最大となることが理解される。
一方で、降圧動作期間のデューティ比Dを用いると、電流リップルILrpは、下記の式(3)で示される。
ILrp=k2×T×D
=(VL−VH)/L1×T×(VL/VH)
=T/(L1×VH)×(VL/VH−VL2) …(3)
式(3)および式(1)とは同一であるので、降圧動作期間の電流変化からも、VL=VH/2のとき、すなわち、D=VL/VH=0.5のときに、電流リップルILrpが最大となることが理解される。
したがって、実施の形態1に従う残留電荷放電制御では、交互に繰り返される昇圧動作と降圧動作とのデューティ比D=0.5、すなわち、昇圧動作および降圧動作の期間長が等しくなるようにすることで、電流リップルILrpを最大化するようにデューティ比を制御することができる。これにより、リアクトルL1での電力損失を増大させることにより、コンバータ110での電力損失を最大化することができる。この結果、平滑コンデンサC1,C2の残留電荷を早期に消費して、放電所要時間を短縮することができる。
[実施の形態2]
実施の形態1では、電流リップルILrpを最大化するための理論値に従って残留電荷放電制御におけるデューティ比Dを固定的に制御した。しかしながら、スイッチング素子Q1,Q2のオンオフ制御には、スイッチング素子Q1,Q2のオンオフ切換時に設けられるデッドタイム(スイッチング素子Q1,Q2の両方をオフする期間)や、デューティ比Dに従った制御に対する実際のオンオフの遅れが存在する。これらの原因によって、デューティ比D=0.5としても、実際には電流リップルILrpが最大化されないことが懸念される。
したがって、実施の形態2では、リアクトル電流ILの検出値に基づいて、実際の電流リップルILrpが最大となるようにデューティ比Dを制御する。
図6は、実施の形態2に従う残留電荷放電制御を説明する機能ブロック図である。なお、図6を始めとする各ブロック図中の各機能ブロックの機能は、ECU300が予め記憶されたプログラムを実行するソフトウェア処理および/または内蔵する電子回路によるハードウェア処理によって実現することができる。
図6を参照して、デューティ制御部350は、リアクトル電流ILの検出値に基づいて、デューティ比Dを制御する。駆動部355は、デューティ制御部350で設定されたデューティ比Dに従って、デットタイム等を付与した上でスイッチング素子Q1,Q2をオンオフ制御するための制御信号PWCを生成する。図1に示したように制御信号PWCに応じて、スイッチング素子Q1,Q2がオンオフされる。
デューティ制御部350は、各スイッチング周期において、昇圧動作から降圧動作への切換わり点(図5での時刻t1,t3)における電流センサ175の検出値と、降圧動作から昇圧動作への切換わり点(図5での時刻t2,t4)における電流センサ175の検出値との差から、各制御周期での電流リップルILrpを算出する。
そして、デューティ制御部350は、検出された電流リップルILrpの実績値に基づいて、実際に電流リップルILrpが最大となるようなデューティ比Dを探索するように、デューティ比Dを制御する。
図7は、実施の形態2に従う残留電荷放電制御におけるデューティ比の制御を説明する概念図である。
図7には電流リップルILrpが最大となるデューティ比が、D=0.5からずれている例が示される。このようなケースでは、実施の形態1のように、理論値に従ってD=0.5に固定しても、電流リップルILrpを最大化することができない。
したがって、実施の形態2に従う残留電荷放電制御では、デューティ比Dを、所定の制御周期毎に増加または減少することによって、電流リップルILrpが最大値をとるデューティ比を探索する。
なお、デューティ比の制御周期は、スイッチング素子Q1,Q2のスイッチング周期のN周期分(N:自然数)とすることができる。以下では、N=1、すなわち、スイッチング周期毎にデューティ比Dの増減制御を行う例について説明する。実施の形態2に従う残留電荷放電制御では、前回の制御周期において、デューティ比Dを増加および減少のいずれのアクションとしたかのフラグFLGが導入される。たとえば、前回の制御周期においてデューティ比Dを増加した場合にはFLG=1に設定される一方で、デューティ比Dを減少した場合にはFLG=0に設定される。
図8は、実施の形態2に従う残留電荷放電制御の制御処理を説明するフローチャートである。図8に示された制御処理は、ECU300(デューティ制御部350)によって、制御周期毎に実行される。
図8を参照して、ECU300は、ステップS100により、今回(第i回目)の制御周期における電流リップルILrp(i)を算出する(i:自然数)。たとえば、各スイッチング周期における、昇圧動作および降圧動作の切換タイミング(図5における時刻t1〜t4の各々)におけるリアクトル電流ILの検出値に基づいて、電流リップルILrp(i)は算出される。
ECU300は、ステップS110により、ステップS100で算出された電流リップルILrp(i)と、前回の制御周期における電流リップルILrp(i−1)とを比較する。
ECU300は、電流リップルILrpが前回の制御周期よりも増加したとき(S110のYES判定時)には、前回の制御周期でのアクションを継続するように、ステップS120,S140,S150の処理を実行する。すなわち、ECU300は、FLG=1のとき(S120のYES判定時)には、ステップS140により、デューティ比Dを所定値α増加する。これにより、デューティ比Dは、前回の制御周期に続いて、今回の制御周期でさらに増加される。一方で、ECU300は、FLG=0のとき(S120のNO判定時)には、ステップS150により、デューティ比Dを所定値α減少する。これにより、デューティ比Dは、前回の制御周期に続いて、今回の制御周期でさらに減少される。
これに対して、ECU300は、電流リップルILrpが前回の制御周期よりも減少したとき(S110のNO判定時)には、前回の制御周期とは逆のアクションとするように、ステップS130,S140,S150の処理を実行する。すなわち、ECU300は、FLG=1のとき(S130のYES判定時)には、ステップS150により、デューティ比Dを所定値α減少する。これにより、デューティ比Dは、前回の制御周期とは異なり、今回の制御周期では減少される。一方で、ECU300は、FLG=1のとき(S130のNO判定時)には、ステップS140により、デューティ比Dを所定値α増加する。これにより、デューティ比Dは、前回の制御周期とは反対に、今回の制御周期では増加される。
ECU300は、ステップS140により今回の制御周期でデューティ比Dを増加したときには、ステップS160によりFLG=1に設定する。一方で、ECU300は、ステップS150により今回の制御周期でデューティ比Dを減少したときには、ステップS170によりFLG=0に設定する。これにより、次回の制御周期において、デューティ比Dを増加および減少のいずれとしたかの履歴を確認できる。
実施の形態2による残留電荷放電制御によれば、制御周期間での電流リップルILrpの増/減の実績に従ってデューティ比Dを増加または減少するアクションにより、デューティ比を、実際に電流リップルILrpが最大値となる値に収束させることができる。この結果、電流リップルILrpを最大化するように、電流実績に応じてデューティ比を動的に制御することができる。この結果、リアクトルL1での電力損失を増大することによりコンバータ110の電力損失を最大化することにより、平滑コンデンサC1,C2の残留電荷を早期に消費して、放電所要時間を短縮することができる。
[実施の形態3]
図9は、実施の形態3に従う残留電荷放電制御を説明する機能ブロック図である。
図9を参照して、実施の形態3に従う残留電荷放電制御では、デューティ比制御部360は、損失マップ370を参照したコンバータ110での電力損失推定によって、デューティ比Dを設定する。デューティ比制御部360によるデューティ比の制御周期は、実施の形態2と同様に、スイッチング素子Q1,Q2のスイッチング周期のN周期分(N:自然数)とすることができる。
図10は、損失マップ370の特性を示す概略図である。
図10を参照して、コンバータ110での電力損失は、主に、リアクトルL1での損失(リアクトル損失)Pl1およびスイッチング素子Q1,Q2での損失(スイッチング損失)Pl2に分類される。
実施の形態1および2で説明したように、リアクトル損失Pl1は、電流リップルILrpの増加に応じて増加する。したがって、デューティ比D=0.5近傍で最大値となる特性を有する。
一方で、スイッチング損失Pl2は、デューティ比Dが大きくなって、降圧動作期間が長くなる程低下する傾向にある。このように、リアクトル損失Pl1およびスイッチング損失Pl2は、デューティ比Dに依存して変化する。このため、実機実験またはシミュレーション等によって、デューティ比Dに対するリアクトル損失Pl1およびスイッチング損失Pl2を定めた損失マップを予め作成することができる。
リアクトル損失Pl1およびスイッチング損失Pl2は、電圧VH,VLおよびリアクトル電流ILが変化すると異なる値となるので、損失マップは、電圧VH,VLおよびリアクトル電流ILで層別した、複数のマップが用意される。
再び図9を参照して、デューティ比制御部360は、電圧センサ170,180および電流センサ175によって検出された、電圧VH,VLおよびリアクトル電流ILを用いて損失マップ370を参照する。
さらに、デューティ比制御部360は、損失マップ370の参照によって得られるリアクトル損失Pl1およびスイッチング損失Pl2で示されるコンバータ損失Ptlが最小となるように、今回の制御周期におけるデューティ比Dを設定する。
図11は、デューティ比制御部360によるデューティ比の制御例を説明する概念図である。
図11を参照して、デューティ比制御部360は、前回の制御周期におけるデューティ比D0を含む、複数の候補デューティ比を設定する。図11の例では、D0と、D0より大きいD1a〜D4aと、D0より小さいD1b〜D4bとが、候補デューティ比に設定される。このように、候補デューティ比は、D0より大きい任意個数のデューティ比と、D0より小さい任意個数のデューティ比とを含むように構成される。なお、候補デューティ比間の差は、等間隔であってもよく、不均等であってもよい。たとえば、隣接する候補デューティ比の間隔について、D0から遠ざかる程広く設定することができる。
デューティ比制御部360は、複数の候補デューティ比のそれぞれにおけるコンバータ損失Ptlを、損失マップ370の参照によって推定する。さらに、推定されたコンバータ損失Ptlが最大となる候補デューティ比に従って、今回の制御周期におけるデューティ比Dを設定する。たとえば、図11の例では、候補デューティ比D1aにおいてコンバータ損失Ptlが最大となるので、デューティ比Dは、D0からD1aに変更される。
このように、実施の形態3に従う残留電荷放電制御によれば、デューティ比の変化に対する、リアクトル損失Pl1およびスイッチング損失Pl2の変化特性を示す損失マップを予め作成することにより、現在の動作状態(VH,VL,IL)において、コンバータ110での電力損失が最大となるようにデューティ比を制御することができる。この結果、コンバータ110全体での電力損失を増大することにより、平滑コンデンサC1,C2の残留電荷を早期に消費して、放電所要時間を短縮することができる。
なお、デューティ比制御部360によるコンバータ損失Ptlが最大となるデューティ比の設定は、図11の例によらず、任意の手法で実行することができる。たとえば、山登り法等の最大値探索のための任意の制御アルゴリズムに従って、デューティ比制御部360の機能を実現することができる。
[実施の形態4]
実施の形態1〜3では、スイッチング素子Q1,Q2のスイッチング周期Tが所定値に固定された下でのデューティ比Dの制御について説明した。実施の形態4では、リアクトル電流ILの実効値が最大となるようにスイッチング素子Q1,Q2のオンオフ期間を設定することによってデューティ比が制御される例を説明する。
図12には、実施の形態4に従う残留電荷放電制御におけるリアクトル電流ILの概念的な波形図が示される。
図12を参照して、スイッチング素子Q1,Q2がオフされて、IL=0の状態から、まず、スイッチング素子Q2のオンによる昇圧動作を実行することで、残留電荷放電制御が開始される。
図3の等価回路から理解されるように、スイッチング素子Q2をオンすると、平滑コンデンサC1の残留電荷により、平滑コンデンサC1およびリアクトルL1によるLC回路に電流が流れる。この状態でスイッチング素子Q2のオンを維持すると、リアクトル電流ILは、徐々に減衰する振動電流(交流電流)となることが理解される。
再び図12を参照して、昇圧動作により交流状に増加するリアクトル電流ILは、時刻taにおいて、接線の傾き(dIL/dt)が正から負に転じる極大点を有する。この時刻taにおいて、スイッチング素子Q2がオフされるとともに、スイッチング素子Q1がオンされて、昇圧動作から降圧動作への切換えが実行される。
時刻tbからは、リアクトル電流ILは、図4に示されたLC回路を流れる。平滑コンデンサC2からの放電により、リアクトル電流ILの接線の傾きは負(dIL/dt<0)となるので、リアクトル電流ILは時刻taから徐々に減少し、負方向(IL<0)に流れるようになる。その後、平滑コンデンサC2からの放電が進行すると、時刻tbにおいて、リアクトル電流ILの接線の傾き(dIL/dt)が負から正に転じる極小点を有する。
この時刻tbにおいて、スイッチング素子Q1がオフされるとともに、スイッチング素子Q2がオンされて、降圧動作から昇圧動作への切換えが実行される。時刻tb以降では、リアクトル電流ILの初期値が負(IL<0)の状態から、図3に示されたLC回路が形成されるので、リアクトル電流ILの接線の傾きが再び正(dIL/dt>0)になって、リアクトル電流ILが上昇する。この後、平滑コンデンサC1からの放電が進行すると、時刻tcにおいて、リアクトル電流ILは再び極大点を有する。
図13には、実施の形態4に従う残留電荷放電制御のためのECU300による制御処理を説明するフローチャートが示される。図13に示した制御処理は、所定周期で繰り返し実行される。
図13を参照して、ECU300は、ステップS200により、リアクトル電流ILをサンプリングする。そして、ECU300は、ステップS210により、これまでのリアクトル電流ILのサンプリング結果に基づき、リアクトル電流の傾き(dIL/dt)を算出する。たとえば、ローパスフィルタ処理等を組合せて、複数個のサンプリング値の推移に基づいて、ステップS200による演算を実行することができる。
さらに、ECU300は、ステップS220により、昇圧動作中および降圧動作中のいずれであるかを判定する。ECU300は、昇圧動作中(S220のYES判定時)には、ステップS230により、リアクトル電流ILの極大点を検知するための判定を実行する。たとえばS230は、dIL/dt>0、かつ、dIL/dt>≒0のときにYES判定とされ、そうでないときにNO判定とされる。なお、dIL/dt>≒0であるか否かについては、dIL/dt<ε(ε:所定の微小値)の判定によって検知できる。
ECU300は、昇圧動作中にリアクトル電流ILの極大点が検知されると(S230のYES判定時)、ステップS240に処理を進めて、昇圧動作から降圧動作への切換えを実行する。これにより、スイッチング素子Q1がオフからオンに変化するとともに、スイッチング素子Q2がオンからオフに変化する。
一方で、ECU300は、昇圧動作中にリアクトル電流ILの極大点が検知されないときには(S230のNO判定時)、ステップS250に処理を進めて、昇圧動作を維持する。これにより、スイッチング素子Q2がオンに維持されるとともに、スイッチング素子Q1がオフに維持される。
ECU300は、降圧動作中(S220のNO判定時)には、ステップS260により、リアクトル電流ILの極小点を検知するための判定を実行する。たとえばS260は、dIL/dt<0、かつ、dIL/dt>≒0のときにYES判定とされ、そうでないときにNO判定とされる。なお、dIL/dt>≒0であるか否かの判定は、ステップS230と同様に実行することができる。
ECU300は、降圧動作中にリアクトル電流ILの極小点が検知されると(S260のYES判定時)、ステップS270に処理を進めて、降圧動作から昇圧動作への切換えを実行する。これにより、スイッチング素子Q2がオフからオンに変化するとともに、スイッチング素子Q1がオンからオフに変化する。
一方で、ECU300は、降圧動作中にリアクトル電流ILの極小点が検知されないときには(S260のNO判定時)、ステップS280に処理を進めて、昇圧動作を維持する。これにより、スイッチング素子Q1がオンに維持されるとともに、スイッチング素子Q2がオフに維持される。
図13に示された制御処理によって、図12に示されたように、リアクトル電流ILの変曲点(極大点または極小点)が到来するタイミングで、昇圧動作および降圧動作の切換えが実行される。この結果、実施の形態4に従う残留電荷放電制御では、LC回路の減衰電流(交流電流)となるリアクトル電流ILについて、ピーク−ピーク値を最大化することができる。これにより、交流電流の実効値についても最大化できる。
これにより、リアクトル電流ILの通過によるリアクトルL1およびスイッチング素子Q1,Q2での電力損失を最大化することができる。これにより、コンバータ110の電力損失の最大化によって、平滑コンデンサC1,C2の残留電荷を早期に消費して、放電所要時間を短縮することができる。
なお、実施の形態4に従う残留電荷制御においても、昇圧動作期間および降圧動作期間の長さの比、すなわち、デューティ比が、連続する昇圧動作期間および降圧動作期間におけるリアクトル電流ILの電流変化幅を最大化するように制御される点では、実施の形態1および2における電流リップル最大化のためのデューティ比制御と共通する。
ただし、実施の形態1および2では、スイッチング素子Q1,Q2のスイッチング周期Tは所定値に固定されるのに対し、実施の形態4では、スイッチング周期Tは、リアクトル電流ILの挙動に応じて調整されることになる。
なお、本実施の形態において、電動車両の構成は図1の例示に限定されるものではない。すなわち、直流電圧変換のためのコンバータ110を含み、その入力側および出力側に平滑コンデンサが接続された構成であれば、コンバータ110の出力側(電気負荷)の構成を限定することなく、実施の形態1〜4に従う残留電荷放電制御の適用が可能である。したがって、エンジンを搭載しない電気自動車や、図1とはパワートレーン構成が異なるハイブリッド自動車(シリーズハイブリッド車またはパラレルハイブリッド車等)についても、本発明の適用が可能である点について、確認的に記載する。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
100 電動車両、110 コンバータ、115 電力変換装置、120,121,122 インバータ、123,124,125 アーム、150 蓄電装置、170,180 電圧センサ、175 電流センサ、220 エンジン、250 動力分割機構、260 駆動輪、300 ECU、310,320 電流経路、350 デューティ制御部、355 駆動部、360 デューティ比制御部、370 損失マップ、410 イグニッションスイッチ、420 アクセルペダル、430 ブレーキペダル、440 車速センサ、ACC アクセル開度、BRK ブレーキ操作量、C1,C2 平滑コンデンサ、D1,D2 ダイオード、D0,D1a〜D4a,D1b〜D4b 候補デューティ比、FLG フラグ、HPL,NL1,PL1 電力線、IL リアクトル電流、ILrp 電流リップル、L1 リアクトル、MG1,MG2 モータジェネレータ、N1 ノード、PWC,PWI1,PWI2 制御信号、Pl1 リアクトル損失、Pl2 スイッチング損失、Ptl コンバータ損失、Q1〜Q8 スイッチング素子、SR1,SR2 リレー、T,f スイッチング周期、VH 直流電圧(平滑コンデンサC2)、VL 直流電圧(平滑コンデンサC1)、Vs 車速。

Claims (4)

  1. 車両駆動用の電動機を搭載した電動車両の電源システムであって、
    前記電動機を含む電気負荷と接続された、高電圧側の第1の電力線および低電圧側の第2の電力線と、
    第3の電力線および前記第2の電力線の間に接続された蓄電装置と、
    前記蓄電装置と並列に前記第3および第2の電力線と接続された第1の平滑コンデンサと、
    前記電気負荷と並列に前記第1および第2の電力線と接続された第2の平滑コンデンサと、
    前記第1および第2の平滑コンデンサの間に接続されたコンバータと、
    前記コンバータは、
    前記第1の電力線および前記第2の電力線間に直列接続された第1および第2のスイッチング素子と、
    前記第1および第2のスイッチング素子の接続ノードと前記第2の電力線との間に、前記第2の平滑コンデンサと直列に電気的に接続されたリアクトルとを含み、
    前記第3および第2の電力線に介挿接続された開閉器と、
    前記開閉器の遮断時において、前記第1のスイッチング素子をオフするとともに前記第2のスイッチング素子をオンする第1の期間と、前記第2のスイッチング素子をオフするとともに前記第1のスイッチング素子をオンする第2の期間とを交互に設けることによって、前記第1および第2の平滑コンデンサの残留電荷を消費するように前記コンバータを制御する制御装置とをさらに備え、
    前記制御装置は、前記開閉器の遮断時における前記コンバータの制御において、前記第1および第2の期間の長さの比を規定するデューティ比を、前記コンバータにおける電力損失を最大化するように時間経過に伴って変化させる、電動車両の電源システム。
  2. 前記制御装置は、前記第1および第2のスイッチング素子のスイッチング周期が固定された下で、前記スイッチング周期のN周期(N:自然数)毎に、前記リアクトルの電流検出値に基づいて、前記リアクトルの電流リプルが最大となるように、前記デューティ比を増減制御する、請求項1記載の電動車両の電源システム。
  3. 前記制御装置は、前記第1および第2のスイッチング素子のスイッチング周期が固定された下で、前記スイッチング周期のN周期(N:自然数)毎に、前記第1の平滑コンデンサの電圧検出値、前記第2の平滑コンデンサの電圧検出値、および、前記リアクトルの電圧検出値に基づき、前記第1および第2のスイッチング素子での電力損失と、前記リアクトルでの電力損失との和が最大となるように、予め用意された損失マップの参照によって前記デューティ比を決定する、請求項1記載の電動車両の電源システム。
  4. 前記制御装置は、前記第1のスイッチング素子のオン期間中に前記リアクトルの電流検出値に極大点が生じると前記第1のスイッチング素子をオフする一方で前記第2のスイッチング素子をオンし、かつ、前記第2のスイッチング素子のオン期間中に前記リアクトルの電流検出値に極小点が生じると前記第2のスイッチング素子をオフする一方で前記第1のスイッチング素子をオンすることによって、前記デューティ比を変化させる、請求項1記載の電動車両の電源システム。
JP2015189771A 2015-09-28 2015-09-28 電動車両の電源システム Active JP6424786B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015189771A JP6424786B2 (ja) 2015-09-28 2015-09-28 電動車両の電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015189771A JP6424786B2 (ja) 2015-09-28 2015-09-28 電動車両の電源システム

Publications (2)

Publication Number Publication Date
JP2017070007A JP2017070007A (ja) 2017-04-06
JP6424786B2 true JP6424786B2 (ja) 2018-11-21

Family

ID=58495518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015189771A Active JP6424786B2 (ja) 2015-09-28 2015-09-28 電動車両の電源システム

Country Status (1)

Country Link
JP (1) JP6424786B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6601386B2 (ja) 2016-12-27 2019-11-06 トヨタ自動車株式会社 駆動装置および自動車
WO2019171997A1 (ja) 2018-03-08 2019-09-12 三菱電機株式会社 電力変換装置
JP2022548710A (ja) * 2019-09-18 2022-11-21 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー 駆動システムのエネルギー蓄積器を放電させるための回路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5198219B2 (ja) * 2008-11-12 2013-05-15 本田技研工業株式会社 ハイブリッド直流電源システム及び燃料電池車両
WO2015068533A1 (ja) * 2013-11-07 2015-05-14 日立オートモティブシステムズ株式会社 電力変換装置

Also Published As

Publication number Publication date
JP2017070007A (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
US8659182B2 (en) Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system
JP4396644B2 (ja) 内燃機関の始動制御装置
JP4232789B2 (ja) 内燃機関の停止制御装置および停止制御方法
JP5626469B2 (ja) 車両の駆動装置および車両の駆動方法
JP6026093B2 (ja) 電源システム
JP5825423B2 (ja) 電動車両およびその制御方法
JP2013207914A (ja) 電圧変換装置の制御装置
WO2018105323A1 (ja) 駆動システム
JP6455205B2 (ja) 昇圧制御装置
WO2013051152A1 (ja) 電圧変換装置の制御装置及び制御方法
EP3057215A1 (en) Blend-over between ccm and dcm in forward boost reverse buck converter
JP5303030B2 (ja) 電圧変換装置の制御装置、それを搭載した車両および電圧変換装置の制御方法
JP6019840B2 (ja) 電源装置の制御装置およびそれを搭載する車両
JP5807524B2 (ja) 電圧変換装置の制御装置
JP2012110189A (ja) 電動車両の電気システムおよびその制御方法
JP6424786B2 (ja) 電動車両の電源システム
JP5926172B2 (ja) 交流電動機の制御システム
JP5644786B2 (ja) 電圧変換装置の制御装置
CN108482102B (zh) 混合动力驱动系统
JP5534323B2 (ja) 電動機制御装置
US20170066332A1 (en) Vehicle
JP7016946B2 (ja) 複合蓄電システム
JP2010074885A (ja) 電源システムおよびその制御方法
JP2012182912A (ja) 電動車両およびその制御方法
JP6839687B2 (ja) 昇圧制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181008

R151 Written notification of patent or utility model registration

Ref document number: 6424786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250