JP6398830B2 - 磁気インピーダンスセンサ - Google Patents

磁気インピーダンスセンサ Download PDF

Info

Publication number
JP6398830B2
JP6398830B2 JP2015064124A JP2015064124A JP6398830B2 JP 6398830 B2 JP6398830 B2 JP 6398830B2 JP 2015064124 A JP2015064124 A JP 2015064124A JP 2015064124 A JP2015064124 A JP 2015064124A JP 6398830 B2 JP6398830 B2 JP 6398830B2
Authority
JP
Japan
Prior art keywords
magnetic
pulse
pulse current
current
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015064124A
Other languages
English (en)
Other versions
JP2016183903A (ja
Inventor
剛健 河野
剛健 河野
均 青山
均 青山
道治 山本
道治 山本
英男 荒川
英男 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2015064124A priority Critical patent/JP6398830B2/ja
Priority to US15/076,748 priority patent/US10120040B2/en
Priority to EP16161836.8A priority patent/EP3073282B1/en
Publication of JP2016183903A publication Critical patent/JP2016183903A/ja
Application granted granted Critical
Publication of JP6398830B2 publication Critical patent/JP6398830B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/063Magneto-impedance sensors; Nanocristallin sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、高感度の磁気センサとしてアモルファスワイヤ、薄膜等を感磁体とする磁気インピーダンスセンサに関するものである。
従来の磁気インピーダンスセンサは、例えば図16(特許文献1の図1)に示されるようにアモルファスワイヤWがロジック回路によって構成されたパルス発生器Pの出力によってロジックレベルの「0」および「1」すなわち電圧「0ボルト」と「正または負の所定の電圧」の2値で周期的にパルス通電されている。
すなわち前記パルス発生器Pの出力が「0」のときは前記アモルファスワイヤWに電流は流れず、前記出力が「1」のときには所定の電流がアモルファスワイヤWに流れる。
たとえば図2(a)に示されるように前記ロジックレベルが「1」のときに正の電流が流れる回路の場合においては、右ねじの法則による磁化力が発生して、アモルファスワイヤ1の周回方向の磁化がuに強制され、前記ロジックレベルが「1」のときに負の電流が流れる回路の場合においては、図2(b)に示されるようにアモルファスワイヤの周回方向の磁化がvに強制される。
一方ロジックレベルが「0」のときには周回方向に磁化する強制力がなくなり解放されるので、一般的には図2(c)に示されるように周回方向の磁化u、vがほぼ等量になると考えられる。
WO2005/019851号公報 WO2009/119081号公報
そしてさらにその次のパルスで再度uまたはvに磁化が強制されてまた解放されるという動作をしており、前記パルス発生器Pからの出力のロジックレベル「1」のときには、uまたはvのいずれか一方の周回方向のみに磁化が強制され、その次のロジックレベル「0」のときには磁化の強制力がなくなり解放されて、アモルファスワイヤは元の零磁化の状態へ戻ろうとする。
しかしながら、前記ロジックレベルが「0」の強制力零の状態においては、反転して前記ロジックレベル「1」の状態に戻るべく移行することはあっても、反転しないで磁化零状態を越えて移行することはないとともに、アモルファスワイヤの磁化が元の状態に戻るには何ら強制力がないので、前記アモルファスワイヤの内部のヒステリシスなどのため、部分的には完全には元の磁化零の状態に戻らない場合があり、わずかながら前記強制された方向の磁化状態が残る場合が考えられる。この場合に次のパルス電流を印加したときアモルファスワイヤ内の周回方向磁化が零の状態から始まらないことになり磁気センサとして動作させると、非線形特性が生じる恐れがあるという問題があった。すなわち、非線形性を顕在化させないためには、周回方向の磁化零の状態から磁化を始める必要がある。この非線形特性の程度は、使用するのに適切なワイヤを選択すること(例えば特許文献2参照)によって、ある程度の改善が可能であるが、使用するワイヤに関係なく、非線形特性を改善できる新しい技術の開発が強く望まれていた。
本発明者らは、前記アモルファスワイヤ等の感磁体に対して磁場強さに対応する交流電圧を発生させるための基本的なパルス電流に加え、前記基本パルス電流とは極性が反対の補正パルス電流を前記基本パルス電流と互いに交互に通電することで、前記周回方向の磁化をたとえば「u」の次には「v」、「v」の次には「u」、、、と周回方向の磁化状態が零の解放の状態を跨いで交互に周回方向の磁化を正または負に反転させることにより、前記補正パルス電流により、上記従来における前記ロジックレベル「0」に該当する周回方向磁化状態を必ず磁化零状態を経由または通過させて、極性が反対の方向に磁化された状態にすることにより、前記周回方向の磁化状態が、磁化状態の変動範囲における磁化零状態になることを回避するという本発明の技術的思想に着眼した。そして、さらに研究開発を重ねた結果、磁気センサとしての前記非線形の特性を顕在化させず、線形特性の良好な磁気センサを実現できる本発明に到達した。
以上の検討の結果得られた本発明(請求項1に記載の第1発明)の磁気インピーダンスセンサは、
感磁体にパルス電流を通電することにより、前記感磁体の周辺の磁場強さに対応する交流電圧を発生することによって、前記感磁体の周辺の磁場強さを測定する磁気インピーダンスセンサにおいて、
前記パルス電流として、前記感磁体の周辺の磁場強さに対応する前記交流電圧を発生させるための基本パルス電流と、該基本パルス電流とは極性が反対の線形特性を補正するための補正パルス電流とを交互に前記感磁体に通電するように構成されているものである。
前記第1発明の磁気インピーダンスセンサは、
記補正パルス電流の絶対値が、前記基本パルス電流の絶対値より小さい0.1%〜10%の範囲に設定されているものである。
本発明(請求項2に記載の第2発明)の磁気インピーダンスセンサは、
前記第1発明において、
前記感磁体に対して通電される前記基本パルス電流を通電する時間と前記補正パルス電流を通電する時間との間に、電流が流れない期間が設けられているものである。
本発明(請求項3に記載の第3発明)の磁気インピーダンスセンサは、
前記第1発明または前記第2発明において、
前記感磁体の両端の間に生ずる交流電圧に基づいて、磁気信号を検出して磁気信号電圧として出力するように構成されているものである。
本発明(請求項4に記載の第4発明)の磁気インピーダンスセンサは、
前記第1発明または前記第2発明において、
前記感磁体の周囲に巻回された検出コイルの両端の間に生ずる交流電圧に基づいて、磁気信号を検出して磁気信号電圧として出力するように構成されているものである。
上記構成より成る第1発明の磁気インピーダンスセンサは、アモルファスワイヤ、薄膜等の感磁体にパルス電流を通電することにより、前記感磁体の周辺の磁場強さに対応する交流電圧を発生することによって、前記感磁体の周辺の磁場強さを測定する磁気インピーダンスセンサにおいて、前記パルス電流として、前記感磁体の周辺の磁場強さに対応する前記交流電圧を発生させるための基本パルス電流と、該基本パルス電流とは極性が反対の線形特性を補正するための補正パルス電流とを交互に前記感磁体に通電することで零磁化状態を経由または通過させるように構成されているので、磁化状態の変動範囲における正の磁化状態および負の磁化状態に交互に反転されることにより、上記従来における磁化力が零になる状態を回避するため、非線形の特性を顕在化させず、線形特性の良好な磁気センサを実現できるという作用効果を奏する。
上記構成より成る第発明の磁気インピーダンスセンサは、前記補正パルス電流の絶対値が、前記基本パルス電流の絶対値より、小さい0.1%〜10%の範囲に設定されている。線形特性を改善するためには、補正パルス電流を基本パルス電流と同じ大きさで流す必要がないため、これにより省エネルギーで線形特性の良好な磁気センサを実現できるという作用効果を奏する。
上記構成より成る第発明の磁気インピーダンスセンサは、前記第1発明において、前記感磁体に対して通電される前記基本パルス電流と前記補正パルス電流との間に、電流が流れない期間が設けられているので、前記感磁体に通電する平均電流を減少させることにより、省エネルギーのセンサを実現するという作用効果を奏する。
さらに、上記第1または発明の技術を利用して、前記感磁体の両端に生ずる交流電圧に基づき磁場を測定する磁気センサ(第発明)や前記感磁体の周囲に巻回された検出コイル両端に生ずる交流電圧に基づき磁場を測定する磁気センサ(第発明)を構成でき、これにより線形特性の良好な磁気センサを実現できるという作用効果を奏する。
従来の磁気インピーダンスセンサにおける磁場強さに対応するセンサ出力の関係における非線形性を示す線図である。 感磁体であるアモルファスワイヤに正又は負のパルス電流が印加された時及び電流が印加されていない時の内部の周回方向の磁化の状態を説明するための説明図である。 本発明の第1実施形態の磁気インピーダンスセンサの要部を示すブロック図および第1実施形態におけるアモルファスワイヤに通電されるパルス電流の波形を示す線図である。 本発明の第2実施形態の磁気インピーダンスセンサの要部を示すブロック図および第2実施形態におけるアモルファスワイヤに通電されるパルス電流の波形を示す線図である。 本第2実施形態の磁気インピーダンスセンサにおける印加されている磁場と誤差の関係を示す線図である。 磁気インピーダンスセンサの特性を測定する測定システムを説明するための説明図である。 本発明の第3実施形態の磁気インピーダンスセンサの要部を示すブロック図および第3実施形態におけるアモルファスワイヤに通電されるパルス電流の波形を示す線図である。 本発明の第4実施形態の磁気インピーダンスセンサの要部を示すブロック図である。 本発明の第5実施形態の磁気インピーダンスセンサの要部を示すブロック図 本発明の第1実施例の磁気インピーダンスセンサの詳細を示す詳細回路図である。 本第1実施例におけるパルス電流、アモルファスワイヤの出力電圧の波形を示す線図である。 本発明の第2実施例の磁気インピーダンスセンサの詳細を示す詳細回路図である。 本第2実施例における2つのパルス出力および検出コイルの検出出力の波形を示す線図である。 本第2実施例の磁気インピーダンスセンサにおける直線性および誤差を示す線図である。 本発明の変形例におけるパルス発振器手段の詳細を示す詳細回路図、およびアモルファスワイヤに通電されるパルス電流および検出出力の波形を示す線図である。 従来の磁気インピーダンスセンサの詳細を示す詳細回路図である。
以下、本発明の最良の実施の形態について、実施形態および実施例に基づき、図面を用いて説明する。
実施形態1
本第1実施形態の磁気インピーダンスセンサは、図3に示されるように感磁体であるアモルファスワイヤ1と、該アモルファスワイヤ1に対して、所定の周期において基本パルス電流と、該パルス電流と極性が反対の補正パルス電流とを交互に反転して出力するパルス発振器手段2と、前記パルス電流による前記アモルファスワイヤの磁気インピーダンス効果で該アモルファスワイヤの周辺の磁場強さに対応して生じる交流電圧を、前記磁気信号に対応する磁気信号電圧に変換して出力する信号処理手段3より成る。
この磁気インピーダンスセンサにおける感磁体であるアモルファスワイヤ1は、高感度性があり、特に感度を高めた仕様とした場合には、磁場の強さが数nT(T:テスラの10の9乗分の1)あるいはそれ以下のレベルの検出ができるので、たとえば火山活動などによる地磁気の微小変動計測への利用の期待が高まっている。
しかしながら前記感磁体であるアモルファスワイヤ1は、その個々の性質によっては、磁気センサとして組み上げたとき図1に示されるように磁場強さに対する出力の関係が非線形になることがあり、測定値に誤差が混入する恐れがあるので、センサの高精度化のためには、良好な線形性を備える必要がある。
また地磁気の変動観測などの用途においては、バッテリーなどの限られた電源容量の下における長時間連続計測が必要になるため、磁気センサの省エネルギー化への期待も高いので、これらの期待を満たす必要がある。
磁気インピーダンスセンサは、一般的に図2(a)、(b)に示されるように前記アモルファスワイヤ1に対してパルス電流iを通電することにより、アンペアの右ねじの法則によってアモルファスワイヤ1の内部に周回方向の磁化uあるいはvを発生させることにより、磁気インピーダンス効果を発現させ、これによって外部磁場Heに付勢されたアモルファスワイヤ1の内部の磁化wの大きさに対応する交流電圧を前記アモルファスワイヤ1の両端に生じるものであり、この交流電圧を前記信号処理手段により信号処理して、磁気信号電圧として出力する。
上記図3に示した構成より成る第1実施形態の磁気インピーダンスセンサは、アモルファスワイヤ1が所定の周期において基本パルス電流と、前記基本パルス電流と極性が反対の補正パルス電流とを交互に反転して出力するパルス発振器手段2に接続されているので、正の基本パルス電流と負の補正パルス電流が通電される(正および負のパルス電流の振幅が正負対称に限定されない)ことから、前記アモルファスワイヤ1は、正と負に交互に通電されるので、たとえば前記uとvの周回方向に繰り返して反転磁化されるため、このパルス電流による前記アモルファスワイヤ1における前記磁気インピーダンス効果によって生じる交流電圧を、前記信号処理手段3によって磁気信号に対応する電圧に変換し出力するものである。
上述のように本第1実施形態の磁気インピーダンスセンサは、前記アモルファスワイヤ1を前記uとvの周回方向に繰り返して反転磁化することにより、前記基本パルス電流により周回方向の磁化を行う際に零状態を経由または通過させることによって、磁化状態の変動範囲における正の磁化状態および負の磁化状態が交互に反転されることにより、磁化力が零になる状態を回避するため、線形特性を補正することにより、線形特性の良好な磁気センサを実現するという作用効果を奏する。
以上、感磁体としてアモルファスワイヤを用いた磁気インピーダンスセンサについて説明したが、本第1実施形態の効果は、感磁体として薄膜を用いた場合でも同様の効果を得ることができる。この点は、後述の実施形態および実施例についても全て同様である。
実施形態2
第2実施形態の磁気インピーダンスセンサは、センサの省エネルギー化の観点より、前記補正パルス電流の絶対値を、前記基本パルス電流の絶対値より小さく設定するものである。
すなわち本第2実施形態は、第1実施形態における図3に示される発振器手段2を、図4に示されるようにパルス発振器手段21に変更するもので、該パルス発振器手段21は、基本パルス電流と前記基本パルス電流と極性が反対である補正パルス電流とを交互に出力するように構成されている。
これにより前記アモルファスワイヤ1を正と負に交互に通電することによって、前記uとv方向に繰り返し周回方向に反転磁化することにより、前記基本パルス電流により周回方向の磁化を行う際に磁化零状態を経由または通過させることによって、線形特性を補正するので、線形特性の良好な磁気センサを実現するとともに、基本パルス電流の絶対値に対して、補正パルス電流の絶対値を0.1%以上100%以下の範囲内になるように前記アモルファスワイヤ1に通電し、信号処理手段3により磁気信号を出力するものである。
図1は、横軸に印加磁界μT(マイクロテスラ)をとり、縦軸にセンサ出力電圧v(ボルト)をとった感磁体としてアモルファスワイヤを用いた磁気インピーダンスセンサの特性の一例を示す線図であり、外径10μm、長さ6mmのFeCoSiB系合金のアモルファスワイヤを用いて測定した結果を示したものであるが、磁場とセンサ出力電圧との関係が直線関係(真値)からずれが生じ、最大3〜4%の誤差(偏差)が生じている。すなわち、この例では図1から明らかなように印加磁場全域において非線形な特性であり、かつ10μTあたりで不連続な変化が見られる。
この特性を理想特性からの偏差、すなわち誤差の大きさで表わすと、横軸に印加磁界(μT)をとり、縦軸に誤差(%)をとった図5において、aで示す誤差曲線のごとくになる。
すなわち図5において、−50μT付近で誤差が最大になり、その値は約3.6%また10μTあたりで前記のごとく不連続誤差が顕在する。この非線形特性の原因は、磁気インピーダンスセンサの感磁体であるアモルファスワイヤの個々の物性的な要因によるものであると思われる。
本第2実施形態において、補正パルス電流を通電することによる効果の発現を、前記の最大誤差が10%ほど減少した点すなわち誤差が約3.3以下になるときに設定すると、これに要する補正パルスの大きさは、本実施例の場合は、基本パルスの約0.1%であった。そして、この場合の結果を図5に示したものがbで示される誤差曲線である。このとき前記不連続な誤差の部分もaで示される誤差曲線に比べてほぼ等比で減衰していた。この不連続変化部分の誤差の絶対値は最大誤差よりも小さいので特別に問題になることはない。
本第2実施形態において、最大誤差が10%ほど減少した点をもって、効果の発現とした理由について、以下に述べる。
磁気センサの特性測定は、図6に示されるように測定する磁気インピーダンスセンサが載置される磁場発生用の磁場印加用ソレノイドコイルGCとこのコイルに電流を流すための電源装置BTとセンサの出力を読み取る電圧計VMより成る磁気センサ特性測定システムを用いて行われるが、これらの機器の許容誤差は、いずれも1%以下であった。
したがって、上記特性測定システムの場合、最大誤差は、ほぼ3%と推測されるので、この誤差よりも3倍以上大きな変化、すなわち10%の変化が観測できたら十分に有意義なものであると考えられたからである。
第2実施形態において、基本パルス電流の絶対値に対して補正パルス電流の絶対値を少なくするのは、精度を高めるという効果を得るためであれば、同じ絶対値となる電流値で通電する必要はなく、また小さい電流とした方が、アモルファスワイヤ1に供給する電力を減じて、磁気センサの省エネルギー化をはかることが可能であり、効率的であるからである。
なお補正パルス電流の絶対値を、基本パルス電流の絶対値に対して、0.1%以上100%以下の範囲内にするのは、下限は線形特性が良好になる効果が出現し始める値であり、上限は正側および負側両方の電圧出力で、同じ感度で磁場測定が可能となり、これ以上に電流値を高めても、省エネ化の点で不利になるためである。
これにより本第2実施形態の磁気インピーダンスセンサは、磁気センサとして良好な線形特性を実現するとともに、アモルファスワイヤに通電する平均電流を減じることにより、省エネルギー化を達成するという作用効果を奏する。
実施形態3
本第3実施形態の磁気インピーダンスセンサは、センサの省エネルギー化の観点より、前記基本パルス電流と前記補正パルス電流との間に、電流が流れない一定期間が設けられているものである。
すなわち本第3実施形態の磁気インピーダンスセンサは、前記第1実施形態における前記図3に示される発振器手段2を、図7に示されるようにパルス発振器手段22に変更するものであり、該パルス発振器手段22は正のパルスと負のパルスを交互に出力することにより、アモルファスワイヤ1を前記uとv方向に繰り返し周回方向に反転磁化するので、前記基本パルス電流により周回磁化を行う際に磁化零状態を経由または通過させることによって、線形特性の良好な磁気検出特性を実現するとともに、前記正のパルスと負のパルスとの間に電流が流れない一定の期間を設けることにより、アモルファスワイヤ1に通電する平均電流を減少させることによって、さらなる省エネルギー効果の高い磁気センサを実現するという作用効果を奏する。
実施形態4
本第4実施形態の磁気インピーダンスセンサは、シンプルな構成により、コストダウンを可能にする観点より、図8に示されるようにアモルファスワイヤ1の両端の交流電圧を直接検出するように構成されている。
すなわち本第4実施形態の磁気インピーダンスセンサは、前記第1ないし第3実施形態の少なくともいずれか一つにおいて、図8に示されるようにパルス発振器手段2のパルス電流の通電により、前記アモルファスワイヤ1の前記磁気インピーダンス効果によって生ずるアモルファスワイヤ1の両端すなわち一方の電極11ともう一方の電極12との間に生ずる前記アモルファスワイヤ1の周囲の外部磁場に対応する交流電圧にもとづいて、信号処理手段3により磁気信号を検出するものであり、既に前記第1実施形態ないし第3実施形態で説明した理由により、線形特性が良好な磁気信号電圧の出力を可能にするとともに、省エネルギー型の磁気センサを実現するという作用効果を奏する。
実施形態5
本第5実施形態の磁気インピーダンスセンサは、図9に示されるようにアモルファスワイヤ1の周囲に検出コイルを巻回して、該検出コイルの両端の交流電圧に基づいて、磁気検出を行うように構成されている。
本第5実施形態の磁気インピーダンスセンサは、前記第1ないし第3の実施形態の少なくともいずれか一つにおいて、図9に示されるようにパルス発振器手段2のパルス電流の通電により、アモルファスワイヤ1の周囲に巻回した検出コイル13の2つの電極14、15の間に前記磁気インピーダンス効果により生じる交流電圧に基づいて、信号処理手段3により磁気信号を検出するものであり、既に前記第1実施形態ないし第3実施形態で説明した理由により、線形特性が良好な磁気信号電圧の出力を可能にする省エネルギー型の磁気センサを実現するという作用効果を奏する。
本第1実施例の磁気インピーダンスセンサは、上述の第1実施形態ないし第4実施形態に基づくもので、図10に示されるように両端よりアモルファスワイヤの周辺の磁場強さに対応する交流電圧を出力するアモルファスワイヤ1と、該アモルファスワイヤに対して通電する基本パルス電流と補正パルス電流との間に電流が流れない一定の期間が設けられたパルス電流を出力するパルス発振器手段22と、前記アモルファスワイヤ1の両端から出力される交流電圧の振幅に対応する信号に変換する整流回路31と増幅器OPより成り、前記アモルファスワイヤ1の周辺の磁場強さに対応する磁気信号電圧を出力する信号処理手段3とから成るものである。
図10に示される前記パルス発振器手段22は、図11に示される矩形波出力Aを出力する矩形波発振回路221と、該矩形波発振回路221の出力端に接続され、所定パルス幅のパルスBを出力する第1の微分型パルス発生回路222と、前記矩形波発振回路221の出力端に接続され、反転された矩形波出力Cを出力する位相反転回路223と、前記位相反転回路223の出力端に接続され、所定パルス幅のパルスDを出力する第2の微分型パルス発生回路224と、前記第1および第2の微分型パルス発生回路222および224の出力端にそれぞれ接続され、+Vおよび−Vの電圧のパルスを出力する第1および第2の電子スイッチS1およびS2とから成る。
前記矩形波発振回路221は、図10に示されるように直列に接続された第1および第2のロジック素子LI1およびLI2と、前記第1のロジック素子LI1の入力端と出力端に両端が接続された抵抗r0と、前記第1のロジック素子LI1の入力端と前記第2のロジック素子LI2の出力端に両端が接続されたコンデンサC0とから成り、図11に示される所定のパルス高さおよび幅を有する矩形波出力Aを出力するように構成されている。
前記第1の微分型パルス発生回路222は、前記矩形波発振回路221の出力端に一端が接続されたコンデンサC1と、該コンデンサC1の他端に入力端が接続されたロジック素子LI3と、前記コンデンサC1の他端と電源Voとに接続された抵抗r1とから成り、前記矩形波出力Aに対して微分処理が施され、前記矩形波出力Aのパルス幅より短い図11に示される所定パルス幅T1のパルスBを出力するように構成されている。
前記位相反転回路223は、一端が前記矩形波発振回路221の出力端に接続された分岐点DPに接続され、前記矩形波出力Aの位相を反転して、図11に示される逆位相の矩形波出力Cを出力するロジック素子LI4とから成る。
前記第2の微分型パルス発生回路224は、前記位相反転回路223の出力端に一端が接続されたコンデンサC2と、該コンデンサC2の他端に入力端が接続されたロジック素子LI5と、前記コンデンサC2の他端と電源Vo′とに接続された抵抗r2とから成り、前記逆位相の矩形波出力Cは、前記抵抗r2およびコンデンサC2によって微分処理が施され、前記矩形波出力Aのパルス幅より短い図11に示される所定パルス幅T2のパルスDを出力するように構成されている。
前記第1の電子スイッチS1は、前記第1の微分型パルス発生回路222からのパルスBのハイレベルと零レベルとに基づきオンオフ制御され、所定のプラス電圧+Vを出力する第1の電源V1とパルス出力端との接続を制御することにより、図11に示される正の基本パルス電流として+Vの電圧パルスEを出力するように構成されている。
前記第2の電子スイッチS2は、前記第2の微分型パルス発生回路224からのパルスDのハイレベルと零レベルとに基づきオンオフ制御され、所定のマイナス電圧−Vを出力する第2の電源V2とパルス出力端との接続を制御することにより、図11に示される負の補正パルス電流として−Vの電圧のパルスEを出力するように構成されている。
前記第1の電源V1および第2の電源V2は、それぞれ出力する+Vおよび−Vの電圧の絶対値を線形性、消費電力、熱特性その他を考慮して任意に設定することが出来、等しく設定しても良いし、異なるように設定しても良く、図11には、−Vの電圧の絶対値が+Vの電圧の絶対値より小さい場合を一例として示している。
前記パルス発振器手段22は、上述の詳細構成より成り、出力端が所定のインピーダンスに設定された抵抗器r3を介して前記アモルファスワイヤ1の一端の電極11に接続され、図11に示されるように正の基本パルス電流の通電時間と補正パルス電流の通電時間との間に電流が流れない一定の期間が設けられるとともに、前記正の基本パルス電流に対して負の補正パルス電流の絶対値を0.1%以上100%以下となる所定のパルス電流を出力するものである。
前記アモルファスワイヤ1は、磁場の強さが数nT(T:テスラの10の9乗分の1)あるいはそれ以下のレベルの検出が出来る高感度なFeCoSiB系合金よりなる感磁体より成る。
前記信号処理手段3は、2つの入力端子が前記アモルファスワイヤ1の両電極11および12にそれぞれ接続され、一端が前記アモルファスワイヤ1の前記一端に接続された前記一方の電極11に接続された正の信号のみを通過させるダイオードDIと前記ダイオードDIの他端と前記アモルファスワイヤ1の前記他端に接続された前記他方の電極12に接続されたコンデンサC3と、該コンデンサC3と並列に接続された抵抗r4とから成る整流回路31を備えている。
前記信号処理手段3は、前記整流回路31の2つの出力端に接続された2つの入力端を備え、所定の増幅度で入力された整流電圧を増幅する増幅器OPを備えている。
上記構成より成る第1実施例の磁気インピーダンスセンサは、前記パルス発振器手段22において、前記矩形波発振回路221が、図11に示される矩形波出力Aを出力し、前記第1の微分型パルス発生回路222が、抵抗r1およびコンデンサC1で決まるパルス幅T1の図11に示されるパルスBを出力する。
前記位相反転回路223は、前記矩形波発振回路221から前記分岐点DPを介して出力される前記矩形波出力Aを、反転した逆位相の図11に示される矩形波出力Cを出力する。
前記第2の微分型パルス発生回路224は、前記反転された前記矩形波出力Cを前記抵抗r2およびコンデンサC2で決まるパルス幅T2の図11に示されるパルスDを出力する。
前記第1の電子スイッチS1は、入力された図11に示される微分形のパルスBが、ロジックレベルで「1」の期間は「オン」となるので、上記+Vの電圧を図11に示されるパルス出力Eとして出力する。また前記第2の電子スイッチS2は、入力された図11に示される微分形のパルスDが、ロジックレベルで「1」の期間は「オン」となるので、上記−Vの電圧を図11に示されるパルス出力Eとして出力する。
すなわち前記第1および第2の微分型パルス発生回路222、224における微分処理によって、図11Eに示されるように正の基本パルス電流と負の補正パルス電流との間に電流が流れない所定の期間を設けるとともに、前記正の基本パルス電流の絶対値に対して負の補正パルス電流の絶対値を0.1%以上100%以下となる所定のパルス電流(図11中E)(図11のEは電流とともに電圧を表す)を前記抵抗器r3を介して前記アモルファスワイヤ1に通電する。
前記パルス発振器手段22から前記アモルファスワイヤ1に対して上記パルス電流E(図11図示)が通電印加されると、前記アモルファスワイヤ1は磁気インピーダンス効果によって、該アモルファスワイヤ1の両端の二つの電極11および12の間にアモルファスワイヤ1の周辺の磁場強さに対応する図11に示される前記パルス電流Fに重畳している交流信号Vtの振幅の大きさ(図11中F)(図11のFは電流とともに電圧を表す)となって現れる。なお、この交流信号Vtのベース電位Vto,Vto´は、印加される正又は負のパルス電流Eによって前記アモルファスワイヤ1の両端に現れる電圧である。
この交流信号Vtの振幅の大きさは、前記アモルファスワイヤ1が置かれている外部磁場の強さに対応するもので、この交流信号Vtを前記ダイオードDI、抵抗器r4、コンデンサC3からなる整流回路31において、前記交流信号の振幅に対応するように整流して電圧信号に変換し、該整流回路31に接続された前記増幅器OPによって増幅することにより、磁気信号電圧として出力するものである。
本第1実施例の磁気インピーダンスセンサは、前記アモルファスワイヤ1に正と負のパルス電流を交互に流して前記uとv方向に繰り返し周回方向(周方向)に反転磁化するので、前記基本パルス電流により周回方向の磁化を行う際に磁化零状態を経由または通過させることにより、図11に示される電圧パルスEの正の電流が作用する上限の磁化状態と電圧パルスEの負の電流が作用する下限の磁化状態とが交互に反転されるので、その間において消費電流を抑制するためにパルス電流が零の状態に保持される場合においては、例えば負の補正パルス電流が印加され負の下限の磁化状態になった後に、パルス電流が零になり磁化力が零になった場合、ヒステリシスのため、完全には磁化零状態に戻らず、負の磁化状態が一部残るが、その後正の基本パルス電流が印加されると、磁化零状態を通過して、正の上限の磁化状態になるので、このパルス電流の立上り時等に磁気検出を行う際には、悪影響は残らず、その後印加パルス電流が零になった場合には、ヒステリシスのために完全には磁化零状態に戻らず、正の磁化状態が一部残るが、その後負の補正パルス電流が印加されると、磁化零状態を通過して、負の下限の磁化状態になるので、線形特性を補正することによって、良好な線形特性が得られるとともに、あわせてパルス電流が流れない所定の期間を設けることにより、省エネルギー型の磁気センサを実現できるとともに、熱特性を向上させるという作用効果を奏する。
本第1実施例においては、電圧パルスEが流れない期間が設けられ、磁化状態が零になる期間が設けられているが、磁化零状態を越えて正の電流が印加された後反転して、負の電流が印加されるため、磁化状態の変動範囲における上記上限の磁化状態または下限の磁化状態の間に、パルス電流が零の状態に保持される期間があるが、正および負の磁化状態に反転磁化された後において、パルス電流が零の状態に保持され、ヒステリシス等により磁化がわずかに残ったとしても、次のパルス電流により磁化されるとき、必ず磁化零状態を横切るので、そのパルス電流の立上がり時等に磁気検出した場合には、線形性への悪影響は残らず、良好な線形性が確保されるのである。
以下第1実施例の磁気インピーダンスセンサの測定結果について説明する。
前記補正パルス電流の絶対値を前記基本パルス電流の1%に増加したときの最大誤差は、40%減少し誤差の大きさは図5のcの誤差曲線で示されるように、2.1%ほどに減少した。
前記補正パルス電流の絶対値を前記パルス電流の10%に増加すると、最大誤差は約75%減少し誤差の大きさは図5のdの誤差曲線で示されるように、0.93%になった。なお、この効果の大きさはあくまでも1例であり、実際には、ワイヤの長さ、径等の仕様、熱処理によって変化する特性に伴い変化するものである。
本第2実施例の磁気インピーダンスセンサは、上述した第1実施形態、第3実施形態および第5実施形態に基づくもので、図12に示されるようにアモルファスワイヤ1の周囲に巻回され、両端より前記アモルファスワイヤ1の周辺の外部磁場強さに相当する交流電圧を出力する検出コイル13と、前記アモルファスワイヤ1に対して通電する正の基本パルス電流と負の補正パルス電流との間に電流が流れない一定の期間が設けられたパルス電流を通電するとともに、後述する信号処理手段3のスイッチ要素SWの開閉を制御する開閉パルスを出力するパルス発振器手段23と、前記検出コイル13から出力される交流電圧の振幅に対応する電圧をホールドするサンプルホールド回路32とホールドされた電圧を増幅する増幅器OPより成る信号処理手段3とから成るものである。
図12に示される前記パルス発振器手段23は、図13に示されるように矩形波出力Aを出力する矩形波発振回路221と、該矩形波発振回路221の出力端に接続され、所定パルス幅のパルスBを出力する第1の微分型パルス発生回路222と、前記矩形波発振回路221の出力端に接続され、矩形波出力Cを出力する位相反転回路223と、該位相反転回路223の出力端に接続され、所定パルス幅のパルスDを出力する第2の微分型パルス発生回路224と前記第1および第2の微分型パルス発生回路222および224の出力端にそれぞれ接続され、+Vおよび−Vの電圧を出力する第1および第2の電子スイッチS1およびS2と、前記第1および第2の微分型パルス発生回路222および224に接続されたOR回路ORと、該OR回路ORに接続されたロジック素子LI6と、該ロジック素子LI6に接続された第3の微分型回路225とから成り、図10に記載の前記パルス発振回路手段22に前記OR回路OR、前記第3の微分型回路225が追加された構成となっている。従って、共通する回路の部分は説明を省略し、前記パルス発振回路手段23のみに設けられた前記OR回路ORと前記ロジック素子Li6と前記第3の微分型回路225については、以下に説明する。
なお、前記第1の電源V1および第2の電源V2は、それぞれ出力する+Vおよび−Vの電圧の絶対値を線形性、消費電流、熱特性その他を考慮して任意に設定することが出来、等しく設定しても良いし、異なるように設定しても良く、前の実施例である図11では−Vの電圧の絶対値が+Vの電圧の絶対値より小さい場合の例を示したが、本実施例では図13に示すように、−Vの電圧の絶対値と+Vの電圧の絶対値が等しい場合を一例として示している。
前記OR回路ORは、前記第1および第2の微分型パルス発生回路222および224の出力端に2つの入力端がそれぞれ接続され、入力される図11に示される微分形パルスBおよびDを時系列的に加算して、図13に示される時系列的に加算されたパルスP0を出力するように構成されている。前記ロジック素子LI6は、前記OR回路の出力端に入力端が接続されている。
前記第3の微分型パルス発生回路225は、前記ロジック素子LI6の出力端に一端が接続されたコンデンサC5と該コンデンサC5の他端に接続されたロジック素子LI7と前記コンデンサC5の他端と電源V0とに接続された抵抗r5とから成り、時系列的に加算された図13に示されるパルスP0が前記抵抗r5とコンデンサC5によって微分処理が施され、後述するアナログスイッチSWの開閉用の所定パルス幅T3のパルスP2を出力するように構成されている。
上記構成より成る前記パルス発振器手段23は、所定のインピーダンスに設定された抵抗器r3を介して、前記アモルファスワイヤ1の一端の電極11に接続され、図13(c)に示されるように正の基本パルス電流と負の補正パルス電流との間に電流が流れない一定の期間が設けられたアモルファスワイヤ通電用のパルス電流P1と図13(b)に示されるように前記スイッチ要素の開閉制御端子S1に正の所定幅の開閉用のパルスP2を出力するように構成されている。
前記アモルファスワイヤ1は、図12に示されるように上述した第1実施例と同様にFeCoSiB系合金より成る高感度な感磁体より成り、両端が電極11および電極12を介して、前記パルス発振器手段23に接続され、図13に示されるパルス電流P1の通電に応じて誘起されるMI効果により前記アモルファスワイヤ1の周囲の外部磁場に対応する振幅を有する交流電圧信号を、前記アモルファスワイヤ1の周囲に巻回された前記検出コイル13の両端の電極14、15より、図13(d)に示される検出出力である交流信号Vtが出力されるように構成されている。
前記信号処理手段3は、図12に示されるように両入力端が前記検出コイル13の前記両端に接続された両電極14および15に接続され、入力端が前記検出コイル13の前記一端に接続された前記電極14に接続されるとともに、開閉制御端S1が前記パルス発振器23の開閉パルスP2が出力される出力端に接続されたスイッチ要素を構成するアナログスイッチSWと、一端が前記アナログスイッチSWの出力端に接続されるとともに他端が前記検出コイル13の他端に接続された前記電極15に接続され、所定のタイミングで正および負のパルス電流に伴う交流信号をサンプルホールドするホールドコンデンサChとから成るサンプルホールド回路32を備えている。
前記信号処理手段3は、前記ホールドコンデンサChによってサンプルホールドされた電圧信号を所定の値に増幅して、前記アモルファスワイヤ1の周辺の外部磁場に対応する磁気信号電圧として出力する増幅器OPを備えている。
上記構成より成る第2実施例の磁気インピーダンスセンサは、図12に示される前記パルス発振器手段23において、前記矩形波発振回路221が、図11に示される矩形波出力Aを出力し、前記第1の微分型パルス発生回路222が、抵抗r1およびコンデンサC1で決まる前記矩形波出力Aのパルス幅より短いパルス幅の図11に示されるパルスBを出力する。
前記位相反転回路223が、前記矩形波発振回路221から出力される前記矩形波出力Aを反転した逆位相の図11に示される矩形波出力Cを出力する。前記第2の微分型パルス発生回路224が、前記反転された矩形波出力Cを、前記抵抗r2およびコンデンサC2で決まる前記反転された矩形波出力Cのパルス幅より短いパルス幅の図11に示されるパルスDを出力する。
前記第1の電子スイッチS1は、図11に示される微分形のパルスBが、ロジックレベルで「1」の期間は「オン」となるので、図13に示される+Vの電圧のパルス出力P1として出力する。また前記電子スイッチS2は、図11に示される微分形のパルスDが、ロジックレベルで「1」の期間は「オン」となるので、図13に示される−Vの電圧のパルス出力P1として出力する。
前記OR回路ORは、前記第1および第2の微分型パルス発生回路222及び224から出力される図11に示される微分形パルスBおよびDを時系列的に加算する。前記第3の微分型のパルス発生回路225は、前記ロジック素子LI6を介して入力される時系列的に加算された図13に示されるパルスP0を、前記抵抗r5とコンデンサC5によって微分処理され、前記パルスBおよびDのパルス幅より短い前記アナログスイッチSWの開閉用の所定パルス幅の図13に示されるパルスP2を出力する。
したがって、前記パルス発振器手段23は、正のパルスと負のパルスとの間に電流が流れない所定の期間を設け、かつ電圧の絶対値が略等しい正と負のパルス電流P1(図13(c)図示)を電流調整用抵抗器r3を介して前記アモルファスワイヤ1に印加するとともに、該パルス電流P1と同期して常に短い所定の時間の正の開閉パルスP2(図13(b)図示)を後述のアナログスイッチSWの開閉制御端子S1に印加する。
前記アモルファスワイヤ1は、前記パルス発振器手段23のパルス電流P1の印加による磁気インピーダンス効果を発現し、これにより該アモルファスワイヤ1に巻回した前記検出コイル13の二つの電極14および15の間にアモルファスワイヤ1が置かれている外部磁場に対応する図13(d)に示す交流信号Vtが現れる。
本実施例では、前記したように一例として正と負のパルスを電圧の絶対値が等しい状態となるように印加していることから、この交流信号Vtは、正のパルスのときでも負のパルスのときでも、略同波形かつ同振幅になるので、本第2実施例では両方の交流信号Vtを前記アナログスイッチSWと前記ホールドコンデンサChからなる前記サンプルホールド回路32により前記アナログスイッチSWの開閉制御端子S1に印加される前記開閉パルスP2に従い所定時間の正のタイミングでサンプルホールドする。
前記ホールドコンデンサChによってサンプルホールドされた電圧は、前記増幅器OPにより所定の値に増幅され、前記アモルファスワイヤ1の周辺の外部磁場に対応する磁気信号電圧として出力される。
上記作用を奏する第2実施例の磁気インピーダンスセンサは、正のパルス電流が印加された時と負のパルス電流が印加された時の両方の交流電圧Vtを前記ホールドコンデンサChによってサンプルホールドして出力するので、前記アモルファスワイヤ1の周回方向における磁化uとvに対する磁気インピーダンス効果のわずかな特性の違いを平均化することにより、さらに線形特性を向上するという効果を奏するものである。
また第2実施例の磁気インピーダンスセンサは、前記パルス電流P1の正および負のパルス電流による前記アモルファスワイヤ1の印加に応じて前記アモルファスワイヤ1に前記uとv方向に繰り返し反転磁化することによって、前記基本パルス電流により周回方向の磁化を行う際に磁化零状態を経由または通過させることにより、図13に示されるパルス電流P1の正の電流が作用する上限の磁化状態とパルス電流P1の負の電流が作用する下限の磁化状態とが交互に反転されるので、その間において消費電流を抑制するためにパルス電流を零にして磁化の強制力が零の状態に保持されることとなるが、本第1実施例と同様に、パルス電流により磁化零状態を横切った後、パルス電流の立上がり時等に磁気検出を行う場合には、線形性への悪影響は残らず、得られる良好な線形特性とあいまって、さらなる高精度の磁気センサを実現できるという効果を奏する。
さらに第2実施例の磁気インピーダンスセンサは、前記正のパルスと負のパルスとの間に電流が流れない所定の期間が設けられているので、平均消費電流を抑制することにより、省エネルギー効果も実現するとともに、センサの熱特性も向上させるものである。
本第2実施例においても、パルス電流が流れない期間が設けられているが、前期した第1実施例と同様の理由で、線形性への悪影響は残らず、良好な線形性を確保できる。
本第2実施例における線形特性の測定結果を、図14(a)および(b)に示す。
図14(a)は、図6に示される測定装置を利用して、磁気インピーダンスセンサを、均一磁界を発生しているコイル内に配置して、磁界を−100〜+100μT印加した時のセンサ出力との関係を、横軸に磁場(μT)をとり、縦軸に出力(V)をとって示したもので、上述の図1に比べて、直線性が良好であることが明確である。
図14(b)は、非直線性の改善がよく分かるようにするために、横軸に磁場(μT)をとり、真値からの偏差(誤差分)を%で縦軸にとって示したもので、図から明らかなように偏差が最大でも0.5%程度となり、図5aに示す場合と比較すると偏差が7分の1以下に低減するという大きな効果が得られた。
上述の実施例は、説明のために例示したもので、本発明としてはそれらに限定されるものではなく、特許請求の範囲、発明の詳細な説明および図面の記載から当業者が認識することができる本発明の技術的思想に反しない限り、変更および付加が可能である。
特に上述の実施例は、全て感磁体としてアモルファスワイヤを用いた例について説明したが、薄膜を感磁体として用いた場合でも同様の効果を得ることができる。
上述の実施例においては、一例として正の基本パルス電流と負の補正パルス電流を用いる例について説明したが、本発明としてはそれに限定されるものでは無く、必要に応じて負の基本パルス電流と正の補正パルス電流を用いる変形例を採用することが可能である。
上述の実施例においては、一例として基本パルス電流と補正パルス電流との間に電流が流れない一定期間を設ける例について説明したが、本発明としてはそれに限定されるものでは無く、図10および図12に示された前記パルス発生器手段22および23における前記第1および第2の微分型パルス発振器222、224を取り除いて、前記矩形波発振回路221および前記位相反転回路223と前記第1および第2の電子スイッチS1およびS2とを直結して接続することにより、基本パルス電流と補正パルス電流との間に電流が流れない期間が設けられていないパルス電流を前記アモルファスワイヤに印加する変形例を採用することが可能であり、上述の第1および第2実施例に比べて、回路が簡素化されるので、コストダウンが可能であり、前記基本パルス電流によりアモルファスワイヤの周回方向の磁化を行う際に磁化零状態を経由または一瞬にして通過させることによって、磁化零状態に保持される期間が無いため、良好な線形特性が得られるという利点を有する。
本変形例において、前記補正パルス電流の絶対値を前記基本パルス電流の絶対値に対して、0.1%以上とすれば、線形特性の改善効果が得られるため、狙いとする改善効果が得られる範囲内で、補正パルス電流の絶対値を低めの値に調整することにより、平均消費電流および熱特性の抑制を可能にすることができる。
上記変形例においては、基本パルス電流と補正パルス電流との間に電流が流れない期間を設けない一例について説明したが、本発明としてはそれに限定されるものでは無く、図15(a)に示されるように上述した矩形波発生回路221における直列に接続された前記第1および第2のロジック素子LI1およびLI2の電源Vm1およびVm2の電源電圧をともに+Vdに設定するとともに、アモルファスワイヤ1の一端12に+Vd/2の電源電圧に設定された電源Vm3を接続する変形例を採用することが可能であり、前記矩形波発生回路221の出力端Qの電圧が「+Vd」のときには、該Q点から前記アモファスワイヤ1を通しての+Vd/2の前記電源Vm3へ向かって電流が流れ、前記出力端Qの電圧が「0」のときには、前記Vd/2の電源Vm3から、前記アモルファスワイヤ1を介して前記出力端Qに向かって、電流が流れるので、図15(b)に示されるパルス電流Gが前記アモルファスワイヤ1に印加されるものであり、前記変形例に比べて一層回路の簡素化を図り、コストダウンを可能にするとともに、前記基本パルス電流によりアモルファスワイヤの周回方向の磁化を行う際に磁化零状態を経由または一瞬にして通過させることによって、磁化零状態に保持される期間が無いため、良好な線形特性が得られるという利点を有する。
理化学分野の高精度磁気検出、火山活動などによる地磁気その他の微小変動計測、長時間連続磁気計測などの用途に好適である。
1 アモルファスワイヤ
2、22、23 パルス発振器手段
3 信号処理手段
13 検出コイル
OP 増幅器
31 整流回路
32 サンプルホールド回路

Claims (4)

  1. 感磁体にパルス電流を通電することにより、前記感磁体の周辺の磁場強さに対応する交流電圧を発生することによって、前記感磁体の周辺の磁場強さを測定する磁気インピーダンスセンサにおいて、
    前記パルス電流として、前記感磁体の周辺の磁場強さに対応する前記交流電圧を発生させるための基本パルス電流と、該基本パルス電流とは極性が反対の線形特性を補正するための補正パルス電流とを交互に前記感磁体に通電するように構成され
    前記補正パルス電流の絶対値が、前記基本パルス電流の絶対値より小さい0.1%〜10%の範囲に設定されていることを特徴とする磁気インピーダンスセンサ。
  2. 前記請求項1において、
    前記感磁体に対して通電される前記基本パルス電流を通電する時間と前記補正パルス電流を通電する時間との間に、電流が流れない期間が設けられていることを特徴とする磁気インピーダンスセンサ。
  3. 前記請求項1または前記請求項2において、
    前記感磁体の両端の間に生ずる交流電圧に基づいて、磁気信号を検出して磁気信号電圧として出力するように構成されている
    ことを特徴とする磁気インピーダンスセンサ。
  4. 前記請求項1または前記請求項2において、
    前記感磁体の周囲に巻回された検出コイルの両端の間に生ずる交流電圧に基づいて、磁気信号を検出して磁気信号電圧として出力するように構成されていることを特徴とする磁気インピーダンスセンサ。
JP2015064124A 2015-03-26 2015-03-26 磁気インピーダンスセンサ Active JP6398830B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015064124A JP6398830B2 (ja) 2015-03-26 2015-03-26 磁気インピーダンスセンサ
US15/076,748 US10120040B2 (en) 2015-03-26 2016-03-22 Magnetic impedance sensor
EP16161836.8A EP3073282B1 (en) 2015-03-26 2016-03-23 Magnetic impedance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015064124A JP6398830B2 (ja) 2015-03-26 2015-03-26 磁気インピーダンスセンサ

Publications (2)

Publication Number Publication Date
JP2016183903A JP2016183903A (ja) 2016-10-20
JP6398830B2 true JP6398830B2 (ja) 2018-10-03

Family

ID=55589734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015064124A Active JP6398830B2 (ja) 2015-03-26 2015-03-26 磁気インピーダンスセンサ

Country Status (3)

Country Link
US (1) US10120040B2 (ja)
EP (1) EP3073282B1 (ja)
JP (1) JP6398830B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018111960A1 (de) * 2018-05-17 2019-11-21 Vega Grieshaber Kg Impedanzgrenzstandsensor
EP3921662B1 (de) * 2019-02-06 2023-09-06 Fraba B.V. Magnetfeld-sensorvorrichtung

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3376427A (en) * 1961-01-30 1968-04-02 American Mach & Foundry Transfluxor magnetic switch
JP3197414B2 (ja) * 1993-12-22 2001-08-13 科学技術振興事業団 磁気インピーダンス効果素子
JP3096413B2 (ja) * 1995-11-02 2000-10-10 キヤノン電子株式会社 磁気検出素子、磁気センサー、地磁気検出型方位センサー、及び姿勢制御用センサー
US6104593A (en) * 1996-09-27 2000-08-15 Canon Denshi Kabushiki Kaisha Tire magnetization method, tire magnetized by the tire magnetization method, tire magnetic field detection method, tire revolution detection signal processing method, and tire revolution detection apparatus
US6229307B1 (en) * 1998-08-12 2001-05-08 Minebea Co., Ltd. Magnetic sensor
JP4233161B2 (ja) * 1998-12-10 2009-03-04 ミネベア株式会社 磁気センサ
DE69925573T2 (de) * 1999-05-12 2006-04-27 Asulab S.A. Magnetischer F?hler hergestellt auf einem halbleitenden Substrat
JP2002181908A (ja) * 2000-12-11 2002-06-26 Alps Electric Co Ltd 磁界センサ
JP2003004831A (ja) * 2001-04-17 2003-01-08 Hitachi Metals Ltd 直交フラックスゲート型磁気センサ
TWI221929B (en) 2001-10-09 2004-10-11 Fuji Electric Co Ltd Overload current protection apparatus
JP3572457B2 (ja) * 2001-10-12 2004-10-06 アイチ・マイクロ・インテリジェント株式会社 磁気検出装置
JP4209114B2 (ja) * 2002-01-21 2009-01-14 株式会社産学連携機構九州 磁界センサ
JP4160330B2 (ja) * 2002-07-12 2008-10-01 キヤノン電子株式会社 磁界検出回路
CN1697980B (zh) 2003-08-25 2010-04-28 爱知制钢株式会社 磁性传感器
KR101492825B1 (ko) * 2007-10-02 2015-02-12 아이치 세이코우 가부시키가이샤 마그네토 임피던스 소자 및 마그네토 임피던스 센서
JP4979554B2 (ja) * 2007-11-30 2012-07-18 株式会社フジクラ 磁気センサを用いた外部磁界の測定方法
CN103454601B (zh) 2008-03-28 2016-05-18 爱知制钢株式会社 磁敏线、磁阻抗元件及磁阻抗传感器
US8237438B2 (en) * 2009-03-13 2012-08-07 Quantec Geoscience Very low noise magnetometer
EP2725375B1 (en) * 2011-06-22 2017-05-31 Canon Denshi Kabushiki Kaisha Magnetic field detection method and magnetic field detection circuit
US8680854B2 (en) * 2011-12-01 2014-03-25 Texas Instruments Incorporated Semiconductor GMI magnetometer

Also Published As

Publication number Publication date
JP2016183903A (ja) 2016-10-20
US20160282424A1 (en) 2016-09-29
EP3073282B1 (en) 2021-06-30
US10120040B2 (en) 2018-11-06
EP3073282A1 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5924503B2 (ja) 磁気検出器
US9239365B2 (en) Magnetic element control device, magnetic element control method and magnetic detection device
JP6188430B2 (ja) 電流検出装置
JP2011017618A (ja) 電流センサ
KR101593665B1 (ko) 스핀토크형 자기센서
JP2007199069A (ja) パルス励磁及びサンプル検出フラックスゲート型磁力計
JP4160330B2 (ja) 磁界検出回路
WO2015068629A1 (ja) 磁界検出センサ
JP6398830B2 (ja) 磁気インピーダンスセンサ
JP2020521979A (ja) トンネル磁気抵抗を有する磁気抵抗センサの低周波雑音を抑制するためのシステムおよび方法
US9500721B2 (en) Magnetic field detecting device
JP6106909B2 (ja) 電流センサ
JP6823878B2 (ja) フラックスゲート磁界センサ
JP4716030B2 (ja) 電流センサ
US10884076B2 (en) MI magnetic field sensor
JP6014544B2 (ja) 磁界検出装置の検査用回路及びその検査方法
JP2013015351A (ja) 磁界検出装置、及び環境磁界のキャンセル方法
JP6460079B2 (ja) Mi磁気センサ
JP2002286821A (ja) 磁場検出装置
WO2015104776A1 (ja) 電流検出装置
JP2002181908A (ja) 磁界センサ
JP2018100872A (ja) 電流センサ
JP2015114205A (ja) 磁界検出装置および磁界検出装置の制御方法
KR20110062395A (ko) 투자율 측정 장치
JPH0726660Y2 (ja) 電磁流量計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R150 Certificate of patent or registration of utility model

Ref document number: 6398830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250