JP6403503B2 - Copper-clad laminate, printed wiring board and method of using the same - Google Patents

Copper-clad laminate, printed wiring board and method of using the same Download PDF

Info

Publication number
JP6403503B2
JP6403503B2 JP2014178646A JP2014178646A JP6403503B2 JP 6403503 B2 JP6403503 B2 JP 6403503B2 JP 2014178646 A JP2014178646 A JP 2014178646A JP 2014178646 A JP2014178646 A JP 2014178646A JP 6403503 B2 JP6403503 B2 JP 6403503B2
Authority
JP
Japan
Prior art keywords
copper
polyimide
insulating layer
copper foil
clad laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014178646A
Other languages
Japanese (ja)
Other versions
JP2015091644A (en
Inventor
亮 森
亮 森
威吏 徳山
威吏 徳山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2014178646A priority Critical patent/JP6403503B2/en
Priority to CN201410505175.8A priority patent/CN104519657B/en
Priority to TW103133381A priority patent/TWI634986B/en
Priority to KR1020140129485A priority patent/KR102234045B1/en
Publication of JP2015091644A publication Critical patent/JP2015091644A/en
Application granted granted Critical
Publication of JP6403503B2 publication Critical patent/JP6403503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、ポリイミド絶縁層と銅箔層を有する銅張積層板、並びにこの銅張積層板の銅箔層を配線回路加工したプリント配線板及びその使用方法に関する。   The present invention relates to a copper clad laminate having a polyimide insulating layer and a copper foil layer, a printed wiring board obtained by processing a copper foil layer of the copper clad laminate, and a method of using the same.

近年、電子機器の小型化、軽量化、省スペース化の進展に伴い、薄く軽量で、可撓性を有し、屈曲を繰り返しても優れた耐久性を持つフレキシブルプリント配線板(FPC;Flexible Printed Circuits)の需要が増大している。FPCは、限られたスペースでも立体的かつ高密度の実装が可能であるため、例えば、HDD、DVD、携帯電話等の電子機器の可動部分の配線や、ケーブル、コネクター等の部品にその用途が拡大しつつある。   In recent years, with the progress of downsizing, weight reduction, and space saving of electronic devices, flexible printed wiring boards (FPCs) that are thin, light, flexible, and have excellent durability even after repeated bending are used. The demand for Circuits) is increasing. FPC can be mounted three-dimensionally and densely in a limited space. For example, it can be used for wiring of movable parts of electronic devices such as HDDs, DVDs, mobile phones, and parts such as cables and connectors. It is expanding.

上述した高密度化に加えて、機器の高性能化が進んだことから、伝送信号の高周波化への対応も必要とされている。情報処理や情報通信においては、大容量情報の伝送・処理するために伝送周波数を高くする取り組みが行われており、プリント基板材料は絶縁層の薄化と絶縁層の低誘電化による伝送損失の低下が求められている。従来のポリイミドを用いたFPCは、ポリイミドの誘電率や誘電正接が高く、高周波域での伝送損失が高いため、高周波化への適応が難しかった。従って、これまでは、高周波化に対応するために、低誘電率、低誘電正接を特徴とした液晶ポリマーを誘電体層としたFPCが主に用いられている。しかしながら、液晶ポリマーは、誘電特性に優れているものの、耐熱性や金属箔との接着性に改善の余地がある。   In addition to the above-described higher density, higher performance of equipment has been advanced, so that it is necessary to cope with higher frequency transmission signals. In information processing and information communication, efforts are being made to increase the transmission frequency in order to transmit and process large amounts of information, and printed circuit board materials are subject to transmission loss due to thinning of the insulating layer and low dielectric constant of the insulating layer. Decrease is required. Conventional FPC using polyimide has a high dielectric constant and dielectric loss tangent of polyimide, and has a high transmission loss in a high frequency region, so that it is difficult to adapt to high frequency. Therefore, so far, in order to cope with higher frequencies, FPCs using a liquid crystal polymer characterized by a low dielectric constant and a low dielectric loss tangent as a dielectric layer have been mainly used. However, although the liquid crystal polymer is excellent in dielectric properties, there is room for improvement in heat resistance and adhesion to metal foil.

耐熱性や接着性を改善するため、ポリイミドを絶縁層にした金属張積層体が提案されている(特許文献1)。特許文献1によると、一般的に高分子材料のモノマーに脂肪族系のものを用いることにより誘電率が低下することが知られているが、脂肪族(鎖状)テトラカルボン酸二無水物を用いて得られたポリイミドの耐熱性は著しく低いために、はんだ付けなどの加工に供する事が不可能となり実用上問題がある、とされている。また、特許文献1では、脂環族テトラカルボン酸二無水物を用いると鎖状のものに比べて耐熱性が向上したポリイミドが得られるとしている。しかしながら、このようなポリイミドフィルムは、10GHzにおける誘電率が3.2以下であるものの、誘電正接は0.01を超えるものであり、誘電特性は未だ十分ではなかった。   In order to improve heat resistance and adhesiveness, a metal-clad laminate using polyimide as an insulating layer has been proposed (Patent Document 1). According to Patent Document 1, it is known that the dielectric constant is generally lowered by using an aliphatic monomer as a polymer material. However, an aliphatic (chain) tetracarboxylic dianhydride is used. The heat resistance of the polyimide obtained by use is remarkably low, so that it cannot be used for processing such as soldering, and has a practical problem. Moreover, in patent document 1, when the alicyclic tetracarboxylic dianhydride is used, the polyimide which improved heat resistance compared with the chain | strand-shaped thing is obtained. However, although such a polyimide film has a dielectric constant at 10 GHz of 3.2 or less, the dielectric loss tangent exceeds 0.01, and the dielectric properties have not been sufficient.

誘電特性を改善するため、導体回路を形成する銅箔に接するポリイミド層のイミド基濃度を制御した銅張積層板が提案されている(特許文献2)。特許文献2によると、銅箔の表面粗度Rzと銅箔に接する面の低イミド基濃度のポリイミド層の組み合わせによって、誘電特性を制御できるとしているものの、その制御には限界があり、伝送特性も十分に満足できるものではなかった。   In order to improve the dielectric characteristics, a copper-clad laminate in which the imide group concentration of the polyimide layer in contact with the copper foil forming the conductor circuit is controlled has been proposed (Patent Document 2). According to Patent Document 2, although the dielectric property can be controlled by the combination of the surface roughness Rz of the copper foil and the polyimide layer having a low imide group concentration on the surface in contact with the copper foil, the control has a limit, and the transmission property It was not satisfactory enough.

特開2004−358961号公報JP 2004-358916 A 特許第5031639号公報Japanese Patent No. 5031639

本発明は、電子機器の小型化・高性能化に伴う高周波化への対応を可能とする銅張積層板、プリント配線板及びその使用方法を提供することにある。   An object of the present invention is to provide a copper-clad laminate, a printed wiring board, and a method for using the same, which can cope with high frequencies associated with downsizing and high performance of electronic devices.

上述した課題を解決するため、本発明者らは、銅箔における表皮効果に着目し、特定の表面状態を有する銅箔を導体層として使用するとともに、特定の誘電特性を有するポリイミドを絶縁層に使用することで、高周波領域における伝送特性に優れたFPC等の回路基板が得られることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors pay attention to the skin effect in copper foil, use copper foil having a specific surface state as a conductor layer, and use polyimide having specific dielectric characteristics as an insulating layer. As a result, it has been found that a circuit board such as an FPC excellent in transmission characteristics in a high frequency region can be obtained, and the present invention has been completed.

すなわち、本発明の銅張積層板は、ポリイミド絶縁層と、該ポリイミド絶縁層の少なくとも一方の面に銅箔を備えている。本発明の銅張積層板は、前記ポリイミド絶縁層が、下記の構成Ia及びIb:
Ia)熱線膨張係数が0ppm/K以上30ppm/K以下の範囲内である;
Ib)下記の数式(i)、
=√ε×Tanδ ・・・(i)
[ここで、εは、空洞共振器摂動法による3GHzにおける誘電率を示し、Tanδは、空洞共振器摂動法による3GHzにおける誘電正接を示す]
に基づき算出される、誘電特性を示す指標であるE値が0.009未満である;
を備え、更に、前記銅箔が、下記の構成c:
c)前記ポリイミド絶縁層と接する面の二乗平均粗さ(Rq)が、0.05μm以上0.5μm未満の範囲内である;
を備えている。
That is, the copper clad laminate of the present invention includes a polyimide insulating layer and a copper foil on at least one surface of the polyimide insulating layer. In the copper clad laminate of the present invention, the polyimide insulating layer has the following configurations Ia and Ib:
Ia) Thermal expansion coefficient is in the range of 0 ppm / K or more and 30 ppm / K or less;
Ib) The following formula (i),
E 1 = √ε 1 × Tanδ 1 ··· (i)
[Where ε 1 represents the dielectric constant at 3 GHz by the cavity resonator perturbation method, and Tan δ 1 represents the dielectric loss tangent at 3 GHz by the cavity resonator perturbation method]
Is calculated based on, E 1 value is an index showing the dielectric properties is less than 0.009;
Further, the copper foil has the following configuration c:
c) The root mean square roughness (Rq) of the surface in contact with the polyimide insulating layer is in the range of 0.05 μm or more and less than 0.5 μm;
It has.

本発明の銅張積層板は、前記誘電率が3.1以下であり、前記誘電正接が0.005未満であってもよい。   In the copper clad laminate of the present invention, the dielectric constant may be 3.1 or less, and the dielectric loss tangent may be less than 0.005.

本発明の銅張積層板は、前記銅箔の前記ポリイミド絶縁層と接する面の算術平均高さ(Ra)が、0.2μm以下であってもよい。   In the copper clad laminate of the present invention, the arithmetic average height (Ra) of the surface of the copper foil in contact with the polyimide insulating layer may be 0.2 μm or less.

本発明の銅張積層板は、前記銅箔の前記ポリイミド絶縁層と接する面の十点平均粗さ(Rz)が、1.5μm以下であってもよい。   In the copper clad laminate of the present invention, the ten-point average roughness (Rz) of the surface of the copper foil in contact with the polyimide insulating layer may be 1.5 μm or less.

本発明の銅張積層板は、前記ポリイミド絶縁層の10GHzにおける誘電率が3.0以下であり、誘電正接が0.005以下であってもよい。   In the copper clad laminate of the present invention, the polyimide insulating layer may have a dielectric constant at 10 GHz of 3.0 or less and a dielectric loss tangent of 0.005 or less.

本発明のプリント配線板は、上記のいずれかの銅張積層板の銅箔を配線回路加工してなるものである。   The printed wiring board of the present invention is obtained by processing a copper circuit of any one of the above copper-clad laminates with a wiring circuit.

本発明のプリント配線板の使用方法は、上記プリント配線板を、1GHz〜40GHzの範囲内の周波数領域で使用することが好ましく、1GHz〜20GHzの範囲内の周波数領域で使用することがより好ましい。   In the usage method of the printed wiring board of the present invention, the printed wiring board is preferably used in a frequency region within a range of 1 GHz to 40 GHz, and more preferably used in a frequency region within a range of 1 GHz to 20 GHz.

本発明の銅張積層板は、銅箔の表皮効果による抵抗の増大を抑制することにより、ポリイミド絶縁層の誘電特性を効果的に活用できるので、高速信号伝送を必要とする電子材料として好適に用いることができる。   The copper-clad laminate of the present invention can be used effectively as an electronic material requiring high-speed signal transmission because the dielectric property of the polyimide insulating layer can be effectively utilized by suppressing an increase in resistance due to the skin effect of the copper foil. Can be used.

実施例1及び参考例1〜3の結果を示すグラフである。It is a graph which shows the result of Example 1 and Reference Examples 1-3. シミュレーション(1)〜(6)の結果を示すグラフである。It is a graph which shows the result of simulation (1)-(6). シミュレーション(7)〜(12)の結果を示すグラフである。It is a graph which shows the result of simulation (7)-(12).

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

<銅張積層板>
本実施の形態の銅張積層板は、ポリイミド絶縁層と、該ポリイミド絶縁層の少なくとも一方の面に銅箔層を備えた銅張積層板であって、ポリイミド絶縁層の片面側のみに銅箔を備えた片面銅張積層板であってもよいし、ポリイミド絶縁層の両側に銅箔を備えた両面銅張積層板でもよい。なお、両面銅張積層板は、例えば、片面銅張積層板を形成した後、互いにポリイミド絶縁層を向き合わせて熱プレスによって圧着し形成することや、片面銅張積層板のポリイミド絶縁層に銅箔を圧着し形成すること等により得ることができる。
<Copper-clad laminate>
The copper clad laminate of this embodiment is a copper clad laminate having a polyimide insulating layer and a copper foil layer on at least one surface of the polyimide insulating layer, and the copper foil is provided only on one side of the polyimide insulating layer. It may be a single-sided copper-clad laminate provided with a double-sided copper-clad laminate provided with copper foil on both sides of the polyimide insulating layer. The double-sided copper-clad laminate is formed by, for example, forming a single-sided copper-clad laminate and then pressing the polyimide insulation layers against each other and pressing them by hot pressing. It can be obtained by pressing and forming a foil.

<ポリイミド絶縁層>
ポリイミド樹脂層を形成するポリイミドとしては、いわゆるポリイミドを含めて、ポリアミドイミド、ポリベンズイミダゾール、ポリイミドエステル、ポリエーテルイミド、ポリシロキサンイミド等の構造中にイミド基を有する耐熱性樹脂がある。
<Polyimide insulation layer>
Examples of the polyimide forming the polyimide resin layer include heat-resistant resins having an imide group in the structure such as polyamideimide, polybenzimidazole, polyimide ester, polyetherimide, polysiloxaneimide, and so on.

ポリイミド絶縁層は、熱線膨張係数が0〜30ppm/Kの範囲内にあるが、このような範囲内に制御することで、銅張積層板を形成した際の反りや寸法安定性の低下を抑制することができる。また、ポリイミド絶縁層は、単層又は複数層のポリイミド層を有するが、低熱膨張性のポリイミド層は、ベースフィルム層(絶縁樹脂層の主層)としての適用が好適である。具体的には、熱線膨張係数が1×10−6 〜30×10−6(1/K)の範囲内、好ましくは1×10−6 〜25×10−6(1/K)の範囲内、より好ましくは15×10−6 〜25×10−6(1/K)の範囲内にある低熱膨張性のポリイミド層をベースフィルム層に適用すると大きな効果が得られる。一方、上記熱線膨張係数を超えるポリイミド層も、銅箔層との接着層としての適用が好適である。このような接着性ポリイミド層として好適に用いることができるポリイミドとして、そのガラス転移温度が、例えば350℃以下であるものが好ましく、200〜320℃の範囲内にあるものがより好ましい。 The polyimide insulation layer has a thermal linear expansion coefficient in the range of 0 to 30 ppm / K. By controlling the coefficient within such a range, warpage and dimensional stability degradation when forming a copper clad laminate are suppressed. can do. The polyimide insulating layer has a single layer or a plurality of polyimide layers, but the low thermal expansion polyimide layer is preferably applied as a base film layer (main layer of the insulating resin layer). Specifically, the thermal linear expansion coefficient is in the range of 1 × 10 −6 to 30 × 10 −6 (1 / K), preferably in the range of 1 × 10 −6 to 25 × 10 −6 (1 / K). More preferably, when a low thermal expansion polyimide layer in the range of 15 × 10 −6 to 25 × 10 −6 (1 / K) is applied to the base film layer, a great effect can be obtained. On the other hand, the polyimide layer exceeding the thermal linear expansion coefficient is also preferably applied as an adhesive layer with the copper foil layer. As a polyimide that can be suitably used as such an adhesive polyimide layer, a glass transition temperature of, for example, 350 ° C. or lower is preferable, and a glass transition temperature in the range of 200 to 320 ° C. is more preferable.

ポリイミド絶縁層の厚さは、例えば、6〜50μmの範囲内であるのがよく、好ましくは9〜45μmの範囲内であることがよい。ポリイミド絶縁層の厚さが6μmに満たないと、銅張積層板の製造等における搬送時にシワが入るなどの不具合が生じるおそれがあり、一方ポリイミド絶縁層の厚さが50μmを超えると銅張積層板の製造時の寸法安定性や屈曲性等において問題が生じるおそれがある。なお、複数のポリイミド層からポリイミド絶縁層を形成する場合には、その合計の厚みが上記範囲内になるようにすればよい。   The thickness of the polyimide insulating layer may be, for example, in the range of 6 to 50 μm, and preferably in the range of 9 to 45 μm. If the thickness of the polyimide insulating layer is less than 6 μm, there is a risk of wrinkles occurring during transport in the manufacture of copper-clad laminates, etc., whereas if the thickness of the polyimide insulating layer exceeds 50 μm, the copper-clad laminate There may be a problem in dimensional stability, flexibility, etc. during the production of the plate. In addition, what is necessary is just to make it the total thickness in the said range, when forming a polyimide insulating layer from several polyimide layers.

(誘電特性)
ポリイミド絶縁層は、フレキシブル回路基板(以下、「FPC」と記すことがある)等の回路基板に使用した際の高周波域における伝送特性を確保するために、絶縁樹脂層全体として、上記式(i)に基づき算出される、空洞共振器摂動法による3GHzにおける誘電特性を示す指標であるE値が0.009未満であり、好ましくは0.0025〜0.007の範囲内がよく、より好ましくは0.0025〜0.006の範囲内がよい。E値が、上記上限を超えると、FPC等の回路基板に使用した際に、高周波信号の伝送経路上で電気信号のロスなどの不都合が生じやすくなる。
(Dielectric properties)
In order to ensure the transmission characteristics in the high frequency range when used for a circuit board such as a flexible circuit board (hereinafter, may be referred to as “FPC”), the polyimide insulating layer has the above formula (i ) based on the calculated the, E 1 value is an index showing the dielectric characteristics of 3GHz by a cavity resonator perturbation method is less than 0.009, preferably well in the range of 0.0025 to 0.007, more preferably Is preferably in the range of 0.0025 to 0.006. E 1 values exceeds the upper limit, when used on a circuit board such as an FPC, is likely to occur inconveniences such as loss of electrical signals on the transmission path of the RF signal.

(誘電率及び誘電正接)
ポリイミド絶縁層は、FPC等の回路基板に使用した際に、1〜40HGz帯において、液晶ポリマーを用いて作製した銅張積層板同等レベルの伝送損失とするために、3GHzにおける誘電率(ε)は、好ましくは3.1以下がよく、誘電正接(Tanδ)は、好ましくは0.005未満とすることがよい。ポリイミド絶縁層の3GHzにおける誘電率が3.1を超え、誘電正接が0.005以上であると、FPC等の回路基板に使用した際に、電気信号のロスの不都合が発生しやすくなる。
(Dielectric constant and dielectric loss tangent)
When the polyimide insulating layer is used for a circuit board such as an FPC, a dielectric constant (ε 1) at 3 GHz is used in order to obtain a transmission loss equivalent to a copper-clad laminate produced using a liquid crystal polymer in the 1 to 40 HGz band. ) Is preferably 3.1 or less, and the dielectric loss tangent (Tanδ 1 ) is preferably less than 0.005. When the dielectric constant at 3 GHz of the polyimide insulating layer exceeds 3.1 and the dielectric loss tangent is 0.005 or more, an inconvenience of loss of an electric signal is likely to occur when used for a circuit board such as an FPC.

また、ポリイミド絶縁層は、FPC等の回路基板に使用した際に伝送損失を液晶ポリマー同等レベルに低下させるために、3GHzにおける誘電正接が0.005未満であることが好ましい。ポリイミド絶縁層の3GHzにおける誘電正接が0.005以上になると、FPC等の回路基板に使用した際に、高周波信号の伝送経路上で電気信号のロスが発生する。   The polyimide insulating layer preferably has a dielectric loss tangent of less than 0.005 at 3 GHz in order to reduce the transmission loss to the same level as the liquid crystal polymer when used on a circuit board such as an FPC. When the dielectric loss tangent at 3 GHz of the polyimide insulating layer is 0.005 or more, a loss of an electrical signal occurs on a high-frequency signal transmission path when used for a circuit board such as an FPC.

更に、ポリイミド絶縁層は、FPC等の回路基板に使用した際に、液晶ポリマーと同等レベルに伝送損失を低下させるには、10GHzにおける誘電率が好ましくは3.0以下であり、誘電正接が0.005以下であることがよい。ポリイミド絶縁層の誘電特性をこのような範囲内に制御することによって、FPC等の回路基板に使用した際の、高周波信号の伝送経路上で伝送ロスを抑制できる。   Further, when the polyimide insulating layer is used for a circuit board such as an FPC, the dielectric constant at 10 GHz is preferably 3.0 or less and the dielectric loss tangent is 0 in order to reduce the transmission loss to the same level as the liquid crystal polymer. It is good that it is 0.005 or less. By controlling the dielectric characteristics of the polyimide insulating layer within such a range, transmission loss can be suppressed on the transmission path of the high-frequency signal when used for a circuit board such as an FPC.

ポリイミド絶縁層の厚さや物性のコントロールのしやすさから、ポリアミド酸溶液を銅箔上に直接塗布した後、熱処理により乾燥、硬化する所謂キャスト(塗布)法によるものが好ましい。また、ポリイミド絶縁層を複数層とする場合、異なる構成成分からなるポリアミド酸溶液の上に他のポリアミド酸溶液を順次塗布して形成することができる。ポリイミド絶縁層が複数層からなる場合、同一の構成のポリイミド前駆体樹脂を2回以上使用してもよい。   From the viewpoint of easy control of the thickness and physical properties of the polyimide insulating layer, it is preferable to use a so-called cast (coating) method in which the polyamic acid solution is directly applied onto the copper foil and then dried and cured by heat treatment. Moreover, when making a polyimide insulating layer into multiple layers, it can form by apply | coating another polyamic-acid solution sequentially on the polyamic-acid solution which consists of a different structural component. When the polyimide insulating layer is composed of a plurality of layers, the polyimide precursor resin having the same configuration may be used twice or more.

ポリイミド絶縁層を形成するために特に好適なポリイミドは、芳香族テトラカルボン酸無水物を含む酸無水物成分と、ダイマー酸の二つの末端カルボン酸基が1級のアミノメチル基又はアミノ基に置換されてなるダイマー酸型ジアミン及び芳香族ジアミンを含むジアミン成分と、を反応させて得られるポリイミドであって、前記ダイマー酸型ジアミンが、全ジアミン成分に対し、4〜40モル%の範囲内にあるものが好ましい。   A polyimide particularly suitable for forming a polyimide insulating layer includes an acid anhydride component containing an aromatic tetracarboxylic acid anhydride, and the two terminal carboxylic acid groups of dimer acid substituted with primary aminomethyl groups or amino groups. A polyimide obtained by reacting a dimer acid diamine and an aromatic diamine containing diamine component, wherein the dimer acid diamine is in the range of 4 to 40 mol% with respect to the total diamine component. Some are preferred.

このようなポリイミドは、下記の一般式(1)及び(2)で表される構造単位を有するポリイミドが好ましい。   Such a polyimide is preferably a polyimide having a structural unit represented by the following general formulas (1) and (2).

Figure 0006403503
[式中、Arは芳香族テトラカルボン酸無水物から誘導される4価の芳香族基、Rはダイマー酸型ジアミンから誘導される2価のダイマー酸型ジアミン残基、Rは芳香族ジアミンから誘導される2価の芳香族ジアミン残基をそれぞれ表し、m、nは各構成単位の存在モル比を示し、mは0.04〜0.4の範囲内、nは0.6〜0.96の範囲内である]
Figure 0006403503
[Wherein Ar is a tetravalent aromatic group derived from an aromatic tetracarboxylic anhydride, R 1 is a divalent dimer acid diamine residue derived from a dimer acid diamine, and R 2 is aromatic. Each represents a divalent aromatic diamine residue derived from diamine, m and n represent the molar ratio of each constituent unit, m is in the range of 0.04 to 0.4, and n is 0.6 to Within the range of 0.96]

基Arは、例えば下記の式(3)又は式(4)で表されるものを挙げることができる。   Examples of the group Ar include those represented by the following formula (3) or formula (4).

Figure 0006403503
[式中、Wは単結合、炭素数1〜15の2価の炭化水素基、−O−、−S−、−CO−、−SO−、−SO−、−NH−若しくは−CONH−から選ばれる2価の基を示す]
Figure 0006403503
[Wherein, W is a single bond, a divalent hydrocarbon group having 1 to 15 carbon atoms, —O—, —S—, —CO—, —SO—, —SO 2 —, —NH— or —CONH— Represents a divalent group selected from

特に、ポリイミドの極性基を減らし、誘電特性を向上させるという観点から、基Arとしては、式(3)、又は式(4)中のWが単結合、炭素数1〜15の2価の炭化水素基、−O−、−S−、−CO−で表されるものが好ましく、式(3)、又は式(4)中のWが単結合、炭素数1〜15の2価の炭化水素基、−CO−で表されるものがより好ましい。   In particular, from the viewpoint of reducing the polar group of polyimide and improving the dielectric properties, the group Ar is represented by the formula (3) or W in the formula (4) is a single bond and a divalent carbon atom having 1 to 15 carbon atoms. What is represented by a hydrogen group, -O-, -S-, -CO- is preferable, and W in formula (3) or formula (4) is a single bond and a divalent hydrocarbon having 1 to 15 carbon atoms. A group represented by —CO— is more preferable.

なお、上記一般式(1)及び(2)で表される構成単位は、単独重合体中に存在しても、共重合体の構成単位として存在してもよい。構成単位を複数有する共重合体である場合は、ブロック共重合体として存在しても、ランダム共重合体として存在してもよい。   In addition, the structural unit represented by the general formulas (1) and (2) may be present in the homopolymer or may be present as a structural unit of the copolymer. In the case of a copolymer having a plurality of structural units, it may exist as a block copolymer or a random copolymer.

ポリイミドは、一般に、酸無水物とジアミンとを反応させて製造されるので、酸無水物とジアミンを説明することにより、ポリイミドの具体例が理解される。上記一般式(1)及び(2)において、基Arは酸無水物の残基ということができ、基R及び基Rはジアミンの残基ということができるので、好ましいポリイミドを酸無水物とジアミンにより説明する。 Since polyimide is generally produced by reacting an acid anhydride with a diamine, a specific example of polyimide can be understood by explaining the acid anhydride and diamine. In the above general formulas (1) and (2), the group Ar can be referred to as an acid anhydride residue, and the groups R 1 and R 2 can be referred to as diamine residues. And diamine.

基Arを残基として有する酸無水物としては、例えば無水ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物が好ましく例示される。また、酸無水物として、例えば2,2',3,3'-、2,3,3',4'-又は3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,3',3,4’-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-ビフェニルテトラカルボン酸二無水物、2,3',3,4'-ジフェニルエーテルテトラカルボン酸二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、3,3'',4,4''-、2,3,3'',4''-又は2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-又は3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-又は3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-又は3,4-ジカルボキシフェニル)エタン二無水物、1,2,7,8-、1,2,6,7-又は1,2,9,10-フェナンスレン-テトラカルボン酸二無水物、2,3,6,7−アントラセンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)テトラフルオロプロパン二無水物、2,3,5,6-シクロヘキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、2,6-又は2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-(又は1,4,5,8-)テトラクロロナフタレン-1,4,5,8-(又は2,3,6,7-)テトラカルボン酸二無水物、2,3,8,9-、3,4,9,10-、4,5,10,11-又は5,6,11,12-ペリレン-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、4,4’-ビス(2,3-ジカルボキシフェノキシ)ジフェニルメタン二無水物等が挙げられる。   Examples of the acid anhydride having the group Ar as a residue include pyromellitic anhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetra Preferred examples include carboxylic dianhydride and 4,4′-oxydiphthalic anhydride. Examples of the acid anhydride include 2,2 ′, 3,3′-, 2,3,3 ′, 4′- or 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2, 3 ', 3,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 2,3 ', 3,4'-diphenyl ether tetracarboxylic dianhydride Bis (2,3-dicarboxyphenyl) ether dianhydride, 3,3``, 4,4 ''-, 2,3,3``, 4 ''-or 2,2 '', 3 , 3 ''-p-terphenyltetracarboxylic dianhydride, 2,2-bis (2,3- or 3,4-dicarboxyphenyl) -propane dianhydride, bis (2,3- or 3.4- Dicarboxyphenyl) methane dianhydride, bis (2,3- or 3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3- or 3,4-dicarboxyphenyl) ethane Anhydride, 1,2,7,8-, 1,2,6,7- or 1,2,9,10-phenanthrene-tetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic acid Dianhydride 2,2-bis (3,4-dicarboxyphenyl) tetrafluoropropane dianhydride, 2,3,5,6-cyclohexane dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7- Hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 2,6- or 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3, 6,7- (or 1,4,5,8-) tetrachloronaphthalene-1,4,5,8- (or 2,3,6,7-) tetracarboxylic dianhydride, 2,3,8 , 9-, 3,4,9,10-, 4,5,10,11- or 5,6,11,12-perylene-tetracarboxylic dianhydride, cyclopentane-1,2,3,4- Tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride, thiophene-2,3,4,5 -Tetracarboxylic acid Anhydride, 4,4'-bis (2,3-dicarboxyphenoxy) diphenylmethane dianhydride and the like.

基Rはダイマー酸型ジアミンから誘導される2価のダイマー酸型ジアミン残基である。ダイマー酸型ジアミンとは、ダイマー酸の二つの末端カルボン酸基(‐COOH)が、1級のアミノメチル基(‐CH‐NH)又はアミノ基(‐NH)に置換されてなるジアミンを意味する。 The group R 1 is a divalent dimer acid diamine residue derived from dimer acid diamine. The dimer acid type diamine is a diamine obtained by substituting the primary aminomethyl group (—CH 2 —NH 2 ) or the amino group (—NH 2 ) of the two terminal carboxylic acid groups (—COOH) of the dimer acid. Means.

ダイマー酸は、不飽和脂肪酸の分子間重合反応によって得られる既知の二塩基酸であり、その工業的製造プロセスは業界でほぼ標準化されており、炭素数が11〜22の不飽和脂肪酸を粘土触媒等にて二量化して得られる。工業的に得られるダイマー酸は、オレイン酸やリノール酸などの炭素数18の不飽和脂肪酸を二量化することによって得られる炭素数36の二塩基酸が主成分であるが、精製の度合いに応じ、任意量のモノマー酸(炭素数18)、トリマー酸(炭素数54)、炭素数20〜54の他の重合脂肪酸を含有する。本発明では、ダイマー酸は分子蒸留によってダイマー酸含有量を90重量%以上にまで高めたものを使用することが好ましい。また、ダイマー化反応後には二重結合が残存するが、本発明では、更に水素添加反応して不飽和度を低下させたものもダイマー酸に含めるものとする。   Dimer acid is a known dibasic acid obtained by an intermolecular polymerization reaction of an unsaturated fatty acid, and its industrial production process is almost standardized in the industry, and an unsaturated fatty acid having 11 to 22 carbon atoms is converted into a clay catalyst. It is obtained by dimerization with the above. The dimer acid obtained industrially is mainly composed of a dibasic acid having 36 carbon atoms obtained by dimerizing an unsaturated fatty acid having 18 carbon atoms such as oleic acid or linoleic acid, depending on the degree of purification. , Containing any amount of monomeric acid (18 carbon atoms), trimer acid (54 carbon atoms), and other polymerized fatty acids having 20 to 54 carbon atoms. In the present invention, it is preferable to use dimer acid having a dimer acid content increased to 90% by weight or more by molecular distillation. In addition, although a double bond remains after the dimerization reaction, in the present invention, a dimer acid that is further reduced in the degree of unsaturation by hydrogenation reaction is included.

ダイマー酸型ジアミンの特徴として、ダイマー酸の骨格に由来する特性を付与することができる。すなわち、ダイマー酸型ジアミンは、分子量約560〜620の巨大分子の脂肪族であるので、分子のモル体積を大きくし、ポリイミドの極性基を相対的に減らすことができる。このようなダイマー酸型ジアミンの特徴は、ポリイミドの耐熱性の低下を抑制しつつ、誘電特性を向上させることに寄与すると考えられる。また、2つの自由に動く炭素数7〜9の疎水鎖と、炭素数18に近い長さを持つ2つの鎖状の脂肪族アミノ基とを有するので、ポリイミドに柔軟性を与えるのみならず、ポリイミドを非対象的な化学構造や非平面的な化学構造とすることができるので、ポリイミドの低誘電化を図ることができると考えられる。 As a feature of the dimer acid diamine, a characteristic derived from the skeleton of the dimer acid can be imparted. That is, since the dimer acid type diamine is a macromolecular aliphatic having a molecular weight of about 560 to 620, the molecular molar volume can be increased and the polar groups of the polyimide can be relatively reduced. Such a feature of the dimer acid type diamine is considered to contribute to improving the dielectric properties while suppressing a decrease in the heat resistance of the polyimide. In addition, since it has two freely moving hydrophobic chains having 7 to 9 carbon atoms and two chain-like aliphatic amino groups having a length close to 18 carbon atoms, not only gives flexibility to the polyimide, Since polyimide can be made into a non-target chemical structure or a non-planar chemical structure, it is thought that the dielectric constant of polyimide can be reduced.

ダイマー酸型ジアミンの仕込み量は、全ジアミン成分に対し、4〜40モル%の範囲内、好ましくは4〜30モル%の範囲内、より好ましくは4〜15モル%の範囲内がよい。ダイマー酸型ジアミンが4モル%未満であると、ポリイミドの誘電特性が低下する傾向になり、40モル%を超えると、ポリイミドのガラス転移温度の低下によって耐熱性が悪化する傾向となる。   The charging amount of the dimer acid type diamine is in the range of 4 to 40 mol%, preferably in the range of 4 to 30 mol%, more preferably in the range of 4 to 15 mol% with respect to the total diamine component. When the dimer acid type diamine is less than 4 mol%, the dielectric properties of the polyimide tend to be lowered, and when it exceeds 40 mol%, the heat resistance tends to be deteriorated due to a decrease in the glass transition temperature of the polyimide.

ダイマー酸型ジアミンは、市販品が入手可能であり、例えばクローダジャパン社製のPRIAMINE1073(商品名)、同PRIAMINE1074(商品名)、コグニスジャパン社製のバーサミン551(商品名)、同バーサミン552(商品名)等が挙げられる。   The dimer acid type diamine is commercially available. For example, PRIAMINE 1073 (trade name) manufactured by Croda Japan, PRIAMINE 1074 (trade name), Versamine 551 (trade name), Versamine 552 (product) manufactured by Cognis Japan. Name).

また、基Rは、例えば下記の式(5)〜式(7)で表されるものを挙げることができる。 Examples of the group R 2 include those represented by the following formulas (5) to (7).

Figure 0006403503
[式(5)〜式(7)において、Rは独立に炭素数1〜6の1価の炭化水素基又はアルコキシ基を示し、Zは単結合、炭素数1〜15の2価の炭化水素基、−O−、−S−、−CO−、−SO−、−SO−、−NH−若しくは−CONH−から選ばれる2価の基を示し、nは独立に0〜4の整数を示す]
Figure 0006403503
[In Formula (5)-Formula (7), R < 3 > shows a C1-C6 monovalent hydrocarbon group or an alkoxy group independently, Z is a single bond and C1-C15 bivalent carbonization. A divalent group selected from a hydrogen group, —O—, —S—, —CO—, —SO—, —SO 2 —, —NH— or —CONH—, wherein n 1 is independently 0-4; Indicates an integer]

特に、ポリイミドの極性基を減らし、誘電特性を向上させるという観点から、基Rとしては、式(5)〜式(7)中のZが単結合、炭素数1〜15の2価の炭化水素基、Rが炭素数1〜6の1価の炭化水素基、nが0〜4の整数であることが好ましい。 In particular, from the viewpoint of reducing the polar groups of polyimide and improving the dielectric properties, the group R 2 includes Z in the formulas (5) to (7) as a single bond and a divalent carbon atom having 1 to 15 carbon atoms. It is preferable that the hydrogen group, R 3 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, and n 1 is an integer of 0 to 4.

基Rを残基として有するジアミンとしては、例えば4,4’-ジアミノジフェニルエーテル、2’-メトキシ-4,4’-ジアミノベンズアニリド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、4,4’-ジアミノベンズアニリド、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3−アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)]ビフェニル、ビス[4-(3-アミノフェノキシ)ビフェニル、ビス[1-(4-アミノフェノキシ)]ビフェニル、ビス[1-(3-アミノフェノキシ)]ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)]ベンゾフェノン、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、ビス[4,4'-(4-アミノフェノキシ)]ベンズアニリド、ビス[4,4'-(3-アミノフェノキシ)]ベンズアニリド、9,9-ビス[4-(4-アミノフェノキシ)フェニル]フルオレン、9,9-ビス[4-(3-アミノフェノキシ)フェニル]フルオレン、2,2−ビス-[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’-メチレンジ-o-トルイジン、4,4’-メチレンジ-2,6-キシリジン、4,4’-メチレン-2,6-ジエチルアニリン、4,4’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエタン、3,3’-ジアミノジフェニルエタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、ベンジジン、3,3’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシベンジジン、4,4''-ジアミノ-p-テルフェニル、3,3''-ジアミノ-p-テルフェニル、m-フェニレンジアミン、p-フェニレンジアミン、2,6-ジアミノピリジン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4'-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4'-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン等が挙げられる。 Examples of the diamine having the group R 2 as a residue include 4,4′-diaminodiphenyl ether, 2′-methoxy-4,4′-diaminobenzanilide, 1,4-bis (4-aminophenoxy) benzene, 1, 3-bis (4-aminophenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'- Dihydroxy-4,4'-diaminobiphenyl, 4,4'-diaminobenzanilide, 2,2-bis- [4- (3-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] Sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy)] biphenyl, bis [4- (3-aminophenoxy) biphenyl, bis [1- (4-aminophenoxy) )] Biphenyl, bis [1- (3-aminophenoxy)] biphenyl, bi [4- (4-aminophenoxy) phenyl] methane, bis [4- (3-aminophenoxy) phenyl] methane, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) ) Phenyl] ether, bis [4- (4-aminophenoxy)] benzophenone, bis [4- (3-aminophenoxy)] benzophenone, bis [4,4 '-(4-aminophenoxy)] benzanilide, bis [4 , 4 '-(3-aminophenoxy)] benzanilide, 9,9-bis [4- (4-aminophenoxy) phenyl] fluorene, 9,9-bis [4- (3-aminophenoxy) phenyl] fluorene, 2 , 2-bis- [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis- [4- (3-aminophenoxy) phenyl] hexafluoropropane, 4,4'-methylenedi-o- Toluidine, 4,4'-methylenedi-2,6-xy Gin, 4,4'-methylene-2,6-diethylaniline, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenyl Ethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenylsulfone, 3,3'- Diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether, 3,3-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, benzidine, 3,3'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diamino Biphenyl, 3,3'-dimethoxybenzidine, 4,4 ''-diamino-p-terphenyl, 3,3 ''-diamino-p-terphenyl, m-phenylenediamine, p-phenylenediamine, 2,6- Diaminopyridine, 1,4-bis ( 4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 '-[1,4-phenylenebis (1-methylethylidene)] bisaniline, 4,4'-[1,3 -Phenylenebis (1-methylethylidene)] bisaniline, bis (p-aminocyclohexyl) methane, bis (p-β-amino-t-butylphenyl) ether, bis (p-β-methyl-δ-aminopentyl) benzene P-bis (2-methyl-4-aminopentyl) benzene, p-bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4 -Bis (β-amino-t-butyl) toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylenediamine, p-xylylenediamine Amine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, piperazine, etc. It is done.

ポリイミドの誘電特性を踏まえ、ポリイミドの前駆体の調製に好適に用いられる芳香族テトラカルボン酸無水物としては、例えば、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、ピロメリット酸二無水物(PMDA)等を挙げることができる。その中でも、特に好ましい酸無水物としては、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)等を挙げることができる。これらの芳香族テトラカルボン酸無水物は、2種以上を組み合わせて配合することもできる。   Based on the dielectric properties of polyimide, the aromatic tetracarboxylic acid anhydride suitably used for the preparation of the polyimide precursor is, for example, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA). 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA), pyromellitic dianhydride (PMDA). Among them, particularly preferred acid anhydrides include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride ( BTDA) and the like. These aromatic tetracarboxylic acid anhydrides can be blended in combination of two or more.

上記の酸無水物の他、シロキサンテトラカルボン酸二無水物も好適に用いることができ、例えば、下記の一般式(8)で表されるシロキサンテトラカルボン酸二無水物を挙げることができる。 In addition to the above acid anhydrides, siloxane tetracarboxylic dianhydrides can also be suitably used. Examples thereof include siloxane tetracarboxylic dianhydrides represented by the following general formula (8).

Figure 0006403503
[式(8)中、R、R’は独立に3価の炭素数1〜4の脂肪族基又は芳香族基を示し、R〜Rは独立に、置換基を有していてもよい炭素数1〜6の炭化水素基を示し、nは1〜50の整数を示すが、平均繰り返し数は1〜20である]
Figure 0006403503
[In Formula (8), R and R ′ each independently represents a trivalent aliphatic group having 1 to 4 carbon atoms or an aromatic group, and R 4 to R 7 may independently have a substituent. A good hydrocarbon group having 1 to 6 carbon atoms, n represents an integer of 1 to 50, and the average number of repetitions is 1 to 20]

上記の酸無水物の他、シロキサンテトラカルボン酸二無水物も好適に用いることができ、例えば、下記の一般式(9)で表されるシロキサンテトラカルボン酸二無水物を挙げることができる。 In addition to the above acid anhydrides, siloxane tetracarboxylic dianhydrides can also be suitably used. Examples thereof include siloxane tetracarboxylic dianhydrides represented by the following general formula (9).

Figure 0006403503
[式(9)中、R11及びR12は独立に2価の炭化水素基を示し、R〜Rは独立に、置換基を有していてもよい炭素数1〜6の炭化水素基を示し、nは1〜50の整数を示すが、平均繰り返し数は1〜20である]
Figure 0006403503
[In Formula (9), R 11 and R 12 independently represent a divalent hydrocarbon group, and R 4 to R 7 independently represent a hydrocarbon having 1 to 6 carbon atoms which may have a substituent. And n represents an integer of 1 to 50, but the average number of repetitions is 1 to 20]

また、ポリイミドの誘電特性を踏まえ、ポリイミドの前駆体の調製に好適に用いられる芳香族ジアミンとしては、例えば、2,2−ビス(4−アミノフェノキシフェニル)プロパン(BAPP)、2,2’−ジビニル−4,4’−ジアミノビフェニル(VAB)、2,2’−ジメチル−4,4’−ジアミノビフェニル(m−TB)、2,2’−ジエチル−4,4’−ジアミノビフェニル、2,2’,6,6’−テトラメチル−4,4’−ジアミノビフェニル、2,2’−ジフェニル−4,4’−ジアミノビフェニル、9,9−ビス(4−アミノフェニル)フルオレン等を挙げることができる。その中でも、特に好ましいジアミン成分としては、2,2−ビス(4−アミノフェノキシフェニル)プロパン(BAPP)、2,2’−ジビニル−4,4’−ジアミノビフェニル(VAB)、2,2’−ジメチル−4,4’−ジアミノビフェニル(m−TB)等を挙げることができる。これらの芳香族ジアミンは、2種以上を組み合わせて配合することもできる。   In addition, based on the dielectric properties of polyimide, examples of aromatic diamines suitably used for the preparation of polyimide precursors include 2,2-bis (4-aminophenoxyphenyl) propane (BAPP), 2,2′-. Divinyl-4,4′-diaminobiphenyl (VAB), 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB), 2,2′-diethyl-4,4′-diaminobiphenyl, 2, 2 ′, 6,6′-tetramethyl-4,4′-diaminobiphenyl, 2,2′-diphenyl-4,4′-diaminobiphenyl, 9,9-bis (4-aminophenyl) fluorene, etc. Can do. Among them, particularly preferred diamine components are 2,2-bis (4-aminophenoxyphenyl) propane (BAPP), 2,2′-divinyl-4,4′-diaminobiphenyl (VAB), 2,2′- Examples thereof include dimethyl-4,4′-diaminobiphenyl (m-TB). These aromatic diamines can be blended in combination of two or more.

上記酸無水物及びジアミンはそれぞれ、その1種のみを使用してもよく2種以上を併用して使用することもできる。また、上記一般式(1)及び(2)に含まれないその他のジアミン及び酸無水物を上記の酸無水物又はジアミンと共に使用することもでき、この場合、その他の酸無水物又はジアミンの使用割合は好ましくは10モル%以下、より好ましくは5モル%以下とすることがよい。酸無水物及びジアミンの種類や、2種以上の酸無水物又はジアミンを使用する場合のそれぞれのモル比を選定することにより、熱膨張性、接着性、ガラス転移温度等を制御することができる。   Each of the acid anhydrides and diamines may be used alone or in combination of two or more. In addition, other diamines and acid anhydrides not included in the above general formulas (1) and (2) can be used together with the above acid anhydrides or diamines. In this case, use of other acid anhydrides or diamines is also possible. The ratio is preferably 10 mol% or less, more preferably 5 mol% or less. By selecting the types of acid anhydrides and diamines, and the respective molar ratios when using two or more acid anhydrides or diamines, the thermal expansibility, adhesiveness, glass transition temperature, etc. can be controlled. .

一般式(1)及び(2)で表わされる構成単位を有するポリイミドは、上記芳香族テトラカルボン酸無水物、ダイマー酸型ジアミン及び芳香族ジアミンを溶媒中で反応させ、前駆体樹脂を生成したのち加熱閉環させることにより製造できる。例えば、酸無水物成分とジアミン成分をほぼ等モルで有機溶媒中に溶解させて、0〜100℃の範囲内の温度で30分〜24時間撹拌し重合反応させることでポリイミドの前駆体であるポリアミド酸が得られる。反応にあたっては、生成する前駆体が有機溶媒中に5〜30重量%の範囲内、好ましくは10〜20重量%の範囲内となるように反応成分を溶解する。重合反応に用いる有機溶媒としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド(DMAC)、N−メチル−2−ピロリドン、2−ブタノン、ジメチルスホキシド、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム等が挙げられる。これらの溶媒を2種以上併用して使用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。また、このような有機溶剤の使用量としては特に制限されるものではないが、重合反応によって得られるポリアミド酸溶液(ポリイミド前駆体溶液)の濃度が5〜30重量%程度になるような使用量に調整して用いることが好ましい。   The polyimide having the structural units represented by the general formulas (1) and (2) is obtained by reacting the aromatic tetracarboxylic acid anhydride, dimer acid type diamine and aromatic diamine in a solvent to produce a precursor resin. It can be produced by heating and ring closure. For example, it is a polyimide precursor by dissolving an acid anhydride component and a diamine component in an approximately equimolar amount in an organic solvent and stirring and polymerizing at a temperature in the range of 0 to 100 ° C. for 30 minutes to 24 hours. A polyamic acid is obtained. In the reaction, the reaction components are dissolved so that the precursor to be produced is in the range of 5 to 30% by weight, preferably in the range of 10 to 20% by weight in the organic solvent. Examples of the organic solvent used for the polymerization reaction include N, N-dimethylformamide, N, N-dimethylacetamide (DMAC), N-methyl-2-pyrrolidone, 2-butanone, dimethyl sulfoxide, dimethyl sulfate, cyclohexanone, and dioxane. , Tetrahydrofuran, diglyme, triglyme and the like. Two or more of these solvents can be used in combination, and further, aromatic hydrocarbons such as xylene and toluene can be used in combination. The amount of such organic solvent used is not particularly limited, but the amount used is such that the concentration of the polyamic acid solution (polyimide precursor solution) obtained by the polymerization reaction is about 5 to 30% by weight. It is preferable to adjust and use.

合成された前駆体は、通常、反応溶媒溶液として使用することが有利であるが、必要により濃縮、希釈又は他の有機溶媒に置換することができる。また、前駆体は一般に溶媒可溶性に優れるので、有利に使用される。前駆体をイミド化させる方法は、特に制限されず、例えば前記溶媒中で、80〜400℃の範囲内の温度条件で1〜24時間かけて加熱するといった熱処理が好適に採用される。   The synthesized precursor is usually advantageously used as a reaction solvent solution, but can be concentrated, diluted, or replaced with another organic solvent if necessary. Moreover, since a precursor is generally excellent in solvent solubility, it is advantageously used. The method for imidizing the precursor is not particularly limited, and for example, heat treatment such as heating in the solvent at a temperature within the range of 80 to 400 ° C. for 1 to 24 hours is suitably employed.

ポリイミド絶縁層は、必要に応じて、ポリイミド層中に無機フィラーを含有してもよい。具体的には、例えば二酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、フッ化アルミニウム、フッ化カルシウム等が挙げられる。これらは1種又は2種以上を混合して用いることができる。 The polyimide insulating layer may contain an inorganic filler in the polyimide layer as necessary. Specific examples include silicon dioxide, aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, and calcium fluoride. These may be used alone or in combination of two or more.

<銅箔>
本実施の形態の銅張積層板において、銅箔は、ポリイミド絶縁層と接する面の二乗平均粗さ(Rq)が0.05μm以上0.5μm未満の範囲内であり、好ましくは0.1μm以上0.4μm以下の範囲内がよい。ここで定義される二乗平均粗さ(Rq)は、JIS B0601:2001に基づくものである。なお、銅箔の材質は、銅合金であってもよい。
<Copper foil>
In the copper clad laminate of the present embodiment, the copper foil has a mean square roughness (Rq) of the surface in contact with the polyimide insulating layer in the range of 0.05 μm or more and less than 0.5 μm, preferably 0.1 μm or more. The range of 0.4 μm or less is preferable. The root mean square roughness (Rq) defined here is based on JIS B0601: 2001. The material of the copper foil may be a copper alloy.

本実施の形態の銅張積層板に使用する銅箔は、上記特性を充足するものであれば特に限定されるものではなく、市販されている銅箔を用いることができる。その具体例としては、圧延銅箔としては、JX日鉱日石金属株式会社製のBHY−22B−T(商品名)、同GHY5−93F−T(商品名)などが挙げられ、電解銅箔としては、古河電気工業株式会社製のF1−WS(商品名)、日本電解株式会社製のHLS(商品名)、同HLS−Type2(商品名)、同HLB(商品名)、JX日鉱日石金属株式会社製のAMFN(商品名)などが挙げられる。 The copper foil used for the copper clad laminated board of this Embodiment will not be specifically limited if the said characteristic is satisfy | filled, The commercially available copper foil can be used. Specific examples of the rolled copper foil include BHY-22B-T (trade name) and GHY5-93F-T (trade name) manufactured by JX Nippon Mining & Metals Co., Ltd. Are F1-WS (trade name) manufactured by Furukawa Electric Co., Ltd., HLS (trade name), HLS-Type2 (trade name), HLB (trade name), JX Nippon Mining & Metals Examples thereof include AMFN (trade name) manufactured by Co., Ltd.

信号配線に高周波信号が供給されている状態では、その信号配線の表面にしか電流が流れず、電流が流れる有効断面積が少なくなって直流抵抗が大きくなり、信号が減衰するという問題(表皮効果)がある。銅箔のポリイミド絶縁層に接する面の表面粗度を下げることで、この表皮効果による信号配線の抵抗増大を抑制できる。しかし、電気性能要求基準を満足させるために表面粗度を下げると、銅箔とポリイミド絶縁層との接着力(剥離強度)が弱くなる。そこで、電気性能要求を満足させることが可能であり、ポリイミド絶縁層との接着性を確保という観点から、表面粗さのパラメータとして、二乗平均粗さ(Rq)を制御することが重要である。すなわち、後述のシミュレーション試験の結果から、二乗平均粗さ(Rq)は、他の表面粗さの指標に比べ、表皮効果によって銅箔表面を流れる電流に対して、銅箔表面の微細な凹凸が与える影響をより的確に反映しているものと推察される。従って、銅箔におけるポリイミド絶縁層と接する面の表面粗さの指標として、二乗平均粗さ(Rq)を使用し、この二乗平均粗さ(Rq)を上記範囲内に規定することによって、ポリイミド絶縁層との接着性の確保と、配線の抵抗増大の抑制というトレード・オフの関係にある要求を同時に満足させることができる。   When a high-frequency signal is supplied to the signal wiring, current flows only on the surface of the signal wiring, the effective cross-sectional area through which the current flows decreases, the DC resistance increases, and the signal attenuates (skin effect) ) By reducing the surface roughness of the surface of the copper foil in contact with the polyimide insulating layer, an increase in the resistance of the signal wiring due to the skin effect can be suppressed. However, if the surface roughness is lowered to satisfy the electrical performance requirement standard, the adhesive strength (peel strength) between the copper foil and the polyimide insulating layer becomes weak. Therefore, it is important to control the root mean square roughness (Rq) as a surface roughness parameter from the viewpoint of satisfying electrical performance requirements and ensuring adhesion with the polyimide insulating layer. That is, from the results of the simulation test described later, the root mean square roughness (Rq) is smaller than the other surface roughness indices, with respect to the current flowing on the copper foil surface due to the skin effect, the fine irregularities on the copper foil surface. It is presumed that it reflects the impact on the project more accurately. Accordingly, by using the root mean square roughness (Rq) as an index of the surface roughness of the surface in contact with the polyimide insulation layer in the copper foil, and by defining this mean square roughness (Rq) within the above range, polyimide insulation It is possible to simultaneously satisfy the requirements that are in a trade-off relationship between securing adhesion to the layer and suppressing an increase in wiring resistance.

また、銅箔の絶縁樹脂層に接する面の表面粗度は、算術平均高さRaが0.2μm以下であることが好ましく、十点平均粗さRzが1.5μm以下であることが好ましい。   Moreover, as for the surface roughness of the surface which contacts the insulating resin layer of copper foil, it is preferable that arithmetic mean height Ra is 0.2 micrometer or less, and it is preferable that ten-point average roughness Rz is 1.5 micrometers or less.

<プリント配線板>
本実施の形態のプリント配線板は、本実施の形態の銅張積層板の銅箔を常法によってパターン状に加工して配線層を形成することによって、本発明の一実施の形態であるプリント配線板の製造することができる。
<Printed wiring board>
The printed wiring board according to the present embodiment is a printed wiring board according to an embodiment of the present invention by forming a wiring layer by processing the copper foil of the copper-clad laminate according to the present embodiment into a pattern by a conventional method. A wiring board can be manufactured.

以下、代表的にキャスト法の場合を例に挙げて本実施の形態のプリント配線板の製造方法について、具体的に説明する。   Hereinafter, a method for manufacturing a printed wiring board according to the present embodiment will be specifically described by taking the case of a cast method as an example.

まず、銅張積層板の製造方法は、以下の工程(1)〜(3)を含むことができる。
工程(1):
工程(1)は、本実施の形態で用いるポリイミドの前駆体であるポリアミド酸の樹脂溶液を得る工程である。
First, the manufacturing method of a copper clad laminated board can include the following processes (1)-(3).
Step (1):
Step (1) is a step of obtaining a resin solution of polyamic acid that is a precursor of polyimide used in the present embodiment.

工程(2):
工程(2)は、銅箔上に、ポリアミド酸の樹脂溶液を塗布し、塗布膜を形成する工程である。銅箔は、カットシート状、ロール状のもの、又はエンドレスベルト状などの形状で使用できる。生産性を得るためには、ロール状又はエンドレスベルト状の形態とし、連続生産可能な形式とすることが効率的である。さらに、プリント配線板における配線パターン精度の改善効果をより大きく発現させる観点から、銅箔は長尺に形成されたロール状のものが好ましい。
Step (2):
Step (2) is a step of applying a polyamic acid resin solution on the copper foil to form a coating film. The copper foil can be used in the form of a cut sheet, a roll, or an endless belt. In order to obtain productivity, it is efficient to use a roll-like or endless belt-like form so that continuous production is possible. Furthermore, the copper foil is preferably in the form of a roll that is formed in a long length from the viewpoint of more greatly improving the effect of improving the wiring pattern accuracy in the printed wiring board.

塗布膜を形成する方法は、ポリアミド酸の樹脂溶液を銅箔の上に直接塗布した後に乾燥することで形成できる。塗布する方法は特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能である。   The coating film can be formed by applying a polyamic acid resin solution directly on a copper foil and then drying. The method of applying is not particularly limited, and it is possible to apply with a coater such as a comma, die, knife, lip or the like.

ポリイミド層は、単層でもよいし、複数層からなるものでもよい。ポリイミド層を複数層とする場合、異なる構成成分からなる前駆体の層の上に他の前駆体を順次塗布して形成することができる。前駆体の層が3層以上からなる場合、同一の構成の前駆体を2回以上使用してもよい。層構造が簡単である2層又は単層は、工業的に有利に得ることができるので好ましい。また、前駆体の層の厚み(乾燥後)は、例えば、3〜100μmの範囲内、好ましくは3〜50μmの範囲内にあることがよい。   The polyimide layer may be a single layer or a plurality of layers. In the case where a plurality of polyimide layers are used, other precursors can be sequentially applied on the precursor layers made of different components. When the precursor layer is composed of three or more layers, the precursor having the same configuration may be used twice or more. A two-layer or a single layer having a simple layer structure is preferable because it can be advantageously obtained industrially. The thickness of the precursor layer (after drying) is, for example, in the range of 3 to 100 μm, preferably in the range of 3 to 50 μm.

ポリイミド層を複数層とする場合、銅箔に接するポリイミド層が熱可塑性ポリイミド層となるように前駆体の層を形成することが好ましい。熱可塑性ポリイミドを用いることで、銅箔との密着性を向上させることができる。このような熱可塑性ポリイミドは、ガラス転移温度(Tg)が360℃以下であるものが好ましく、より好ましくは200〜320℃である。   When making a polyimide layer into multiple layers, it is preferable to form a layer of a precursor so that the polyimide layer which touches copper foil may become a thermoplastic polyimide layer. By using thermoplastic polyimide, the adhesion to the copper foil can be improved. Such a thermoplastic polyimide preferably has a glass transition temperature (Tg) of 360 ° C. or lower, more preferably 200 to 320 ° C.

また、単層又は複数層の前駆体の層を一旦イミド化して単層又は複数層のポリイミド層とした後に、更にその上に前駆体の層を形成することも可能である。   It is also possible to once imidize a single layer or a plurality of precursor layers into a single layer or a plurality of polyimide layers, and further form a precursor layer thereon.

工程(3):
工程(3)は、塗布膜を熱処理してイミド化し、ポリイミド絶縁層を形成する工程である。イミド化の方法は、特に制限されず、例えば、80〜400℃の範囲内の温度条件で1〜60分間の範囲内の時間加熱するといった熱処理が好適に採用される。金属層の酸化を抑制するため、低酸素雰囲気下での熱処理が好ましく、具体的には、窒素又は希ガスなどの不活性ガス雰囲気下、水素などの還元ガス雰囲気下、あるいは真空中で行うことが好ましい。熱処理により、塗布膜中のポリアミド酸がイミド化し、ポリイミドが形成される。
Step (3):
Step (3) is a step of forming a polyimide insulating layer by heat-treating the coating film to imidize it. The imidization method is not particularly limited, and for example, heat treatment such as heating for 1 to 60 minutes under a temperature condition in the range of 80 to 400 ° C. is suitably employed. In order to suppress the oxidation of the metal layer, heat treatment in a low oxygen atmosphere is preferable. Specifically, the heat treatment is performed in an inert gas atmosphere such as nitrogen or a rare gas, in a reducing gas atmosphere such as hydrogen, or in a vacuum. Is preferred. By the heat treatment, the polyamic acid in the coating film is imidized to form polyimide.

以上のようにして、ポリイミド層(単層又は複数層)と銅箔とを有する銅張積層板を製造することができる。   As described above, a copper clad laminate having a polyimide layer (single layer or a plurality of layers) and a copper foil can be produced.

また、回路基板の製造方法は、上記(1)〜(3)の工程に加え、さらに、以下の工程(4)を含むことができる。   The circuit board manufacturing method can further include the following step (4) in addition to the above steps (1) to (3).

工程(4):
工程(4)は、銅張積層板の銅箔をパターニングして配線層を形成する工程である。本工程では、銅箔を所定形状にエッチングすることによってパターン形成し、配線層に加工することによってプリント配線板を得る。エッチングは、例えばフォトリソグラフィー技術などを利用する任意の方法で行うことができる。
Step (4):
Step (4) is a step of forming a wiring layer by patterning the copper foil of the copper clad laminate. In this step, a copper foil is etched into a predetermined shape to form a pattern, and a printed wiring board is obtained by processing into a wiring layer. Etching can be performed by any method using, for example, photolithography.

なお、以上の説明では、プリント配線板の製造方法の特徴的工程のみを説明した。すなわち、プリント配線板を製造する際に、通常行われる上記以外の工程、例えば前工程でのスルーホール加工や、後工程の端子メッキ、外形加工などの工程は、常法に従い行うことができる。   In the above description, only the characteristic steps of the printed wiring board manufacturing method have been described. That is, when manufacturing a printed wiring board, processes other than the above normally performed, for example, processes such as through-hole processing in the previous process, terminal plating in the subsequent process, and external processing can be performed according to a conventional method.

以上のように、本実施の形態のポリイミド絶縁層及び銅箔を使用することによって、伝送特性に優れた銅張積層板を形成することができる。また、本実施の形態のポリイミド絶縁層及び銅箔を用いることにより、FPCに代表される回路基板において、電気信号の伝送特性を改善し、信頼性を向上させることができる。   As described above, by using the polyimide insulating layer and the copper foil of the present embodiment, a copper-clad laminate having excellent transmission characteristics can be formed. In addition, by using the polyimide insulating layer and the copper foil of this embodiment mode, electrical signal transmission characteristics can be improved and reliability can be improved in a circuit board typified by FPC.

以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。   The features of the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the examples. In the following examples, various measurements and evaluations are as follows unless otherwise specified.

[熱膨張係数(CTE)の測定]
熱膨張係数は、3mm×20mmのサイズのポリイミドフィルムを、サーモメカニカルアナライザー(Bruker社製、商品名;4000SA)を用い、5.0gの荷重を加えながら一定の昇温速度で30℃から250℃まで昇温させ、更にその温度で10分保持した後、5℃/分の速度で冷却し、240℃から100℃までの平均熱膨張係数(線熱膨張係数)を求めた。
[Measurement of coefficient of thermal expansion (CTE)]
The coefficient of thermal expansion was 30 ° C. to 250 ° C. with a constant temperature increase rate while applying a 5.0 g load using a thermomechanical analyzer (trade name: 4000SA) made of a polyimide film having a size of 3 mm × 20 mm. Then, the temperature was further maintained at that temperature for 10 minutes, followed by cooling at a rate of 5 ° C./minute, and an average thermal expansion coefficient (linear thermal expansion coefficient) from 240 ° C. to 100 ° C. was determined.

[ガラス転移温度(Tg)の測定]
ガラス転移温度は、5mm×20mmのサイズのポリイミドフィルムを、粘弾性測定装置(DMA:TAインスツルメント社製、商品名;RSA3)を用いて、30℃から400℃まで昇温速度4℃/分、周波数1Hzで行い、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度として評価した。
[Measurement of glass transition temperature (Tg)]
The glass transition temperature is 5 mm × 20 mm using a viscoelasticity measuring device (DMA: manufactured by TA Instruments Co., Ltd., trade name: RSA3). The temperature at which the elastic modulus change was maximum (the tan δ change rate was the largest) was evaluated as the glass transition temperature.

[ピール強度の測定]
ピール強度は、テンシロンテスター(東洋精機製作所社製、商品名;ストログラフVE−10)を用いて、幅1mmのサンプル(基材/樹脂層で構成された積層体)の樹脂層側を両面テープによりアルミ板に固定し、基材を180°方向に50mm/分の速度で、樹脂層と基材を剥離するときの力を求めた。
[Measurement of peel strength]
Peel strength was measured using a tensilon tester (trade name: Strograph VE-10, manufactured by Toyo Seiki Seisakusho Co., Ltd.), and the double-sided tape was applied to the resin layer side of a 1 mm wide sample (laminate composed of substrate / resin layer). Was fixed to the aluminum plate, and the force for peeling the resin layer and the substrate in the 180 ° direction at a speed of 50 mm / min was determined.

[誘電率及び誘電正接の測定]
誘電率及び誘電正接は、空洞共振器摂動法誘電率評価装置(Agilent社製、商品名;ベクトルネットワークアナライザE8363B)を用い、所定の周波数における樹脂シート(硬化後の樹脂シート)の誘電率および誘電正接を測定した。なお、測定に使用した樹脂シートは、温度;24〜26℃、湿度;45〜55%の条件下で、24時間放置したものである。
[Measurement of dielectric constant and dissipation factor]
The dielectric constant and dielectric loss tangent are measured using a cavity resonator perturbation method dielectric constant evaluation apparatus (manufactured by Agilent, trade name: Vector Network Analyzer E 8363B), and the dielectric constant and dielectric of the resin sheet (cured resin sheet) at a predetermined frequency. Tangent was measured. In addition, the resin sheet used for the measurement was left for 24 hours under the conditions of temperature; 24-26 ° C., humidity: 45-55%.

[銅箔の表面粗さの測定]
1)二乗平均粗さ(Rq)の測定
触針式表面粗さ計(株式会社小坂研究所製、商品名;サーフコーダET−3000)を用い、Force;100μN、Speed;20μm、Range;800μmの測定条件によって求めた。なお、表面粗さの算出は、JIS−B0601:2001に準拠した方法により算出した。
2)算術平均高さ(Ra)の測定
触針式表面粗さ計(株式会社小坂研究所製、商品名;サーフコーダET−3000)を用い、Force;100μN、Speed;20μm、Range;800μmの測定条件によって求めた。なお、表面粗さの算出は、JIS−B0601:1994に準拠した方法により算出した。
3)十点平均粗さ(Rz)の測定
触針式表面粗さ計(株式会社小坂研究所製、商品名;サーフコーダET−3000)を用い、Force;100μN、Speed;20μm、Range;800μmの測定条件によって求めた。なお、表面粗さの算出は、JIS−B0601:1994に準拠した方法により算出した。
[Measurement of surface roughness of copper foil]
1) Measurement of root mean square roughness (Rq) Using a stylus type surface roughness meter (trade name: Surfcorder ET-3000, manufactured by Kosaka Laboratory Ltd.), Force: 100 μN, Speed: 20 μm, Range: 800 μm It was determined according to the measurement conditions. The surface roughness was calculated by a method based on JIS-B0601: 2001.
2) Measurement of arithmetic average height (Ra) Using a stylus type surface roughness meter (trade name: Surfcorder ET-3000, manufactured by Kosaka Laboratory Ltd.), Force: 100 μN, Speed: 20 μm, Range: 800 μm It was determined according to the measurement conditions. The surface roughness was calculated by a method based on JIS-B0601: 1994.
3) Measurement of 10-point average roughness (Rz) Using a stylus type surface roughness meter (trade name; Surfcorder ET-3000, manufactured by Kosaka Laboratory Ltd.), Force: 100 μN, Speed: 20 μm, Range: 800 μm It was determined according to the measurement conditions. The surface roughness was calculated by a method based on JIS-B0601: 1994.

[伝送特性の評価]
伝送特性の評価は、銅張積層板を回路加工し、特性インピーダンスを50Ωとしたマイクロストリップ線路を回路加工した評価サンプルを使用し、回路加工した側(伝送線路側)の伝送特性を評価した。SOLT法(SHORT−OPEN−LOOD−Thru)にて校正したベクトルネットワークアナライザにより、所定の周波数領域でSパラメータを測定することにより、S21(挿入損失)で評価を行った。
[Evaluation of transmission characteristics]
The transmission characteristics were evaluated by evaluating the transmission characteristics on the circuit processed side (transmission line side) using an evaluation sample obtained by processing a circuit of a copper-clad laminate and processing a microstrip line with a characteristic impedance of 50Ω. Evaluation was performed at S21 (insertion loss) by measuring S parameters in a predetermined frequency region with a vector network analyzer calibrated by the SOLT method (SHORT-OPEN-LOOD-Thru).

実施例及び比較例に用いた略号は、以下の化合物を示す。
(A)ポリイミド原料
DDA:ダイマー酸型ジアミン(クローダジャパン株式会社製、商品名;PRIAMINE1074、炭素数;36、アミン価;205mgKOH/g、ダイマー成分の含有量;95重量%以上)
m‐TB:2,2’‐ジメチル‐4,4’‐ジアミノビフェニル
BAPP:2,2‐ビス(4‐アミノフェノキシフェニル)プロパン
TPE‐R:1,3‐ビス(4‐アミノフェノキシ)ベンゼン
ワンダミン:4,4’‐ジアミノジシクロヘキシルメタン
BAFL:9,9‐ビス(4‐アミノフェニル)フルオレン
TFMB:2,2’‐ビス(トリフルオロメチル)‐4,4’‐ジアミノビフェニル
PMDA:ピロメリット酸二無水物
BPDA:3,3’,4,4’‐ビフェニルテトラカルボン酸二無水物
DMAc:N,N‐ジメチルアセトアミド
Abbreviations used in Examples and Comparative Examples indicate the following compounds.
(A) Polyimide raw material DDA: Dimer acid type diamine (trade name: PRIAMINE 1074, carbon number: 36, amine value: 205 mgKOH / g, content of dimer component: 95% by weight or more)
m-TB: 2,2′-dimethyl-4,4′-diaminobiphenyl BAPP: 2,2-bis (4-aminophenoxyphenyl) propane TPE-R: 1,3-bis (4-aminophenoxy) benzene wander Min: 4,4′-diaminodicyclohexylmethane BAFL: 9,9-bis (4-aminophenyl) fluorene TFMB: 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl PMDA: pyromellitic acid Dianhydride BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride DMAc: N, N-dimethylacetamide

(B)銅箔
銅箔(1):電解銅箔、厚さ;12μm、樹脂積層側の表面粗度Rq;0.14μm、Rz;0.64μm、Ra;0.10μm)
銅箔(2):電解銅箔、厚さ;12μm、樹脂積層側の表面粗度Rq;0.19μm、Rz;1.06μm、Ra;0.16μm)
銅箔(3):電解銅箔、厚さ;12μm、樹脂積層側の表面粗度Rq;0.27μm、Rz;1.36μm、Ra;0.21μm)
銅箔(4):電解銅箔、厚さ;12μm、樹脂積層側の表面粗度Rq;0.35μm、Rz;1.51μm、Ra;0.28μm)
銅箔(5):電解銅箔、厚さ12μm、樹脂積層側の表面粗度Rq;0.5μm、Rz;1.65μm、Ra;0.36μm)
銅箔(6):圧延銅箔、厚さ12μm、樹脂積層側の表面粗度Rq;0.24μm、Rz;1.30μm、Ra;0.18μm)
(B) Copper foil Copper foil (1): Electrolytic copper foil, thickness: 12 μm, surface roughness Rq on the resin laminate side: 0.14 μm, Rz: 0.64 μm, Ra: 0.10 μm)
Copper foil (2): Electrolytic copper foil, thickness: 12 μm, surface roughness Rq on the resin laminate side: 0.19 μm, Rz: 1.06 μm, Ra: 0.16 μm)
Copper foil (3): Electrolytic copper foil, thickness: 12 μm, surface roughness Rq on the resin laminate side: 0.27 μm, Rz: 1.36 μm, Ra: 0.21 μm)
Copper foil (4): electrolytic copper foil, thickness: 12 μm, surface roughness Rq on the resin lamination side: 0.35 μm, Rz: 1.51 μm, Ra: 0.28 μm)
Copper foil (5): Electrolytic copper foil, thickness 12 μm, surface roughness Rq on the resin laminate side: 0.5 μm, Rz; 1.65 μm, Ra; 0.36 μm)
Copper foil (6): Rolled copper foil, thickness 12 μm, surface roughness Rq on the resin laminate side: 0.24 μm, Rz: 1.30 μm, Ra: 0.18 μm)

合成例1
窒素気流下で、300mlのセパラブルフラスコに、2.196gのDDA(0.0041モル)、16.367gのm‐TB(0.0771モル)及び212.5gのDMAcを投入し、室温で撹拌して溶解させた。次に、4.776gのBPDA(0.0162モル)及び14.161gのPMDA(0.0649モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液aを得た。ポリアミド酸溶液aの溶液粘度は26,000cpsであった。
Synthesis example 1
Under a nitrogen stream, charge 2.196 g DDA (0.0041 mol), 16.367 g m-TB (0.0771 mol) and 212.5 g DMAc to a 300 ml separable flask and stir at room temperature. And dissolved. Next, 4.776 g of BPDA (0.0162 mol) and 14.161 g of PMDA (0.0649 mol) were added, and the polymerization reaction was continued for 3 hours at room temperature to obtain a polyamic acid solution a. It was. The solution viscosity of the polyamic acid solution a was 26,000 cps.

合成例2〜13
表1及び表2に示す原料組成とした他は、合成例1と同様にしてポリアミド酸溶液b〜mを調製した。
Synthesis Examples 2-13
Polyamic acid solutions b to m were prepared in the same manner as in Synthesis Example 1 except that the raw material compositions shown in Table 1 and Table 2 were used.

Figure 0006403503
Figure 0006403503

Figure 0006403503
Figure 0006403503

[作製例1]
厚さ18μmの電解銅箔の片面(表面粗さRz;2.1μm)に、合成例1で調製したポリアミド酸溶液aを硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を行い、イミド化を完結した。得られた金属張積層体について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルム1を得た。なお、ポリイミドフィルム1を構成するポリイミドは、非熱可塑性であった。
ポリイミドフィルム1の熱膨張係数、ガラス転移温度、誘電率及び誘電正接を求めた。各測定結果を表3に示す。
[Production Example 1]
After applying the polyamic acid solution a prepared in Synthesis Example 1 uniformly on one side (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 18 μm so that the thickness after curing is about 25 μm, 120 The solvent was removed by heat drying at ° C. Furthermore, stepwise heat treatment was performed from 120 ° C. to 360 ° C. to complete imidization. About the obtained metal-clad laminated body, the copper foil was etched away using the ferric chloride aqueous solution, and the polyimide film 1 was obtained. In addition, the polyimide which comprises the polyimide film 1 was non-thermoplastic.
The thermal expansion coefficient, glass transition temperature, dielectric constant and dielectric loss tangent of the polyimide film 1 were determined. Table 3 shows the measurement results.

[作製例2〜6]
表3に示すポリアミド酸溶液を使用した他は、作製例1と同様にして、作製例2〜6のポリイミドフィルム2〜6を得た。得られたポリイミドフィルム2〜6の熱膨張係数(CTE)、ガラス転移温度、誘電率及び誘電正接を求めた。各測定結果を表3に示す。
[Production Examples 2 to 6]
Except having used the polyamic-acid solution shown in Table 3, it carried out similarly to the manufacture example 1, and obtained the polyimide films 2-6 of the manufacture examples 2-6. The thermal expansion coefficient (CTE), glass transition temperature, dielectric constant and dielectric loss tangent of the obtained polyimide films 2 to 6 were determined. Table 3 shows the measurement results.

作製例1〜6の結果をまとめて表3に示す。   The results of Production Examples 1 to 6 are summarized in Table 3.

Figure 0006403503
Figure 0006403503

[作製例7]
厚さ12μmの電解銅箔の片面(表面粗さRz;1.39μm)に、ポリアミド酸溶液hを硬化後の厚みが約2〜3μmとなるように均一に塗布した後、85℃〜110℃まで段階的な加熱処理にて乾燥し溶媒を除去した。次に、その上にポリアミド酸溶液bを硬化後の厚みが、約42〜46μmとなるように均一に塗布し、85℃〜110℃まで段階的な加熱処理にて溶媒を除去した。更に、その上にポリアミド酸溶液hを硬化後の厚みが約2〜3μmとなるように均一に塗布した後、85℃〜110℃まで段階的な加熱処理にて溶媒を除去した。このようにして、3層のポリアミド酸層を形成した後、120℃から320℃まで段階的な熱処理を行い、イミド化を完結して、金属張積層体7を得た。得られた金属張積層体7について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、厚さが約50μmのポリイミドフィルム7を得た。得られたポリイミドフィルム7の3GHzにおける誘電率(ε)及び誘電正接(Tanδ)は、それぞれ3.06、0.0029(E=0.0051)であり、10GHzにおける誘電率及び誘電正接は、それぞれ2.86、0.0036であった。
[Production Example 7]
After applying the polyamic acid solution h uniformly on one surface (surface roughness Rz; 1.39 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing is about 2 to 3 μm, 85 ° C. to 110 ° C. The solvent was removed by drying by stepwise heat treatment. Next, the polyamic acid solution b was uniformly applied thereon so that the thickness after curing was about 42 to 46 μm, and the solvent was removed by stepwise heat treatment from 85 ° C. to 110 ° C. Furthermore, after the polyamic acid solution h was uniformly applied thereon so that the thickness after curing was about 2 to 3 μm, the solvent was removed by a stepwise heat treatment from 85 ° C. to 110 ° C. Thus, after forming the polyamic acid layer of 3 layers, stepwise heat processing was performed from 120 degreeC to 320 degreeC, imidation was completed, and the metal-clad laminated body 7 was obtained. About the obtained metal-clad laminated body 7, the copper foil was etched away using the ferric chloride aqueous solution, and the polyimide film 7 with a thickness of about 50 micrometers was obtained. The dielectric constant (ε 1 ) and dielectric loss tangent (Tanδ 1 ) at 3 GHz of the obtained polyimide film 7 are 3.06 and 0.0029 (E 1 = 0.0051), respectively, and the dielectric constant and dielectric loss tangent at 10 GHz. Were 2.86 and 0.0036, respectively.

[実施例1]
銅箔2に、ポリアミド酸溶液hを硬化後の厚みが約2〜3μmとなるように均一に塗布した後、85℃〜110℃まで段階的な加熱処理にて乾燥し溶媒を除去した。次に、その上にポリアミド酸溶液bを硬化後の厚みが、約42〜46μmとなるように均一に塗布し、85℃〜110℃まで段階的な加熱処理にて溶媒を除去した。更に、その上にポリアミド酸溶液hを硬化後の厚みが約2〜3μmとなるように均一に塗布した後、85℃〜110℃まで段階的な加熱処理にて溶媒を除去した。このようにして、3層のポリアミド酸層を形成した後、120℃から320℃まで段階的な熱処理を行い、イミド化を完結して、銅張積層板1’を得た。得られた銅張積層板1’のポリイミド絶縁層側に、銅箔1を重ね合わせ、温度380℃、圧力6.7MPaの条件で15分間熱圧着して、銅張積層板1を得た。得られた銅張積層板1における熱圧着側の銅箔1とポリイミド絶縁層のピール強度は、0.96kN/mであった。銅箔1側をグランド面とし、銅箔2側を信号面として回路加工を行い、伝送特性を評価した。この結果を図1に示す。
[Example 1]
The polyamic acid solution h was uniformly applied to the copper foil 2 so that the thickness after curing was about 2 to 3 μm, and then dried by stepwise heat treatment from 85 ° C. to 110 ° C. to remove the solvent. Next, the polyamic acid solution b was uniformly applied thereon so that the thickness after curing was about 42 to 46 μm, and the solvent was removed by stepwise heat treatment from 85 ° C. to 110 ° C. Furthermore, after the polyamic acid solution h was uniformly applied thereon so that the thickness after curing was about 2 to 3 μm, the solvent was removed by a stepwise heat treatment from 85 ° C. to 110 ° C. Thus, after forming the polyamic acid layer of 3 layers, stepwise heat processing was performed from 120 degreeC to 320 degreeC, imidation was completed, and copper clad laminated board 1 'was obtained. Copper foil 1 was superposed on the polyimide insulating layer side of the obtained copper-clad laminate 1 ′ and thermocompression bonded for 15 minutes under the conditions of a temperature of 380 ° C. and a pressure of 6.7 MPa to obtain copper-clad laminate 1. The peel strength of the copper foil 1 on the thermocompression bonding side and the polyimide insulating layer in the obtained copper-clad laminate 1 was 0.96 kN / m. Circuit processing was performed with the copper foil 1 side as the ground plane and the copper foil 2 side as the signal plane, and the transmission characteristics were evaluated. The result is shown in FIG.

[参考例1]
市販の液晶ポリマーフィルム1(厚さ;50μm)の両面に銅箔4を熱圧着した積層板を得た。この積層板における両面の銅箔をグランド面と信号面として回路加工を行い、伝送特性を評価した。この結果を図1に示す。
[Reference Example 1]
A laminate was obtained by thermocompression bonding copper foil 4 on both sides of a commercially available liquid crystal polymer film 1 (thickness: 50 μm). Circuit processing was performed using the copper foils on both sides of the laminate as the ground plane and the signal plane, and the transmission characteristics were evaluated. The result is shown in FIG.

[参考例2]
市販の液晶ポリマーフィルム2(厚さ;50μm)の両面に銅箔5を熱圧着した積層板を得た。この積層板における両面の銅箔をグランド面と信号面として回路加工を行い、伝送特性を評価した。この結果を図1に示す。
[Reference Example 2]
A laminate was obtained by thermocompression bonding copper foil 5 on both sides of a commercially available liquid crystal polymer film 2 (thickness: 50 μm). Circuit processing was performed using the copper foils on both sides of the laminate as the ground plane and the signal plane, and the transmission characteristics were evaluated. The result is shown in FIG.

[参考例3]
厚さ50μmの市販のポリイミドフィルム(3GHzにおける誘電率;>3.1、3GHzにおける誘電正接;>0.005)の両面に銅箔5を熱圧着した積層板を得た。この積層板における両面の銅箔をグランド面と信号面として回路加工を行い、伝送特性を評価した。この結果を図1に示す。
[Reference Example 3]
A laminate was obtained by thermocompression bonding copper foil 5 on both sides of a commercially available polyimide film having a thickness of 50 μm (dielectric constant at 3 GHz;> 3.1, dielectric loss tangent at 3 GHz;> 0.005). Circuit processing was performed using the copper foils on both sides of the laminate as the ground plane and the signal plane, and the transmission characteristics were evaluated. The result is shown in FIG.

実施例1、参考例1〜3の結果を図1に示した。図1より、実施例1は、参考例1との比較において、1〜20GHzの周波数領域では同等以上の伝送特性を示していることが確認される。   The results of Example 1 and Reference Examples 1 to 3 are shown in FIG. From FIG. 1, it is confirmed that Example 1 shows a transmission characteristic equal to or higher than that in the frequency range of 1 to 20 GHz in comparison with Reference Example 1.

[実施例2]
銅箔3に、ポリアミド酸溶液hを硬化後の厚みが約2〜3μmとなるように均一に塗布した後、85℃〜110℃まで段階的な加熱処理にて乾燥し溶媒を除去した。次に、その上にポリアミド酸溶液bを硬化後の厚みが、約42〜46μmとなるように均一に塗布し、85℃〜110℃まで段階的な加熱処理にて溶媒を除去した。更に、その上にポリアミド酸溶液hを硬化後の厚みが約2〜3μmとなるように均一に塗布した後、85℃〜110℃まで段階的な加熱処理にて溶媒を除去した。このようにして、3層のポリアミド酸層を形成した後、120℃から320℃まで段階的な熱処理を行い、イミド化を完結して、銅張積層板2’を得た。得られた銅張積層板2’のポリイミド絶縁層側に、銅箔1を重ね合わせ、温度380℃、圧力6.7MPaの条件で15分間熱圧着して、銅張積層板2を得た。得られた銅張積層板2における熱圧着側の銅箔1とポリイミド絶縁層のピール強度は、0.96kN/mであった。銅箔3側をグランド面とし、銅箔1側を信号面として回路加工を行い、伝送特性を評価した。この結果を図2に示す。
[Example 2]
The polyamic acid solution h was uniformly applied to the copper foil 3 so that the thickness after curing was about 2 to 3 μm, and then dried by stepwise heat treatment from 85 ° C. to 110 ° C. to remove the solvent. Next, the polyamic acid solution b was uniformly applied thereon so that the thickness after curing was about 42 to 46 μm, and the solvent was removed by stepwise heat treatment from 85 ° C. to 110 ° C. Furthermore, after the polyamic acid solution h was uniformly applied thereon so that the thickness after curing was about 2 to 3 μm, the solvent was removed by a stepwise heat treatment from 85 ° C. to 110 ° C. After forming the three polyamic acid layers in this manner, stepwise heat treatment was performed from 120 ° C. to 320 ° C. to complete imidization, and a copper-clad laminate 2 ′ was obtained. The copper foil 1 was superposed on the polyimide insulating layer side of the obtained copper-clad laminate 2 ′ and thermocompression bonded for 15 minutes under the conditions of a temperature of 380 ° C. and a pressure of 6.7 MPa to obtain a copper-clad laminate 2. The peel strength of the copper foil 1 and the polyimide insulating layer on the thermocompression bonding side in the obtained copper-clad laminate 2 was 0.96 kN / m. Circuit processing was performed using the copper foil 3 side as a ground surface and the copper foil 1 side as a signal surface, and transmission characteristics were evaluated. The result is shown in FIG.

[実施例3]
実施例2と同様にして、銅張積層板3を得た。銅箔1側をグランド面とし、銅箔3側を信号面として回路加工を行い、伝送特性を評価した。この結果を図2に示す。
[Example 3]
In the same manner as in Example 2, a copper-clad laminate 3 was obtained. Circuit processing was performed using the copper foil 1 side as the ground plane and the copper foil 3 side as the signal plane, and the transmission characteristics were evaluated. The result is shown in FIG.

[シミュレーション試験]
次に、本発明の効果を確認したシミュレーション試験の結果について説明する。ポリイミド絶縁層の3GHzにおける誘電率及び誘電正接をそれぞれ、3.0、0.003に固定し、Rqを0〜1.0に変化させたときの結果を図2に示す。また、ポリイミド絶縁層の3GHzにおける誘電率及び誘電正接をそれぞれ、3.4、0.006に固定し、Rqを0〜1.0に変化させたときの結果を図3に示す。なお、シミュレーション試験において、グランド面と信号面のRqは同一に設定している。
シミュレーション(1)及び(7):Rq=0μm
シミュレーション(2)及び(8):Rq=0.1μm
シミュレーション(3)及び(9):Rq=0.2μm
シミュレーション(4)及び(10):Rq=0.3μm
シミュレーション(5)及び(11):Rq=0.5μm
シミュレーション(6)及び(12):Rq=1.0μm
[Simulation test]
Next, the result of the simulation test confirming the effect of the present invention will be described. FIG. 2 shows the results when the dielectric constant and dielectric loss tangent at 3 GHz of the polyimide insulating layer are fixed to 3.0 and 0.003, respectively, and Rq is changed from 0 to 1.0. Further, FIG. 3 shows the results when the dielectric constant and dielectric loss tangent at 3 GHz of the polyimide insulating layer are fixed to 3.4 and 0.006, respectively, and Rq is changed from 0 to 1.0. In the simulation test, Rq of the ground plane and the signal plane are set to be the same.
Simulation (1) and (7): Rq = 0 μm
Simulations (2) and (8): Rq = 0.1 μm
Simulations (3) and (9): Rq = 0.2 μm
Simulations (4) and (10): Rq = 0.3 μm
Simulation (5) and (11): Rq = 0.5 μm
Simulations (6) and (12): Rq = 1.0 μm

実施例2及び3、シミュレーション(1)〜(6)の結果を図2に示し、シミュレーション(7)〜(12)の結果を図3に示した。図2より、Rqが0.5μm未満である実施例2及び3、シミュレーション(1)〜(4)に対して、Rqが0.5μm以上であるシミュレーション(5)及び(6)では、伝送損失が大きいことが確認される。また、図3より、Rqの値が小さくなるほど、ほぼ比例関係で伝送特性が良好になることが確認されるが、図2より、シミュレーション(4)及び(5)との間に若干の開きが確認される。従って、ポリイミド絶縁層の誘電特性と銅箔の表面粗さRqの相乗効果があると考えられる。   The results of Examples 2 and 3, simulations (1) to (6) are shown in FIG. 2, and the results of simulations (7) to (12) are shown in FIG. From FIG. 2, in comparison with Examples 2 and 3 and simulations (1) to (4) in which Rq is less than 0.5 μm, in simulations (5) and (6) where Rq is 0.5 μm or more, transmission loss Is confirmed to be large. In addition, it is confirmed from FIG. 3 that the transmission characteristics are improved in a substantially proportional relationship as the value of Rq decreases, but from FIG. 2, there is a slight gap between simulations (4) and (5). It is confirmed. Therefore, it is considered that there is a synergistic effect between the dielectric characteristics of the polyimide insulating layer and the surface roughness Rq of the copper foil.

以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。   As mentioned above, although embodiment of this invention was described in detail for the purpose of illustration, this invention is not restrict | limited to the said embodiment, A various deformation | transformation is possible.

Claims (7)

ポリイミド絶縁層と、該ポリイミド絶縁層の少なくとも一方の面に銅箔を備えた銅張積層板であって、
前記ポリイミド絶縁層が、下記の構成Ia及びIb:
Ia)熱線膨張係数が0ppm/K以上30ppm/K以下の範囲内である;
Ib)下記の数式(i)、
=√ε×Tanδ ・・・(i)
[ここで、εは、空洞共振器摂動法による3GHzにおける誘電率を示し、Tanδは、空洞共振器摂動法による3GHzにおける誘電正接を示す]
に基づき算出される、誘電特性を示す指標であるE値が0.009未満であるとともに、前記誘電率が3.1以下であり、前記誘電正接が0.005未満である
を備え、更に、前記銅箔が、下記の構成c:
c)前記ポリイミド絶縁層と接する面の二乗平均粗さ(Rq)が、0.1μm以上0.4μm以下の範囲内である;
を備えるとともに、
前記銅箔のうち少なくとも片方の銅箔は、前記ポリイミド絶縁層と接する面の十点平均粗さ(Rz)が1.06μm以上である銅張積層板。
A copper-clad laminate comprising a polyimide insulating layer and a copper foil on at least one surface of the polyimide insulating layer,
The polyimide insulating layer has the following configurations Ia and Ib:
Ia) Thermal expansion coefficient is in the range of 0 ppm / K or more and 30 ppm / K or less;
Ib) The following formula (i),
E 1 = √ε 1 × Tanδ 1 ··· (i)
[Where ε 1 represents the dielectric constant at 3 GHz by the cavity resonator perturbation method, and Tan δ 1 represents the dielectric loss tangent at 3 GHz by the cavity resonator perturbation method]
An E 1 value, which is an index indicating dielectric characteristics, calculated based on is less than 0.009 , the dielectric constant is 3.1 or less, and the dielectric loss tangent is less than 0.005 ;
Further, the copper foil has the following configuration c:
c) The root mean square roughness (Rq) of the surface in contact with the polyimide insulating layer is in the range of 0.1 μm to 0.4 μm ;
The equipped Rutotomoni,
At least one of the copper foils is a copper clad laminate having a ten-point average roughness (Rz) of 1.06 μm or more on the surface in contact with the polyimide insulating layer .
前記銅箔の前記ポリイミド絶縁層と接する面の算術平均高さ(Ra)が、0.2μm以下である請求項1に記載の銅張積層板。 2. The copper-clad laminate according to claim 1, wherein an arithmetic average height (Ra) of a surface in contact with the polyimide insulating layer of the copper foil is 0.2 μm or less. 前記銅箔の前記ポリイミド絶縁層と接する面の十点平均粗さ(Rz)が、1.5μm以下である請求項1又は2に記載の銅張積層板。 The copper clad laminate according to claim 1 or 2 , wherein a ten-point average roughness (Rz) of a surface of the copper foil in contact with the polyimide insulating layer is 1.5 µm or less. 前記ポリイミド絶縁層の10GHzにおける誘電率が3.0以下であり、誘電正接が0.005以下である請求項1〜のいずれか1項に記載の銅張積層板。 Wherein is a dielectric constant at 10GHz polyimide insulating layer is 3.0 or less, the copper-clad laminate according to any one of claims 1 to third dielectric loss tangent is 0.005 or less. 請求項1〜のいずれか1項に記載の銅張積層板の銅箔を配線回路加工してなるプリント配線板。 The printed wiring board formed by carrying out a wiring circuit process of the copper foil of the copper clad laminated board of any one of Claims 1-4 . 請求項に記載のプリント配線板を、1GHz〜40GHzの範囲内の周波数領域で使用するプリント配線板の使用方法。 The usage method of the printed wiring board which uses the printed wiring board of Claim 5 in the frequency area | region within the range of 1 GHz-40 GHz. 請求項に記載のプリント配線板を、1GHz〜20GHzの範囲内の周波数領域で使用するプリント配線板の使用方法。
The usage method of the printed wiring board which uses the printed wiring board of Claim 5 in the frequency area | region within the range of 1 GHz-20 GHz.
JP2014178646A 2013-09-30 2014-09-03 Copper-clad laminate, printed wiring board and method of using the same Active JP6403503B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014178646A JP6403503B2 (en) 2013-09-30 2014-09-03 Copper-clad laminate, printed wiring board and method of using the same
CN201410505175.8A CN104519657B (en) 2013-09-30 2014-09-26 Copper-cover laminated plate, printing distributing board and its application method
TW103133381A TWI634986B (en) 2013-09-30 2014-09-26 Copper-covered laminate plate, printed circuit board and using method thereof
KR1020140129485A KR102234045B1 (en) 2013-09-30 2014-09-26 Copper-clad laminate, printed wiring board and method of using thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013205950 2013-09-30
JP2013205950 2013-09-30
JP2014178646A JP6403503B2 (en) 2013-09-30 2014-09-03 Copper-clad laminate, printed wiring board and method of using the same

Publications (2)

Publication Number Publication Date
JP2015091644A JP2015091644A (en) 2015-05-14
JP6403503B2 true JP6403503B2 (en) 2018-10-10

Family

ID=53195148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014178646A Active JP6403503B2 (en) 2013-09-30 2014-09-03 Copper-clad laminate, printed wiring board and method of using the same

Country Status (4)

Country Link
JP (1) JP6403503B2 (en)
KR (1) KR102234045B1 (en)
CN (1) CN104519657B (en)
TW (1) TWI634986B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379071B2 (en) * 2015-06-15 2018-08-22 Jx金属株式会社 Electromagnetic shielding material
TWI564145B (en) 2015-06-17 2017-01-01 長興材料工業股份有限公司 Metal-clad laminate and method of manufacturing the same
US11166383B2 (en) 2015-07-23 2021-11-02 Mitsui Mining & Smelting Co., Ltd. Resin-clad copper foil, copper-clad laminated plate, and printed wiring board
JP6825368B2 (en) * 2016-01-05 2021-02-03 荒川化学工業株式会社 Copper-clad laminate and printed wiring board
JP7102691B2 (en) * 2016-09-05 2022-07-20 荒川化学工業株式会社 Copper-clad laminate for flexible printed wiring board and flexible printed wiring board
JP7115165B2 (en) * 2017-09-15 2022-08-09 Jsr株式会社 Laminates for high-frequency circuits and flexible printed circuit boards
KR102686120B1 (en) * 2018-09-03 2024-07-19 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate, adhesive sheet, adhesive polyimide resin composition, and circuit board
JP7446741B2 (en) * 2018-09-28 2024-03-11 日鉄ケミカル&マテリアル株式会社 Metal-clad laminates and circuit boards
TWI788596B (en) * 2018-10-12 2023-01-01 日商尤尼吉可股份有限公司 Polyimide film and the flexible cupper-clad laminate comprising the same
JP7503289B2 (en) * 2019-01-21 2024-06-20 ユニチカ株式会社 Polyimide
JP7267591B2 (en) * 2019-05-22 2023-05-02 ユニチカ株式会社 polyester imide
JP7378122B2 (en) * 2019-10-23 2023-11-13 ユニチカ株式会社 polyimide film
US20220204697A1 (en) * 2020-12-31 2022-06-30 Industrial Technology Research Institute Polymer and resin composition thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031639B1 (en) 1969-06-04 1975-10-13
JPH06232553A (en) * 1993-01-29 1994-08-19 Hitachi Chem Co Ltd Single-sided flexible copper plated board for lamination
JP2003306649A (en) * 2002-04-12 2003-10-31 Kanegafuchi Chem Ind Co Ltd Adhesive sheet and printed wiring board
CN1720136A (en) * 2002-12-05 2006-01-11 株式会社钟化 Laminate, printed wiring board and method for manufacturing them
JP2004189981A (en) * 2002-12-13 2004-07-08 Kanegafuchi Chem Ind Co Ltd Thermoplastic polyimide resin material and laminated body, and manufacturing method of printed wiring board
JP4872185B2 (en) 2003-05-06 2012-02-08 三菱瓦斯化学株式会社 Metal-clad laminate
KR101182026B1 (en) * 2004-02-25 2012-09-11 가부시키가이샤 가네카 Thermosetting resin composition and use thereof
JP2009007551A (en) * 2007-05-30 2009-01-15 Hitachi Chem Co Ltd Resin varnish, adhesive layer-coated metal foil, metal-clad laminate, printed wiring board, and multilayer wiring board
JP5636159B2 (en) * 2007-12-28 2014-12-03 三井金属鉱業株式会社 Copper foil with resin and method for producing copper foil with resin
JP5031639B2 (en) * 2008-03-31 2012-09-19 新日鐵化学株式会社 Flexible copper clad laminate
JP2010234638A (en) * 2009-03-31 2010-10-21 Nippon Steel Chem Co Ltd Copper clad laminate, and method for manufacturing the same
JP5746866B2 (en) * 2011-01-05 2015-07-08 Jx日鉱日石金属株式会社 Copper-clad laminate and manufacturing method thereof

Also Published As

Publication number Publication date
TW201511941A (en) 2015-04-01
JP2015091644A (en) 2015-05-14
KR20150037602A (en) 2015-04-08
CN104519657A (en) 2015-04-15
TWI634986B (en) 2018-09-11
KR102234045B1 (en) 2021-03-30
CN104519657B (en) 2018-04-06

Similar Documents

Publication Publication Date Title
JP6403503B2 (en) Copper-clad laminate, printed wiring board and method of using the same
JP6422437B2 (en) Polyimide, resin film and metal-clad laminate
JP2016188298A (en) Polyimide, resin film, metal-clad laminate, and circuit board
JP6473028B2 (en) Copper-clad laminate, printed wiring board and method of using the same
JP6403460B2 (en) Metal-clad laminate, circuit board and polyimide
JP6767759B2 (en) Polyimide, resin film and metal-clad laminate
JP6559027B2 (en) Polyamide acid, polyimide, resin film and metal-clad laminate
JP2022118015A (en) Double-sided metal-clad laminate and circuit board
JP2015127117A (en) Metal-clad laminate and circuit board
JP6488170B2 (en) Circuit board
JP6267509B2 (en) Polyamic acid composition, polyimide, resin film and metal-clad laminate
JP7428646B2 (en) Metal-clad laminates and circuit boards
JP2015193117A (en) metal-clad laminate and circuit board
JP2015127118A (en) Metal-clad laminate and circuit board
KR20210084275A (en) Metal-clad laminate and circuit board
JP2016191029A (en) Polyamide acid composition, polyimide, resin film, and metal-clad laminate
JP6403396B2 (en) Polyamic acid composition, polyimide, resin film and metal-clad laminate
JP2020015237A (en) Method for manufacturing metal-clad laminate and method for manufacturing circuit board
JP2020104390A (en) Metal-clad laminate, method for manufacturing the same, and circuit board
JP6603032B2 (en) Copper-clad laminate and circuit board
JP6767751B2 (en) Polyamic acid, polyimide, resin film and metal-clad laminate
JP6558755B2 (en) Polyamide acid, polyimide, resin film and metal-clad laminate
JP2019091934A (en) Circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180911

R150 Certificate of patent or registration of utility model

Ref document number: 6403503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250