JP6417099B2 - 計測装置、および物品の製造方法 - Google Patents

計測装置、および物品の製造方法 Download PDF

Info

Publication number
JP6417099B2
JP6417099B2 JP2014050532A JP2014050532A JP6417099B2 JP 6417099 B2 JP6417099 B2 JP 6417099B2 JP 2014050532 A JP2014050532 A JP 2014050532A JP 2014050532 A JP2014050532 A JP 2014050532A JP 6417099 B2 JP6417099 B2 JP 6417099B2
Authority
JP
Japan
Prior art keywords
test object
diffraction grating
light
unit
pattern light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014050532A
Other languages
English (en)
Other versions
JP2015175642A (ja
Inventor
匡貴 中島
匡貴 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014050532A priority Critical patent/JP6417099B2/ja
Priority to EP15000519.7A priority patent/EP2918968A3/en
Priority to US14/643,170 priority patent/US9797717B2/en
Publication of JP2015175642A publication Critical patent/JP2015175642A/ja
Application granted granted Critical
Publication of JP6417099B2 publication Critical patent/JP6417099B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2527Projection by scanning of the object with phase change by in-plane movement of the patern
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0808Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0944Diffractive optical elements, e.g. gratings, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • G02B27/1093Beam splitting or combining systems operating by diffraction only for use with monochromatic radiation only, e.g. devices for splitting a single laser source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/425Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in illumination systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4261Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element with major polarization dependent properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

本発明は、被検物の形状を計測する計測装置、および物品の製造方法に関する。
光を用いて非接触に被検物の形状を計測する方法として、パターン投影法(パターン投影型の三角測量)が知られている。パターン投影法とは、既知の二次元パターンが投影された被検物を撮像して、被検物の形状に応じて生じる二次元パターンの変形量を検出することにより、被検物の形状を求める方法である。
特許文献1に、パターン投影法を用いて被検物の形状を計測する計測装置が提案されている。特許文献1に記載されているように、パターン投影法を用いた計測装置は、一般に、被検物にパターン光を投影するための投影光学系と、パターン光が照射された被検物を撮像するための撮像光学系とを個別に有する。
特開2013−178174号公報
パターン投影法を用いた計測装置において装置を小型化するためには、投影光学系と撮像光学系との少なくとも一部を共通化することが好ましい。そして、パターン投影法を用いて被検物の形状を高精度に計測するためには、被検物にパターンを投影する方向と被検物を撮像する方向との間に角度(輻輳角)を設けることが好ましい。
そこで、本発明は、パターン投影法を用いて被検物の形状を計測する計測装置において、装置の小型化および高精度な計測を実現する上で有利な技術を提供することを目的とする。
上記目的を達成するために、本発明の一側面としての計測装置は、被検物の形状を計測する計測装置であって、パターン光を射出する射出部と、前記射出部から射出された前記パターン光を前記被検物に導くための光学系と、前記光学系と前記被検物との間に配置され、前記光学系から射出された前記パターン光を偏向する偏向部と、前記被検物を前記光学系および前記偏向部を介して撮像する撮像部と、前記撮像部により撮像された前記被検物の画像に基づいて前記被検物の形状を決定する処理部と、を含み、前記偏向部は、前記光学系から射出された前記パターン光を回折させる回折格子を有する、ことを特徴とする。
本発明の更なる目的又はその他の側面は、以下、添付図面を参照して説明される好ましい実施形態によって明らかにされるであろう。
本発明によれば、例えば、パターン投影法を用いて被検物の形状を計測する計測装置において、装置の小型化および高精度な計測を実現する上で有利な技術を提供することができる。
第1実施形態の計測装置を示す概略図である。 回折格子によって生成された複数の次数の回折光を示す図である。 撮像部の撮像面における各回折光の位相分布を求める方法を示すフローチャートである。 X方向における各次数の回折光を示す図である。 Y方向における各次数の回折光を示す図である。 撮像部の撮像面における各回折光の位相分布を求める方法を示すフローチャートである。 第3実施形態の計測装置を示す概略図である。 偏向部における各構成要素の配置を示す概略図である。 偏向部における各構成要素のX方向における配置を示す概略図である。 偏向部における各構成要素のY方向における配置を示す概略図である。 第5実施形態の計測装置を示す概略図である。 第5実施形態の計測装置を示す概略図である。 偏向素子の構成を示す図である。 第5実施形態の計測装置の変形例を示す図である。
以下、添付図面を参照して、本発明の好適な実施の形態について説明する。なお、各図において、同一の部材ないし要素については同一の参照番号を付し、重複する説明は省略する。
<第1実施形態>
本発明の第1実施形態の計測装置10について、図1を参照しながら説明する。第1実施形態の計測装置10は、パターン投影法を用いて被検物1の形状を計測する。パターン投影法(パターン投影型の三角測量)とは、明部と暗部との周期的な配列を有するパターンが投影された被検物1を撮像し、被検物1の形状に応じて生じる当該パターンの変形量を検出することにより被検物1の形状を求める方法である。パターン投影法には、例えば、位相シフト法や空間コード化法など、被検物1の形状を計測するための幾つかの方法がある。なかでも位相シフト法は、正弦波パターンが投影された被検物1を正弦波パターンの位相を一定の角度ずつずらしながら撮像し、撮像された画像の各画素における受光強度の変化に基づいて被検物1の形状を求める方法であり、高い計測精度を有する。第1実施形態では、位相シフト法を用いて被検物1の形状を計測する方法について説明する。
第1実施形態の計測装置10は、投影光学系および撮像光学系の少なくとも一部を共通化させた光学系3と、輻輳角を生じさせるために光学系3から射出されたパターン光を偏向する偏向部4を含みうる。これにより、計測装置10の計測レンジおよび視野を広げることと計測装置10を小型化することを両立させるとともに、輻輳角をもって被検物1の形状を高精度に計測することができる。以下に、第1実施形態の計測装置10の構成について説明する。
図1は、第1実施形態の計測装置10を示す概略図である。第1実施形態の計測装置10は、射出部2と、光学系3と、偏向部4と、撮像部5と、ステージ6と、処理部7とを含みうる。ステージ6は、被検物1を搭載して移動可能に構成されている。また、処理部7は、例えばCPUやメモリなどを有するコンピュータによって構成され、撮像部5により撮像された被検物1の画像に基づいて被検物1の形状を決定する。ここで、第1実施形態の計測装置10は、処理部7が被検物1の計測を制御する(計測装置10の各部を制御する)ように構成されているが、被検物1の計測を制御する制御部が処理部7とは別に設けられるように構成されてもよい。
射出部2は、例えば、光源2aと、コリメータレンズ2bと、変換素子2cとを含みうる。光源2aから射出された光は、コリメータレンズ2bによって平行光にされた後に変換素子2cに入射し、空間的に明部と暗部との周期的な配列を有するパターン光に変換される。変換素子2cは、例えば、光透過部分と遮光部分とが周期的に(交互に)配列されたパターンを有するマスクを含んでもよいが、液晶素子やデジタルミラーデバイス(DMD)などを含むとよい。液晶素子やDMDを含むように変換素子2cを構成することにより、光源2aから射出された光を例えばモノクロパターンや正弦波パターンなどの任意のパターンを有する光(パターン光)に変換可能であり、かつ空間的な変調を高速に行うことができる。
光学系3は、例えば、偏光ビームスプリッタ3aと、パターン光の径を拡大させるための対物レンズ3bおよび3cと、対物レンズ3bおよび3cの間の集光位置に配置された開口絞り3dとを含み、射出部2から射出されたパターン光を被検物1に導く。射出部2から射出されたパターン光は、偏光ビームスプリッタ3aにより反射されて対物レンズ3bおよび3cを通過することにより、径が拡大されて光学系3から射出する。光学系3から射出されたパターン光は、偏向部4を介して被検物1に照射される。被検物1によって反射および拡散されたパターン光は、偏向部4を介して光学系3に入射し、光学系3の開口絞り3dにおいて空間周波数を絞られた後、偏光ビームスプリッタ3aを透過して撮像部5に入射する。撮像部5は、例えばCCDセンサやCMOSセンサなどを含み、パターン光が照射された被検物1を光学系3を介して撮像する。そして、処理部7は、撮像部5により撮像された被検物1の画像に基づいて被検物1の形状を決定する。
位相シフト法を採用する第1実施形態の計測装置10では、処理部7は、被検物1の表面(以下、被検面)の各箇所における基準面からの位相差に基づいて各箇所の高さを求めて、被検物1の形状を決定する。このとき、パターン光におけるパターンのピッチより大きい段差が被検面に含まれる場合、その段差を含む箇所においてはパターンのピッチの整数倍の計測誤差が生じ、被検物1の形状を精度よく計測することが困難になりうる。このような計測誤差を防ぐためには、互いに異なる位相を有する複数のパターン光を被検物1に照射し、被検面の各箇所の高さを複数のパターン光の位相差を求め、その位相差に基づいて被検物1の形状を計測することが有効である。
そこで、第1実施形態の計測装置10は、光学系3から射出されたパターン光を回折する回折格子4aを有し、回折格子4aによって生成された複数の次数の回折光を被検物1に照射する偏向部4を含む。回折格子4aによって生成された複数の次数の回折光は、図2に示すように、互いに異なる方向に進み、角度(輻輳角)をもってステージ上の被検物1に照射される。このとき、各回折光は被検物1に同時に照射されるため、各回折光に含まれるパターンが被検物上に重ねて投影されることとなる。ここで、回折格子4aは、パターン光が回折格子4aに斜入射するように、光学系3の光軸に対して傾いて配置されているとよい。回折格子4aで生成された複数の回折光を、互いに異なる輻輳角で被検物1に照射することができるからである。また、第1実施形態では、回折格子4aとして、偏光による顕著な回折効率の変化が少ない、即ち入射する光の偏光状態によって回折方向が変わらない二次元回折格子を用いる場合について説明するが、それに限られるものではない。例えば、回折格子4aとして、一次元回折格子を用いてもよい。
このように構成された計測装置10では、撮像部5によって撮像された被検物1の画像に基づいて被検物1の形状を決定する際に、撮像部5に入射する複数の回折光の各々について位相を求める必要がある。そこで、第1実施形態の計測装置10は、回折格子4aと被検物1との間の距離(回折格子4aと被検物1との相対位置)を変更する変更部を有する。そして、計測装置10の処理部7は、回折格子4aと被検物1との間の距離を変更部に変更させることにより撮像部5に入射する各回折光の位相をシフトさせ、被検物1を撮像部5に撮像させる工程を繰り返すことにより複数の被検物1の画像を取得する。このとき、撮像部5によって取得された各画像は、複数の回折光が重ね合わされた光の強度分布を表わす。処理部7は、光の強度分布をそれぞれ表す複数の画像に対して拡散フーリエ変換(以下、DFT)を行うことにより、撮像部5の撮像面における各回折光の位相分布を求め、被検物1の形状を決定することができる。ここで、第1実施形態では、例えば、光学系3の光軸と平行な方向(Z方向)に沿って回折格子4aを駆動するアクチュエータ8を変更部として用い、回折格子4aをZ方向に駆動することにより回折格子4aと被検物1との間の距離を変更している。しかしながら、それに限られるものではなく、例えば、Z方向に移動可能なステージ6を変更部として用い、ステージ6によって被検物1をZ方向に駆動することにより回折格子4aと被検物1との間の距離を変更してもよい。また、アクチュエータ8とステージ6の双方によって当該距離を相対的に変更してもよい。
以下に、撮像部5の撮像面における各回折光の位相分布を求める方法について、図3を参照しながら説明する。図3は、撮像部5の撮像面における各回折光の位相分布を求める方法を示すフローチャートである。S101では、処理部7は、図2に示すように、光学系3の光軸に対してX方向に角度α、Y方向に角度αだけ傾けて配置された回折格子4aによって生成された複数の回折光(パターン光)を被検物1に照射させる。第1実施形態では、正弦波パターンを交差して重ね合わせた格子上のパターンがパターン光として用いられうる。また、回折格子4aを光学系3の光軸に対して傾けて配置することで、回折格子4aで生成された複数の回折光を互いに異なる輻輳角で被検物1に照射することができる。S102では、処理部7は、複数の回折光が照射された被検物1を撮像部5に撮像させる。S103では、処理部7は、偏向部4(回折格子4a)と被検物1との間の距離を変更部(アクチュエータ8)に変更させる。これにより、撮像部5に入射する各回折光の位相を、互いに異なる位相シフト量でシフトさせることができる。S104では、処理部7は、撮像部5により撮像された画像の枚数が、各回折光の位相を求めることが可能となる画像の枚数(以下、規定枚数)に達したか否かを判断する。撮像部5により撮像された画像の枚数が規定枚数に達していない場合には、S102に戻り、S103において回折格子4aと被検物1との間の距離を変更部に変更させた状態で被検物1を撮像部5に撮像させる。一方で、撮像部5により撮像された画像の枚数が規定枚数に達した場合には、S105に進む。S105では、処理部7は、撮像部5により撮像された複数の画像に基づいて、撮像部5の撮像面における各回折光の位相分布を求める。
次に、図3に示すフローチャートに従って処理部7が各回折光の位相分布を求める処理について具体的に説明する。被検物1には、回折格子4aによって生成された複数の回折光が重ねて照射される。このとき、回折光の照明光路(被検物1に照射される光の光路)および被検光路(被検物1で反射された光の光路)は、図4および図5に示すように回折光の数だけ存在する。図4は、X方向における各次数の回折光を示し、図5は、Y方向における各次数の回折光を示す。また、図4および図5における左図は照明光路を示し、右図は被検光路を示す。そのため、kを回折次数を表わす整数とすると(k=0,±1,±2・・・±K)、X方向における複数の回折光とY方向における複数の回折光とを合わせて2・(2・K+1)個の回折光が被検物1に重ねて照射されることとなる。このとき、撮像部5の各画素において検出される光の強度I(x,y)は式(1)によって表わすことができる。式(1)において、Aは被検物1に照射されるパターン光のバイアス成分、Bはパターン光の強度変調成分、Tはパターン光におけるパターンのX方向の周期、Tはパターン光におけるパターンのY方向の周期である。
Figure 0006417099
ここで、Fxは、X方向に回折されたことによって各回折光に生じる位相変化量であり、Fyは、Y方向に回折されたことによって各回折光に生じる位相変化量である。φx(x,y)およびφy(x,y)は、変更部によって回折格子4aと被検物1との間の距離を変更する前において、撮像部5の各画素に入射する各回折光の位相(以下、初期位相)である。また、Fx、Fy、φxおよびφyの上付き文字aは、照明光路の回折次数(a=0,±1,・・・±K)を表わし、下付き文字bは、被検光路の回折次数(b=0,±1,・・・±K)を表わす。図4に示すようにX方向に回折される回折光の偏向角度をθx、図5に示すようにY方向に回折される回折光の偏向角度をθyとすると、位相変化量FxおよびFyは式(2)によって表わされる。kは回折次数を示し、照明光路の回折次数aまたは被検光路の回折次数bが入力される。
Figure 0006417099
よって、式(1)は式(3)によって表わすことができる。
Figure 0006417099
ここで、変更部によって回折格子4aをΔZだけZ方向に移動させた場合に、撮像部5の各画素において検出される光の強度I(x,y)は式(4)によって表わすことができる。そして、式(3)および式(4)を用いて、回折格子4aのZ方向への移動によって生じるX方向における各回折光の位相シフト量Δβx、およびY方向における各回折光の位相シフト量Δβyを式(5)によってそれぞれ表わすことができる。ΔβxおよびΔβyの上付き文字aは、照明光路の回折次数を表わし、下付き文字bは、被検光路の回折次数を表わす。
Figure 0006417099
Figure 0006417099
式(5)を用いて式(4)を書き換えると式(6)を得ることができる。ここで、nは、変更部によって回折格子と被検物1との間の距離を変更しながら撮像部5によって撮像された画像の番号である。
Figure 0006417099
位相φx(x,y)および位相φy(x,y)は、撮像部5の各画素によって検出される光の強度I(x,y)と窓関数Wとから式(7)および式(8)によって求めることができる。ここで、G(x,y;Δβ)は、撮像部5において検出される光の強度分布を示す。
Figure 0006417099
Figure 0006417099
このとき、撮像部5の各画素において検出される光の強度は、回折格子4aによって生成された各回折光の強度の合成であるが、後述の条件を満足することにより、各回折光の位相を選択的に算出することができる。式(6)を複素表示すると式(9)によって表わされ、式(9)を式(7)に代入すると式(10)を得ることができる。ここで、式(10)のWは、窓関数Wをフーリエ変換した値であり、式(11)によって表わされる。
Figure 0006417099
Figure 0006417099
Figure 0006417099
よって、照明光路の回折次数aが「+1」および被検光路の回折次数bが「0」のとき、Δβ=Δβxにおける光の強度分布Gs(x,y;Δβx)は式(12)によって表わされる。ここで、a=0,±1・・・±K、およびb=a=0,±1・・・±Kである。
Figure 0006417099
そして、窓関数Wnをフーリエ変換した値W以外の成分が「0」、即ち式(13)の周波数の条件において、光の強度分布Gs(x,y;Δβx)を用いて、aが「+1」およびbが「0」のときの位相φxを求めることができる。同様にして、a=0,±1・・・±Kおよびb=0,±1・・・±Kの各々の場合において各回折光における位相φxおよび位相φyをそれぞれ求めることができる。ここで、式(13)の周波数の条件を満たすX方向の位相シフト量ΔβxおよびY方向の位相シフト量Δβyは式(14)によって表わすことができる。Nは、各回折光の位相を求めることが可能となる画像の枚数(規定枚数)である。
Figure 0006417099
Figure 0006417099
ここで、被検物1の形状を合成波長で計測する際には、最低限2つの次数の回折光における位相を取得できればよいため、位相を算出したい2つの光路成分とそれ以外の光路成分の位相シフト量が異なっていればよい。例えば、a=+1およびb=0のときの回折光と、a=−1およびb=0のときの回折光とを合成する場合には、式(15)の条件をすべて満たすとよい。
Figure 0006417099
aとbとの組み合わせは任意である。式(15)の条件を満たすような移動量ΔZで回折格子4aをZ方向に移動させることにより、各回折光からのクロストークを生じさせずに、精度よく各回折光の位相を求めることができる。回折光の偏向角度θx、θx、θyおよびθyは、式(16)によってそれぞれ表わすことができる。よって、各回折光の位相シフト量ΔβxおよびΔβyは、式(17)によって表わすことができる。
Figure 0006417099
Figure 0006417099
例えば、回折光の次数を0次から±1次まで考慮し、光源2aの波長λを800nm、回折格子4aのX方向の回折格子定数Dを602line/mm、回折格子4aのY方向の回折格子定数Dを614line/mmとした場合を想定する。ここで、角度αを27.10°、角度αを27.45°、周期Tを0.95mm、周期Tを0.95mm、回折格子4aの移動量ΔZを−0.43mmとする。この場合に、X方向およびY方向における各回折光の位相シフト量を表1に表わされる値にすることができ、式(14)および式(15)より規定枚数を「122枚」に決定することができる。
Figure 0006417099
このように決定された規定枚数の画像が撮像部5によって撮像されるように図3のS102〜S104の工程を繰り返すことにより、処理部7は、撮像部5の各画素における各回折光の位相φxおよびφyを式(18)によって求めることができる。即ち、処理部7は、撮像部5の撮像面における各回折光の位相分布を求めることができる。
Figure 0006417099
上述のように、第1実施形態の計測装置10は、光学系3から射出されたパターン光を回折し、複数の次数の回折光を生成する回折格子4aを偏向部4に含む。そして、計測装置10は、回折格子4aと被検物1との間の距離を変更部に変更させ、被検物1を撮像部5に撮像させる工程を繰り返すことにより複数の画像を取得し、複数の画像に基づいて各回折光の位相を求めることができる。このように異なる方向から複数のパターン光を同時に被検物1に照射できるように構成することにより、第1実施形態の計測装置10は、死角が少ない計測や、合成波長による広い計測レンジでの計測を行うことができる。
<第2実施形態>
第2実施形態の計測装置について説明する。第2実施形態の計測装置は、第1実施形態の計測装置10と装置構成が同様であるため、ここでは装置構成の説明を省略する。また、第2実施形態の計測装置は、変更部(アクチュエータ8)によって回折格子4aと被検物1との間の距離を変更させることに加えて、射出部2の変換素子2cにパターン光における明部と暗部との配列の周期を変化させる。これにより第2実施形態の計測装置は、撮像部5に入射する各回折光の位相をシフトさせている。
以下に、第2実施形態の計測装置において、撮像部5の撮像面における各回折光の位相分布を求める方法について、図6を参照しながら説明する。図6は、撮像部5の撮像面における各回折光の位相分布を求める方法を示すフローチャートである。S201では、処理部7は、図2に示すように、光学系3の光軸に対してX方向に角度α、Y方向に角度αだけ傾けて配置された回折格子4aによって生成された複数の回折光(パターン光)を被検物に照射させる。S202では、処理部7は、複数の回折光が照射された被検物1を撮像部5に撮像させる。S203では、処理部7は、変更部に偏向部4(回折格子4a)と被検物1との間の距離を変更させることに加えて、射出部2の変換素子2cにパターン光における明部と暗部との配列の周期を変化させる。ここで、光透過部分と遮光部分とが周期的に配列されたパターンを有するマスクを変換素子2cが含む場合には、処理部7は、当該マスクがY方向やZ方向に移動するように変換素子2cを制御する。一方で、液晶素子やDMDを変換素子2cが含む場合には、処理部7は、液晶素子やDMDを構成する複数の要素を個別に駆動するように変換素子2cを制御する。これにより、撮像部5に入射する各回折光の位相を互いに異なる位相シフト量でシフトさせることができる。
S204では、処理部7は、撮像部5により撮像された画像の枚数が規定枚数に達したか否かを判断する。撮像部5により撮像された画像の枚数が規定枚数に達していない場合には、S202に戻り、被検物1を撮像部5に撮像させる。一方で、撮像部5により撮像された画像の枚数が規定枚数に達した場合には、S205に進む。S205では、処理部7は、撮像部5により撮像された複数の画像に基づいて、撮像部5の撮像面における各回折光の位相分布を求める。
次に、図6に示すフローチャートに従って処理部7が各回折光の位相分布を求める処理について具体的に説明する。被検物1には、回折格子4aによって生成された複数の回折光が重ねて照射される。このとき、回折光の照明光路および被検光路は回折光の次数だけ存在する。そのため、kを回折次数を表わす整数とすると(k=0,±1,±2・・・±K)、X方向における複数の回折光とY方向における複数の回折光とを合わせて2・(2・K+1)個の回折光が被検物1に重ねて照射されることとなる。このとき、変更部と変換素子2cによる各回折光の位相シフトを行う前に撮像部5の各画素において検出される光の強度I(x,y)は、第1実施形態と同様に式(3)によって表わすことができる。また、変更部によって回折格子4aをΔZだけZ方向に移動させた場合に撮像部5の各画素において検出される光の強度I(x,y)は、第1実施形態と同様に式(4)によって表わすことができる。ここで、変換素子2cによるX方向におけるパターン光の周期の変化量をξ、Y方向におけるパターン光の周期の変化量をξとすると、撮像部5の各画素において検出される光の強度I(x,y)は、式(4)を用いて式(19)で表わすことができる。そして、式(3)および式(19)を用いて、回折格子4aの移動とパターン光の周期の変化とによって生じる各回折光の位相シフト量ΔβxおよびΔβyを、式(20)によって表わすことができる。
Figure 0006417099
Figure 0006417099
また、式(16)を用いて、各回折光の位相シフト量ΔβxおよびΔβyを、式(21)によって表わすことができる。
Figure 0006417099
処理部は、式(21)が式(14)および式(15)の条件を満たすように移動量ΔZで回折格子4aを移動させるとともに、パターン光の周期を変化量ξおよびξで変化させ、撮像部5に被検物1を撮像させる工程を繰り返す。これにより、処理部7は、各回折光からのクロストークを生じさせずに、精度よく各回折光の位相を求めることができる。例えば、回折光の次数を0次から±1次まで考慮し、光源2aの波長λを800nm、回折格子4aのX方向の回折格子定数Dを625line/mm、回折格子4aのY方向の回折格子定数Dを642line/mmとした場合を想定する。ここで、角度αを19.52°、角度αを19.41°、周期Tを0.95mm、周期Tを0.97mm、回折格子4aの移動量ΔZを−0.43mmとする。また、X方向におけるパターン光の周期の変化量ξを−0.056rad、Y方向におけるパターン光の周期の変化量ξを−0.043radとする。この場合に、X方向における各回折光の位相シフト量、およびY方向における各回折光の位相シフト量を表2に表わされる値にすることができ、式(14)および式(15)より規定枚数を「145枚」に決定することができる。
Figure 0006417099
上述のように、第2実施形態の計測装置は、回折格子4aを移動させるとともにパターン光の周期を変化させ、被検物1を撮像部5に撮像させる工程を繰り返すことにより複数の画像を取得し、複数の画像に基づいて各回折光の位相を求めることができる。これにより、第2実施形態の計測装置は、第1実施形態の計測装置10と同様に、死角が少ない計測や、合成波長による広い計測レンジでの計測を行うことができる。
ここで、第2実施形態の計測装置は、回折格子4aをZ方向に移動させることとパターン光の周期を変化させることにより各回折光の位相を変化させたが、それに限られるものではない。例えば、回折格子4aをZ方向に移動させることに加えて、回折格子4aに対するパターン光の入射角度が変わるように回折格子4aの傾きを変更させることにより、各回折光の位相を変化させてもよい。この場合、計測装置は、例えば、回折格子4aの傾きを変更する第2変更部を含み、第2変更部によって回折格子4aの傾きが変更されうる。第2実施形態における第2変更部は、例えば、変更部に含まれうる。また、回折格子4aをZ方向に移動させることと、パターン光の周期を変化させることと、回折格子4aの角度を変化させることとを併用することにより各回折光の位相を変化させてもよい。
<第3実施形態>
第3実施形態の計測装置30について説明する。図7は、第3実施形態の計測装置30を示す概略図である。第3実施形態の計測装置30は、第1実施形態の計測装置10と比較して、入射光の偏光状態により回折効率(偏向方向)が顕著に異なる偏光回折格子4bと波長板4cとが偏向部4に設けられている。また、第3実施形態の計測装置30では、偏光回折格子4bの偏向方向がZ方向と平行な方向になるように光学系3が傾いて配置されており、偏光回折格子4bと波長板4cが、光学系3から射出されたパターン光が垂直に入射するように配置されている。そして、射出部2の光源2aは、ある一方向の偏向成分のみを有する光(直線偏光)を射出するように構成される。これにより、偏向部4(波長板4c)に入射するパターン光が直線偏光の偏光状態を有する。このように偏向部4に入射するパターン光の偏光状態を直線偏光にすることで、偏光回折格子4bにより回折される回折光を限定することができ、余分な回折光が撮像部5に入射することを低減することができる。このように第3実施形態の計測装置30は、波長板4cによってパターン光の偏光状態を制御することで、照明光と被検光の光路を異ならせることにより、複数の次数の回折光における位相差を大きくすることができる。ここで、第3実施形態の計測装置30は、第1実施形態の計測装置10における各部の構成と同様であるため、各部の構成については説明を省略する。
第3実施形態の計測装置30は、第1実施形態の計測装置10と同様に、図3に示すフローチャートの工程を行うことにより、撮像部5の撮像面における各回折光の位相分布を求めることができる。S101では、処理部7は、図8〜図10に示すように、偏向部4の回折格子4aによって生成された複数の回折光(パターン光)を被検物1に照射させる。図8は、偏向部4における各構成要素の配置を示す概略図である。そして、図9は偏向部4における各構成要素のX方向における配置を示す概略図であり、図10は偏向部4における各構成要素のY方向における配置を示す概略図である。また、図9および図10における左図は照明光路を示し、右図は被検光路を示す。図8〜図10に示すように、偏向部4に入射するパターン光の偏光状態を直線偏光にすると、パターン光は、波長板4cによって円偏光にされ、偏光回折格子4bで偏向されて回折格子4aに角度をもって入射する。以下では、偏光回折格子4bから射出されたパターン光が回折格子4aに入射する角度(入射角度)を、X方向については角度α、およびY方向については角度αとする。S102〜S105は、第1実施形態の計測装置10と同様の工程であるため、ここでは説明を省略する。
次に、図3に示すフローチャートに従って処理部7が各回折光の位相分布を求める処理について具体的に説明する。撮像部5の各画素において検出される光の強度I(x,y)は、第1実施形態と同様に式(3)によって表わすことができる。ここで、図9に示すように、X方向において、回折格子4aで偏向される回折光の偏向角度をθx、被検物1で反射された回折光が回折格子4aで受光される受光角度をρxとする。また、図10に示すように、Y方向において、回折格子で偏向される回折光の偏向角度をθy、被検物で反射された回折光が回折格子で受光される受光角度をρyとする。このとき、X方向における位相変化量FxおよびY方向における位相変化量Fyは式(22)によって表わされる。ここで、kは回折次数を示し、照明光路の回折次数a(a=0,±1・・・±K)または被検光路の回折次数b(b=0,±1・・・±K)が入力される。
Figure 0006417099
偏向部4によって回折格子4aをΔZだけZ方向に移動させた場合に、撮像部5の各画素に置いて検出される光の強度I(x,y)は、式(23)によって表わすことができる。そして、式(23)を用いて、回折格子4aのZ方向への移動によって生じるX方向における各回折光の位相シフト量Δβx、およびY方向における各回折光の位相シフト量Δβyを式(24)によって表わすことができる。
Figure 0006417099
Figure 0006417099
ここで、受光角度ρxおよびρyは式(25)によって表わされ、偏向角度θxおよびθyは式(16)によって表わすことができる。そのため、各回折光の位相シフト量ΔβxおよびΔβyは、式(26)によって表わされる。
Figure 0006417099
Figure 0006417099
処理部7は、第1実施形態と同様に、式(26)が式(14)および式(15)の条件を満たすような移動量ΔZで回折格子4aを移動させ、撮像部5に被検物1を撮像させる工程を繰り返す。これにより、処理部7は、各回折光からのクロストークを生じさせずに、各回折光の位相を精度よく求めることができる。例えば、回折光の次数を0次から±1次まで考慮し、光源2aの波長λを800nm、回折格子4aのX方向の回折格子定数Dを572line/mm、回折格子4aのY方向の回折格子定数Dを572line/mmとした場合を想定する。ここで、角度αを27.20°、角度αを27.20°、周期Tを0.1mm、周期Tを0.05mm、回折格子4aの移動量ΔZを−0.017mmとする。この場合に、X方向およびY方向における各回折光の位相シフト量を表3に表わされる値にすることができ、式(14)および式(15)より規定枚数を「100枚」に決定することができる。
Figure 0006417099
上述のように、第3実施形態の計測装置30では、偏光状態により偏向方向が異なる偏光回折格子4bと波長板4cとが偏向部4に設けられ、偏光回折格子4bの偏向方向がZ方向と平行な方向になるように光学系3が傾いて配置されている。そして、第3実施形態の計測装置30は、回折格子4aを移動させ、被検物1を撮像部5に撮像させる工程を繰り返すことにより複数の画像を取得し、複数の画像に基づいて各回折光の位相を求めることができる。これにより、第3実施形態の計測装置30は、第1実施形態の計測装置10と同様に、死角が少ない計測や、合成波長による広い計測レンジでの計測を行うことができる。
<第4実施形態>
第4実施形態の計測装置について説明する。第4実施形態の計測装置は、第3実施形態の計測装置30と装置構成が同様であるため、ここでは装置構成の説明を省略する。また、第4実施形態の計測装置は、偏向部4に回折格子4aと被検物1との間の距離を変更させることに加えて、射出部2の変換素子2cにパターン光における明部と暗部との配列の周期を変化させることにより撮像部5に入射する各回折光の移動をシフトさせる。ここで、第4実施形態の計測装置は、第2実施形態の計測装置と同様に、図6に示すフローチャートの工程を行うことにより、撮像部5の撮像面における各回折光の位相分布を求めることができる。図6に示すフローチャートの各工程(S201〜S205)は、第2実施形態と同様の工程であるため、ここでは説明を省略する。
次に、図6に示すフローチャートに従って処理部7が各回折光の位相分布を求める処理について具体的に説明する。偏向部4と変換素子2cによる各回折光の位相シフトを行う前に撮像部5の各画素において検出される光の強度I(x,y)は、第3実施形態と同様に式(3)によって表わすことができる。変更部によって回折格子4aをΔZだけZ方向に移動させた場合に撮像部5の各画素において検出される光の強度I(x,y)は、第3実施形態と同様に式(23)によって表わすことができる。ここで、変換素子2cによるX方向におけるパターン光の周期の変化量をξ、Y方向におけるパターン光の周期の変化量をξとすると、撮像部5の各画素において検出される光の強度I(x,y)は、式(23)を用いて式(27)で表わすことができる。そして、式(3)および式(27)を用いて、回折格子4aの移動とパターン光の周期の変化とによって生じる各回折光の位相シフト量ΔβxおよびΔβyを、式(28)によって表わすことができる。
Figure 0006417099
Figure 0006417099
また、式(28)によって表わされる各回折光の位相シフト量ΔβxおよびΔβyは、式(25)および式(16)を用いて、式(29)によって表わされる。
Figure 0006417099
処理部7は、式(29)が式(14)および式(15)の条件を満たすような移動量ΔZで回折格子4aを移動させるとともに、パターン光の周期を変化量ξおよびξで変化させ、撮像部5に被検物1を撮像させる工程を繰り返す。これにより、処理部7は、各回折光からのクロストークを生じさせずに、各回折光の位相を精度よく求めることができる。例えば、回折光の次数を0次から±1次まで考慮し、光源2aの波長λを800nm、回折格子4aのX方向の回折格子定数Dを572line/mm、回折格子4aのY方向の回折格子定数Dを572line/mmとした場合を想定する。ここで、角度αを27.20°、角度αを27.20°、周期Tを0.1mm、周期Tを0.1mm、回折格子4aの移動量ΔZを0.034mmとする。また、X方向におけるパターン光の周期の変化量ξを−0.25rad、Y方向におけるパターン光の周期の変化量ξを0.50radとする。この場合に、X方向およびY方向における各回折光の位相シフト量を表4に表わされる値にすることができ、式(14)および式(15)より規定枚数を「50枚」に決定することができる。
Figure 0006417099
上述のように、第4実施形態の計測装置では、偏光状態により偏向方向が異なる偏光回折格子4bと波長板4cとが偏向部4に設けられ、偏光回折格子4bの偏向方向がZ方向と平行な方向になるように光学系3が傾けて配置されている。そして、第4実施形態の計測装置は、回折格子4aを移動させるとともにパターン光の周期を変化させ、被検物1を撮像部5に撮像させる工程を繰り返すことにより複数の画像を取得し、複数の画像に基づいて各回折光の位相を求めることができる。これにより、第4実施形態の計測装置は、死角が少ない計測や、合成波長による広い計測レンジでの計測を行うことができる。
<第5実施形態>
本発明の第5実施形態の計測装置50について、図11を参照しながら説明する。第5実施形態の計測装置50は、第1実施形態の計測装置10と比較して、偏向部4の構成が異なる。第5実施形態において、偏向部4は、光学系3から射出されたパターン光の偏光状態を変更可能な液晶素子4dと、液晶素子4dから射出されたパターン光の偏光状態によって回折効率(偏向方向)が顕著に異なる偏光回折格子4eを含みうる。そして、計測装置50は、偏光回折格子4eの外側から内側に向かう方向にパターン光が変更されて被検物1に照射されるように処理部7によって液晶素子4dを制御する。これにより、計測装置50は、パターン光が被検物1に照射される領域を限定することができるとともに、計測に不要である信号が発生することを低減することができる。
図11は、第5実施形態の計測装置50を示す概略図である。第5実施形態の計測装置50は、射出部2と、光学系3と、偏向部4と、撮像部5と、ステージ6と、処理部7とを含みうる。射出部2の光源2aは、ある一方向の偏向成分のみを有する光(直線偏光)を射出する。光源2aから射出された光は、コリメータレンズ2bによって平行光にされた後に変換素子2cに入射し、明部と暗部との周期的な配列を有するパターン光に変換される。変換素子2cは、例えば、光透過部分と遮光部分とが周期的に(交互に)配列されたパターンを有するマスク、液晶素子、またはデジタルミラーデバイスなどが用いられうる。そして、変換素子2cでは、偏向部4の周辺部のみにパターン光が入射するように、変換素子2cの中央部分が遮光されている。射出部2から射出されたパターン光は、光学系3において、偏光ビームスプリッタ3aにより反射されて2枚の対物レンズ3bおよび3cを透過することにより径が拡大されて光学系3から射出し、偏向部4に入射する。
ここで、第5実施形態の偏向部4の構成について、図12を参照しながら説明する。図12は、偏向部4の構成が図示された第5実施形態の計測装置50を示す概略図である。偏向部4は、上述のように、光学系3から射出されたパターン光の偏光状態を変更可能な液晶素子4dと、液晶素子4dから射出されたパターン光の偏光状態によって回折効率が顕著に異なる偏光回折格子4eとを含む。図12に示される偏向部4においては、2つの液晶素子(4dおよび4d)と2つの偏光回折格子(4eおよび4e)とがZ方向に沿って交互に配置されている。偏光回折格子4eは、図13に示すように、左回りの円偏光のパターン光が入射した場合(左図)と、右回りの円偏光のパターン光が入射した場合(右図)とで異なる方向にパターン光を偏向することができる。
図12において、1つ目の液晶素子4dの左端に入射したパターン光(X方向の直線偏光)は、液晶素子4dによって偏光状態が制御され、左回りの円偏光となって射出される。左回りの円偏光となったパターン光は、1つ目の偏光回折格子4eの周辺部(左端)に入射する。このとき、偏光回折格子4eに入射したパターン光は左回りの円偏光であるため、図12における+X方向に偏向されるとともに、右回りの円偏光に変換される。偏光回折格子4eにより偏向されたパターン光は、2つ目の液晶素子4dの左端に入射し、偏光状態が制御されて左回りの円偏光となって液晶素子4dから射出される。そして、左回りの円偏光となったパターン光は、2つ目の偏光回折格子4eの周辺部(左端)に入射し、偏光回折格子4eによって図12における+X方向に偏向されて被検物1の左半分の領域に照射される。
一方で、図12において、1つ目の液晶素子4dの右端に入射したパターン光(直線偏光)は、液晶素子4dによって偏光状態が制御され、右回りの円偏光となって射出される。右回りの円偏光となったパターン光は、1つ目の偏光回折格子4eの周辺部(右端)に入射し、偏光回折格子4eによって図12における−X方向に変更されるとともに、左回りの円偏光に変換される。偏光回折格子4eにより偏向されたパターン光は、2つ目の液晶素子4dの右端に入射し、偏光状態が制御されて右回りの円偏光となって液晶素子4dから射出される。そして、右回りの円偏光となったパターン光は、2つ目の偏光回折格子4eの周辺部(右端)に入射し、偏光回折格子4eによって図12における−X方向に偏向されて被検物1の右半分の領域に照射される。
被検物1の左半分の領域で反射されたパターン光の一部は、偏光回折格子4eの中央部左側に垂直に入射する。偏光回折格子4eに入射したパターン光は、右回りの円偏光であるため、偏光回折格子4eによって図12における+X方向に偏向されるとともに、左回りの円偏光に変換される。左回りの円偏光となったパターン光は、液晶素子4dに入射し、偏光状態が制御されて右回りの円偏光となって偏光回折格子4eに入射する。偏光回折格子4eに入射したパターン光は、偏光回折格子4eによって図12における+X方向に偏向されるとともに、左回りの円偏光に変換されて液晶素子4dに入射する。液晶素子4dに入射したパターン光は、偏光状態を制御され、Y方向の直線偏光になって液晶素子4dから垂直に射出される。
また、被検物1の右半分の領域で反射されたパターン光の一部は、偏光回折格子4eの中央部右側に垂直に入射する。偏光回折格子4eに入射したパターン光は、左回りの円偏光であるため、偏光回折格子4eによって図12における−X方向に偏向されるとともに、右回りの円偏光に変換される。右回りの円偏光となったパターン光は、液晶素子4dに入射し、偏光状態が制御されて左回りの円偏光となって偏光回折格子4eに入射する。偏光回折格子4eに入射したパターン光は、偏光回折格子4eによって図12における−X方向に偏向されるとともに、右回りの円偏光に変換されて液晶素子4dに入射する。液晶素子4dに入射したパターン光は、偏光状態を制御され、Y方向の直線偏光になって液晶素子4dから垂直に射出される。
液晶素子4dから垂直に射出されたパターン光は、対物レンズ3cで集束され、開口絞り3dを通過して偏光ビームスプリッタ3aに入射する。偏光ビームスプリッタ3aに入射したパターン光は、Y方向の直線偏光であるため、偏光ビームスプリッタ3aを透過して撮像部5に入射する。ここで、第5実施形態の計測装置50では、被検物1で反射されて偏向部4(偏光回折格子4e)に垂直に入射するパターン光は偏向部4(液晶素子4d)から垂直に射出されるため、開口絞り3dを通過することができる。一方で、被検物1で反射されて偏向部4に垂直に入射しないパターン光は偏向部4から垂直に射出されないため、開口絞り3dによって遮断される。したがって、第5実施形態の計測装置50は、被検物1に照射されるパターン光に対して所定の輻輳角を持って反射されたパターン光のみを撮像部5に入射させることができ、計測に不要である信号が撮像部5において発生することを低減することができる。ここで、第5実施形態の計測装置50は、第1〜第4実施形態と同様に、偏向部4と被検物1との間の距離の変更や、パターン光の周期の変更などを行い、被検物1を撮像部5に撮像させる工程を繰り返すことにより複数の画像を取得してもよい。また、第5実施形態の計測装置50は、射出部2の変換素子2cや偏向部4の液晶素子4dを制御することにより、図14に示すように、パターン光が照射される被検物1の領域を変えることができる。
<物品の製造方法の実施形態>
本発明の実施形態における物品の製造方法は、例えば、金属部品や光学素子等の物品を製造する際に用いられる。本実施形態の物品の製造方法は、上記の計測装置を用いて被検物の形状を計測する工程と、かかる工程における計測結果に基づいて被検物を加工する工程とを含む。例えば、被検物の形状を計測装置を用いて計測し、その計測結果に基づいて、被検物の形状が設計値になるように当該被検物を加工(製造)する。本実施形態の物品の製造方法は、計測装置により高精度に被検物の形状を計測できるため、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形および変更が可能である。

Claims (13)

  1. 被検物の形状を計測する計測装置であって、
    パターン光を射出する射出部と、
    前記射出部から射出された前記パターン光を前記被検物に導くための光学系と、
    前記光学系と前記被検物との間に配置され、前記光学系から射出された前記パターン光を偏向する偏向部と、
    前記被検物を前記光学系および前記偏向部を介して撮像する撮像部と、
    前記撮像部により撮像された前記被検物の画像に基づいて前記被検物の形状を決定する処理部と、
    を含み、
    前記偏向部は、前記光学系から射出された前記パターン光を回折させる回折格子を有する、ことを特徴とする計測装置。
  2. 前記偏向部は、前記回折格子によって生成された複数の次数の回折光を前記被検物に照射する、ことを特徴とする請求項1に記載の計測装置。
  3. 前記回折格子と前記被検物との間の距離を変更する変更部を更に含み、
    前記処理部は、前記変更部に前記距離を変更させて前記撮像部に前記被検物を撮像させる工程を繰り返すことにより複数の前記画像を取得し、前記撮像部に入射する各回折光の位相を複数の前記画像に基づいて求める、ことを特徴とする請求項1又は2に記載の計測装置。
  4. 前記射出部は、光源と、前記光源から射出された光を明部と暗部との周期的な配列を有する前記パターン光に変換する変換素子とを含み、
    前記処理部は、前記工程において、前記変更部に前記距離を変更させることに加えて、前記変換素子に前記パターン光における前記配列の周期を変化させる、ことを特徴とする請求項に記載の計測装置。
  5. 前記変換素子は、液晶素子およびデジタルミラーデバイスのうち少なくとも1つを含む、ことを特徴とする請求項に記載の計測装置。
  6. 前記回折格子に対する前記パターン光の入射角度が変わるように前記回折格子の傾きを変更する第2変更部を更に含み、
    前記処理部は、前記工程において、前記変更部に前記距離を変更させることに加えて、前記第2変更部に前記回折格子の傾きを変更させる、ことを特徴とする請求項3乃至のうちいずれか1項に記載の計測装置。
  7. 前記回折格子と前記被検物との相対位置を変更する、前記被検物上に投影されるパターン光の周期を変更する、又は、前記パターン光の強度を空間的に変調する変更部を有する、ことを特徴とする請求項1又は2に記載の計測装置。
  8. 前記変更部は、前記光学系の光軸と平行な方向に沿って前記回折格子を駆動するアクチュエータを含む、ことを特徴とする請求項3乃至7のうちいずれか1項に記載の計測装置。
  9. 前記回折格子は、前記パターン光が前記回折格子に斜入射するように傾いて配置されている、ことを特徴とする請求項1乃至のうちいずれか1項に記載の計測装置。
  10. 前記偏向部は、入射する光の偏光状態によって偏向方向が異なる偏光回折格子と波長板とを含む、ことを特徴とする請求項1乃至9のうちいずれか1項に記載の計測装置。
  11. 前記回折格子は、入射する光の偏光状態によって回折方向が変わらない、ことを特徴とする請求項1乃至9のうちいずれか1項に記載の計測装置。
  12. 被検物の形状を計測する計測装置であって、
    パターン光を射出する射出部と、
    前記射出部から射出された前記パターン光を前記被検物に導くための光学系と、
    前記光学系と前記被検物との間に配置され、前記光学系から射出された前記パターン光を偏向する偏向部と、
    前記被検物を前記光学系および前記偏向部とを介して撮像する撮像部と、
    前記撮像部により撮像された前記被検物の画像に基づいて前記被検物の形状を決定する処理部と、
    を含み、
    前記偏向部は、前記光学系から射出された前記パターン光の偏光状態を変換可能な液晶素子、および前記液晶素子から射出された前記パターン光の偏光状態によって偏向方向が異なる偏光回折格子を含み、
    前記処理部は、前記偏光回折格子の外側から内側に向かう方向に前記パターン光が偏向されて前記被検物に照射されるように前記液晶素子を制御する、ことを特徴とする計測装置。
  13. 前記液晶素子は、直線偏光の偏光状態を有する光を、円偏光の偏光状態を有する光に変換する、ことを特徴とする請求項12に記載の計測装置。
JP2014050532A 2014-03-13 2014-03-13 計測装置、および物品の製造方法 Active JP6417099B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014050532A JP6417099B2 (ja) 2014-03-13 2014-03-13 計測装置、および物品の製造方法
EP15000519.7A EP2918968A3 (en) 2014-03-13 2015-02-23 Optical shape measuring apparatus with diffraction grating and method of manufacturing article
US14/643,170 US9797717B2 (en) 2014-03-13 2015-03-10 Measuring apparatus and method of manufacturing article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014050532A JP6417099B2 (ja) 2014-03-13 2014-03-13 計測装置、および物品の製造方法

Publications (2)

Publication Number Publication Date
JP2015175642A JP2015175642A (ja) 2015-10-05
JP6417099B2 true JP6417099B2 (ja) 2018-10-31

Family

ID=52577602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014050532A Active JP6417099B2 (ja) 2014-03-13 2014-03-13 計測装置、および物品の製造方法

Country Status (3)

Country Link
US (1) US9797717B2 (ja)
EP (1) EP2918968A3 (ja)
JP (1) JP6417099B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6440836B2 (ja) * 2015-06-10 2018-12-19 株式会社Pfu 画像処理システム、画像読取装置、領域検出方法及びコンピュータプログラム
NL2017417A (en) * 2015-10-08 2017-04-11 Asml Netherlands Bv Topography Measurement System
JP2019015527A (ja) * 2017-07-04 2019-01-31 株式会社ミツトヨ 画像測定装置及びプログラム
KR102464366B1 (ko) * 2017-07-31 2022-11-07 삼성전자주식회사 메타 프로젝터 및 이를 포함하는 전자 장치
US10922828B2 (en) 2017-07-31 2021-02-16 Samsung Electronics Co., Ltd. Meta projector and electronic apparatus including the same
US10802382B2 (en) * 2018-07-24 2020-10-13 Qualcomm Incorporated Adjustable light projector for flood illumination and active depth sensing
EP4354081A3 (en) * 2018-10-15 2024-07-17 Koh Young Technology Inc. Focus-less inspection apparatus and method
US11022813B2 (en) * 2019-04-08 2021-06-01 Qualcomm Incorporated Multifunction light projector with multistage adjustable diffractive optical elements
CN111238396B (zh) * 2020-02-10 2021-03-09 北京理工大学 一种瞬态数字莫尔移相干涉测量装置和方法
US11521504B2 (en) * 2020-03-18 2022-12-06 Rosemount Aerospace Inc. Method and system for aircraft taxi strike alerting

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148106A (ja) * 1986-12-10 1988-06-21 Minolta Camera Co Ltd 物体位置測定装置
CA2044820C (en) 1990-06-19 1998-05-26 Tsugito Maruyama Three-dimensional measuring apparatus
AU4182399A (en) * 1998-05-01 1999-11-23 Metrologic Instruments, Inc. Doe-based systems and devices for producing laser beams having modified beam characteristics
EP1875162B1 (en) * 2005-04-06 2014-06-11 Dimensional Photonics International, Inc. Determining positional error of an optical component using structured light patterns
US7492450B2 (en) 2005-10-24 2009-02-17 General Electric Company Methods and apparatus for inspecting an object
JP2007155379A (ja) * 2005-12-01 2007-06-21 Tokyo Univ Of Agriculture & Technology 三次元形状計測装置および三次元形状計測方法
US8542421B2 (en) * 2006-11-17 2013-09-24 Celloptic, Inc. System, apparatus and method for extracting three-dimensional information of an object from received electromagnetic radiation
US8224066B2 (en) * 2007-05-29 2012-07-17 Gerd Haeusler Method and microscopy device for the deflectometric detection of local gradients and the three-dimensional shape of an object
JP5170154B2 (ja) * 2010-04-26 2013-03-27 オムロン株式会社 形状計測装置およびキャリブレーション方法
JP2012093235A (ja) * 2010-10-27 2012-05-17 Nikon Corp 三次元形状測定装置、三次元形状測定方法、構造物の製造方法および構造物製造システム
JP2013113581A (ja) * 2011-11-24 2013-06-10 Suwa Optronics:Kk 3次元形状データ取得装置の光学測定ヘッド
JP6035031B2 (ja) 2012-02-28 2016-11-30 藤垣 元治 複数の格子を用いた三次元形状計測装置
JP6043528B2 (ja) * 2012-07-20 2016-12-14 株式会社日立ハイテクノロジーズ パターン測定装置
JP6273127B2 (ja) * 2013-11-14 2018-01-31 キヤノン株式会社 計測装置、および物品の製造方法
US9631973B2 (en) * 2013-12-13 2017-04-25 Raytheon Company Multifunction imager

Also Published As

Publication number Publication date
US20150260510A1 (en) 2015-09-17
JP2015175642A (ja) 2015-10-05
EP2918968A3 (en) 2015-12-23
US9797717B2 (en) 2017-10-24
EP2918968A2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP6417099B2 (ja) 計測装置、および物品の製造方法
TWI484139B (zh) 彩色共焦掃描裝置
JP7166375B2 (ja) 物体の表面の光学的三次元トポグラフィ計測システム
US20100277748A1 (en) Method and System for Measuring Relative Positions Of A Specular Reflection Surface
US20150369750A1 (en) Confocal Line Inspection Optical System
JP5397704B2 (ja) 形状測定装置
JP6273127B2 (ja) 計測装置、および物品の製造方法
KR101566129B1 (ko) 라인 스캔 방식의 모아레 3차원 형상 측정 장치 및 방법
JP6293528B2 (ja) 干渉計における参照ミラー表面形状の校正方法
JP2014115144A (ja) 形状測定装置、光学装置、形状測定装置の製造方法、構造物製造システム、及び構造物製造方法
JP2006258438A (ja) 高精度三次元形状測定方法および装置
JP5543765B2 (ja) フィゾー型干渉計、及びフィゾー型干渉計の測定方法
JP2009293925A (ja) 光学検査装置の誤差補正装置
US20200249178A1 (en) Phase contrast x-ray imaging system
JP2017125707A (ja) 計測方法および計測装置
JP2017093496A (ja) 撮像装置
JP7076042B2 (ja) レーザ三角測量装置及び較正方法
JP2014145684A (ja) 測定装置
KR102160025B1 (ko) 하전 입자빔 장치 및 광학식 검사 장치
JP2009145068A (ja) 表面形状の測定方法および干渉計
JP5194272B2 (ja) 干渉計、及び形状測定方法
JP2019060647A (ja) 距離計測装置及び方法
JP2014163698A (ja) 形状測定装置及び形状測定方法
JP2015194347A (ja) 距離測定装置および方法
JP2012149983A (ja) 変位検出装置、露光装置、及びデバイス製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181005

R151 Written notification of patent or utility model registration

Ref document number: 6417099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151