JP6415350B2 - 撮像装置およびその制御方法 - Google Patents

撮像装置およびその制御方法 Download PDF

Info

Publication number
JP6415350B2
JP6415350B2 JP2015034150A JP2015034150A JP6415350B2 JP 6415350 B2 JP6415350 B2 JP 6415350B2 JP 2015034150 A JP2015034150 A JP 2015034150A JP 2015034150 A JP2015034150 A JP 2015034150A JP 6415350 B2 JP6415350 B2 JP 6415350B2
Authority
JP
Japan
Prior art keywords
focus detection
focus
image
imaging
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015034150A
Other languages
English (en)
Other versions
JP2016156931A (ja
Inventor
英秋 高宮
英秋 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015034150A priority Critical patent/JP6415350B2/ja
Publication of JP2016156931A publication Critical patent/JP2016156931A/ja
Application granted granted Critical
Publication of JP6415350B2 publication Critical patent/JP6415350B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)

Description

本発明は、撮像装置の自動焦点調節(AF制御)の技術に関する。
デジタルカメラなどの撮像装置には、撮像面上で瞳分割を行って取得した画像の位相差から焦点位置検出を行う撮像面位相差方式のオートフォーカス(以下、撮像面位相差AFという)機能を搭載した装置がある。撮像面位相差方式では、撮像素子の撮像動作を行いつつ位相差AF方式によって精度およびレスポンスの良い焦点検出を行えるので、特に動画撮影の際などに効果を発揮する。動画撮影のAF動作の場合、フォーカスレンズが不必要に動きすぎることによる映像品位の低下を回避するため、主被写体に対する合焦時にはフォーカスレンズの駆動が一時的に停止される。その後に主被写体が合焦領域を超えて移動した際に、フォーカスレンズの駆動を再開させる制御が行われる。
特許文献1には、被写体像の焦点位置を撮像平面上の複数の位置で検出する焦点検出部を備え、記憶された焦点検出部の出力に基づいて所定の時刻における被写体像の焦点位置を予測する技術が開示されている。特許文献2に開示の装置は、位相差によって焦点を検出する第1焦点検出から得られる像信号に基づき、被写体が光軸に垂直方向の成分を有して移動したことを検出する。合焦後に、第1焦点検出の結果と、撮像素子からの信号を用いて焦点を検出する第2焦点検出の結果に基づき、自動焦点調整を再起動するか否かが決定される。
特開2012−189934号公報 特開2012−128316号公報
従来技術では、焦点検出によって得られるデフォーカス量に応じてAF動作の再起動を行う際の各種パラメータを変化させ、動体である被写体への追従性を高めることができる。しかし、被写体の移動速度に応じた制御が行われないので、移動速度によっては撮影した映像の品位低下が懸念される。例えば、移動速度が遅い被写体に対しては、映像が大きく暈けることなくAF動作が行われるが、被写体の移動速度が大きくなるほどデフォーカス量が大きくなってしまい、映像品位が低下する可能性がある。
本発明の目的は、被写体の移動速度に対応した焦点調節制御を行うことで、映像品位の低下を抑制することである。
本発明の撮像装置は、結像光学系の異なる瞳部分領域をそれぞれ通過する光束を受光する複数の焦点検出画素を有する撮像素子と、前記複数の焦点検出画素の出力信号を用いて焦点検出を行う焦点検出手段と、前記焦点検出手段により検出される検出量を用いて、前記結像光学系を構成するレンズの駆動を制御することで焦点調節制御を行う制御手段と、を備える。
本発明の第1の側面に係る撮像装置にて前記制御手段は、被写体に合焦したと判断した場合に前記レンズの駆動を停止した時点から、再起動を行うか否かを判定する際に用いる判定用の時間または回数を、前記焦点検出手段により検出される検出量の時間的変化が大きいほど小さく設定し、前記検出量が閾値を超えている時間または回数が、前記判定用の時間または回数を超えた場合に前記レンズの駆動を再起動させる制御を行う。
本発明の第2の側面に係る撮像装置にて前記制御手段は、被写体に合焦したと判断した場合に前記レンズの駆動を停止した時点から、前記焦点検出手段により検出される検出量を積算し、積算値が閾値を超えた場合に前記レンズの駆動を再起動させる制御を行う。
本発明によれば、被写体の移動速度に対応した焦点調節制御を行うことで、映像品位の低下を抑制できる。
本発明の実施例における撮像装置の概略構成図である。 本発明の実施例における画素配列の概略図である。 本発明の実施例における画素の概略平面図(A)と概略断面図(B)である。 本発明の実施例における画素と瞳分割との関係を説明する概略図である。 本発明の実施例における撮像素子と瞳分割の概略説明図(A)、および第1焦点検出信号と第2焦点検出信号のデフォーカス量と像ずれ量の概略関係図(B)である。 本発明の実施例における焦点検出処理を説明するフローチャートである。 本発明の実施例における第1焦点検出信号と第2焦点検出信号の瞳ずれによるシェーディングの概略説明図である。 本発明の実施例におけるフィルタ周波数帯域を例示するグラフである。 本発明の実施例における被写体の動きとデフォーカス量の変化を例示する図である。 本発明の実施例1における処理を説明するフローチャートである。 本発明の実施例1における像面移動速度の信頼性判定の範囲を示す図である。 本発明の実施例2における処理を説明するフローチャートである。 本発明の実施例2における被写体の移動速度とそのデフォーカス量の総和を例示する図である。
以下、添付図面を参照して本発明の各実施形態を詳細に説明する。各実施形態では、本発明の実現手段の一例として、主に一眼レフカメラの構成を想定して説明する。但し、本発明は、一眼レフカメラの形態に限定されることはなく、ビデオカメラ、コンパクトデジタルカメラ等、動画撮影が可能なあらゆる撮像装置に適用可能である。また、本発明が適用される装置の構成や各種条件によって、装置の仕様は適宜修正又は変更されるべきものである。図1から図9を参照して、本発明の実施形態に共通する撮像装置の構成および動作を説明し、その後に図10から図13を参照して各実施形態を説明する。本実施形態では、撮像面位相差AFを用いて動画を撮影する際の焦点検出およびレンズ駆動に関する制御を説明する。
図1は本実施形態に係る撮像装置の構成例を示すブロック図である。第1レンズ群101は、撮像光学系(結像光学系)の先端に配置され、レンズ鏡筒にて光軸方向に進退可能に保持される。絞り兼用シャッタ102は、その開口径を調節することで撮影時の光量調節を行う他、静止画撮影時には露光秒時調節用シャッタとして機能する。第2レンズ群103は、絞り兼用シャッタ102と一体となって光軸方向に進退し、第1レンズ群101の進退動作と連動することで、変倍動作によるズーム機能を有する。第3レンズ群105は、光軸方向の進退により焦点調節を行うフォーカスレンズである。光学ローパスフィルタ106は、撮影画像の偽色やモアレを軽減するための光学素子である。撮像素子107は、2次元CMOS(相補型金属酸化膜半導体)フォトセンサと周辺回路からなり、撮像光学系の結像面に配置される。
ズームアクチュエータ111は、不図示のカム筒を回動することで、第1レンズ群101および第2レンズ群103を光軸方向に移動させて変倍動作を行う。絞りシャッタアクチュエータ112は、絞り兼用シャッタ102の開口径を制御して撮影光量を調節すると共に、静止画撮影時の露光時間制御を行う。フォーカスアクチュエータ114は、第3レンズ群105を光軸方向に移動させて焦点調節を行う。
被写体照明用の電子フラッシュ115は撮影時に使用し、キセノン管を用いた閃光照明装置または連続発光するLED(発光ダイオード)を備えた照明装置が用いられる。AF補助光源116は、低輝度の被写体または低コントラストの被写体に対する焦点検出能力を向上させる。AF補助光源116により、所定の開口パターンを有したマスクの像が、投光レンズを介して被写界に投影される。
カメラシステムの制御部を構成するCPU(中央演算処理装置)121は、各種の制御を司る制御中枢機能をもつ。CPU121は、演算部、ROM(リード・オンリ・メモリ)、RAM(ランダム・アクセス・メモリ)、A(アナログ)/D(デジタル)コンバータ、D/Aコンバータ、通信インターフェイス回路等を有する。CPU121はROMに記憶された所定のプログラムに従って、カメラが有する各種回路を駆動し、AF制御、撮影、画像処理、記録処理等の一連の動作を実行する。また、CPU121は画像処理の制御を行う。
電子フラッシュ制御回路122はCPU121の制御指令に従い、撮影動作に同期して電子フラッシュ115を点灯制御する。補助光駆動回路123はCPU121の制御指令に従い、焦点検出動作に同期してAF補助光源116を点灯制御する。撮像素子駆動回路124は撮像素子107の撮像動作を制御するとともに、取得した撮像信号をA/D変換してCPU121に送信する。画像処理回路125はCPU121の制御指令に従い、撮像素子107により取得した画像のγ(ガンマ)変換、カラー補間、JPEG(Joint Photographic Experts Group)圧縮等の処理を行う。画像処理回路125は、静止画撮影時に取得される静止画像データおよび動画撮影時に取得される動画像データに対する処理機能を有する。
フォーカス駆動回路126はCPU121の制御指令に従い、焦点検出情報に基づいてフォーカスアクチュエータ114を駆動制御し、第3レンズ群105を光軸方向に移動させて焦点調節を行う。絞りシャッタ駆動回路128はCPU121の制御指令に従い、絞りシャッタアクチュエータ112を駆動し、絞り兼用シャッタ102の開口径を制御する。ズーム駆動回路129はCPU121の制御指令に従い、撮影者のズーム操作指示に応じてズームアクチュエータ111を駆動する。振れ検出部130は、撮影レンズ装置や撮像装置内に組み込まれたジャイロセンサや加速度センサなどにより装置の振れを検出し、振れ検出信号をCPU121に出力する。
表示部131はLCD(液晶表示装置)等の表示デバイスを有し、カメラの撮影モードに関する情報、撮影前のプレビュー画像と撮影後の確認用画像、焦点検出時の合焦状態表示画像等を表示する。操作部132は、電源スイッチ、レリーズ(撮影トリガ)スイッチ、ズーム操作スイッチ、撮影モード選択スイッチ等を備え、操作指示信号をCPU121に出力する。フラッシュメモリ133はカメラ本体部に着脱可能な記録媒体であり、撮影済み画像データ等を記録する。
次に図2を参照して、本実施形態における撮像素子の撮像画素と焦点検出画素の配列を説明する。図2は、2次元CMOSセンサの撮像画素配列を4列×4行の範囲で例示し、焦点検出画素配列を8列×4行の範囲で例示する。2列×2行の画素群200は、以下に示す1組の画素200R,200G,200Bを備える。
・画素200R(左上の位置参照):R(赤)色の分光感度を有する画素。
・画素200G(右上と左下の位置参照):G(緑)色の分光感度を有する画素。
・画素200B(右下の位置参照):B(青)色の分光感度を有する画素。
各画素部は、2列×1行に配列した、第1焦点検出画素201と第2焦点検出画素202により構成されている。図2に示した4列×4行の画素(8列×4行の焦点検出画素)が平面上にて格子状に多数配置されることで、撮像画像信号および焦点検出信号を取得可能である。本実施形態の撮像素子では、画素の周期Pを4(μm)とし、画素数Nを横5575列×縦3725行(=約2075万画素)とする。また焦点検出画素の列方向の周期PAFを2(μm)とし、焦点検出画素数NAFを横11150列×縦3725行(=約4150万画素)とする。
図2に示した撮像素子における1つの画素200Gを、撮像素子の受光面側(+z側)から見た平面図を図3(A)に示す。図3(A)の紙面に垂直な方向にz軸を設定し、手前側をz軸の正方向と定義する。また、z軸に直交する上下方向にy軸を設定して上方をy軸の正方向とし、z軸およびy軸に直交する左右方向にx軸を設定して右方をx軸の正方向と定義する。図3(A)にてa−a切断線に沿って、−y方向から見た場合の断面図を図3(B)に示す。
図3(B)に示す画素200Gは、各画素の受光面側(+z方向)にて入射光を集光するマイクロレンズ305が形成され、分割された複数の光電変換部を備える。例えば、x方向における分割数をNとし、y方向における分割数をNとする。図3には、瞳領域をx方向にて2分割した例、すなわち、N=2,N=1の場合を例示し、副画素としての光電変換部301と光電変換部302が形成されている。光電変換部301は第1焦点検出画素201に対応し、光電変換部302は第2焦点検出画素202に対応する。光電変換部301と光電変換部302は、例えばp型層300とn型層との間にイントリンシック層を挟んだpin構造フォトダイオードとして形成される。または必要に応じて、イントリンシック層を省略し、pn接合フォトダイオードとして形成してもよい。各画素には、マイクロレンズ305と、光電変換部301および光電変換部302との間に、カラーフィルタ306が形成される。必要に応じて、副画素ごとにカラーフィルタ306の分光透過率を変えてもよいし、カラーフィルタを省略しても構わない。
画素200Gに入射した光はマイクロレンズ305が集光し、さらにカラーフィルタ306で分光された後に、光電変換部301と光電変換部302が受光する。光電変換部301と光電変換部302では、受光量に応じて電子とホール(正孔)が対生成され、空乏層で分離された後、負電荷をもつ電子はn型層(不図示)に蓄積される。一方、ホールは定電圧源(不図示)に接続されたp型層を通じて撮像素子の外部へ排出される。光電変換部301と光電変換部302のn型層(不図示)に蓄積された電子は、転送ゲートを介して、静電容量部(FD)に転送されて電圧信号に変換される。
図4は、画素構造と瞳分割との対応関係を示した概略的な説明図である。図4には、図3(A)に示した画素構造のa−a線での切断面を、+y方向から見た場合の断面図と、結像光学系の射出瞳面(射出瞳400参照)を、−z方向から見た図を示す。図4では、射出瞳面の座標軸と対応を取るために、断面図にてx軸とy軸を図3(A)に示す状態とは反転させて示している。第1焦点検出画素201に対応する第1瞳部分領域501は、−x方向に重心が偏倚している光電変換部301の受光面に対し、マイクロレンズ305によって、概ね共役関係になっている。つまり、第1瞳部分領域501は第1焦点検出画素201で受光可能な瞳領域を表し、瞳面上で+x方向に重心が偏倚している。また、第2焦点検出画素202に対応する第2瞳部分領域502は、重心が、+x方向に偏心している光電変換部302の受光面に対し、マイクロレンズ305によって、概ね共役関係になっている。第2瞳部分領域502は第2焦点検出画素202で受光可能な瞳領域を表し、瞳面上で、−x方向に重心が偏倚している。
図4に示す瞳領域500は、光電変換部301と光電変換部302(第1焦点検出画素201と第2焦点検出画素202)を全て併せた場合の、画素200G全体で受光可能な瞳領域である。撮像素子と瞳分割との対応関係を図5(A)の概略図に示す。第1瞳部分領域501と第2瞳部分領域502の、異なる瞳部分領域をそれぞれ通過した光束は、撮像素子の各画素に異なる角度で入射する。撮像面800への入射光は、N(=2)×N(=1)に分割された第1焦点検出画素201と第2焦点検出画素202で受光される。第1焦点検出画素201の光電変換部301と第2焦点検出画素202の光電変換部302は光を電気信号に変換する。本実施形態では、瞳領域が水平方向にて2つに瞳分割されている例を示す。必要に応じて、垂直方向に瞳分割を行ってもよい。
本実施形態に係る撮像素子107は、結像光学系の第1瞳部分領域を通過する光束を受光する第1焦点検出画素と、第1瞳部分領域とは異なる、結像光学系の第2瞳部分領域を通過する光束を受光する第2焦点検出画素を備える。結像光学系の第1瞳部分領域と第2瞳部分領域とを併せた瞳領域を通過する光束を受光する撮像画素は2次元アレイ状に複数配列されている。つまり、各撮像画素は第1焦点検出画素と第2焦点検出画素から構成される。必要に応じて、撮像画素と、第1焦点検出画素および第2焦点検出画素を個別の画素構成とし、撮像画素配列にて第1焦点検出画素と第2焦点検出画素を部分的に分散配置した構成を採用してもよい。
本実施形態では、撮像素子における各画素の第1焦点検出画素201の受光信号を集めて第1焦点検出信号が生成され、各画素の第2焦点検出画素202の受光信号を集めて第2焦点検出信号が生成される。焦点検出では、第1焦点検出信号と第2焦点検出信号から像ずれ量を算出する処理が行われる。また、撮像素子の画素ごとに、第1焦点検出画素201の出力信号と第2焦点検出画素202の出力信号を加算することで、有効画素数Nの解像度をもつ撮像信号が生成される。これにより、撮像画像データを取得することができる。
次に、撮像素子107により取得される第1焦点検出信号および第2焦点検出信号のデフォーカス量と像ずれ量との関係を説明する。図5(B)は、第1焦点検出信号および第2焦点検出信号のデフォーカス量と、第1焦点検出信号と第2焦点検出信号との間の像ずれ量について概略的に示す関係図である。撮像面800には撮像素子(不図示)が配置され、図4、図5(A)の場合と同様に、結像光学系の射出瞳が、第1瞳部分領域501と第2瞳部分領域502に2分割される。
デフォーカス量dは、その大きさ|d|が被写体像の結像位置から撮像面800までの距離を表す。被写体像の結像位置が撮像面800よりも被写体側にある前ピン状態では、負符号(d<0)とし、これとは反対の後ピン状態では正符号(d>0)として向きを定義する。被写体像の結像位置が撮像面(合焦位置)にある合焦状態では、d=0である。図5(B)に示す被写体801の位置は、合焦状態(d=0)に対応する位置を示しており、被写体802の位置は前ピン状態(d<0)に対応する位置を例示する。以下では、前ピン状態(d<0)と後ピン状態(d>0)とを併せて、デフォーカス状態(|d|>0)という。
前ピン状態(d<0)では、被写体802からの光束のうち、第1瞳部分領域501(または第2瞳部分領域502)を通過した光束は、いったん集光した後、光束の重心位置G1(またはG2)を中心として幅Γ1(またはΓ2)に広がる。この場合、撮像面800上で暈けた像となる。暈け像は、撮像素子に配列された各画素を構成する第1焦点検出画素201(または第2焦点検出画素202)により受光され、第1焦点検出信号(または第2焦点検出信号)が生成される。よって、第1焦点検出信号(または第2焦点検出信号)は、撮像面800上の重心位置G1(またはG2)にて、幅Γ1(またはΓ2)をもった被写体像(暈け像)として検出される。被写体像の幅Γ1(またはΓ2)は、デフォーカス量dの大きさ|d|が増加するのに伴い、概ね比例して増加する。同様に、第1焦点検出信号と第2焦点検出信号との間の被写体像の像ずれ量を「p」と記すと、その大きさ|p|はデフォーカス量dの大きさ|d|の増加に伴って増加する。例えば、像ずれ量pは光束の重心位置の差「G1−G2」として定義され、その大きさ|p|は、|d|が増加するのに伴い、概ね比例して増加する。なお、後ピン状態(d>0)では、第1焦点検出信号と第2焦点検出信号との間の被写体像の像ずれ方向が前ピン状態とは反対となるが、同様の傾向がある。
本実施形態では第1焦点検出信号と第2焦点検出信号、または第1焦点検出信号と第2焦点検出信号とを加算した撮像信号のデフォーカス量の大きさが増加するのに伴い、第1焦点検出信号と第2焦点検出信号との間の像ずれ量の大きさが増加する。
次に、本実施形態における位相差方式の焦点検出について説明する。
位相差方式の焦点検出では、第1焦点検出信号と第2焦点検出信号を相対的にシフトさせて信号の一致度を表す相関量を計算し、相関性(信号の一致度)の高くなるシフト量から像ずれ量が検出される。撮像信号のデフォーカス量の大きさが増加することに伴い、第1焦点検出信号と第2焦点検出信号との間の像ずれ量の大きさが増加するという関係性が利用される。像ずれ量をデフォーカス量に変換することで焦点位置の検出量が取得される。
図6は、本実施形態における焦点検出処理の流れを概略的に示すフローチャートである。本処理は、CPU121が実行するプログラムに従って撮像素子107、画像処理回路125を制御することで実現される焦点検出部が行う。
S110では、撮像素子107の有効画素領域内で焦点調節を行う焦点検出領域を設定する処理が行われる。焦点検出部は、焦点検出領域のうち、第1焦点検出画素の受光信号(A像信号)から第1焦点検出信号を生成し、第2焦点検出画素の受光信号(B像信号)から第2焦点検出信号を生成する。S120では、第1焦点検出信号と第2焦点検出信号に対し、それぞれ、信号データ量を抑制するために列方向に3画素分の加算処理が行われる。さらに、RGB信号を輝度信号(Y信号)にするためにベイヤー(RGB)加算処理が行われる。これらの2つの加算処理を併せて画素加算処理とする。S130では、第1焦点検出信号と第2焦点検出信号に対して、それぞれシェーディング補正処理(光学補正処理)が行われる。
図7を参照して、第1焦点検出信号と第2焦点検出信号の瞳ずれによるシェーディングについて説明する。図7は、撮像素子の周辺像高における第1焦点検出画素201の第1瞳部分領域501および第2焦点検出画素202の第2瞳部分領域502と、結像光学系の射出瞳400との関係を示す。
図7(A)は結像光学系の射出瞳距離Dlと撮像素子の設定瞳距離Dsが同じ場合を示す。この場合、第1瞳部分領域501と第2瞳部分領域502により、結像光学系の射出瞳400が、ほぼ均等に瞳分割される。これに対して、図7(B)は結像光学系の射出瞳距離Dlが撮像素子の設定瞳距離Dsより短い場合を示す。この場合、撮像素子の周辺像高では、結像光学系の射出瞳と撮像素子の入射瞳の瞳ずれが生じ、結像光学系の射出瞳400が不均等に瞳分割されてしまう。また、図7(C)は結像光学系の射出瞳距離Dlが撮像素子の設定瞳距離Dsより長い場合を示す。この場合、撮像素子の周辺像高では、結像光学系の射出瞳と撮像素子の入射瞳の瞳ずれが生じ、結像光学系の射出瞳400が不均等に瞳分割されてしまう。周辺像高で瞳分割が不均等になるのに伴い、第1焦点検出信号と第2焦点検出信号の強度が不均等になる。その結果、第1焦点検出信号と第2焦点検出信号のいずれか一方の強度が相対的に大きくなり、他方の強度が小さくなるシェーディングが生じる。
図6のS130では、焦点検出領域の像高と、撮像レンズ(結像光学系)のF値、射出瞳距離に応じてシェーディング補正係数が決定される。つまり、第1焦点検出信号についての第1シェーディング補正係数と、第2焦点検出信号についての第2シェーディング補正係数がそれぞれ生成される。第1シェーディング補正係数は第1焦点検出信号に乗算され、第2シェーディング補正係数は第2焦点検出信号に乗算されて、シェーディング補正処理が実行される。
位相差方式の焦点検出では、第1焦点検出信号と第2焦点検出信号との相関性(信号の一致度)に基づいて、検出量の取得処理が行われる。瞳ずれによるシェーディングが発生すると、第1焦点検出信号と第2焦点検出信号との相関性が低下する場合がある。位相差方式の焦点検出ではシェーディング補正処理により、第1焦点検出信号と第2焦点検出信号との相関性を改善し、焦点検出性能を良好にすることができる。
図6のS140では、第1焦点検出信号と第2焦点検出信号に対する、フィルタ処理が行われる。フィルタ処理の通過帯域を、図8の実線のグラフgaに例示する。横軸には空間周波数(ライン・スペース/mm)を示し、縦軸には最大値を1としたゲインを示す。本実施形態では、位相差方式の焦点検出により、デフォーカス量が大きい状態での焦点検出を行うため、フィルタ処理における通過帯域が低周波数帯域を含むようにフィルタが構成される。必要に応じて、デフォーカス量が大きい状態から小さい状態まで焦点調節を行う際には、デフォーカス状態に応じて焦点検出時のフィルタ処理における通過帯域を、図8の1点鎖線のグラフgbに示すように、より高周波帯域に調整してもよい。
次に、図6のS150では、フィルタ処理後の第1焦点検出信号と第2焦点検出信号を、瞳分割方向にて相対的にシフトさせるシフト処理が行われる。シフト処理により、第1焦点検出信号と第2焦点検出信号との一致度を表す相関量が算出される。フィルタ処理後のk番目の第1焦点検出信号をA(k)とし、フィルタ処理後のk番目の第2焦点検出信号をB(k)とする。焦点検出領域に対応する番号kの範囲をWとする。シフト処理によるシフト量をsとし、その範囲(シフト範囲)をΓ1として、相関量CORは、式(1)により算出される。
Figure 0006415350
シフト量sによるシフト処理の結果、k番目の第1焦点検出信号A(k)と、「k−s」番目の第2焦点検出信号B(k−s)とを対応させて減算することで、シフト減算信号が生成される。生成されたシフト減算信号の絶対値を計算し、焦点検出領域に対応する範囲W内で番号kでの和を求めることにより、相関量COR(s)を算出することができる。必要に応じて、行ごとに算出された相関量を、シフト量ごとに、複数の行に亘って加算してもよい。
S160では、S150で求めた相関量から、サブピクセル演算により、相関量が最小値となる実数値のシフト量を算出する処理が実行され、像ずれ量p1が求められる。この像ずれ量p1に対し、焦点検出領域の像高と、撮像レンズ(結像光学系)のF値、射出瞳距離に応じた第1変換係数K1を乗算することで検出量が算出される。
次に、以上の焦点検出方式を用いて動画撮影時に実行するAF制御のアルゴリズムについて説明する。
動画撮影時には、静止画撮影時のように逸早く被写体に焦点を合わせるAF制御ではなく、フォーカスレンズの駆動に関して品位の高いAF制御が求められる。つまり動画撮影の場合、AF制御でのフォーカシング動作による映像の見え方そのものが記録される。このため、焦点を早く合わせることよりはむしろ、フォーカシング動作の品位が重要とされる。品位を高めるための制御の一つとして、常にフォーカスレンズを駆動し続けずに、被写体にピントが合った時点でフォーカスレンズを停止させ、その後の所定の条件判断結果に応じてフォーカスレンズの駆動を再開させる制御がある。所定の条件判断結果とは、例えば、被写体が変わったことや、被写体像に暈けが生じたといったことなどである。この制御では、例えば、フォーカスレンズを停止させずに駆動が続いた場合や、不用意に低コントラスト部のような焦点検出精度の低い被写体に対する焦点検出を行うとき、あるいは他の被写体が瞬間的に横切った場合などに問題が起こり得る。このような場合、不用意にフォーカスレンズが駆動されると、画像が暈けてしまい動画の品位を低下させる可能性がある。そこで、本実施形態の撮像装置は動画撮影時にて、被写体に合焦したと判断した場合にはフォーカスレンズの駆動を一旦停止し、再度被写体が変化したか否かを判定する。被写体が変化したと判定された場合に、フォーカスレンズの駆動を再起動させる制御を行うことで、無駄なレンズ駆動の頻度を抑えて品位を高めることができる。
フォーカスレンズの停止状態から、当該レンズの駆動を再起動させるに際には、不用意なレンズ駆動を行わないために、被写体のピント面が変化したかどうかを判断する必要がある。被写体のピント面が変化したと確かに判断できた場合には、フォーカスレンズの駆動を再起動させる制御が実行される。例えばデフォーカス量が所定の閾値以内である場合には再起動が行われず、所定の閾値以上のデフォーカス量が、一定時間(判定用の基準時間)に亘って検出された場合に再起動が行われる。このような制御によれば、被写体が動いていない時には不必要に動くことがない品位の高い映像を得ることができる。但し、被写体が動き出した時には、前記一定時間の判定用時間(あるいは検出時間)を設ける場合、当該時間の経過に相当する距離だけ被写体が移動してからフォーカスレンズの駆動が行われる。つまり、判定用時間の長さを固定値とした場合には、被写体の追尾開始の際に一定時間の遅れが生じる。そのため画像に多少の暈けが生じてしまうことが懸念される。画像の暈け量は、被写体の移動速度が遅い場合は無視できる程度であるが、被写体の移動速度が速くなるほど大きくなる。前記一定時間内における被写体の移動量が大きいほど画像の暈け量が大きくなってしまうので、被写体の移動速度によっては映像の品位を低下させる可能性がある。
図9は、動き出した被写体を撮像装置で撮像している時のデフォーカス量の変化を示すグラフである。図9の横軸は時間(秒)を示し、縦軸はデフォーカス量([Fδ])を示す。このデフォーカス量は、単位をmmとして算出されたデフォーカス量を、絞り値であるF値および許容錯乱円径δで割って正規化した値であり、これにより暈け量に比例した値として取り扱うことができる。例えば、F値が2.0でδが0.02mmの場合、デフォーカス量が1mmの時には、25[Fδ]として暈け量を定量的に示すことができる。
図9(A)は、被写体が1m/sの速さで移動している場合を示す。図9(B)は、被写体が2m/sの速さで移動している場合を示す。各グラフにおける変曲点の位置では、フォーカスレンズの駆動が再起動され、被写体の追尾が開始するため、再びデフォーカス量の絶対値が減少していく。図9(A)および図9(B)では、判定用時間が同じ値に設定されている。そのため、図9(B)の場合の方が図9(A)の場合に比べて、再起動での動き出し時の最大デフォーカス量の絶対値が大きい。すなわち、映像の品位が低下することが判る。
そこで以下の実施形態では、被写体の移動速度に応じて判定用の時間または回数を可変値として制御することにより、被写体の移動速度に対応したレンズ駆動制御を実現する。
[実施例1]
本発明の第1実施形態に係る図10および図11を参照して、実施例1としての撮像装置を説明する。
図10はAF制御の要部を説明するフローチャートである。以下の処理は、CPU121が実行するプログラムに従って撮像素子107、画像処理回路125、フォーカス駆動回路126を制御することで実現される焦点調節制御部が行う。
図10のS1101で処理が開始し、S1102に進む。S1102にて、ある時刻tにおける像面移動速度を算出する場合、CPU121は、時刻tと、時刻tから時間を遡って過去n回の時刻(t−1、t−2・・、t−n)におけるデフォーカス量を取得する処理を実行する。過去のデフォーカス量の履歴についてはデータがメモリに記憶されている。次のS1103では、S1102で取得された現時点および過去n回分のデフォーカス量に基づいて直線近似(線形近似処理)が行われ、その傾きを算出することで像面移動速度V(Fδ/s)が取得される。この場合、デフォーカス量の取得回数nについては2以上の範囲で固定値または可変値とする。可変値の場合には、要求精度に応じて取得回数nを増減することで設定が随時に変更される。直線近似の際には、最小二乗法を用いることで算出の精度を向上させることができる。
次にS1104に進み、像面移動速度Vの値に信頼性があるかどうかについて判定される。この判定では、S1103で得られた像面移動速度Vの値を、所定値Vmin(下限値)および所定値Vmax(上限値)と比較し、下限値以上であって上限値以下であるか否かが判定される。図11は像面移動速度の信頼性判定の範囲を示す図である。図11の横軸は時間を示し、縦軸はデフォーカス量を示す。右上がりの直線の傾斜が像面移動速度Vを表す。像面移動速度Vが所定値Vmin未満である場合には、被写体が移動している可能性が低い。例えば、被写体が少し揺れている場合(被写体の呼吸による前後動や、風で揺れている等)のように、むやみにフォーカスレンズの駆動を再起動させると、かえって映像の品位を低下させる可能性がある。また、像面移動速度Vが所定値Vmaxを超える場合でも、被写体が移動している可能性が低い場合がある。そのような場合としては、被写体が焦点検出枠から外れてしまっている場合、あるいは被写体の前を突然、別の物体が横切ったために急激に動いたと誤検出される場合などがある。このような状況に対して直ちに反応してフォーカスレンズの駆動が再起動された場合、映像の品位を低下させる可能性がある。本実施形態では、像面移動速度Vが第1の閾値以上(Vmin以上)であって、かつ第2の閾値以下(Vmax以下)であるという条件に関する判定処理を行う。判定の結果、当該条件を満たす場合には図10のS1105に処理を進め、当該条件を満たさない場合にはS1102に処理を戻す。
S1105でCPU121はパンニング検出についての判定処理を実行する。撮影者が撮像装置のパンニング操作を行った際には、被写体が動かなくても像面移動速度Vの値が急激に変化する可能性がある。このため、その際のV値をフォーカスレンズ駆動の再起動のための判定に用いたのでは、誤ったレンズ駆動の発生が懸念される。そこで、S1105でCPU121は、振れ検出部130(図1参照)による振れ検出信号を取得して、パンニング動作が行われたか否かを判定する。パンニング動作が行われていないと判定された場合、S1106に処理を進める。パンニング動作が行われたと判定された場合には、像面移動速度Vを用いたフォーカスレンズ駆動の再起動を禁止し、S1102に戻って再度デフォーカス量が取得される。なお、撮影方向の変更動作としてパンニング動作を例示したが、チルティング動作の判定についても同様に行われる。チルティング動作が行われたことが判定された場合、像面移動速度Vを用いたフォーカスレンズ駆動の再起動が禁止される。
S1106でCPU121は、求めた像面移動速度V(Fδ/s)を用いて、前記の判定用時間を決定する。具体的には本実施形態の場合、デフォーカス量について、撮像装置のフレームレート、つまり信号読み出し周期ごとに離散的なタイミングで取得を行っている。このため、デフォーカス量の検出回数により判定用時間を規定することができる。この場合、判定用時間はデフォーカス量の検出回数に比例する。したがってCPU121は像面移動速度Vに応じて、検出回数kを決定する。以下の表1を参照して、像面移動速度Vに応じた検出回数kが決定される。
Figure 0006415350
表1にて、「k4>k3>k2>k1」の関係であり、像面移動速度Vが大きいほど、検出回数kは小さく設定される。像面移動速度Vが小さい場合には、検出回数kの値が大きいので、ゆっくりした被写体の動きに対し、滑らかで信頼性の高いレンズ駆動を実現することができる。また、像面移動速度Vが大きい場合には、検出回数kの値が小さいので、速い被写体の動きに少しでも早く追いつくために素早くレンズ駆動を再起動させることができる。
S1107でCPU121はデフォーカス量の検出処理を実行した後、S1108に処理を進める。S1108でCPU121はデフォーカス量が所定の閾値を超えた回数をカウントし、回数がS1106で決定した検出回数kを超えたか否かを判定する。計測された回数が検出回数kを超えた場合、S1109に進み、計測された回数が検出回数k以下の場合には、S1107に戻ってデフォーカス量の検出処理を続行する。S1109でCPU121はフォーカスレンズの駆動を再起動させた後、S1110のリターン処理へ移行する。
以上のように、被写体に合焦したと判断されてフォーカスレンズの駆動を停止した時点から再起動を行うか否かの判定に用いる判定用時間または回数が、デフォーカス量の時間的変化に応じて変更される。デフォーカス量の時間的変化とは、単位時間あたりのデフォーカス量の変化量であり、前記像面移動速度Vに相当する。判定用時間または回数はデフォーカス量の変化量が大きいほど小さい値に設定される。
本実施形態では、前記のアルゴリズムを用いることによって、像面移動速度Vに応じてAF制御を安定に行えるとともに、素早い被写体の動きに追従可能なフォーカスレンズ駆動の再起動を実現できる。本実施形態によれば、動体(被写体)に対してその移動速度に対応した焦点調節制御を行うことで、暈けの少ない動画映像が得られるので、映像品位の低下を抑制できる。
[実施例2]
次に本発明の第2実施形態に係る図12および図13を参照して、実施例2としての撮像装置について説明する。第1実施形態においては、像面移動速度Vに応じてデフォーカス量の検出回数kを可変制御する例を説明したが、像面移動速度V以外の指標によっても、同様に安定した再起動判定を行うことが可能である。本実施形態では、所定の時間間隔ごとに取得したデフォーカス量の積算値を閾値と比較し、デフォーカス量の積算値が閾値を超えた場合にフォーカスレンズの駆動を再起動させる。なお、本実施形態において第1実施形態の場合と同じ構成要素については、既に使用した符号を用いることでそれらの詳細な説明を省略し、第1実施形態との相違点を中心に説明する。以下、図12を参照して本実施形態のアルゴリズムについて説明する。
図12のS1201で処理が開始し、次のS1202でCPU121は焦点検出動作を制御し、デフォーカス量(Def)を取得する。続いてS1203でCPU121は、S1202で取得したデフォーカス量を所定の閾値と比較し、デフォーカス量が所定の閾値以上であるか否かを判定する。これは、ノイズや被写体像の揺らぎの影響を蒙った検出値を判定に用いないようにするための処理である。S1203で所定の閾値以上のデフォーカス量であることが判定された場合、S1204に進む。デフォーカス量が所定の閾値未満であることが判定された場合には、S1202に戻る。
S1204でCPU121はデフォーカス量の加算(積算)処理を行う。本実施形態ではデフォーカス量の総和を「sum」と記し、その初期値がゼロに設定されているものとする。S1204では、現時点までに加算されている総和sumに対して、S1202で取得されたデフォーカス量を加算する処理が実行され、S1205に処理を進める。S1205でCPU121は、S1204で計算したデフォーカス量の総和sumの値が、所定値(閾値)を超えたかどうかを判定する。総和sumの値が所定値を超えていない場合には、再度S1202に戻り、デフォーカス量の取得を続行する。また、総和sumの値が所定値を超えた場合には、S1206に処理を進める。S1206でCPU121はフォーカスレンズの駆動を再起動させた後、S1207のリターン処理へ移行する。
図13を参照して、前記処理について説明する。図13は被写体の移動速度の大きさが1m/sの場合と2m/sの場合に、それぞれ検出されたデフォーカス量の時間的変化を例示したグラフである。横軸は経過時間(秒)を示し、縦軸はデフォーカス量([Fδ])の総和を示す(D1からD3参照)。この例では、デフォーカス量の取得タイミングをT1からT4に示す。ここでは、図12のS1205で使用する所定値(閾値)をD2に設定した場合を想定する。図13のグラフ線g2に示すように、被写体が2m/sの速さで動いている場合、デフォーカス量の総和sumの値がD2を超えるまでには時間T2がかかる。これに対し、図13のグラフ線g1に示すように、被写体が1m/sの速さで動いている場合には、デフォーカス量の総和sumの値がD2を超えるまでには時間T4(>T2)がかかる。したがって、2m/sの速さで動く被写体に対しては時間T2の経過後にフォーカスレンズの駆動が再起動し、1m/sの速さで動く被写体に対しては時間T4の経過後にフォーカスレンズの駆動が再起動する。これにより、被写体の動きに応じたフォーカスレンズ駆動を実現することができる。
本実施形態による再起動判定処理およびフォーカスレンズ駆動を行うことで、安定した品位の動画映像を得ることができる。
[その他の実施例]
前記実施例は本発明の実施する上での一例であって、本発明が前記実施例に限定されるものではない。例えば、前記実施例では、像面移動速度を算出するために、過去における複数回のデフォーカス量を記憶しておいて直線近似を行った。これに限らず、例えば被写体が加速中であることを検出した場合、直線近似ではなく多項式近似線を用いて像面移動速度の予測処理を行ってもよい。また、前記実施例では撮影者が任意に選んだ1点の焦点検出枠内でのアルゴリズムを中心に説明した。本発明は、複数点の焦点検出枠を用いる自動選択モードの場合にも適用することができ、また被写体の追尾機能と併用することも可能である。
105 第3レンズ群
107 撮像素子
121 CPU
124 撮像素子駆動回路
125 画像処理回路
126 フォーカス駆動回路
130 振れ検出部
201,202 焦点検出画素

Claims (11)

  1. 結像光学系の異なる瞳部分領域をそれぞれ通過する光束を受光する複数の焦点検出画素を有する撮像素子と、
    前記複数の焦点検出画素の出力信号を用いて焦点検出を行う焦点検出手段と、
    前記焦点検出手段により検出される検出量を用いて、前記結像光学系を構成するレンズの駆動を制御することで焦点調節制御を行う制御手段と、を備え、
    前記制御手段は、被写体に合焦したと判断した場合に前記レンズの駆動を停止した時点から、再起動を行うか否かを判定する際に用いる判定用の時間または回数を、前記焦点検出手段により検出される検出量の時間的変化が大きいほど小さく設定し、前記検出量が閾値を超えている時間または回数が、前記判定用の時間または回数を超えた場合に前記レンズの駆動を再起動させる制御を行うことを特徴とする撮像装置。
  2. 前記制御手段は、前記焦点検出手段により検出される検出量の時間的変化から被写体の像面移動速度を算出し、前記判定用の時間または回数を、前記像面移動速度が大きいほど小さく設定することを特徴とする請求項1に記載の撮像装置。
  3. 前記制御手段は、前記像面移動速度を、その下限値および上限値と比較し、前記像面移動速度が前記下限値以上であって、かつ前記上限値以下である場合、前記判定用の時間または回数を変更することを特徴とする請求項2に記載の撮像装置。
  4. 前記制御手段は、前記撮像装置の振れ検出信号を取得し、撮影方向を変更する動作が検出された場合、前記判定用の時間または回数を変更せず、撮影方向を変更する動作が検出されない場合、前記判定用の時間または回数を変更することを特徴とする請求項2または3に記載の撮像装置。
  5. 結像光学系の異なる瞳部分領域をそれぞれ通過する光束を受光する複数の焦点検出画素を有する撮像素子と、
    前記複数の焦点検出画素の出力信号を用いて焦点検出を行う焦点検出手段と、
    前記焦点検出手段により検出される検出量を用いて、前記結像光学系を構成するレンズの駆動を制御することで焦点調節制御を行う制御手段と、を備え、
    前記制御手段は、被写体に合焦したと判断した場合に前記レンズの駆動を停止した時点から、前記焦点検出手段により検出される検出量を積算し、積算値が閾値を超えた場合に前記レンズの駆動を再起動させる制御を行うことを特徴とする撮像装置。
  6. 前記制御手段は、前記焦点検出手段により検出される検出量を閾値と比較し、前記検出量が閾値以上である場合に積算を行うことを特徴とする請求項5に記載の撮像装置。
  7. 前記検出量は、撮影時における前記結像光学系の絞り値および許容錯乱円径を用いて正規化されたデフォーカス量であることを特徴とする請求項1から6のいずれか1項に記載の撮像装置。
  8. 前記撮像素子の画素部は、
    入射光を集光するマイクロレンズと、
    前記結像光学系の第1瞳部分領域を通過する光束を受光する第1焦点検出画素と、
    前記第1瞳部分領域とは異なる、前記結像光学系の第2瞳部分領域を通過する光束を受光する第2焦点検出画素と、
    前記第1瞳部分領域と前記第2瞳部分領域を含む瞳領域を通過する光束を受光する撮像画素と、を備えることを特徴とする請求項1から7のいずれか1項に記載の撮像装置。
  9. 前記撮像素子の出力信号を取得して動画像データを処理する画像処理手段を備えることを特徴とする請求項1から8のいずれか1項に記載の撮像装置。
  10. 結像光学系の異なる瞳部分領域をそれぞれ通過する光束を受光する複数の焦点検出画素を有する撮像素子と、
    前記複数の焦点検出画素の出力信号を用いて焦点検出を行う焦点検出手段と、
    前記焦点検出手段により検出される検出量を用いて、前記結像光学系を構成するレンズの駆動を制御することで焦点調節制御を行う制御手段と、を備える撮像装置にて実行される制御方法であって、
    前記制御手段が、
    被写体に合焦したと判断した場合に前記レンズの駆動を停止した時点から、再起動を行うか否かを判定する際に用いる判定用の時間または回数を、前記焦点検出手段により検出される検出量の時間的変化が大きいほど小さく設定するステップと、
    前記検出量が閾値を超えている時間または回数が、前記判定用の時間または回数を超えた場合に前記レンズの駆動を再起動させる制御を行うステップを有することを特徴とする撮像装置の制御方法。
  11. 結像光学系の異なる瞳部分領域をそれぞれ通過する光束を受光する複数の焦点検出画素を有する撮像素子と、
    前記複数の焦点検出画素の出力信号を用いて焦点検出を行う焦点検出手段と、
    前記焦点検出手段により検出される検出量を用いて、前記結像光学系を構成するレンズの駆動を制御することで焦点調節制御を行う制御手段と、を備える撮像装置にて実行される制御方法であって、
    前記制御手段が、被写体に合焦したと判断した場合に前記レンズの駆動を停止した時点から、
    前記焦点検出手段により検出される検出量を積算するステップと、
    前記検出量の積算値が閾値を超えた場合に前記レンズの駆動を再起動させる制御を行うステップを有することを特徴とする撮像装置の制御方法。








JP2015034150A 2015-02-24 2015-02-24 撮像装置およびその制御方法 Expired - Fee Related JP6415350B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015034150A JP6415350B2 (ja) 2015-02-24 2015-02-24 撮像装置およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015034150A JP6415350B2 (ja) 2015-02-24 2015-02-24 撮像装置およびその制御方法

Publications (2)

Publication Number Publication Date
JP2016156931A JP2016156931A (ja) 2016-09-01
JP6415350B2 true JP6415350B2 (ja) 2018-10-31

Family

ID=56826019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034150A Expired - Fee Related JP6415350B2 (ja) 2015-02-24 2015-02-24 撮像装置およびその制御方法

Country Status (1)

Country Link
JP (1) JP6415350B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433868B2 (ja) * 2019-11-29 2024-02-20 キヤノン株式会社 制御装置およびその制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04277983A (ja) * 1991-03-06 1992-10-02 Matsushita Electric Ind Co Ltd 撮影装置
JPH05297264A (ja) * 1992-04-16 1993-11-12 Canon Inc 自動合焦装置
JP3302104B2 (ja) * 1993-06-30 2002-07-15 キヤノン株式会社 撮像装置
JPH08271784A (ja) * 1995-03-30 1996-10-18 Canon Inc 視線検出機能付き光学機器
JP3817774B2 (ja) * 1996-04-15 2006-09-06 株式会社ニコン 動体判定装置、その動体判定装置を具備した焦点調節装置、およびカメラ
JP2003107325A (ja) * 2001-09-28 2003-04-09 Nikon Corp カメラ
JP2006208818A (ja) * 2005-01-28 2006-08-10 Sony Corp フォーカス制御装置、フォーカス制御方法
JP2008160315A (ja) * 2006-12-21 2008-07-10 Olympus Imaging Corp 撮像装置
JP5966267B2 (ja) * 2011-07-22 2016-08-10 株式会社ニコン 焦点調節装置および撮像装置
JP6087714B2 (ja) * 2013-04-25 2017-03-01 キヤノン株式会社 撮像装置およびその制御方法

Also Published As

Publication number Publication date
JP2016156931A (ja) 2016-09-01

Similar Documents

Publication Publication Date Title
US8654227B2 (en) Focus detection apparatus, focus detection method, and image sensing apparatus
US8477233B2 (en) Image capturing apparatus
US8159599B2 (en) Focus detection apparatus, focus detection method, and image sensing apparatus
US7920781B2 (en) Image capturing apparatus and control method therefor
US8804027B2 (en) Imaging apparatus
US9826140B2 (en) Image capturing apparatus and control method thereof
JP5898481B2 (ja) 撮像装置及び焦点検出方法
JP6249825B2 (ja) 撮像装置、その制御方法、および制御プログラム
WO2012093551A1 (en) Image capture apparatus
JP7156352B2 (ja) 撮像装置、撮像方法、及びプログラム
JP2010054968A (ja) 撮像装置、自動焦点検出装置及びその制御方法
US11375101B2 (en) Image capturing apparatus, control method thereof, and storage medium
JP7007871B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
US9325897B2 (en) Image capture apparatus with automatic focus detection and method for controlling the same
JP5609232B2 (ja) 撮像装置
JP2012220790A (ja) 撮像装置
JP2016057546A (ja) 撮像装置およびその制御方法
JP6415350B2 (ja) 撮像装置およびその制御方法
JP6482247B2 (ja) 焦点調節装置、撮像装置、焦点調節装置の制御方法、及びプログラム
JP7019337B2 (ja) 像ブレ補正装置、レンズ装置およびそれらの制御方法
JP6576155B2 (ja) 画像処理装置、撮像装置、および画像表示システム
JP6628510B2 (ja) 焦点調節装置の制御装置、撮像装置、焦点調節装置の制御方法、プログラム、記憶媒体
JP7005209B2 (ja) 撮像装置、及びその制御方法
US20240196089A1 (en) Detecting apparatus, image pickup apparatus, and detecting method
JP6254780B2 (ja) 焦点検出装置及び方法、及び撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181002

R151 Written notification of patent or utility model registration

Ref document number: 6415350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees