JP6423007B2 - シクロメタル化イリジウム錯体の製造方法 - Google Patents

シクロメタル化イリジウム錯体の製造方法 Download PDF

Info

Publication number
JP6423007B2
JP6423007B2 JP2016568368A JP2016568368A JP6423007B2 JP 6423007 B2 JP6423007 B2 JP 6423007B2 JP 2016568368 A JP2016568368 A JP 2016568368A JP 2016568368 A JP2016568368 A JP 2016568368A JP 6423007 B2 JP6423007 B2 JP 6423007B2
Authority
JP
Japan
Prior art keywords
iridium
group
compound
carbon atoms
iridium complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016568368A
Other languages
English (en)
Other versions
JPWO2016111256A1 (ja
Inventor
今野 英雄
英雄 今野
淳一 谷内
淳一 谷内
了輔 原田
了輔 原田
利幸 重冨
利幸 重冨
政広 泰
泰 政広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2016111256A1 publication Critical patent/JPWO2016111256A1/ja
Application granted granted Critical
Publication of JP6423007B2 publication Critical patent/JP6423007B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/92Ketonic chelates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、シクロメタル化イリジウム錯体の原料及び製造方法に関し、有機電解発光(EL)素子、有機電気化学発光(ECL)素子、発光センサー、光増感色素、光触媒、各種光源等に適用可能なシクロメタル化イリジウム錯体を提供するための技術に関する。
シクロメタル化イリジウム錯体は、イリジウム原子に多座配位子が環状に配位してなり、少なくとも一つのイリジウム−炭素結合を有する有機イリジウム錯体の総称であり、例えば、トリス(2−フェニルピリジン)イリジウム(Ir(ppy))等が挙げられる(化1)。シクロメタル化イリジウム錯体のうち、配位子として、化1のように、2−フェニルピリジン誘導体、2−フェニルキノリン誘導体、1−フェニルイソキノリン誘導体等の芳香族複素環2座配位子が配位したものは、有機電解発光(EL)素子、有機電気化学発光(ECL)素子等の燐光材料として用いられる(特許文献1)。燐光材料を用いた有機EL素子は、従来の蛍光材料を用いた有機EL素子よりも発光効率が約3〜4倍高いため、高効率化・省エネルギー化に向けて実用化が期待されている。
Figure 0006423007
シクロメタル化イリジウム錯体としては、イジリウム原子に2つの芳香族複素環2座配位子が配位したビスシクロメタル化イリジウム錯体や、イジリウム原子に3つの芳香族複素環2座配位子が配位したトリスシクロメタル化イリジウム錯体などがある。このうち、トリスシクロメタル化イリジウム錯体は熱的安定性が特に高く、有機EL素子等に適用した場合に長寿命化が期待できる。
以上のシクロメタル化イリジウム錯体は、例えば、3塩化イリジウムを原料として、2−フェニルピリジン等の芳香族複素環2座配位子と反応させ1段階で合成することができる(化2、非特許文献1)。また、3つの2,4−ペンタンジオンがイリジウムに配位したトリス(2,4−ペンタンジオナト)イリジウム(III)(以下、Ir(acac)とも呼ぶ)を原料として、2−フェニルピリジン等の芳香族複素環2座配位子を反応させることによって、シクロメタル化イリジウム錯体を1段階で得ることができる(化3、非特許文献2)。さらに、特許文献2では、3塩化イリジウムを原料として、2−フェニルピリジン等の芳香族複素環2座配位子を反応させ、塩素架橋ダイマーを経由した多段階合成法が開示されている(化4)。
Figure 0006423007
Figure 0006423007
Figure 0006423007
しかしながら、非特許文献1のように、3塩化イリジウムを原料として1段階の合成で得られたシクロメタル化イリジウム錯体には、3塩化イリジウム由来の塩素分がシクロメタル化イリジウム錯体中に残留する問題がある。これら塩素分は、有機EL素子に適用した場合、発光特性に悪影響を与えると指摘されている(特許文献3)。
一方、非特許文献2に記載の製造法は、非塩素系のトリス(2,4−ペンタンジオナト)イリジウム(III)を原料として用いているため、イリジウム原料由来の塩素分が全く残留しない利点がある。しかしながら、トリス(2,4−ペンタンジオナト)イリジウム(III)は熱的に安定で反応性が乏しく、シクロメタル化イリジウム錯体の合成収率が低いという問題があった。
具体的には、トリス(2,4−ペンタンジオナト)イリジウム(III)は熱的に安定であることから、シクロメタル化イリジウム錯体を収率良く得るべく、一般的には200℃以上の高温条件下で合成が行われる。このため、予期せぬ分解反応が進行し、収率や純度が低下することがあった。
このため、トリス(2,4−ペンタンジオナト)イリジウム(III)を原料として用いてシクロメタル化イリジウム錯体を得る場合、シクロメタル化イリジウム錯体の収率を改善するために、反応促進剤を反応系に添加することが提案されている。特許文献3では反応促進剤としてブレンステッド酸、特許文献4では反応促進剤としてルイス酸を反応系に添加して、シクロメタル化イリジウム錯体を得ることが記載されている。
しかしながら、特許文献3及び特許文献4に記載の製造方法は、芳香族複素環2座配位子や反応生成物が酸に不安定な場合、適用できないという本質的な問題がある。このため、これらの製造方法では、必ずしもシクロメタル化イリジウム錯体の収率を十分に向上できず、新たな製造方法の開発が渇望されている。さらに、特許文献2で開示されている製造方法は、多段階合成法であるため、手間と時間がかかる上、それぞれの段階で生成物を単離・精製する必要があるため、製造コスト的に不利である問題を抱えている。
特開2012−6914号公報 特開2002−105055号公報 特許第4913059号明細書 特許第4917751号明細書
J.Am Chem.Soc.,107巻,1431頁,1985年 Inorg.Chem.,30巻,1685頁,1991年
以上の事情を鑑み、本発明は、シクロメタル化イリジウム錯体を製造するための原料(以下、場合により有機イリジウム材料やイリジウム原料と呼ぶ)に関し、トリス(2,4−ペンタンジオナト)イリジウム(III)を用いた場合よりも、イリジウム原料から1段階の合成反応で、シクロメタル化イリジウム錯体を収率良く得ることのできる技術の提供を目的とする。
上記課題を解決するため、本発明者は、公知原料であるトリス(2,4−ペンタンジオナト)イリジウム(III)を出発点として、芳香族複素環2座配位子との反応性を向上させるべく鋭意検討した。その結果、フッ素原子を含む置換基を有するβ−ジケトン配位子の配位したイリジウム原料に着目し、以下の本発明に想到した。
本発明は、シクロメタル化イリジウム錯体を製造するための原料である有機イリジウム材料において、有機イリジウム材料は、一般式(1)で示され、イリジウムに、フッ素原子を含む置換基を有するβ−ジケトンの配位したトリス(β−ジケトナート)イリジウム(III)であり、シクロメタル化イリジウム錯体の原料と製造方法に関する。
一般式(1)
Figure 0006423007
一般式(1)中、Oは酸素原子、Irはイリジウム原子を表す。RとRは炭化水素基又は複素環基である。RとRのうち少なくとも一つがフッ素で置換された炭化水素基、又はフッ素で置換された複素環基である。Rは水素原子、炭化水素基又は複素環基である。RとR、又は、RとRは、互いに結合し飽和炭化水素環又は不飽和炭化水素環を形成してもよい。
本発明の原料は、同一構造の3つのβ−ジケトンがイリジウムに配位してなる有機イリジウム材料からなり、当該β−ジケトンがフッ素原子を含む置換基を有する点に特徴を有する。具体的には、上記一般式(1)において、β−ジケトンの置換基であるRとRの少なくとも一つにおいて、置換基中における1以上の水素原子がフッ素原子に置換されたものである。本発明の原料を用いた場合、従来原料として用いられてきたトリス(2,4−ペンタンジオナト)イリジウム(III)と比較して、芳香族複素環2座配位子との反応性が高く、シクロメタル化イリジウム錯体を収率良く製造できる。
本発明の特徴として、上記のRとRのうち、少なくとも1つの置換基(すなわち、炭化水素基又は複素環基)において、1以上の水素原子がフッ素原子に置換される。1以上のフッ素原子で置換される置換基は、好ましくは炭化水素基である。より好ましくは、RとRのうち一方のみが、1以上の水素原子をフッ素原子に置換した炭化水素基である。
また、RとRとは、同一ではなく、異なる構造の置換基であることが好ましい。
β−ジケトンの置換基R、R、Rとして、具体的には以下の置換基をとりうる。
最初に、RとRのうち、フッ素で置換されていない置換基について説明する。
及び/又はRが炭化水素基の場合、脂肪族炭化水素基又は芳香族炭化水素基であることが好ましく、脂肪族炭化水素基であることがより好ましく、直鎖状又は分岐鎖状炭化水素基であることが特に好ましい。ここで、本発明における脂肪族炭化水素は、芳香族炭化水素以外の炭化水素を意味し、芳香族以外の環状炭化水素を含む。
及び/又はRは、脂肪族炭化水素基である場合、炭素数1〜20の脂肪族炭化水素基が好ましく、アルキル基(好ましくは炭素数1〜10であり、より好ましくは炭素数1〜5である。例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、ネオペンチル基などが挙げられる。)、アルケニル基(好ましくは炭素数2〜10であり、より好ましくは炭素数2〜5である。例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、又はアルキニル基(好ましくは炭素数2〜10であり、より好ましくは炭素数2〜5である。例えばプロパルギル、3−ペンチニルなどが挙げられる。)がより好ましく、アルキル基であることが更に好ましく、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、又はt−ブチル基であることが特に好ましい。これら脂肪族炭化水素基中の水素原子は、後述するR、及びR〜R48で定義される置換基に置換されていてもよい。
及び/又はRは、芳香族炭化水素基である場合、好ましくは炭素数6〜20の芳香族炭化水素基であり、より好ましくは炭素数6〜10の芳香族炭化水素基である。芳香族炭化水素基として具体的には、フェニル基、ナフチル基、ビフェニル基、フルオレニル基、フェナントリル基、アントラセニル基、トリフェニレニル基、ターフェニル基、ピレニル基、メシチル基、トリル基、キシリル基、アズレニル基、アセナフテニル基、インデニル基などがあり、好ましくはフェニル基である。これら芳香族炭化水素基中の水素原子は、後述するR、及びR〜R48で定義される置換基に置換されていてもよい。
及び/又はRが複素環基である場合、好ましくは炭素数1〜20の複素環基であり、より好ましくは炭素数1〜10の複素環基である。複素環基として、具体的には、ピリジル基、ピラジニル基、ピリミジル基、ピリダジニル基、ピロリル基、ピラゾリル基、トリアゾリル基、イミダゾリル基、オキサゾリル基、チアゾリル基、イソキサゾリル基、イソチアゾリル基、キノリル基、フリル基、チエニル基、セレノフェニル基、テルロフェニル基、ピペリジル基、ピペリジノ基、モルホリノ基、ピロリジル基、ピロリジノ基、ベンゾオキサゾリル基、ベンゾイミダゾリル基、ベンゾチアゾリル基、カルバゾリル基、アゼピニル基、シロリル基などがあり、好ましくはピリジル基、又はチエニル基である。これら複素環基中の水素原子は、後述するR、及びR〜R48で定義される置換基に置換されていてもよい。
次に、RとRのうち、フッ素で置換されている置換基について説明する。
及び/又はRにおいて、フッ素で置換された脂肪族炭化水素基は、脂肪族炭化水素基を構成する水素原子の一部又は全部がフッ素原子で置換されたものを意味する。脂肪族炭化水素基を置換しているフッ素原子の数は、1〜10が好ましく、1〜6がより好ましく、1〜3が特に好ましい。脂肪族炭化水素基として望ましい範囲は前記の通りであり、その中でも、フッ素で置換されたアルキル基(好ましくは炭素数1〜5)であることが好ましく、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、又はt−ブチル基、ペンチル基における1以上の水素原子がフッ素原子で置換されていることがより好ましく、具体的にはトリフルオロメチル基が特に好ましい。
及び/又はRにおいて、フッ素で置換された芳香族炭化水素基は、芳香族炭化水素基を構成する水素原子の一部又は全部がフッ素原子で置換されたものを意味する。芳香族炭化水素基を置換しているフッ素原子の数は、1〜10が好ましく、1〜6がより好ましく、1〜3が特に好ましい。芳香族炭化水素基として望ましい範囲は前記の通りであり、その中でも、アリール基(好ましくは炭素数6〜10)における1以上の水素原子がフッ素原子で置換されていることがより好ましく、アリール基(好ましくは炭素数6〜10)の側鎖の水素原子がフッ素原子で置換されていることが特に好ましく、トリフルオロメチル基で置換されたアリール基であることが最も好ましい。
及び/又はRにおいて、フッ素で置換された複素環基は、複素環基を構成する水素原子の一部又は全部がフッ素原子で置換されたものを意味する。複素環基を置換しているフッ素原子の数は、1〜10が好ましく、1〜6がより好ましく、1〜3が特に好ましい。複素環基として望ましい範囲は前記の通りであり、その中でも、複素環基(好ましくは炭素数6〜10)における1以上の水素原子がフッ素原子で置換されていることがより好ましく、複素環基(好ましくは炭素数6〜10)の側鎖の水素原子がフッ素原子で置換されていることが特に好ましく、トリフルオロメチル基で置換されたピリジル基、又はトリフルオロメチル基で置換されたチエニル基であることが最も好ましい。
そして、前述したRとRの置換基の組み合わせ、すなわち、フッ素で置換された置換基又はフッ素で置換されていない置換基として、以下の例が挙げられる。
とRがともに炭化水素基の場合としては、RとRがいずれもフッ素で置換されているケース、又は、RとRのうちいずれか一方のみがフッ素で置換されているケースがある。
より具体的には、RとRがともに脂肪族炭化水素基である場合としては、RとRがいずれもフッ素で置換されているケースや、RとRのうちいずれか一方のみがフッ素で置換されているケースがある。RとRのいずれか一方が脂肪族炭化水素基である場合としては、脂肪族炭化水素基のみがフッ素で置換されており、もう一方がフッ素で置換されていない芳香族炭化水素基であるケースや、逆に、芳香族炭化水素基のみがフッ素で置換されており、もう一方がフッ素で置換されていない脂肪族炭化水素基であるケースがある。RとRがともに芳香族炭化水素基である場合としては、RとRがいずれもフッ素で置換されているケース、又は、RとRのうちいずれか一方のみがフッ素で置換されているケースがある。
とRがともに炭化水素基の場合で好ましい形態は、RとRがともに脂肪族炭化水素基であり、いずれもフッ素で置換されているケース、又は、いずれか一方のみがフッ素で置換されているケースである。より好ましくは、RとRがともに脂肪族炭化水素基であり、いずれか一方のみがフッ素で置換されているケースである。尚、RとRがともに脂肪族炭化水素基であり、いずれもフッ素で置換されているケースでは、シクロメタル化イリジウム錯体を製造する際に、当該イリジウム原料が昇華しやすく、シクロメタル化イリジウム錯体の収率が低下する傾向がある。
とRがともに複素環基の場合としては、RとRがいずれもフッ素で置換されているケース、又は、RとRのうちいずれか一方のみがフッ素で置換されているケースがある。
とRがともに複素環基の場合で好ましい形態は、RとRがともに複素環基であり、RとRのうちいずれか一方のみがフッ素で置換されているケースである。尚、RとRがともに複素環基でありいずれもフッ素で置換されているケースでは、シクロメタル化イリジウム錯体を製造する際に、当該イリジウム原料が昇華しやすく、シクロメタル化イリジウム錯体の収率が低下する傾向がある。
とRのいずれか一方が炭化水素基であり、もう一方が複素環基の場合としては、炭化水素基と複素環基がいずれもフッ素で置換されているケース、炭化水素基のみがフッ素で置換されているケース、又は、複素環基のみがフッ素で置換されているケースがある。
より具体的には、RとRのいずれか一方が脂肪族炭化水素基であり、もう一方が複素環基である場合において、脂肪族炭化水素基と複素環基がいずれもフッ素で置換されているケース、脂肪族炭化水素基のみがフッ素で置換されているケース、又は、複素環基のみがフッ素で置換されているケースがある。
とRのいずれか一方が芳香族炭化水素基であり、もう一方が複素環基である場合において、芳香族炭化水素基と複素環基がいずれもフッ素で置換されているケース、芳香族炭化水素基のみがフッ素で置換されているケース、又は、複素環基のみがフッ素で置換されているケースがある。
とRのいずれか一方が炭化水素基であり、もう一方が複素環基の場合で好ましい形態は、炭化水素基が脂肪族炭化水素基であり、脂肪族炭化水素基のみがフッ素で置換されているケースである。尚、脂肪族炭化水素基と複素環基がいずれもフッ素で置換されているケースでは、シクロメタル化イリジウム錯体を製造する際に、当該イリジウム原料が昇華しやすく、シクロメタル化イリジウム錯体の収率が低下する傾向がある。
次に、置換基Rとしては、以下の例が挙げられる。
は水素原子、炭化水素基又は複素環基であり、好ましくは水素原子又は炭化水素基であり、より好ましくは水素原子又は脂肪族炭化水素基であり、特に好ましくは水素原子又はメチル基であり、最も好ましくは水素原子である。炭化水素基、脂肪族炭化水素基、又は複素環基として好ましい範囲は、R及びRと同様である。これら炭化水素基、脂肪族炭化水素基、又は複素環基中の水素原子は、後述するR、及びR〜R48で定義される置換基に置換されていてもよい。
とR、又は、RとRが、互いに結合して飽和又は不飽和炭化水素環を形成してもよい。この場合の望ましい形態は、以下の一般式(2)に表わされる。
一般式(2)
Figure 0006423007
(一般式(2)中、Oは酸素原子、Irはイリジウム原子を表す。R及びRは、炭化水素基又は複素環基を表す。Xは、炭素又は水素からなる5員環又は6員環の飽和又は不飽和炭化水素環を表す。RとXのうち少なくとも一つがフッ素で置換された置換基であるか、又は、RとXのうち少なくとも一つがフッ素で置換された置換基である。)
一般式(2)中において、R及びRとして取り得る置換基は、一般式(1)と同様であり、望ましい範囲も同様である。Xは、5員環または6員環の飽和又は不飽和炭化水素環を表し、好ましくは炭素数5〜20であり、より好ましくは炭素数5〜10である。これら5員環または6員環の飽和又は不飽和炭化水素環中の水素原子は、後述するR、及びR〜R48で定義される置換基に置換されていてもよい。
そして、前述したR、R及びXの置換基の組み合わせ、すなわち、フッ素で置換された置換基及びフッ素で置換されていない置換基の組み合わせとして、以下の例が挙げられる。
とXがともにフッ素で置換されているケース、RとXのうち、Rのみがフッ素で置換されているケース、RとXのうち、Xのみがフッ素で置換されているケース、RとXのうち、Rのみがフッ素で置換されているケース、RとXのうち、Xのみがフッ素で置換されているケース、RとXがともにフッ素で置換されているケースがある。
前述したRとR及びXにおける組み合わせとして、好ましい形態は、RとXのうち、Rのみがフッ素で置換されているケース、RとXのうち、Rのみがフッ素で置換されているケースである。一般式(2)中において、R、Rがトリフルオロメチル基であることが、特に好ましい。このような好ましい形態であると、シクロメタル化イリジウム錯体を、より収率良く製造することができる。
本発明において、β−ジケトンは市販品を入手することもできるし、特開2005−35902号公報、特開2013−136567号公報、特開平11−255700号公報、特開2000−319236号公報、特開2001−233880号公報等に記載の方法を参考にして製造できる。
一般式(1)で示される本発明のイリジウム原料は、特開平8−85873号公報、特開平9−49081号公報、特開2000−212744号公報、特開2003−64019号公報、特開2003−321416号公報、特開平7−316176号公報、特開2003−321415号公報、特開2003−321416号公報、特開2003−64019号公報、Organometallics、1995年、14巻、3号、1232頁、中国特許公開1803814号公報等に記載の方法を参考にして製造できる。
以下に、一般式(1)で示されるイリジウム原料の代表例(A−1)〜(A−80)を示すが、本発明はこれらに限定されない。
Figure 0006423007
Figure 0006423007
Figure 0006423007
一般式(1)で示されるイリジウム原料の例を、(A−1)〜(A−80)に示したが、このうち好ましくは(A−1)〜(A−50)であり、より好ましくは(A−1)〜(A−35)であり、特に好ましくは(A−1)〜(A−30)であり、最も好ましくは(A−1)〜(A−25)である。
一般式(1)で示されるイリジウム原料は、イリジウム金属を中心として3つのβ−ジケトン配位子が八面体型に配置した立体構造を有する。この立体構造において、配位子であるβ−ジケトンの置換基であるRとRが同一ではない場合、2種の幾何異性体(フェイシャル体とメリジオナル体)が存在する。フェイシャル体とメリジオナル体については、6配位8面体型錯体の異性体の命名法であり、有機金属化学−基礎と応用―山本明夫著(裳華房)143頁に記載がある。例を挙げて具体的に説明すると、下記式に示すように、フェイシャル体は、RとIrがOを介して結合している延長上に、必ずRが存在する構造をとる異性体である。他方、メリジオナル体は、RとIrがOを介して結合している延長上に、R以外にRの存在することがあり、RとIrがOを介して結合している延長上にR以外にRの存在することがある構造の異性体である。
一般式(1)で示されるイリジウム原料の幾何異性体
Figure 0006423007
一般式(1)中におけるRとRが同一ではない場合、イリジウム原料を製造すると、フェイシャル体とメリジオナル体の混合物として得られることが多い。これらの幾何異性体は、目的に応じて、カラムクロマトグラフィーや蒸留等の方法により、フェイシャル体とメリジオナル体に分離できる。
一般式(1)中におけるRとRが同一ではない場合、シクロメタル化イリジウム錯体の原料としては、シクロメタル化イリジウム錯体の製造プロセスにおけるコスト及び操作性の観点から、フェイシャル体とメリジオナル体の混合物を用いることが好ましい。混合物としては、いずれか一方の幾何異性体が、0.01モル%以上、好ましくは0.1モル%以上、より好ましくは1モル%以上、特に好ましくは10モル%以上含有されていることが特に好ましい。当該原料に幾何異性体であるフェイシャル体とメリジオナル体が含まれていることにより、溶媒に対する溶解性が向上し、さらに昇華性も抑制されるため、芳香族複素環2座配位子との反応性が良好になる傾向がある。
幾何異性体の同定は、H−NMRなど各種機器分析により行える。フェイシャル体とメリジオナル体の各含有率は、H−NMR、ガスクロマトグラフィー、又は高速液体クロマトグラフィー等を用いて定量できる。
シクロメタル化イリジウム錯体は、以上説明したように、フッ素原子を含む置換基を有するβ−ジケトンの配位した有機イリジウム材料(原料)と、イリジウム−炭素結合を形成しうる芳香族複素環2座配位子と、を反応させる方法により製造できる。本発明の原料を適用することで、従来原料であるトリス(2,4−ペンタンジオナト)イリジウム(III)を用いた場合よりも、シクロメタル化イリジウム錯体を1段階で収率良く得ることが可能となる。
以下、シクロメタル化イリジウム錯体の製造方法について詳細に説明する。
有機イリジウム材料(原料)と反応させる芳香族複素環2座配位子としては、イリジウム−炭素結合を形成できる芳香族複素環2座配位子であり、1つのイリジウム−窒素結合と1つのイリジウム−炭素結合とを形成する芳香族複素環2座配位子、又は、2つのイリジウム−炭素結合を形成する芳香族複素環2座配位子が好ましく、1つのイリジウム−窒素結合と1つのイリジウム−炭素結合とを形成する芳香族複素環2座配位子がより好ましい。
芳香族複素環2座配位子として、より具体的には、2−フェニルピリジン誘導体、2−フェニルキノリン誘導体、1−フェニルイソキノリン誘導体、3−フェニルイソキノリン誘導体、2−(2−ベンゾチオフェニル)ピリジン誘導体、2−チエニルピリジン誘導体、1−フェニルピラゾール誘導体、1−フェニル−1H−インダゾール誘導体、2−フェニルベンゾチアゾール誘導体、2−フェニルチアゾール誘導体、2−フェニルベンゾオキサゾール誘導体、2−フェニルオキサゾール誘導体、2−フラニルピリジン誘導体、2−(2−ベンゾフラニル)ピリジン誘導体、7,8−ベンゾキノリン誘導体、7,8−ベンゾキノキサリン誘導体、ジベンゾ[f,h]キノリン誘導体、ジベンゾ[f,h]キノキサリン誘導体、ベンゾ[h]−5,6−ジヒドロキノリン誘導体、9−(2−ピリジル)カルバゾール誘導体、1−(2−ピリジル)インドール誘導体、1−(1−ナフチル)イソキノリン誘導体、1−(2−ナフチル)イソキノリン誘導体、2−(2−ナフチル)キノリン誘導体、2−(1−ナフチル)キノリン誘導体、3−(1−ナフチル)イソキノリン誘導体、3−(2−ナフチル)イソキノリン誘導体、2−(1−ナフチル)ピリジン誘導体、2−(2−ナフチル)ピリジン誘導体、6−フェニルフェナントリジン誘導体、6−(1−ナフチル)フェナントリジン誘導体、6−(2−ナフチル)フェナントリジン誘導体、ベンゾ[c]アクリジン誘導体、ベンゾ[c]フェナジン誘導体、ジベンゾ[a,c]アクリジン誘導体、ジベンゾ[a,c]フェナジン誘導体、2−フェニルキノキサリン誘導体、2,3−ジフェニルキノキサリン誘導体、2−ベンジルピリジン誘導体、2−フェニルベンゾイミダゾール誘導体、3−フェニルピラゾール誘導体、4−フェニルイミダゾール誘導体、2−フェニルイミダゾール誘導体、1−フェニルイミダゾール誘導体、4−フェニルトリアゾール誘導体、5−フェニルテトラゾール誘導体、2−アルケニルピリジン誘導体、5−フェニル−1,2,4−トリアゾール誘導体、イミダゾ[1,2−f]フェナントリジン誘導体、1−フェニルベンズイミダゾリウム塩誘導体、又は、1−フェニルイミダゾリウム塩誘導体が好ましい。
芳香族複素環2座配位子としては、上記のうち、2−フェニルピリジン誘導体、2−フェニルキノリン誘導体、1−フェニルイソキノリン誘導体、3−フェニルイソキノリン誘導体、1−フェニルピラゾール誘導体、7,8−ベンゾキノリン誘導体、7,8−ベンゾキノキサリン誘導体、ジベンゾ[f,h]キノリン誘導体、ジベンゾ[f,h]キノキサリン誘導体、ベンゾ[h]−5,6−ジヒドロキノリン誘導体、6−フェニルフェナントリジン誘導体、2−フェニルキノキサリン誘導体、2,3−ジフェニルキノキサリン誘導体、2−フェニルベンゾイミダゾール誘導体、3−フェニルピラゾール誘導体、4−フェニルイミダゾール誘導体、2−フェニルイミダゾール誘導体、1−フェニルイミダゾール誘導体、4−フェニルトリアゾール誘導体、5−フェニルテトラゾール誘導体、5−フェニル−1,2,4−トリアゾール誘導体、イミダゾ[1,2−f]フェナントリジン誘導体、1−フェニルベンズイミダゾリウム塩誘導体、又は、1−フェニルイミダゾリウム塩誘導体がより好ましい。また、2−フェニルピリジン誘導体、1−フェニルイソキノリン誘導体、2−フェニルイミダゾ−ル誘導体、又は、イミダゾ[1,2−f]フェナントリジン誘導体が特に好ましく、2−フェニルピリジン誘導体、2−フェニルイミダゾ−ル誘導体が、より特に好ましい。
本発明で用いられる芳香族複素環2座配位子の具体的な構造としては、例えば、以下の構造例1〜3に示すものが挙げられる。このうち、一般式(3)〜(7)で示す構造を有するものが好ましく、一般式(3)、(6)及び(7)で示す構造を有するものがより好ましく、一般式(3)及び(6)で示す構造を有するものが特に好ましく、一般式(6)で示す構造を有するものが最も好ましい。構造例1〜3、及び、一般式(3)〜(7)中の*は、イリジウムとの結合部位である。
芳香族複素環2座配位子の構造例1
Figure 0006423007
芳香族複素環2座配位子の構造例2
Figure 0006423007
芳香族複素環2座配位子の構造例3
Figure 0006423007
一般式(3)
Figure 0006423007
一般式(4)
Figure 0006423007
一般式(5)
Figure 0006423007
一般式(6)
Figure 0006423007
一般式(7)
Figure 0006423007
構造例1〜3、及び、一般式(3)〜(7)において、R及びR〜R48は、水素原子又は以下に示す置換基である。置換基としては、例えば、アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、
アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、
アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、
スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、
スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、
ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、トリフルオロメチル基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、複素環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的にはイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、アゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。
以上の置換基の中で、より好ましくは、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ハロゲン原子、シアノ基、トリフルオロメチル基、又は複素環基であり、特に好ましくは、アルキル基、アリール基、ハロゲン原子、シアノ基、トリフルオロメチル基、又は複素環基であり、より特に好ましくは、アルキル基、アリール基、臭素原子、フッ素原子、又は複素環基である。これらの置換基として望ましい範囲は前記の通りであり、前述のR、及びR〜R48で定義される置換基でさらに置換されていてもよい。
そして、シクロメタル化イリジウム錯体を合成する反応は、本発明の一般式(1)で表わされるイリジウム原料と、上記した芳香族複素環2座配位子とを反応させることで行われる。
上記反応は、空気又は不活性ガス(窒素、アルゴン等)雰囲気下で行うことができ、不活性ガス雰囲気下で行うことが好ましい。
本発明においては、上記反応を更に円滑に進めるため、合成反応の反応系に溶媒を添加してもよい。
反応系に添加する溶媒としては、飽和脂肪族炭化水素、ハロゲン化脂肪族炭化水素、ケトン類、アミド類、エステル類、芳香族炭化水素、ハロゲン化芳香族炭化水素、含窒素芳香族化合物、エーテル類、ニトリル類、アルコール類、イオン性液体等、種々の有機溶媒が挙げられる。その中でも、アルコール類、又は飽和脂肪族炭化水素が好ましく、飽和脂肪族炭化水素(好ましくは炭素数5〜60、より好ましくは炭素数8〜50、特に好ましくは炭素数10〜30)がより好ましい。具体的には、ヘキサデカン、ペンタデカン、テトラデカン、トリデカン、ドデカン、ウンデカン、デカン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、グリセリン、2−メトキシエタノール、2−エトキシエタノール、N,N−ジメチルホルムアミド、N−メチルピロリドン、イミダゾリウム塩、ジメチルスルホキシド、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール等が挙げられる。その中でも、ヘキサデカン、ペンタデカン、テトラデカン、トリデカン、ドデカン、ウンデカン、デカン、ノナン、オクタン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、グリセリン、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオールが好ましく、ヘキサデカン、ペンタデカン、テトラデカン、トリデカン、ドデカン、ウンデカン、デカン、ノナン、オクタンがより好ましい。また、以上の溶媒を2種以上含む混合溶媒を用いることも好ましい。
上記溶媒としては、常圧における沸点が、160℃〜400℃のものが好ましく、170℃〜350℃のものがより好ましく、180℃〜350℃のものが特に好ましい。
シクロメタル化イリジウム錯体の合成において溶媒を使用する場合、一般式(1)のイリジウム原料の反応系内の濃度は、制限されるものではないが、0.001モル/L〜10.0モル/Lが好ましく、0.001モル/L〜1.0モル/Lがより好ましく、0.01モル/L〜1.0モル/Lが特に好ましく、0.05モル/L〜0.5モル/Lが最も好ましい。
以上説明したシクロメタル化イリジウム錯体の合成反応は、反応を促進させるために、適宜、酸性物質や塩基性物質を加えて行っても良い。酸性物質は、β−ジケトン配位子の脱離を促進し、一方、塩基性物質は芳香族複素環2座配位子のシクロメタル化反応を促進する。しかしながら、酸性物質又は塩基性物質を加えることにより、イリジウム原料、芳香族複素環2座配位子、又はシクロメタル化イリジウム錯体が分解することがあり、シクロメタル化イリジウム錯体の収率や純度を低下させる傾向となることから、酸性物質や塩基性物質は添加しないことが望ましい。具体的には、一般式(6)および一般式(7)に記載の芳香族複素環2座配位子を用いた場合、反応系に酸性物質を添加すると、シクロメタル化イリジウム錯体の収率が大きく低下することが多い。
上記酸性物質を添加する場合、反応系内でプロトン源として作用するもの、又はルイス酸、固体酸等のような電子対を受容できるものを適用できる。特に、酢酸、シュウ酸、吉草酸、酪酸、酒石酸などの有機酸、塩酸、硫酸、リン酸などの無機酸等のブレンステッド酸が好ましい。これらは、単独又は2種以上の混合物として使用できる。また、これら酸性物質は、沸点が150℃以上であることが好ましい。酸性物質の沸点が反応温度より低いと、酸性物質が還流してしまい、反応系内の温度が反応を進行させるのに十分な温度まで上昇しにくいためである。
酸性物質を添加する場合、酸性物質とイリジウム原料とのモル比を、イリジウム原料1モルに対し酸性物質を0.5モル以上とし、好ましくは(酸性物質:イリジウム原料を)0.5:1〜20:1、より好ましくは3:1〜20:1とする。イリジウム原料1モルに対し酸性物質が0.5モルより少ないと、十分な反応促進効果が得られず、短時間で反応を終結できないため好適でない。イリジウム原料1モルに対し酸性物質が0.5モル以上であれば、特に上限はないが、必要以上に酸性物質の添加量が多いと経済的に非効率である。
塩基性物質を添加する場合、アルカリ金属を含む無機塩基、脂肪族アミンや芳香族アミンなどの有機アミン、アルカリ金属アルコキシド等が挙げられ、これらは単独又は2種以上の混合物として使用することもできる。例えば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエタノールアミン、トリイソプロピルアミン、トリイソブチルアミン、プロトンスポンジ、ジアザビシクロウンデセン、ピリジン、2−フェニルピリジン、ナトリウムメトキシド、ナトリウム−t−ブトキシド、カリウム−t−ブトキシド等が挙げられ、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、トリエタノールアミン等が好ましく、炭酸ナトリウム又は炭酸カリウムが特に好ましい。
塩基性物質を添加する場合、塩基性物質とイリジウム原料とのモル比は、塩基性物質とイリジウム原料のモル比は、好ましくはイリジウム原料1モルに対し塩基性物質0.001モル以上とし、より好ましくは(塩基性物質:イリジウム原料を)0.01:1〜5:1、特に好ましくは0.01:1〜3:1とする。使用する塩基性物質の使用量に制限はないが、必要以上に多くすると一般式(1)のイリジウム原料が分解するため望ましくない。
シクロメタル化イリジウム錯体を合成する際、反応温度は100℃〜300℃が好ましく、150℃〜300℃がより好ましく、180℃〜300℃が特に好ましい。
シクロメタル化イリジウム錯体を合成する際、反応時間は1〜100時間が好ましく、3〜80時間がより好ましく、5〜50時間が特に好ましい。
シクロメタル化イリジウム錯体の合成において、加熱手段は特に限定されない。具体的には、オイルバス、サンドバス、マントルヒーター、ブロックヒーター、熱循環式ジャケットによる外部加熱、さらにはマイクロ波照射による加熱等を利用できる。
シクロメタル化イリジウム錯体の合成は、通常、常圧で行われるが、必要に応じ加圧下、又は、減圧下で行ってもよい。
シクロメタル化イリジウム錯体の合成において、芳香族複素環2座配位子の使用量は特に制限はないが、イリジウム原料に対し、3〜100倍モルが好ましく、3〜50倍モルがより好ましく、3〜30倍モルが特に好ましく、3〜10倍モルが最も好ましい。
本発明の製造方法では、上記シクロメタル化イリジウム錯体合成において副生するβ−ジケトンを、反応系中から留去しながら合成することも好ましい。β−ジケトンを留去する方法としては、特に制限はないが、例えば、特開2004−337802号公報や、国際公開第2006/014599号パンフレット等に記載の方法を用いることができる。
以上説明した合成方法により得られたシクロメタル化イリジウム錯体は、一般的な後処理方法で処理した後、必要があれば精製し、又は、精製せずに高純度品として用いることができる。後処理の方法としては、例えば、抽出、冷却、水や有機溶媒を添加することによる晶析、反応混合物からの溶媒を留去する操作等を、単独又は組み合わせて行うことができる。精製の方法としては、再結晶、蒸留、昇華又はカラムクロマトグラフィー等を、単独又は組み合わせて行うことができる。
本発明の製造方法により、製造されるシクロメタル化イリジウム錯体としては、シクロメタル化された配位子を2つ有するビスシクロメタル化イリジウム錯体、又は、シクロメタル化された配位子を3つ有するトリスシクロメタル化イリジウム錯体が好ましく、シクロメタル化された配位子を3つ有するトリスシクロメタル化イリジウム錯体が、より好ましい。このようなシクロメタル化イリジウム錯体の具体例としては、特開2007−224025号公報、特開2006−290891号公報、特開2006−213723号公報、特開2006−111623号公報、特開2006−104201号公報、特開2006−063080号公報、特表2009−541431号公報、特表2009−526071号公報、特表2008−505076号公報、特表2007−513159号公報、特表2007−513158号公報、特表2002−540572号公報、特表2009−544167号公報、特表2009−522228号公報、特表2008−514005号公報、特表2008−504342号公報、特表2007−504272号公報、特表2006−523231号公報、特表2005−516040号公報、国際公開第2010/086089号パンフレット等に記載がある。
そして、一般式(1)のイリジウム原料を用いることにより、シクロメタル化イリジウム錯体の収率が向上する理由としては、β−ジケトンに電子吸引性の強いフッ素が導入されることにより、β−ジケトンの酸素原子の電子密度が大きく低下し、イリジウム−酸素結合が弱くなり、β−ジケトンが脱離しやすくなったためと本発明者等は考えている。
また、β−ジケトンにフッ素が導入されることにより、β−ジケトンの沸点は低下することから、シクロメタル化イリジウム錯体を製造する際に副生し、シクロメタル化反応を阻害することが知られているβ−ジケトンを反応系外へ除去しやすくなることも実用的な利点である。
Figure 0006423007
本発明の原料を用いて得られるシクロメタル化イリジウム錯体は、イリジウム原料由来の、発光素子特性に悪影響を与える塩素を含まず、この錯体を発光素子の発光層又は発光層を含む複数の有機化合物層に含有させることで、従来よりも発光効率や耐久性の優れた発光素子とすることができる。
以上で説明したように、本発明によれば、シクロメタル化イリジウム錯体を、従来原料であるトリス(2,4−ペンタンジオナト)イリジウム(III)を用いた場合よりも、収率良く得ることが可能になる。
以下、本発明の実施形態について詳細に説明するが、本発明はこれに限定されない。
実施例で用いた化合物の構造を、以下に示す。(A−1)、(A−2)、(A−36)中のβ‐ジケトンは、それぞれ、1,1,1−トリフルオロ−2,4−ペンタンジオン、1,1,1−トリフルオロ−2,4−ヘキサンジオン、ヘキサフルオロアセチルアセトンである。
Figure 0006423007
実施例に使用した(A−1)、(A−2)、及び、(A−36)は、前記公知文献を参考に合成した。なお、(A−1)と(A−2)については、合成の際に、いずれも幾何異性体(フェイシャル体とメリジオナル体)の混合物として得られるが、以下に示すシクロメタル化イリジウム錯体の合成例では混合物のまま用いた。尚、幾何異性体の生成比については合成条件に依存する。実施例に用いた(A−1)については、フェイシャル体とメリジオナル体のモル比率が1:3〜1:35の混合物であり、一方、(A−2)については、フェイシャル体とメリジオナル体のモル比率が1:3の混合物であった。
公知のイリジウム原料であるトリス(2,4−ペンタンジオナト)イリジウム(III)は、特開平7−316176号公報を参考に合成した。以下に示すシクロメタル化イリジウム錯体の合成例(比較例)に用いた。
<実施例1> 化合物(1)の合成
化合物(A−1)(130mg)、及び、化合物(A)(558mg)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(1)であることを確認した。化合物(1)の単離収率は90%であった。尚、得られた化合物(1)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。
<実施例2> 化合物(1)の合成
化合物(A−2)(139mg)、及び、化合物(A)(558mg)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(1)であることを確認した。化合物(1)の単離収率は80%であった。尚、得られた化合物(1)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。
<比較例1> 化合物(1)の合成
Ir(acac)(98mg)、及び、化合物(A)(558mg)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(1)であることを確認した。化合物(1)の単離収率は57%であった。尚、得られた化合物(1)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。
<実施例3> 化合物(1)の合成
化合物(A−1)(130mg)、化合物(A)(186mg)及びトリデカン(1.7ml)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(1)であることを確認した。化合物(1)の単離収率は22%であった。尚、得られた化合物(1)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。
<実施例4> 化合物(1)の合成
化合物(A−2)(139mg)、化合物(A)(93mg)及びトリデカン(1.7ml)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(1)であることを確認した。化合物(1)の単離収率は11%であった。尚、得られた化合物(1)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。
<実施例5> 化合物(1)の合成
化合物(A−36)(163mg)、化合物(A)(186mg)及びトリデカン(1.7ml)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:酢酸エチル−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(1)であることを確認した。化合物(1)の単離収率は3%であった。尚、得られた化合物(1)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。また、化合物(A−36)は昇華性が極めて強かった。
<比較例2> 化合物(1)の合成
Ir(acac)(98mg)、化合物(A)(186mg)及びトリデカン(1.7ml)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応したが、化合物(1)は全く得られなかった。
<実施例6> 化合物(2)の合成
化合物(A−1)(130mg)、化合物(B)(264mg)及びトリデカン(1.7ml)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(2)であることを確認した。化合物(2)の単離収率は75%であった。尚、得られた化合物(2)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。
<実施例7> 化合物(2)の合成
化合物(A−2)(139mg)、化合物(B)(264mg)及びトリデカン(1.7ml)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(2)であることを確認した。化合物(2)の単離収率は57%であった。尚、得られた化合物(2)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。
<実施例8> 化合物(2)の合成
化合物(A−36)(163mg)、化合物(B)(264mg)及びトリデカン(1.7ml)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(2)であることを確認した。化合物(2)の単離収率は22%であった。尚、得られた化合物(2)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。また、化合物(A−36)は昇華性が極めて強かった。
<比較例3> 化合物(2)の合成
Ir(acac)(98mg)、化合物(B)(264mg)及びトリデカン(1.7ml)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(2)であることを確認した。化合物(2)の単離収率は3%であった。尚、得られた化合物(2)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。
<実施例9> 化合物(2)の合成
化合物(A−1)(130mg)、化合物(B)(264mg)及びウンデカン(1.7ml)をアルゴン雰囲気下、220℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(2)であることを確認した。化合物(2)の単離収率は26%であった。尚、得られた化合物(2)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。
<比較例4> 化合物(2)の合成
Ir(acac)(98mg)、化合物(B)(264mg)及びウンデカン(1.7ml)をアルゴン雰囲気下、220℃(サンドバス温度)で17時間加熱反応したが、化合物(2)は全く得られなかった。
<実施例10> 化合物(3)の合成
化合物(A−1)(130mg)、及び、化合物(C)(624mg)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(3)であることを確認した。化合物(3)の単離収率は81%であった。尚、得られた化合物(3)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。
<実施例11> 化合物(4)の合成
化合物(A−1)(130mg)、及び、化合物(D)(609mg)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(4)であることを確認した。化合物(4)の単離収率は53%であった。尚、得られた化合物(4)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。
<実施例12> 化合物(1)の合成
化合物(A−1)(130mg)、化合物(A)(186mg)、トリデカン(2.5ml)、及び、ジエチレングリコール(2.5ml)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(1)であることを確認した。化合物(1)の単離収率は56%であった。尚、得られた化合物(1)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。
<実施例13> 化合物(5)の合成
化合物(A−1)(130mg)、化合物(E)(278mg)、トリデカン(0.85ml)、及び、ジエチレングリコール(0.85ml)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(5)であることを確認した。化合物(5)の単離収率は62%であった。尚、得られた化合物(5)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。
<実施例14> 化合物(6)の合成
化合物(A−1)(130mg)、化合物(F)(278mg)、トリデカン(0.85ml)、及び、ジエチレングリコール(0.85ml)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(6)であることを確認した。化合物(6)の単離収率は81%であった。尚、得られた化合物(6)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。
<実施例15> 化合物(7)の合成
化合物(A−1)(65mg)、化合物(G)(202mg)、及び、トリデカン(1.7ml)をアルゴン雰囲気下、250℃(サンドバス温度)で17時間加熱反応した。反応混合物を室温まで冷却後、ジクロロメタンを加え、シリカゲル層を通してろ過を行い、沈殿物を取り除いた。ろ液を濃縮し析出した固体をシリカゲルクロマトグラフィー(溶離液:ジクロロメタン−ヘキサンの混合溶媒)で精製した。化合物の同定はH−NMRを用いて行い、化合物(7)が生成していることを確認した。尚、得られた化合物(7)は、フェイシャル体であり、H−NMRにおいてメリジオナル体は検出されなかった。
以上の実施例及び比較例より、従来原料であるトリス(2,4−ペンタンジオナト)イリジウム(III)の配位子であるβ−ジケトンにフッ素を導入したイリジウム原料を用いることにより、芳香族複素環2座配位子との反応性が改善され、シクロメタル化イリジウム錯体の収率が大きく向上することがわかった。尚、β−ジケトンに電子吸引性基であるフッ素を導入することで、反応性は大きく高まるが、RとRの両方にフッ素を導入すると、イリジウム原料の昇華性が極めて強くなり、芳香族複素環2座配位子との反応性が低下する傾向にあることが明らかになった。
本発明の一般式(1)で表わされるイリジウム原料は、β−ジケトンに電子吸引性であるフッ素が導入されたことにより、トリス(2,4−ペンタンジオナト)イリジウム(III)よりもβ−ジケトン配位子が脱離しやすく、本発明の一般式(1)で表わされるイリジウム原料を用いることで、シクロメタル化イリジウム錯体を収率良く合成することができる。
本発明によれば、トリス(2,4−ペンタンジオナト)イリジウム(III)を原料として用いた場合よりも、シクロメタル化イリジウム錯体を収率良く製造することが可能であり、有機EL素子用の燐光材料の提供に寄与する。

Claims (5)

  1. 有機イリジウム材料からなるトリスシクロメタル化イリジウム錯体の原料と、イリジウム‐炭素結合を形成しうる芳香族複素環2座配位子と、を反応させて、前記芳香族複素環2座配位子を3つ有するトリスシクロメタル化イリジウム錯体を製造する方法において、
    前記原料として、下記化1で示され、イリジウムに、フッ素原子を含む置換基を有するβ−ジケトンが配位したトリス(β−ジケトナート)イリジウム(III)の有機イリジウム材料を用い、
    前記芳香族複素環2座配位子が下記化2に示される化合物のいずれか1種以上であることを特徴とするトリスシクロメタル化イリジウム錯体の製造方法。
    Figure 0006423007
    (上記式中、Oは酸素原子、Irはイリジウム原子を表す。RaとRbは炭素数1〜5のアルキル基であり、かつ、RaとRbのうち少なくとも一つがトリフルオロメチル基である。Rcは水素原子である。)
    Figure 0006423007
    (上記式中、R1〜R8、R29〜R48は水素原子、又は、アルキル基、アリール基、ハロゲン原子である。これらの置換基は、R1〜R8、R29〜R48の定義される置換基である、アルキル基、アリール基、ハロゲン原子でさらに置換されていてもよい。また、上記式中の*は、前記反応により前記トリスシクロメタル化イリジウム錯体を形成する際にイリジウムとの結合を形成する部位である。
  2. 原料と芳香族複素環2座配位子とを無溶媒下で反応させる請求項1に記載のトリスシクロメタル化イリジウム錯体の製造方法。
  3. 原料と芳香族複素環2座配位子とをルイス酸の非存在下で反応させる請求項1又は請求項2に記載のトリスシクロメタル化イリジウム錯体の製造方法。
  4. トリス(β−ジケトナート)イリジウム(III)の配位子であるβ−ジケトンは、1,1,1−トリフルオロ−2,4−ペンタンジオン、1,1,1−トリフルオロ−2,4−ヘキサンジオン、又は、ヘキサフルオロアセチルアセトンである請求項1〜請求項3のいずれかに記載のトリスシクロメタル化イリジウム錯体の製造方法。
  5. 有機イリジウム材料が、幾何異性体であるフェイシャル体とメリジオナル体との混合物からなり、いずれか一方の幾何異性体が0.01モル%以上含まれる請求項1〜請求項4のいずれかに記載のトリスシクロメタル化イリジウム錯体の製造方法。
JP2016568368A 2015-01-07 2016-01-04 シクロメタル化イリジウム錯体の製造方法 Active JP6423007B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015001226 2015-01-07
JP2015001226 2015-01-07
PCT/JP2016/050007 WO2016111256A1 (ja) 2015-01-07 2016-01-04 シクロメタル化イリジウム錯体の原料及び製造方法

Publications (2)

Publication Number Publication Date
JPWO2016111256A1 JPWO2016111256A1 (ja) 2017-10-19
JP6423007B2 true JP6423007B2 (ja) 2018-11-14

Family

ID=56355944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016568368A Active JP6423007B2 (ja) 2015-01-07 2016-01-04 シクロメタル化イリジウム錯体の製造方法

Country Status (3)

Country Link
JP (1) JP6423007B2 (ja)
TW (1) TWI585094B (ja)
WO (1) WO2016111256A1 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885873A (ja) * 1994-09-16 1996-04-02 Dowa Mining Co Ltd 有機金属錯体を用いる薄膜の製造方法
CN100425615C (zh) * 2006-01-06 2008-10-15 西北工业大学 一种铱配合物的合成方法
JP2011105676A (ja) * 2009-11-19 2011-06-02 Mitsubishi Chemicals Corp 有機金属錯体、発光材料、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明

Also Published As

Publication number Publication date
WO2016111256A1 (ja) 2016-07-14
JPWO2016111256A1 (ja) 2017-10-19
TWI585094B (zh) 2017-06-01
TW201634471A (zh) 2016-10-01

Similar Documents

Publication Publication Date Title
JP6206887B2 (ja) シクロメタル化イリジウム錯体の製造方法
JP4756273B2 (ja) オルトメタル化イリジウム錯体の製造方法ならびに製造されたイリジウム錯体からなる発光材料
JP5692805B2 (ja) イリジウム錯体の製造方法ならびに製造されたイリジウム錯体からなる発光材料
CN109328191B (zh) 卤素交联铱二聚体的制造方法
JP6703222B2 (ja) シクロメタル化イリジウム錯体の製造方法、及び、有機イリジウム材料からなるシクロメタル化イリジウム錯体の前駆体
JP6423007B2 (ja) シクロメタル化イリジウム錯体の製造方法
JP6978784B2 (ja) シクロメタル化イリジウム錯体の製造方法
JP6651168B2 (ja) シクロメタル化イリジウム錯体の製造方法
JP6617967B2 (ja) シクロメタル化イリジウム錯体の製造方法、及び、当該方法に好適に用いられる新規なイリジウム化合物
JP6570037B2 (ja) イリジウム化合物及び該イリジウム化合物を用いたイリジウム錯体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181017

R150 Certificate of patent or registration of utility model

Ref document number: 6423007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250