JP6398554B2 - Light emitting device and manufacturing method thereof - Google Patents

Light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP6398554B2
JP6398554B2 JP2014202563A JP2014202563A JP6398554B2 JP 6398554 B2 JP6398554 B2 JP 6398554B2 JP 2014202563 A JP2014202563 A JP 2014202563A JP 2014202563 A JP2014202563 A JP 2014202563A JP 6398554 B2 JP6398554 B2 JP 6398554B2
Authority
JP
Japan
Prior art keywords
light emitting
release agent
conductive member
anisotropic conductive
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014202563A
Other languages
Japanese (ja)
Other versions
JP2016072524A (en
Inventor
大湯 孝寛
孝寛 大湯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2014202563A priority Critical patent/JP6398554B2/en
Publication of JP2016072524A publication Critical patent/JP2016072524A/en
Application granted granted Critical
Publication of JP6398554B2 publication Critical patent/JP6398554B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Led Device Packages (AREA)
  • Wire Bonding (AREA)

Description

本発明は、発光装置およびその製造方法に関する。   The present invention relates to a light emitting device and a method for manufacturing the same.

近年、発光ダイオード(LED:Light Emitting Diode)、レーザーダイオード(LD:Laser Diode)等の発光素子を使用する発光装置が各種の光源として利用されている。
このような発光装置としては、例えば異方性導電部材(ACP:Anisotropic Conductive Paste)を介して、基板上の配線部に発光素子を実装し、これらを封止樹脂で被覆した構成が知られている。
In recent years, light emitting devices using light emitting elements such as light emitting diodes (LEDs) and laser diodes (LDs) have been used as various light sources.
As such a light emitting device, for example, a configuration in which a light emitting element is mounted on a wiring portion on a substrate via an anisotropic conductive member (ACP) and covered with a sealing resin is known. Yes.

ここで、上記の発光装置は、基板上および配線部上にペースト状の異方性導電部材を配置した後、加熱しながら発光素子を圧着し、異方性導電部材を硬化して接合する。そのため、加熱圧着の際に、異方性導電部材に含まれる溶媒等が気化し、配線部間に充填された異方性導電部材とその他の部材との界面等に気泡による空洞(ボイド)が発生する場合がある。また、発光素子の圧着中は、当該発光素子の中央部(間隙の上方)が圧力に応じて下方向に変形した状態となる。そのため、圧着が終了して発光素子の変形が元に戻った反動で異方性導電部材内が減圧状態となり、気泡による空洞が発生する場合もある。   Here, in the light emitting device described above, the paste-like anisotropic conductive member is disposed on the substrate and the wiring portion, and then the light emitting element is pressure-bonded while being heated, and the anisotropic conductive member is cured and bonded. For this reason, during thermocompression bonding, the solvent contained in the anisotropic conductive member is vaporized, and voids (voids) due to bubbles are formed at the interface between the anisotropic conductive member filled between the wiring portions and other members. May occur. Further, during the pressure bonding of the light emitting element, the central portion (above the gap) of the light emitting element is deformed downward according to the pressure. Therefore, the reaction inside the pressure bonding is completed and the deformation of the light emitting element returns to the original state, the inside of the anisotropic conductive member is in a reduced pressure state, and a cavity due to bubbles may be generated.

従来、前記したような半導体素子の空洞の発生を防止するために、基板の厚さ方向に通気可能な孔を穿設する方法(特許文献1参照)や、基板を被覆する保護膜に空洞内の気泡を排出するための溝を形成する方法(特許文献2参照)が提案されている。   Conventionally, in order to prevent the generation of a cavity of a semiconductor element as described above, a method of forming a hole that allows ventilation in the thickness direction of the substrate (see Patent Document 1), or a protective film that covers the substrate is formed in the cavity. A method of forming a groove for discharging bubbles (see Patent Document 2) has been proposed.

特開平5−343844号公報JP-A-5-343844 特開2005−101125号公報JP 2005-101125 A

しかしながら、例えば特許文献1または特許文献2に係る方法を上記の発光装置に適用した場合、異方性導電部材あるいは封止樹脂が前記した孔や溝に入り込み、通気が困難となる。   However, for example, when the method according to Patent Document 1 or Patent Document 2 is applied to the light-emitting device, the anisotropic conductive member or the sealing resin enters the above-described hole or groove, and ventilation becomes difficult.

また、本願発明者らは、このような気泡による空洞を含む発光装置を駆動させると、発光素子の温度上昇に伴って気泡が膨張して、気泡が外部に抜けようとするため、発光素子と封止樹脂との界面に空気層が形成され、光出力が低下する等の不具合が生じることを見出した。   In addition, when the present inventors drive a light-emitting device including such a cavity due to bubbles, the bubbles expand as the temperature of the light-emitting element rises, and the bubbles try to escape to the outside. It has been found that an air layer is formed at the interface with the sealing resin, causing problems such as a decrease in light output.

本発明は、前記の点に鑑みてなされたものであり、仮に異方性導電部材とその他の部材との界面等に空洞が存在して駆動時に熱により空洞中の気泡が移動しても、その気泡を効果的に排出することができ、光出力が低減しにくい発光装置および発光装置の製造方法を提供することを課題とする。   The present invention has been made in view of the above points, and even if there is a cavity at the interface between the anisotropic conductive member and the other member and bubbles in the cavity move due to heat during driving, It is an object of the present invention to provide a light emitting device and a method for manufacturing the light emitting device in which the bubbles can be effectively discharged and the light output is hardly reduced.

前記課題を解決するために本発明の一実施形態に係る発光装置は、基体上に離間して配置された少なくとも一対の配線部を有する基板と、異方性導電部材を介して、前記一対の配線部上に接合された発光素子と、を備え、前記配線部上および前記一対の配線部が離間した間隙内の少なくとも一方に設けられた離型剤を有する構成とした。   In order to solve the above problems, a light-emitting device according to an embodiment of the present invention includes a substrate having at least a pair of wiring portions that are spaced apart from each other on a base, and the pair of anisotropic conductive members. And a light emitting element bonded onto the wiring part, and having a release agent provided on at least one of the wiring part and the gap between the pair of wiring parts.

また、前記課題を解決するために本発明に係る発光装置の製造方法は、基体上に少なくとも一対の配線部が離間して設けられた基板を準備する基板準備工程と、前記基板上に異方性導電部材を配置する異方性導電部材配置工程と、前記異方性導電部材を介して、発光素子を前記一対の配線部上に接合する発光素子接合工程と、を含み、前記異方性導電部材配置工程の前に、平面視で前記異方性導電部材の下面に対向する位置に、離型剤を少なくとも線状に配置する離型剤配置工程をさらに含むこととした。   In order to solve the above problems, a method of manufacturing a light emitting device according to the present invention includes a substrate preparation step of preparing a substrate in which at least a pair of wiring portions are provided apart from each other on a base, and an anisotropic method on the substrate. An anisotropic conductive member disposing step of disposing a conductive conductive member, and a light emitting element bonding step of bonding a light emitting element onto the pair of wiring portions via the anisotropic conductive member, the anisotropic Prior to the conductive member arranging step, a mold releasing agent arranging step of arranging at least a releasing agent in a line at a position facing the lower surface of the anisotropic conductive member in plan view is further included.

本発明に係る発光装置によれば、異方性導電部材とその他の部材との界面等の空洞から駆動時の熱で膨張して移動する気泡を、離型剤により形成される離型剤配置領域を通して、外部に排出できる。そのため発光装置は、発光素子と封止樹脂との界面に空気層が形成されず、光出力の低下等の不具合を防止することができる。   According to the light emitting device of the present invention, the mold release agent arrangement is formed by the mold release agent for the bubbles that expand and move from the cavity such as the interface between the anisotropic conductive member and the other member due to heat during driving. Can be discharged outside through the area. Therefore, in the light emitting device, an air layer is not formed at the interface between the light emitting element and the sealing resin, and problems such as a decrease in light output can be prevented.

本発明に係る発光装置の製造方法によれば、異方性導電部材を配置する前に離型剤を少なくとも線状に設ける離型剤配置工程を行うので、封止樹脂の外まで離型剤により形成される離型剤配置領域を排出路として、異方性導電部材を用いる場合に発生することがある空洞から移動する気泡を外部に排出できる。そのため本発明に係る発光装置の製造方法では、大きな製造工程の変更なく、発光素子と封止樹脂との界面に空気層が形成されず、光出力の低下等の不具合を防止した発光装置の製造を可能とする。   According to the method for manufacturing a light emitting device according to the present invention, since the release agent arranging step of providing the release agent at least in a linear form is performed before the anisotropic conductive member is arranged, the release agent is disposed outside the sealing resin. By using the release agent arrangement region formed by the above as a discharge path, bubbles moving from a cavity that may be generated when using an anisotropic conductive member can be discharged to the outside. Therefore, in the method for manufacturing a light-emitting device according to the present invention, the air layer is not formed at the interface between the light-emitting element and the sealing resin without a large change in the manufacturing process, and the manufacture of the light-emitting device that prevents problems such as a decrease in light output. Is possible.

第1実施形態に係る発光装置の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the light-emitting device which concerns on 1st Embodiment. 図1Aに示す発光装置の一部を拡大した拡大断面図である。It is the expanded sectional view which expanded some light emitting devices shown in Drawing 1A. 第1実施形態に係る発光装置の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the light-emitting device which concerns on 1st Embodiment. 本発明の第1実施形態に係る発光装置の製造方法を示す図であって、配線部形成工程を模式的に示す平面図である。It is a figure which shows the manufacturing method of the light-emitting device which concerns on 1st Embodiment of this invention, Comprising: It is a top view which shows a wiring part formation process typically. 第1実施形態に係る発光装置の製造方法を示す図であって、基板準備工程を模式的に示す平面図である。It is a figure which shows the manufacturing method of the light-emitting device which concerns on 1st Embodiment, Comprising: It is a top view which shows a board | substrate preparation process typically. 第1実施形態に係る発光装置の製造方法を示す図であって、異方性導電部材配置工程を模式的に示す平面図である。It is a figure which shows the manufacturing method of the light-emitting device which concerns on 1st Embodiment, Comprising: It is a top view which shows typically an anisotropic conductive member arrangement | positioning process. 本発明の第1実施形態に係る発光装置の製造方法を示す図であって、発光素子接合工程を模式的に示す平面図である。It is a figure which shows the manufacturing method of the light-emitting device which concerns on 1st Embodiment of this invention, Comprising: It is a top view which shows typically a light emitting element joining process. 第1実施形態に係る発光装置の製造方法を示す図であって、封止樹脂形成工程を模式的に示す平面図である。It is a figure which shows the manufacturing method of the light-emitting device which concerns on 1st Embodiment, Comprising: It is a top view which shows typically sealing resin formation process. 第2実施形態に係る発光装置の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the light-emitting device which concerns on 2nd Embodiment. 第3実施形態に係る発光装置の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the light-emitting device which concerns on 3rd Embodiment. 第4実施形態に係る発光装置の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the light-emitting device which concerns on 4th Embodiment. 第4実施形態に係る発光装置の製造方法を示す図であって、基板準備工程を模式的に示す平面図である。It is a figure which shows the manufacturing method of the light-emitting device which concerns on 4th Embodiment, Comprising: It is a top view which shows a board | substrate preparation process typically. 第4実施形態に係る発光装置の製造方法を示す図であって、反射材料層形成工程を示す平面図である。It is a figure which shows the manufacturing method of the light-emitting device which concerns on 4th Embodiment, Comprising: It is a top view which shows a reflective material layer formation process. 第4実施形態に係る発光装置の製造方法を示す図であって、離型剤配置工程を模式的に示す平面図である。It is a figure which shows the manufacturing method of the light-emitting device which concerns on 4th Embodiment, Comprising: It is a top view which shows typically a mold release agent arrangement | positioning process. 第4実施形態に係る発光装置の製造方法を示す図であって、異方性導電部材配置工程を模式的に示す平面図である。It is a figure which shows the manufacturing method of the light-emitting device which concerns on 4th Embodiment, Comprising: It is a top view which shows typically an anisotropic conductive member arrangement | positioning process. 第4実施形態に係る発光装置の製造方法を示す図であって、発光素子接合工程を模式的に示す平面図である。It is a figure which shows the manufacturing method of the light-emitting device which concerns on 4th Embodiment, Comprising: It is a top view which shows typically a light emitting element joining process. 第4実施形態に係る発光装置の製造方法を示す図であって、封止樹脂形成工程を模式的に示す平面図である。It is a figure which shows the manufacturing method of the light-emitting device which concerns on 4th Embodiment, Comprising: It is a top view which shows typically sealing resin formation process. その他の実施形態に係る発光装置を模式的に示す平面図である。It is a top view which shows typically the light-emitting device which concerns on other embodiment. その他の実施形態に係る発光装置を模式的に示す図であって、図8Aの一部を拡大した図である。It is a figure which shows typically the light-emitting device which concerns on other embodiment, Comprising: It is the figure which expanded a part of FIG. 8A. その他の実施形態に係る発光装置を模式的に示す図であって、図8AのX−Xの断面状態を模式的に示す断面図である。It is a figure which shows typically the light-emitting device which concerns on other embodiment, Comprising: It is sectional drawing which shows typically the cross-sectional state of XX of FIG. 8A.

以下、本発明に係る実施形態の一例となる発光装置およびその製造方法について、図面を参照しながら説明する。なお、以下の説明において参照する図面は、本発明を概略的に示したものであるため、各部材のスケールや間隔、位置関係等が誇張、あるいは、部材の一部の図示が省略されている場合がある。また、以下の説明では、同一の名称および符号については原則として同一もしくは同質の部材を示しており、詳細説明を適宜省略することとする。   Hereinafter, a light emitting device as an example of an embodiment according to the present invention and a manufacturing method thereof will be described with reference to the drawings. Note that the drawings referred to in the following description schematically show the present invention, and therefore the scale, spacing, positional relationship, etc. of each member are exaggerated, or some of the members are not shown. There is a case. Moreover, in the following description, the same name and code | symbol indicate the same or the same member in principle, and shall omit detailed description suitably.

<第1実施形態>
[発光装置の構成]
第1実施形態に係る発光装置1の構成について、図1A、図1Bおよび図2を参照しながら説明する。発光装置1は、例えば表示装置や照明装置の光源として利用できるものである。発光装置1は、図1Aに示すように、基板10と、配線部20と、異方性導電部材30と、離型剤41を設けた離型剤配置領域40と、発光素子50と、封止樹脂60と、を備えている。
<First Embodiment>
[Configuration of light emitting device]
The configuration of the light emitting device 1 according to the first embodiment will be described with reference to FIGS. 1A, 1B, and 2. FIG. The light emitting device 1 can be used as a light source of a display device or a lighting device, for example. As shown in FIG. 1A, the light emitting device 1 includes a substrate 10, a wiring part 20, an anisotropic conductive member 30, a release agent placement region 40 provided with a release agent 41, a light emitting element 50, a sealing element. And a stop resin 60.

基板10は、発光装置1を構成する各部材を設置するためのものである。基板10は、図1Aに示すように、樹脂層からなる基体11と、接着層12を介して、基体11の一方の面に形成される配線部20とを備えている。なお、前記した「基体11の一方の面」とは、基体11における発光素子50側の面のことを意味している。
基体11の素材としては、特に限定されず、絶縁性のセラミックスや樹脂等を用いることができる。
The substrate 10 is for installing each member constituting the light emitting device 1. As shown in FIG. 1A, the substrate 10 includes a base body 11 made of a resin layer and a wiring portion 20 formed on one surface of the base body 11 through an adhesive layer 12. The above-mentioned “one surface of the substrate 11” means the surface of the substrate 11 on the light emitting element 50 side.
The material of the base 11 is not particularly limited, and insulating ceramics, resins, and the like can be used.

また、基体11として、ポリイミド(PI)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルイミド(PEI)、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、不飽和ポリエステル、ガラスエポキシ等の絶縁性の樹脂フィルム等の可撓性または柔軟性を有する樹脂材料を用いる場合には、発光素子の実装には、半田等に比べて低温で接合可能な、異方性導電部材を用いることが好ましい。しかし、異方性導電部材30の圧着時に、基体11が上下方向にたわみ、圧着終了後に元に戻ることで、異方性導電部材40と基体10または配線部20との間に空洞40が発生しやすくなる。そのため、異方性導電部材30を用いた場合に発生する空洞40の悪影響を低減することができる本発明は、可撓性または柔軟性を有する樹脂材料を基体に用いる発光装置1に特に好ましく適用することができる。
接着層12は、配線部20を基体11の一方の面に接着するためのものであり、例えばウレタン樹脂、エポキシ樹脂等で構成されている。なお、基板10の厚さは特に限定されず、目的および用途に応じて任意の厚さで形成することができる。
Further, as the substrate 11, polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetherimide (PEI), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), unsaturated polyester, glass epoxy, etc. When using a flexible or flexible resin material such as an insulating resin film, an anisotropic conductive member that can be bonded at a lower temperature than solder or the like is used for mounting the light emitting element. Is preferred. However, when the anisotropic conductive member 30 is crimped, the base body 11 bends in the vertical direction and returns to the original state after the crimping is completed, so that a cavity 40 is generated between the anisotropic conductive member 40 and the base body 10 or the wiring portion 20. It becomes easy to do. Therefore, the present invention capable of reducing the adverse effect of the cavity 40 generated when the anisotropic conductive member 30 is used is particularly preferably applied to the light emitting device 1 using a resin material having flexibility or flexibility as a base. can do.
The adhesive layer 12 is for adhering the wiring part 20 to one surface of the base 11 and is made of, for example, urethane resin, epoxy resin, or the like. The thickness of the substrate 10 is not particularly limited, and can be formed with an arbitrary thickness depending on the purpose and application.

配線部20は、外部の電源と発光素子50とを電気的に接続するものである。
本実施形態の配線部20は、図1Aおよび図2に示すように、発光素子50の正負一対の電極51に対応して一対で構成され、基板10の接着層12上に所定の間隙Gだけ離間して形成されている。この間隙Gは、後記する封止樹脂60の直径に対応する位置に設けられている。配線部20は、図1Aに示すように断面視すると、所定の厚さの膜状に形成されている。また、配線部20は、図2に示すように平面視すると、円形状の領域と、当該円形状の領域から基板10の左右の端部にそれぞれ伸びる線状の領域とから構成され、間隙Gが前記円形状の領域を2つに分割している。そして、配線部20の円形状の領域は、後記する封止樹脂60が被覆される円形状の領域と同等あるいはそれよりも広い面積を有しており、周縁が封止樹脂60の外に露出している。
The wiring unit 20 is for electrically connecting an external power source and the light emitting element 50.
As shown in FIGS. 1A and 2, the wiring portion 20 of the present embodiment is configured as a pair corresponding to a pair of positive and negative electrodes 51 of the light emitting element 50, and only a predetermined gap G is formed on the adhesive layer 12 of the substrate 10. They are spaced apart. The gap G is provided at a position corresponding to the diameter of the sealing resin 60 described later. The wiring part 20 is formed in a film shape having a predetermined thickness when viewed in cross section as shown in FIG. 1A. Further, when viewed in plan as shown in FIG. 2, the wiring portion 20 is composed of a circular region and linear regions extending from the circular region to the left and right end portions of the substrate 10, respectively. Divides the circular region into two. The circular region of the wiring part 20 has an area equal to or wider than the circular region covered with the sealing resin 60 described later, and the periphery is exposed to the outside of the sealing resin 60. doing.

配線部20の間隙G内では、図2に示すように、基板10の最上面である接着層12が露出し、当該接着層12上に離型剤配置領域40が形成されている。この離型剤配置領域40の詳細については後記する。配線部20の素材としては、例えば銅、銀、金、アルミニウム、ニッケル、スズおよびそれらの合金、またはそれらの積層等を用いることができる。配線部の20の最表面は、金またはスズであると好ましい。これにより、後述する異方性導電部材30中の導電粒子32との接合を良好に行うことができる。また、配線部20の厚さは特に限定されず、目的および用途に応じて任意の厚さで形成することができる。配線部20が厚く、基体11と配線部20の上面の高さの差が大きいほど、異方性導電部材30とその他の部材との界面等に空洞が発生しやすい。そのため、配線部20の厚みは、10〜100μm、20〜80μmあるいは30〜50μm程度であることが好ましい。   In the gap G of the wiring part 20, as shown in FIG. 2, the adhesive layer 12 that is the uppermost surface of the substrate 10 is exposed, and a release agent placement region 40 is formed on the adhesive layer 12. Details of the release agent placement region 40 will be described later. As a material of the wiring part 20, for example, copper, silver, gold, aluminum, nickel, tin and alloys thereof, or a laminate thereof can be used. The outermost surface of the wiring part 20 is preferably gold or tin. Thereby, joining with the electroconductive particle 32 in the anisotropic conductive member 30 mentioned later can be performed favorably. Moreover, the thickness of the wiring part 20 is not specifically limited, It can form by arbitrary thickness according to the objective and a use. As the wiring portion 20 is thicker and the difference in height between the base 11 and the upper surface of the wiring portion 20 is larger, a cavity is more likely to be generated at the interface between the anisotropic conductive member 30 and other members. Therefore, the thickness of the wiring part 20 is preferably about 10 to 100 μm, 20 to 80 μm, or about 30 to 50 μm.

また、前記した間隙Gの幅は、例えば150μm〜300μmの範囲内とすることができる。配線部20および間隙Gの平面視における形状は、特に限定されないが、図1に示すように、間隙Gが異方性導電部材30と対向する部分において屈曲部や幅広部を有さない、つまり直線状または曲線状の形状であることが好ましい。間隙Gが屈曲部や幅広部を有する場合、その周辺の異方性導電部材30とその他の部材との界面等に空洞が発生しやすくなる。しかし、間隙Gを直線状または曲線状の屈曲部を有さない形状にすることにより、異方性導電部材30とその他の部材との界面等の空洞の発生を抑えることができる。なお、間隙Gが屈曲部や幅広部を有する場合には、その部分に接する、ないし隣接するように、後述する離型剤を設けることが好ましい。   Further, the width of the gap G described above can be set within a range of 150 μm to 300 μm, for example. The shape of the wiring part 20 and the gap G in plan view is not particularly limited. However, as shown in FIG. 1, the gap G does not have a bent part or a wide part in the part facing the anisotropic conductive member 30, that is, A linear or curved shape is preferred. When the gap G has a bent portion or a wide portion, a cavity is likely to be generated at the interface between the anisotropic conductive member 30 and other members around the gap G. However, by forming the gap G so as not to have a linear or curved bent portion, the generation of cavities such as an interface between the anisotropic conductive member 30 and other members can be suppressed. In addition, when the gap | interval G has a bending part and a wide part, it is preferable to provide the mold release agent mentioned later so that the part may be contact | connected or adjacent.

異方性導電部材30は、発光素子50を基板10に接着して固定するとともに、発光素子50と配線部20とを導通させるためのものである。異方性導電部材30は、通常、図1Aおよび図1Bに示すように断面視すると、一対の配線部20上、離型剤配置領域40上および間隙G内に亘って配置されている。また、異方性導電部材30は、図2に示すように平面視すると、一対の配線部20上、離型剤配置領域40上および間隙Gを包含するように円形状の領域に形成されている。そして、異方性導電部材30は、接合対象である発光素子50よりも広い面積に配置されている。   The anisotropic conductive member 30 is for adhering and fixing the light emitting element 50 to the substrate 10 and for conducting the light emitting element 50 and the wiring portion 20. As shown in FIGS. 1A and 1B, the anisotropic conductive member 30 is usually disposed over the pair of wiring portions 20, the release agent placement region 40, and the gap G when viewed in cross section. Further, the anisotropic conductive member 30 is formed in a circular region so as to include the gap G on the pair of wiring portions 20, the release agent placement region 40, and the plan view as shown in FIG. 2. Yes. The anisotropic conductive member 30 is disposed in a larger area than the light emitting element 50 to be bonded.

異方性導電部材30は、発光素子50の接着と導通の2つの機能を兼ね備えるため、接着剤としての透光性樹脂31と、その中に混入された導通部材としての導電粒子32と、の複合物を少なくとも含有する。
透光性樹脂31の素材としては、耐光性および耐熱性に優れるものが好ましく、具体的にはエポキシ樹脂、シリコーン樹脂、ポリイミド樹脂やその変性樹脂、ハイブリッド樹脂等を用いることができる。また、導電粒子32としては、少なくとも一部が磁性体であるものが好ましく、具体的には表面にニッケル(Ni)、鉄(Fe)、コバルト(Co)、ステンレス等の導電体を有する材料を用いることができる。導電粒子32の形状や大きさは特に限定されず、例えば図1Aに示すように、球状や、針状または不定形のもの、1μm〜20μmの大きさのものを用いることができる。
Since the anisotropic conductive member 30 has two functions of adhesion and conduction of the light emitting element 50, the transparent resin 31 as the adhesive and the conductive particles 32 as the conduction member mixed therein Contains at least a composite.
As the material of the translucent resin 31, a material excellent in light resistance and heat resistance is preferable. Specifically, an epoxy resin, a silicone resin, a polyimide resin, a modified resin thereof, a hybrid resin, or the like can be used. In addition, the conductive particles 32 are preferably those in which at least a part is a magnetic material, and specifically, a material having a conductive material such as nickel (Ni), iron (Fe), cobalt (Co), stainless steel on the surface. Can be used. The shape and size of the conductive particles 32 are not particularly limited. For example, as shown in FIG. 1A, a spherical shape, a needle shape or an indefinite shape, and a size of 1 μm to 20 μm can be used.

なお、導電粒子32は、樹脂から成るコアと、このコアを被覆する金属から成る導電層とにより構成されていてもよい。コアに柔軟性を有する樹脂を用いることにより、圧着による接合を容易に行うことができる。コアの材料は、例えばメタクリル樹脂を用いることができ、導電層は前記した金属を用いることができる。導電層は、無電解メッキ、電解メッキ、メカノフュージョン(メカノケミカル的反応)などにより、形成可能である。
また、導電粒子32は、異方性導電部材30中に略均一な濃度で存在しているが、図においては一部、例えば間隙G内等において図示を省略している。
異方性導電部材30中には、光反射率を高めるため、二酸化チタン、酸化亜鉛等の光反射材を含有させてもよい。
異方性導電部材30の配置領域は、図2に示すような平面視において円形のものに限定されない。また、発光素子より広い面積に配置されることに限られず、接着、導通が十分に行うことができれば、略同等やそれ以下の面積であってもよい。
The conductive particles 32 may be constituted by a core made of a resin and a conductive layer made of a metal that covers the core. By using a flexible resin for the core, bonding by pressure bonding can be easily performed. For example, a methacrylic resin can be used as the material of the core, and the above-described metal can be used as the conductive layer. The conductive layer can be formed by electroless plating, electrolytic plating, mechanofusion (mechanochemical reaction), or the like.
Further, although the conductive particles 32 are present in the anisotropic conductive member 30 at a substantially uniform concentration, the illustration is omitted in a part of the drawing, for example, in the gap G or the like.
The anisotropic conductive member 30 may contain a light reflecting material such as titanium dioxide and zinc oxide in order to increase the light reflectance.
The arrangement region of the anisotropic conductive member 30 is not limited to a circular shape in a plan view as shown in FIG. In addition, it is not limited to be disposed in a larger area than the light emitting element, and may have an area substantially equal to or less than that as long as adhesion and conduction can be sufficiently performed.

離型剤配置領域40は、異方性導電部材30とその他の部材との界面等の気泡を外部に排出する。例えば、離型剤配置領域40は、図2に示すように、離型剤41が線状に設けられ対面する部材と微細な空間を形成する領域である。離型剤41としては、例えばフッ素樹脂系離型剤、メラミン樹脂系離型剤、シリコーン樹脂系離型剤、アクリル樹脂系離型剤、セルロース誘導体系離型剤、尿素誘導体系離型剤、ポリオレフィン樹脂系離型剤、パラフィン系離型剤およびこれらの複合型離型剤のいずれかを用いることができる。   The release agent arrangement region 40 discharges bubbles such as an interface between the anisotropic conductive member 30 and other members to the outside. For example, as shown in FIG. 2, the release agent placement region 40 is a region in which the release agent 41 is provided in a line and forms a fine space with the facing member. Examples of the release agent 41 include a fluorine resin release agent, a melamine resin release agent, a silicone resin release agent, an acrylic resin release agent, a cellulose derivative release agent, a urea derivative release agent, Any of a polyolefin resin release agent, a paraffin release agent, and a composite release agent thereof can be used.

本実施形態の離型剤41は、図1Bに示すように断面視すると、接着層12上に所定厚さの膜状に設けられている。離型剤41は、図2に示すように平面視すると、異方性導電部材30の下面に対面する位置から封止樹脂60の端部の位置までの間隙G内に形成されている。すなわち離型剤41は、異方性導電部材30が塗布された範囲の間隙G内のある点(位置)を始点として、当該異方性導電部材30の外周方向に向かって、間隙Gに沿って直線状に、封止樹脂60の端部まで連続して設けられている。なお、離型剤41の塗布幅は、例えば50μm〜300μmの範囲内、より好ましくは100μm〜300μmの範囲内とすることができる。   The release agent 41 of the present embodiment is provided in a film shape with a predetermined thickness on the adhesive layer 12 when viewed in cross section as shown in FIG. 1B. The release agent 41 is formed in the gap G from the position facing the lower surface of the anisotropic conductive member 30 to the position of the end portion of the sealing resin 60 when viewed in plan as shown in FIG. That is, the release agent 41 starts from a certain point (position) in the gap G in the range where the anisotropic conductive member 30 is applied and starts along the gap G in the outer circumferential direction of the anisotropic conductive member 30. And is provided in a straight line continuously up to the end of the sealing resin 60. In addition, the application | coating width | variety of the mold release agent 41 can be in the range of 50 micrometers-300 micrometers, for example, More preferably, it can be in the range of 100 micrometers-300 micrometers.

離型剤配置領域40は、より具体的には、発光素子50の直下の位置から封止樹脂60の端部の位置までの間隙G内に離型剤41を設けることで形成されている。すなわち離型剤41は、間隙G内となる発光素子50の中央に対応する位置を始点として、当該異方性導電部材30の外周方向に向かって直線状に、封止樹脂60の端部まで連続して設けられている。言い換えれば、離型剤41は、封止樹脂60の半径に相当する間隙G内に設けられている。   More specifically, the release agent arrangement region 40 is formed by providing the release agent 41 in the gap G from the position immediately below the light emitting element 50 to the position of the end portion of the sealing resin 60. That is, the release agent 41 starts from a position corresponding to the center of the light emitting element 50 in the gap G and extends linearly toward the outer periphery of the anisotropic conductive member 30 to the end of the sealing resin 60. It is provided continuously. In other words, the release agent 41 is provided in the gap G corresponding to the radius of the sealing resin 60.

離型剤41が設けられる範囲は、気泡を排出できる領域であればよく、例えば図2の左側に示すように、異方性導電部材30の端部から封止樹脂60の端部までの範囲a、異方性導電部材30の中心から封止樹脂60の端までの範囲b、封止樹脂60の端から端までの範囲c等とすることができる。そして、図1Aおよび図1Bに示すように、離型剤41は、厚さ方向でみた場合、範囲aでは、封止樹脂60と間隙Gとの間に設けられ、範囲b,cでは、異方性導電部材30と間隙Gとの間および封止樹脂60と間隙Gとの間に設けられることができる。この場合には、離型剤41の下側には常に間隙Gが存在し、離型剤41の上側には、その形成位置によって異なる部材が存在することになる。   The range in which the release agent 41 is provided may be an area where air bubbles can be discharged. For example, as shown on the left side of FIG. 2, the range from the end of the anisotropic conductive member 30 to the end of the sealing resin 60. a, a range b from the center of the anisotropic conductive member 30 to the end of the sealing resin 60, a range c from the end of the sealing resin 60 to the end, and the like. As shown in FIGS. 1A and 1B, when viewed in the thickness direction, the release agent 41 is provided between the sealing resin 60 and the gap G in the range a, and different in the ranges b and c. It can be provided between the isotropic conductive member 30 and the gap G and between the sealing resin 60 and the gap G. In this case, the gap G always exists below the release agent 41, and different members exist depending on the formation position above the release agent 41.

また、離型剤41を設けたことにより、当該離型剤41の上方には、上方との部材との界面に微細な空隙が形成された離型剤配置領域40を有することになる。そして、この離型剤配置領域40の微細な空隙を通じて、異方性導電部材30内と外部とが通気される状態となっている。   Further, since the release agent 41 is provided, the release agent 41 has a release agent arrangement region 40 in which fine voids are formed at the interface with the upper member. Then, the inside of the anisotropic conductive member 30 and the outside are ventilated through the fine gaps in the release agent arrangement region 40.

離型剤41を設けることで、発光装置1は、製造時に形成された空洞が存在してもその空洞内の気泡が熱により移動した場合、離型剤配置領域40により気泡を外部に排出することができる。従って、離型剤配置領域40を備える発光装置1は、発光素子50と封止樹脂60との界面等に従来の発光装置のように空気層が形成されることもない。   By providing the release agent 41, the light emitting device 1 discharges the bubbles to the outside through the release agent arrangement region 40 when the bubbles in the cavities move due to heat even if the cavities formed at the time of manufacture exist. be able to. Therefore, in the light emitting device 1 including the release agent arrangement region 40, an air layer is not formed at the interface between the light emitting element 50 and the sealing resin 60, unlike the conventional light emitting device.

本実施形態において、発光素子50は、図1Aに示すように、発光面と反対側の面に正負一対の電極51を備え、当該電極51が異方性導電部材30を介してそれぞれ対応する配線部20に接合されている。発光素子50は、より具体的には図2に示すように、異方性導電部材30を介して、一対の配線部20間の間隙Gをまたぐように当該一対の配線部20上にフリップチップ接合されている。また、発光素子50は、後記する封止樹脂60の中心部に設けられている。なお、前記した「発光面」とは、基板10上の配線部20に発光素子50を接合した際に、基板10と対向する側の面と反対側の面であり、発光装置1の光取り出し方向側の面である。   In the present embodiment, as shown in FIG. 1A, the light emitting element 50 includes a pair of positive and negative electrodes 51 on the surface opposite to the light emitting surface, and the electrodes 51 respectively correspond to wirings via the anisotropic conductive member 30. It is joined to the part 20. More specifically, as shown in FIG. 2, the light emitting element 50 is flip-chip on the pair of wiring portions 20 via the anisotropic conductive member 30 so as to straddle the gap G between the pair of wiring portions 20. It is joined. The light emitting element 50 is provided at the center of a sealing resin 60 described later. The “light emitting surface” described above is a surface opposite to the surface facing the substrate 10 when the light emitting element 50 is bonded to the wiring portion 20 on the substrate 10, and the light extraction of the light emitting device 1 is performed. It is a surface on the direction side.

発光素子50としては、例えば、n型半導体層とp型半導体層と発光層とからなる半導体層を有する発光ダイオードを用いることができ、任意の波長のものを選択することができる。例えば、青色(波長430nm〜490nmの光)、緑色(波長490nm〜570nmの光)の発光素子50としては、ZnSe、窒化物系半導体(InXAlYGa1-X-YN,0≦X,0≦Y、X+Y≦1)、GaP等を用いることができる。また、赤色(波長620nm〜750nmの光)の発光素子50としては、GaAlAs,AlInGaP等を用いることができる。なお、蛍光物質を用いた発光装置1とする場合には、その蛍光物質を効率良く励起できる短波長の発光が可能な窒化物半導体(InXAlYGa1-X-YN,0≦X,0≦Y,X+Y≦1)を用いることが好ましい。なお、発光素子50の成分組成や発光色、大きさ等は、目的および用途に応じて適宜選択することができる。 As the light emitting element 50, for example, a light emitting diode having a semiconductor layer composed of an n-type semiconductor layer, a p-type semiconductor layer, and a light emitting layer can be used, and a light emitting diode having an arbitrary wavelength can be selected. For example, as a light emitting element 50 of blue (light having a wavelength of 430 nm to 490 nm) and green (light having a wavelength of 490 nm to 570 nm), ZnSe, nitride-based semiconductor (In X Al Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1), GaP, or the like can be used. As the red light emitting element 50 (light having a wavelength of 620 nm to 750 nm), GaAlAs, AlInGaP, or the like can be used. In the case of the light emitting device 1 using a fluorescent material, a nitride semiconductor (In X Al Y Ga 1-XY N, 0 ≦ X, 0 capable of efficiently exciting the fluorescent material and capable of emitting light of a short wavelength. ≦ Y, X + Y ≦ 1) is preferably used. Note that the component composition, emission color, size, and the like of the light emitting element 50 can be appropriately selected according to the purpose and application.

発光素子50の電極は、図1Aに示すような発光面と反対側の面に正負一対の電極を備えるものに限られず、発光面と基板10側の面に正負一対の電極を有するものであってもよい。
なお、発光素子がフリップチップで接合される場合には、発光面から十分に光を取り出すことができるように、半導体層の上方側に基板を設けないか、サファイア等の透光性基板を設けることが好ましい。
The electrodes of the light emitting element 50 are not limited to those having a pair of positive and negative electrodes on the surface opposite to the light emitting surface as shown in FIG. 1A, but have a pair of positive and negative electrodes on the light emitting surface and the surface on the substrate 10 side. May be.
Note that when the light-emitting element is bonded by flip chip, a substrate is not provided above the semiconductor layer or a light-transmitting substrate such as sapphire is provided so that light can be sufficiently extracted from the light-emitting surface. It is preferable.

封止樹脂60は、基板10に接合された発光素子50を、塵芥、水分、外力等から保護するとともに、任意に、発光素子50の光取り出し効率向上や波長変換等の光学特性を調整させるものである。本実施形態の封止樹脂60は、図1Aに示すように断面視すると、基板10上の上面、異方性導電部材30および発光素子50を被覆しており、ドーム状(半球状)に形成されている。また、封止樹脂60は、図2に示すように平面視すると、一対の配線部20の円形状の領域をほぼ含むように円形状に形成されている。また、前記した離型剤41は、図1Aおよび図2に示すように、この封止樹脂60の下方に対向して配置されている。   The sealing resin 60 protects the light emitting element 50 bonded to the substrate 10 from dust, moisture, external force, and the like, and arbitrarily adjusts optical characteristics such as light extraction efficiency improvement and wavelength conversion of the light emitting element 50. It is. 1A, the sealing resin 60 of the present embodiment covers the upper surface on the substrate 10, the anisotropic conductive member 30, and the light emitting element 50, and is formed in a dome shape (hemisphere). Has been. In addition, the sealing resin 60 is formed in a circular shape so as to substantially include the circular regions of the pair of wiring portions 20 when viewed in plan as shown in FIG. Further, as shown in FIGS. 1A and 2, the above-described release agent 41 is disposed so as to face the lower side of the sealing resin 60.

封止樹脂60の材料としては、発光素子50からの光を透過可能な透光性を有するものが好ましく、具体的にはエポキシ樹脂、シリコーン樹脂やそれらの変性タイプ、あるいはユリア樹脂等を用いることができる。また、封止樹脂60として、上記した有機材料の他に、酸化物等の無機材料を用いてもよい。またこれらに加え、所望に応じて配光や波長を変換するための蛍光体、着色剤、光拡散剤、フィラー等を含有させてもよい。   As the material of the sealing resin 60, a material having translucency capable of transmitting light from the light emitting element 50 is preferable. Specifically, an epoxy resin, a silicone resin, a modified type thereof, a urea resin, or the like is used. Can do. In addition to the organic material described above, an inorganic material such as an oxide may be used as the sealing resin 60. In addition to these, a phosphor, a colorant, a light diffusing agent, a filler, and the like for converting light distribution and wavelength may be included as desired.

以上の構成を備える、本実施形態の発光装置1によれば、異方性導電部材30の下方から封止樹脂60の外まで形成した離型剤配置領域40を通じて、駆動時に熱により発生することがある異方性導電部材30の界面に形成された空洞から移動する気泡を外部に排出することができる。つまり、発光装置1は、異方性導電部材30と他の部材の界面に沿って熱により気泡が膨張・移動するときに、部材間の界面となる位置に離型剤配置領域40が設けられていることで、その離型剤配置領域を介して気泡を外部に排出する。そのため、発光装置1では、気泡の移動にともなう不具合、例えば発光素子50と封止樹脂60との界面に空気層が形成される恐れを低減することができ、光出力の低下等の発生を低減することができる。   According to the light emitting device 1 of the present embodiment having the above configuration, it is generated by heat during driving through the release agent placement region 40 formed from below the anisotropic conductive member 30 to the outside of the sealing resin 60. The bubbles moving from the cavity formed at the interface of the anisotropic conductive member 30 can be discharged to the outside. That is, in the light emitting device 1, the release agent placement region 40 is provided at a position that becomes an interface between the members when the bubbles expand and move due to heat along the interface between the anisotropic conductive member 30 and the other members. Therefore, the bubbles are discharged to the outside through the release agent arrangement region. Therefore, in the light-emitting device 1, it is possible to reduce the problems associated with the movement of bubbles, for example, the risk of an air layer being formed at the interface between the light-emitting element 50 and the sealing resin 60, and reduce the occurrence of a decrease in light output and the like. can do.

[発光装置の製造方法]
以下、本発明の第1実施形態に係る発光装置1の製造方法について、図3A〜図3Eを参照しながら説明する。発光装置1の製造方法は、基板準備工程(図3A)と、離型剤配置工程(図3B)と、異方性導電部材配置工程(図3C)と、発光素子接合工程(図3D)と、封止樹脂形成工程(図3E)と、を順番に行う。
[Method for Manufacturing Light Emitting Device]
Hereinafter, a method for manufacturing the light emitting device 1 according to the first embodiment of the present invention will be described with reference to FIGS. 3A to 3E. The manufacturing method of the light emitting device 1 includes a substrate preparation step (FIG. 3A), a release agent placement step (FIG. 3B), an anisotropic conductive member placement step (FIG. 3C), and a light emitting element joining step (FIG. 3D). The sealing resin forming step (FIG. 3E) is sequentially performed.

基板準備工程では、例えば、図3Aに示すように、基体11上に少なくとも一対の配線部20を、接着層12を介して離間して形成した基板10を準備する。   In the substrate preparation step, for example, as shown in FIG. 3A, a substrate 10 is prepared in which at least a pair of wiring parts 20 are formed on a base 11 with a bonding layer 12 therebetween.

例えば、本実施形態においては、まず基体11上に接着層12を介して金属箔を形成した後、当該金属箔のほぼ全面を覆うようにレジスト層を印刷等によって形成し、乾燥させる。次に、レジスト層の上に開口部を備えたマスクを配置する。   For example, in the present embodiment, first, a metal foil is formed on the substrate 11 via the adhesive layer 12, and then a resist layer is formed by printing or the like so as to cover almost the entire surface of the metal foil and dried. Next, a mask having an opening is disposed on the resist layer.

次に、露光装置を用いてマスクおよびマスクの開口部内のレジストに光(紫外光)を照射して露光した後、マスクを除去して現像する。これにより、光を照射した領域(またはマスクで覆われた領域)のレジスト層が除去され、開口部が形成されたレジスト層となる。なお、開口部内には金属箔が露出した状態となっている。次に、当該開口部が形成されたレジスト層をマスクとし、レジスト層の開口部内に露出された金属箔をエッチングすることで、レジスト開口部に対応する部分の金属箔が除去される。これにより基体11の上面(接着層12)が露出し、この露出部分が間隙Gおよび配線部20以外の部分となり、間隙Gを有する一対の配線部20(図1A参照)を有する基板10となる。   Next, exposure is performed by irradiating light (ultraviolet light) to the mask and the resist in the opening of the mask using an exposure apparatus, and then the mask is removed and developed. As a result, the resist layer in the region irradiated with light (or the region covered with the mask) is removed, and a resist layer having an opening is formed. The metal foil is exposed in the opening. Next, using the resist layer in which the opening is formed as a mask, the metal foil exposed in the opening of the resist layer is etched, whereby the metal foil corresponding to the resist opening is removed. As a result, the upper surface (adhesive layer 12) of the base 11 is exposed, and this exposed portion becomes a portion other than the gap G and the wiring portion 20, and becomes a substrate 10 having a pair of wiring portions 20 having the gap G (see FIG. 1A). .

離型剤配置工程では、例えば、図3Bに示すように平面視で異方性導電部材30の下面に対面する位置から封止樹脂60に対面して封止樹脂60の端部の位置までの間隙G内に、離型剤41(図1B参照)を線状に塗布して設ける。離型剤配置工程では、より具体的には、発光素子50の直下に対応する位置から封止樹脂60の端部に対応する位置まで、すなわち封止樹脂60の半径に相当する間隙G内に離型剤41を塗布して設ける。ここで、離型剤配置工程では、例えばポッティング(滴下)法、圧縮成型法、印刷法、トランスファモールド法、ジェットディスペンス法、スプレー法等により離型剤41を塗布することができる。なお、封止樹脂60の端部までの位置は、ここでは、配線部20の外形部分と同等になることから、離型剤41は、一対の配線部20の中心から外形部分までの範囲で間隙G内に設けられる。また、異方性導電部材30および封止樹脂60は、ペースト状、液状等の柔らかな、もしくは流動性を有する状態で塗布されることが通常であることから端部位置が必ず一定とは限らない。そこで、離型剤41の設ける長さを、想定される範囲よりもある程度長めに塗布することで、確実に離型剤配置領域40を形成することが可能となる。さらに、離型剤41の一端部は、後記する発光素子50の直下に位置するようになる。ここで発光素子50の直下とは、発光素子50の中心である必要はなく、発光素子50に対向する位置であれば構わない。   In the mold release agent arranging step, for example, as shown in FIG. 3B, from a position facing the lower surface of the anisotropic conductive member 30 in a plan view to a position of the end portion of the sealing resin 60 facing the sealing resin 60. In the gap G, a release agent 41 (see FIG. 1B) is applied in a linear form. More specifically, in the release agent arranging step, the position corresponding to the position immediately below the light emitting element 50 to the position corresponding to the end of the sealing resin 60, that is, in the gap G corresponding to the radius of the sealing resin 60. A release agent 41 is applied and provided. Here, in the releasing agent arranging step, the releasing agent 41 can be applied by, for example, a potting (dropping) method, a compression molding method, a printing method, a transfer mold method, a jet dispensing method, a spray method, or the like. In addition, since the position to the edge part of the sealing resin 60 becomes equivalent to the outer shape part of the wiring part 20 here, the release agent 41 is in the range from the center of the pair of wiring parts 20 to the outer shape part. It is provided in the gap G. Further, since the anisotropic conductive member 30 and the sealing resin 60 are usually applied in a paste-like, liquid-like, soft or fluid state, the end positions are not always constant. Absent. Therefore, the release agent placement region 40 can be reliably formed by applying the release agent 41 to a certain length longer than the expected range. Furthermore, the one end part of the mold release agent 41 comes to be located directly under the light emitting element 50 to be described later. Here, the term “directly under the light emitting element 50” does not need to be the center of the light emitting element 50, and may be a position facing the light emitting element 50.

異方性導電部材配置工程では、例えば、図3Cに示すように、一対の配線部20上の中央部分にペースト状の異方性導電部材30を塗布する。異方性導電部材配置工程では、より具体的には、平面視で一対の配線部20の中央となる位置で、離型剤41の一部および間隙Gの一部を含む円形の領域上に、ペースト状の異方性導電部材30を塗布する。ここで、異方性導電部材配置工程では、例えばポッティング(滴下)法、圧縮成型法、印刷法、トランスファモールド法、ジェットディスペンス法等によりペースト状の異方性導電部材30を塗布して設けることができる。
異方性導電部材配置工程は、必要量の異方性導電部材30を一度に一カ所に設けてもよいが、複数回で一カ所もしくは複数の位置に分けて設けてもよい。
In the anisotropic conductive member arrangement step, for example, as shown in FIG. 3C, a paste-like anisotropic conductive member 30 is applied to the central portion on the pair of wiring portions 20. More specifically, in the anisotropic conductive member arranging step, on a circular region including a part of the release agent 41 and a part of the gap G at a position which is the center of the pair of wiring parts 20 in a plan view. The paste-like anisotropic conductive member 30 is applied. Here, in the anisotropic conductive member arranging step, the paste-like anisotropic conductive member 30 is applied and provided by, for example, a potting (dropping) method, a compression molding method, a printing method, a transfer mold method, a jet dispensing method, or the like. Can do.
In the anisotropic conductive member arranging step, a necessary amount of the anisotropic conductive member 30 may be provided at one place at a time, but may be provided at one place or a plurality of positions at a plurality of times.

発光素子接合工程では、図3Dに示すように、異方性導電部材30を介して、一対の配線部20間の間隙Gをまたぐように発光素子50を一対の配線部20上に接合する。発光素子接合工程では、より具体的には、硬化前の異方性導電部材30上に電極51を下に向けて発光素子50を配置し、発光素子50の上から加熱圧着を行う。これより、一対の配線部20に発光素子50が接合される。なお、この発光素子接合工程において、透光性樹脂31内の導電粒子32がつぶされた状態(図1A参照)で異方性導電部材30が固まるため、圧着終了後に減圧状態となっても、当該導電粒子32を介して発光素子50が配線部20に接続された状態となっている。
なお、この加圧の際に、ペースト状の異方性導電部材30がつぶされることで、異方性導電部材30は、発光素子50より広い面積で設けられる。
In the light emitting element bonding step, as shown in FIG. 3D, the light emitting element 50 is bonded onto the pair of wiring parts 20 via the anisotropic conductive member 30 so as to straddle the gap G between the pair of wiring parts 20. More specifically, in the light emitting element bonding step, the light emitting element 50 is disposed on the anisotropic conductive member 30 before curing with the electrode 51 facing downward, and thermocompression bonding is performed from above the light emitting element 50. As a result, the light emitting element 50 is bonded to the pair of wiring portions 20. In this light emitting element bonding step, the anisotropic conductive member 30 is solidified in a state where the conductive particles 32 in the translucent resin 31 are crushed (see FIG. 1A). The light emitting element 50 is connected to the wiring part 20 through the conductive particles 32.
Note that the anisotropic conductive member 30 is provided in a larger area than the light emitting element 50 by crushing the paste-like anisotropic conductive member 30 during the pressurization.

封止樹脂形成工程では、例えば、図3Eに示すように、基板10、異方性導電部材30および発光素子50を封止樹脂60で被覆する。本実施形態の封止樹脂形成工程では、より具体的には、平面視で一対の配線部20の円形状の領域をほぼ含むようにドーム状に封止樹脂60を形成する。ここで、封止樹脂形成工程では、例えばポッティング(滴下)法、圧縮成型法、印刷法、トランスファモールド法、ジェットディスペンス法、スプレー法等により封止樹脂60を形成することができる。なお、離型剤41は、封止樹脂60の下面に対面あるいは対向する位置において設けられる。そして、離型剤41は、異方性導電部材30との間、ならびに、封止樹脂60の間に離型剤配置領域40を形成することになる。封止樹脂60の形状は、異方性導電部材30および発光素子50を封止しており、離型剤配置領域40が封止樹脂60の外側にまで配置されている限り、特に限定されない。   In the sealing resin forming step, for example, as illustrated in FIG. 3E, the substrate 10, the anisotropic conductive member 30, and the light emitting element 50 are covered with the sealing resin 60. More specifically, in the sealing resin forming step of the present embodiment, the sealing resin 60 is formed in a dome shape so as to substantially include the circular regions of the pair of wiring portions 20 in plan view. Here, in the sealing resin forming step, the sealing resin 60 can be formed by, for example, a potting method, a compression molding method, a printing method, a transfer molding method, a jet dispensing method, a spray method, or the like. The release agent 41 is provided at a position facing or facing the lower surface of the sealing resin 60. And the mold release agent 41 forms the mold release agent arrangement | positioning area | region 40 between the anisotropic conductive members 30 and between the sealing resin 60. FIG. The shape of the sealing resin 60 is not particularly limited as long as the anisotropic conductive member 30 and the light emitting element 50 are sealed, and the release agent placement region 40 is disposed even outside the sealing resin 60.

以上のような各工程を行う発光装置1の製造方法によれば、異方性導電部材30から封止樹脂60の外まで配線部20の間隙G内に離型剤41を設けて離型剤配置領域40を形成している。そのため、異方性導電部材30を用いる場合に異方性導電部材30との部材間の界面に形成されることがある空洞が仮に存在し、駆動時に熱によりその空洞から膨張・移動する気泡があっても、異方性導電部材30に対面する部材間の界面に沿って形成される離型剤配置領域40がより確実に外部に気泡を排出することができる。したがって、従来の装置と比較して発光装置1の各構成に孔や溝等の機械加工する必要がない。そして、発光装置1の製造方法では、製造した発光装置1の発光素子50と封止樹脂60との界面に空気層が形成されず、発光装置1の光出力の低下等の不具合を防止することができる。
なお、前記した製造方法において、封止樹脂形成工程は、発光装置の構成により省略される場合がある。封止樹脂成形工程が省略される場合には、離型剤41は、異方性導電部材30の端部まで、間隙G内または配線部20上等に設けられることになる。
According to the manufacturing method of the light emitting device 1 that performs the above steps, the release agent 41 is provided in the gap G of the wiring portion 20 from the anisotropic conductive member 30 to the outside of the sealing resin 60. An arrangement region 40 is formed. Therefore, when the anisotropic conductive member 30 is used, there is a cavity that may be formed at the interface between the anisotropic conductive member 30 and the bubbles that expand and move from the cavity due to heat during driving. Even if it exists, the mold release agent arrangement | positioning area | region 40 formed along the interface between the members which face the anisotropic conductive member 30 can discharge | emit a bubble more reliably outside. Therefore, it is not necessary to machine holes, grooves and the like in each component of the light emitting device 1 as compared with the conventional device. And in the manufacturing method of the light-emitting device 1, an air layer is not formed in the interface of the light emitting element 50 and the sealing resin 60 of the manufactured light-emitting device 1, and troubles, such as a fall of the light output of the light-emitting device 1, are prevented. Can do.
In the above manufacturing method, the sealing resin forming step may be omitted depending on the configuration of the light emitting device. When the sealing resin molding step is omitted, the release agent 41 is provided up to the end of the anisotropic conductive member 30 in the gap G or on the wiring portion 20.

<第2実施形態>
第2実施形態に係る発光装置1Aの構成について、図4を参照しながら説明する。発光装置1Aは、前記した発光装置1とは離型剤41Aが塗布される離型剤配置領域40Aが異なる。すなわち、発光装置1Aの2カ所に設けられた離型剤41Aは、図4に示すように、それぞれ発光素子50の外形に沿って設けた第1離型剤(第1離型剤部)41aと、この第1離型剤部41aに連続して封止樹脂60の端部の位置まで設けた第2離型剤(第2離型剤部)41bとして設けられている。そして、発光装置1Aでは、離型剤41Aが発光素子50の中心に対して点対称となる位置に設けられている。なお、離型剤41Aは、ここで示すように、配線部20上および間隙G内の両方に亘って線状に塗布されている。
Second Embodiment
The configuration of the light emitting device 1A according to the second embodiment will be described with reference to FIG. The light emitting device 1A is different from the above-described light emitting device 1 in the parting agent arrangement region 40A to which the parting agent 41A is applied. That is, the release agents 41A provided at two locations of the light emitting device 1A are, as shown in FIG. 4, first release agents (first release agent portions) 41a provided along the outer shape of the light emitting element 50, respectively. And a second release agent (second release agent part) 41b provided up to the position of the end of the sealing resin 60 continuously to the first release agent part 41a. In the light emitting device 1 </ b> A, the release agent 41 </ b> A is provided at a position that is point-symmetric with respect to the center of the light emitting element 50. Note that the release agent 41A is applied linearly over both the wiring portion 20 and the gap G as shown here.

本実施形態の第1離型剤部41aは、すでに形成されている空洞から膨張・移動する気泡を集めて第2離型剤配置領域40bへと導く第1離型剤配置領域40aを形成している。第1離型剤部41aは、より具体的には図4に示すように、発光素子50の1辺に沿って、当該1辺の位置における異方性導電部材30の下側の領域に線状に設けられている。そして、第1離型剤部41aは、一対の配線部20の一方の上側、間隙G内および一対の配線部20の他方の上側に亘って設けられている。第1離型剤部41aは、異方性導電部材30との間に線状に設けることで、その設けた第1離型剤部41aに沿って気泡が通過できる経路である第1離型剤配置領域40aを形成する。   The first release agent portion 41a of the present embodiment forms a first release agent placement region 40a that collects bubbles that expand and move from the already formed cavities and guides them to the second release agent placement region 40b. ing. More specifically, as shown in FIG. 4, the first release agent part 41 a extends along the one side of the light emitting element 50 in a region below the anisotropic conductive member 30 at the position of the one side. It is provided in the shape. The first release agent part 41 a is provided over one upper side of the pair of wiring parts 20, the gap G, and the other upper side of the pair of wiring parts 20. The first release agent portion 41a is a path through which bubbles can pass along the provided first release agent portion 41a by providing a linear shape between the first release agent portion 41a and the anisotropic conductive member 30. The agent arrangement region 40a is formed.

第2離型剤部41bは、第1離型剤配置領域40aによって集められた気泡を外部に排出する第2離型剤配置領域40bを形成している。第2離型剤部41bは、より具体的には図4に示すように、一対の配線部20の一方(他方)の上側に、異方性導電部材30の端部から封止樹脂60の端部まで線状に設けられている。第2離型剤部41bは、封止樹脂60との間に気泡が通過できる経路である第2離型剤配置領域40bを形成している。   The 2nd mold release agent part 41b forms the 2nd mold release agent arrangement | positioning area | region 40b which discharges | emits the bubble collected by the 1st mold release agent arrangement | positioning area | region 40a outside. More specifically, as shown in FIG. 4, the second release agent portion 41 b is formed on the upper side of one (the other) of the pair of wiring portions 20 from the end portion of the anisotropic conductive member 30. It is provided linearly to the end. The second release agent part 41 b forms a second release agent placement region 40 b that is a path through which bubbles can pass between the second release agent part 41 b and the sealing resin 60.

本実施形態の発光装置1Aを製造する場合、離型剤配置領域40Aは以下の工程を経ることで形成することができる。前記した発光装置1の製造方法における離型剤配置工程において、離型剤41Aは、少なくとも発光素子50が設置される部分に沿って第1離型剤部41aが設けられ、連続して封止樹脂60の端部に対応する部分まで第2離型剤部41bが設けられる。(第1、第2離型剤配置工程)。そして、異方性導電部材配置工程と封止樹脂形成工程とが行われ、第1離型剤部41aと異方性導電部材30との間に第1離型剤配置領域40aが形成されるとともに、第2離型剤部41bと封止樹脂60との間に第2離型剤配置領域40bが形成される。   When manufacturing 1 A of light-emitting devices of this embodiment, the mold release agent arrangement | positioning area | region 40A can be formed by passing through the following processes. In the release agent arranging step in the manufacturing method of the light emitting device 1 described above, the release agent 41A is provided with the first release agent portion 41a at least along the portion where the light emitting element 50 is installed, and is continuously sealed. The second release agent portion 41 b is provided up to the portion corresponding to the end portion of the resin 60. (1st, 2nd mold release agent arrangement | positioning process). And an anisotropic conductive member arrangement | positioning process and a sealing resin formation process are performed, and the 1st mold release agent arrangement | positioning area | region 40a is formed between the 1st mold release agent part 41a and the anisotropic conductive member 30. FIG. At the same time, a second release agent placement region 40b is formed between the second release agent portion 41b and the sealing resin 60.

以上のような構成を備える発光装置1Aは、前記した発光装置1と比較して、離型剤41Aを塗布する領域が広いので、異方性導電部材30との界面の位置にある空洞から熱により気泡が移動した場合に、異方性導電部材30に対面する界面に形成した離型剤配置領域40Aにより、その気泡を外部により確実に排出することができる。   Since the light emitting device 1A having the above-described configuration has a wider area to which the release agent 41A is applied than the above light emitting device 1, the light emitting device 1A is heated from the cavity at the interface with the anisotropic conductive member 30. When the bubbles move, the release agent placement region 40A formed at the interface facing the anisotropic conductive member 30 can reliably discharge the bubbles to the outside.

<第3実施形態>
第3実施形態に係る発光装置1Bの構成について、図5を参照しながら説明する。発光装置1Bは、前記した発光装置1とは離型剤41が塗布される領域が異なる。すなわち、発光装置1Bの離型剤41Bが、図5に示すように、異方性導電部材30の端部の位置から封止樹脂60の端部の位置までの配線部20上に線状に設けられている。そして、離型剤41Bと異方性導電部材30の間に気泡が通過できる離型剤配置領域40Bを形成する。したがって、異方性導電部材30と離型剤41Bとの界面等に空洞が存在した場合、動作時に熱により空洞内の気泡が移動するときに、気泡が通りやすい離型剤配置領域40Bから封止樹脂60の外部に排気することができる。このように、離型剤41Bは、配線部20上および間隙G内の少なくとも一方に塗布されていればよく、配線部20上のみに塗布されていても効果を奏する。
<Third Embodiment>
The configuration of the light emitting device 1B according to the third embodiment will be described with reference to FIG. The light emitting device 1B is different from the above light emitting device 1 in the area where the release agent 41 is applied. That is, the release agent 41B of the light emitting device 1B is linearly formed on the wiring portion 20 from the position of the end of the anisotropic conductive member 30 to the position of the end of the sealing resin 60 as shown in FIG. Is provided. And the mold release agent arrangement | positioning area | region 40B which a bubble can pass between the mold release agent 41B and the anisotropic conductive member 30 is formed. Therefore, when a cavity exists at the interface between the anisotropic conductive member 30 and the release agent 41B or the like, when the bubbles move in the cavity due to heat during operation, the bubbles are sealed from the release agent placement region 40B where the bubbles easily pass. It is possible to exhaust to the outside of the stop resin 60. As described above, the release agent 41 </ b> B only needs to be applied on the wiring part 20 and at least one of the gaps G, and even if it is applied only on the wiring part 20, there is an effect.

発光装置1Bを製造する場合、離型剤配置領域40Bは、前記した発光装置1の製造方法における離型剤配置工程において、異方性導電部材30が配置される外周部分に対応する位置から封止樹脂60の端部に対応する位置まで、一対の配線部20のいずれか一方の配線部20上に離型剤41Bを塗布することで形成することができる。なお、離型剤41Bの設ける長さを、想定される範囲よりもある程度長めに塗布することで、確実に離型剤配置領域40Bを形成することが可能となる。   When the light emitting device 1B is manufactured, the release agent placement region 40B is sealed from a position corresponding to the outer peripheral portion where the anisotropic conductive member 30 is placed in the release agent placement step in the method for manufacturing the light emitting device 1 described above. The release agent 41 </ b> B can be formed on one of the wiring portions 20 of the pair of wiring portions 20 up to a position corresponding to the end portion of the stop resin 60. In addition, it becomes possible to form the mold release agent arrangement | positioning area | region 40B reliably by apply | coating the length which the mold release agent 41B provides to some extent rather than the range assumed.

以上のような構成を備える発光装置1Bは、前記した発光装置1と比較して、より簡単な構成で異方性導電部材30と離型剤41Bとの界面等の空洞から熱により移動する気泡を外部に排出することができる。つまり、異方性導電部材30の界面となる位置に空洞があり気泡が移動する場合に界面に沿って移動する。そのため、その異方性導電部材30の界面に連続する離型剤配置領域40Bが形成されていることで、気泡が界面に沿って移動して通過し易い離型剤配置領域40Bから外部に排気されることになる。
なお、図5に示す発光装置1Bの離型剤配置領域40Bは、発光素子50の斜め下の方向に向かって設けられているが、異方性導電部材30の端部の位置から封止樹脂60の端部の位置までの配線部20上であれば、離型剤配置領域40Bはどこに設けても構わない。また、離型剤配置領域40Bは、一対の配線部20の一方の上側のみに設けられているが、一対の配線部20の一方および他方の上側にそれぞれ設けても構わない。このように離型剤配置領域40Bを2カ所に設けることで、異方性導電部材30と離型剤41Bとの界面等の空洞の排出効果がより向上する。
The light-emitting device 1B having the above-described configuration is a bubble that moves by heat from a cavity such as the interface between the anisotropic conductive member 30 and the release agent 41B with a simpler configuration than the light-emitting device 1 described above. Can be discharged to the outside. That is, when there is a cavity at a position that becomes the interface of the anisotropic conductive member 30 and bubbles move, the bubbles move along the interface. For this reason, the continuous release agent placement region 40B is formed at the interface of the anisotropic conductive member 30, so that the bubbles are exhausted to the outside from the release agent placement region 40B where the bubbles easily move and pass along the interface. Will be.
Note that the release agent placement region 40B of the light-emitting device 1B shown in FIG. 5 is provided in a direction obliquely below the light-emitting element 50, but the sealing resin starts from the position of the end of the anisotropic conductive member 30. The release agent placement region 40B may be provided anywhere as long as it is on the wiring portion 20 up to the position of the end portion of 60. In addition, the release agent placement region 40B is provided only on one upper side of the pair of wiring parts 20, but may be provided on one side and the other upper side of the pair of wiring parts 20, respectively. By providing the release agent arrangement regions 40B in two places in this way, the effect of discharging cavities such as the interface between the anisotropic conductive member 30 and the release agent 41B is further improved.

<第4実施形態>
[発光装置の構成]
第4実施形態に係る発光装置1Cの構成について、図6を参照しながら説明する。発光装置1Cは、図6に示すように、前記した発光装置1の構成(図1A参照)に加え、反射材料層(反射部材)70を備えている。なお、図示は省略したが、発光装置1Cにおいて離型剤41が塗布される領域は、反射材料層70を介して、図2、図4および図5で示された離型剤配置領域40,40A,40Bのいずれでも構わない。
<Fourth embodiment>
[Configuration of light emitting device]
The configuration of the light emitting device 1C according to the fourth embodiment will be described with reference to FIG. As shown in FIG. 6, the light emitting device 1 </ b> C includes a reflective material layer (reflective member) 70 in addition to the configuration of the light emitting device 1 described above (see FIG. 1A). Although not shown, the region where the release agent 41 is applied in the light emitting device 1C is the release agent placement region 40, shown in FIG. 2, FIG. 4 and FIG. Either 40A or 40B may be used.

反射材料層70は、発光素子50からの光を反射するためのものである。この反射材料層70は、図6に示すように、発光素子50を接合する接合領域J以外の配線部20上および基板10上に設けられている。なお、反射材料層70の詳細については後記する製造方法の説明において行う。   The reflective material layer 70 is for reflecting light from the light emitting element 50. As shown in FIG. 6, the reflective material layer 70 is provided on the wiring portion 20 and the substrate 10 other than the bonding region J to which the light emitting element 50 is bonded. The details of the reflective material layer 70 will be described later in the description of the manufacturing method.

反射材料層70の反射材料としては、エポキシ樹脂、シリコーン樹脂、変性シリコーン、ウレタン樹脂、オキセタン樹脂、フッ素樹脂、アクリル、ポリカーボネイト、ポリイミド、ポリフタルアミド等にTiO2,ZrO2,Al23,SiO2等の反射材を含有させたものを用いることができる。また、反射材料層70の厚さは特に限定されず、目的および用途に応じて任意の厚さで形成することができる。発光装置1Cは、このような反射材料層70を備えることで、発光素子50から出射された光を反射することができ、光出力を向上させることができる。 Examples of the reflective material of the reflective material layer 70 include epoxy resin, silicone resin, modified silicone, urethane resin, oxetane resin, fluororesin, acrylic, polycarbonate, polyimide, polyphthalamide, etc., TiO 2 , ZrO 2 , Al 2 O 3 , A material containing a reflective material such as SiO 2 can be used. Further, the thickness of the reflective material layer 70 is not particularly limited, and can be formed with any thickness depending on the purpose and application. By providing such a reflective material layer 70, the light emitting device 1C can reflect the light emitted from the light emitting element 50, and can improve the light output.

[発光装置の製造方法]
以下、第4実施形態に係る発光装置1Cの製造方法について、図7A〜図7Fを参照しながら説明する。発光装置1Cの製造方法は、基板準備工程(図7A)と、反射材料層形成工程(図7B)と、離型剤配置工程(図7C)と、異方性導電部材配置工程(図7D)と、発光素子接合工程(図7E)と、封止樹脂形成工程(図7F)と、を行う。なお、発光装置1Cの製造方法は、反射材料層形成工程以外は前記した発光装置1の製造方法(図3参照)と同様であるため、以下では反射材料層形成工程を主に説明する。
[Method for Manufacturing Light Emitting Device]
Hereinafter, a method for manufacturing the light emitting device 1 </ b> C according to the fourth embodiment will be described with reference to FIGS. 7A to 7F. The manufacturing method of the light emitting device 1C includes a substrate preparation step (FIG. 7A), a reflective material layer formation step (FIG. 7B), a release agent placement step (FIG. 7C), and an anisotropic conductive member placement step (FIG. 7D). Then, a light emitting element bonding step (FIG. 7E) and a sealing resin forming step (FIG. 7F) are performed. Since the manufacturing method of the light emitting device 1C is the same as the manufacturing method of the light emitting device 1 described above (see FIG. 3) except for the reflective material layer forming step, the reflective material layer forming step will be mainly described below.

反射材料層形成工程は、図7Bに示すように、基板10を準備する基板準備工程に含まれ、光を反射する反射材料層70を、発光素子50を接合する接合領域J以外の配線部20上および基板10上に設ける。すなわち、基板10上に配線部20を形成(図7A参照)した後、反射材料層形成工程では予め定めた発光素子50の接合領域Jをマスクしながら反射材料を塗布し、図7Bに示すような反射材料層70を設ける。ここで、反射材料層形成工程では、接合領域Jにマスクをして、例えば、印刷法、塗布、スプレー法等により反射材料を設けることができる。   As shown in FIG. 7B, the reflective material layer forming step is included in the substrate preparing step for preparing the substrate 10, and the reflective material layer 70 that reflects light is connected to the wiring portion 20 other than the bonding region J to which the light emitting element 50 is bonded. It is provided on the top and the substrate 10. That is, after the wiring portion 20 is formed on the substrate 10 (see FIG. 7A), the reflective material is applied while masking the predetermined junction region J of the light emitting element 50 in the reflective material layer forming step, as shown in FIG. 7B. A reflective material layer 70 is provided. Here, in the reflective material layer forming step, the reflective material can be provided by, for example, a printing method, a coating method, a spray method, or the like, with the bonding region J being masked.

そして、このように反射材料層形成工程で反射材料層70を設けてマスクを除去した後、図7Cに示すように、離型剤配置工程において、反射材料層70上と接合領域Jの間隙G上とに亘って離型剤41(図6参照)を線状に塗布して設ける。ここで、発光装置1Cについても、前記した発光装置1と同様に間隙Gに沿って離型剤41を線状に形成するが、離型剤41の下側が間隙G上および反射材料層70上になる。すなわち、発光装置1Cでは、間隙G上における反射材料層70が設けられた領域では、反射材料層70と異方性導電部材30または封止樹脂60との間に、離型剤配置領域40が形成され、間隙G上における反射材料層70が設けられていない領域(接合領域J)では、間隙G上(間隙G内)と異方性導電部材30の間に離型剤配置領域40が形成される。   Then, after the reflective material layer 70 is provided in the reflective material layer forming step and the mask is removed, as shown in FIG. 7C, the gap G between the reflective material layer 70 and the bonding region J is formed in the release agent arranging step. A release agent 41 (see FIG. 6) is applied linearly over the top. Here, also in the light emitting device 1C, the release agent 41 is linearly formed along the gap G in the same manner as the light emitting device 1 described above, but the lower side of the release agent 41 is on the gap G and on the reflective material layer 70. become. That is, in the light emitting device 1 </ b> C, in the region where the reflective material layer 70 is provided on the gap G, the release agent placement region 40 is provided between the reflective material layer 70 and the anisotropic conductive member 30 or the sealing resin 60. In a region where the reflective material layer 70 is not provided on the gap G (bonding region J), a release agent arrangement region 40 is formed between the gap G (inside the gap G) and the anisotropic conductive member 30. Is done.

そして、異方性導電部材配置工程(図7D)と、発光素子接合工程(図7E)と、封止樹脂形成工程(図7F)とを経て、発光装置1Cを製造する。このような工程を行う発光装置1Cの製造方法によれば、異方性導電部材30内に気泡による空洞が仮に存在しても駆動時に熱によりその空洞内の気泡が移動した場合に異方性導電部材30との界面に沿って移動する。したがって、異方性導電部材30の界面に沿った位置に形成された離型剤配置領域40を介して気泡を除去することができ、発光素子50の接合領域J以外に反射材料層70を形成することで、光出力が向上した発光装置1Cを提供することができる。   Then, the light emitting device 1C is manufactured through an anisotropic conductive member arranging step (FIG. 7D), a light emitting element bonding step (FIG. 7E), and a sealing resin forming step (FIG. 7F). According to the method for manufacturing the light emitting device 1C performing such a process, even if a cavity due to bubbles exists in the anisotropic conductive member 30, anisotropy occurs when the bubbles in the cavity move due to heat during driving. It moves along the interface with the conductive member 30. Therefore, bubbles can be removed through the release agent arrangement region 40 formed at a position along the interface of the anisotropic conductive member 30, and the reflective material layer 70 is formed in addition to the bonding region J of the light emitting element 50. By doing so, it is possible to provide the light emitting device 1C with improved light output.

以上、実施形態に係る発光装置およびその製造方法について、具体的な構成を例示して説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、特許請求の範囲の記載に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることはいうまでもない。   The light-emitting device and the manufacturing method thereof according to the embodiments have been described with specific configurations as examples. However, the gist of the present invention is not limited to these descriptions, and is based on the descriptions in the claims. Must be interpreted widely. Needless to say, various changes and modifications based on these descriptions are also included in the spirit of the present invention.

例えば前記した発光装置1〜1Cは、図1Aおよび図6に示すように、基体11の一方の面に接着層12を介して配線部20が接着され、基板10および配線部20の構成が合計3層で構成されていたが、これに加えて、基体11の他方の面に別の接着層等を介して金属層を設け、合計5層で構成しても構わない。なお、前記した「基体11の他方の面」とは、基体11における発光素子50側が搭載される側の面と反対の面のことを意味している。   For example, in the above-described light emitting devices 1 to 1C, as shown in FIGS. 1A and 6, the wiring portion 20 is bonded to one surface of the base 11 via the adhesive layer 12, and the configuration of the substrate 10 and the wiring portion 20 is total. In addition to this, in addition to this, a metal layer may be provided on the other surface of the substrate 11 via another adhesive layer or the like, and a total of five layers may be formed. The above-mentioned “the other surface of the substrate 11” means a surface opposite to the surface on which the light emitting element 50 side of the substrate 11 is mounted.

この場合、最下層に設けられる金属層は基体の一部として基板10の機械的強度および放熱性を向上させるためのものであり、例えばアルミニウムおよびその合金等を用いることができる。また、基体11と金属層とを接着する接着層は、前記した接着層12と同様に、例えばウレタン樹脂、エポキシ樹脂等を用いることができる。   In this case, the metal layer provided in the lowermost layer is for improving the mechanical strength and heat dissipation of the substrate 10 as a part of the base, and for example, aluminum and its alloy can be used. Further, as the adhesive layer for adhering the substrate 11 and the metal layer, for example, a urethane resin, an epoxy resin, or the like can be used similarly to the adhesive layer 12 described above.

さらに、発光装置1,1Aは、図2に示すように、離型剤41により離型剤配置領域40が封止樹脂60の半径の長さの位置までに亘る間隙G内に設けられていたが、離型剤配置領域40の形成範囲はこれに限定されない。   Further, as shown in FIG. 2, in the light emitting devices 1 and 1 </ b> A, the release agent placement region 40 is provided in the gap G extending to the position of the length of the radius of the sealing resin 60 by the release agent 41. However, the formation range of the release agent placement region 40 is not limited to this.

例えば、離型剤配置領域40は、封止樹脂60の直径の長さの位置までに亘る間隙G内に離型剤41を設けても構わない。なお、離型剤41は、封止樹脂60の一方の端部を越える位置から他方の端部を越える位置までの間隙G内に設けられていてもよい。また、封止樹脂60の直径を越えるように離型剤41を設ける場合、発光装置が反射材料層70(図6参照)を備えるときには、間隙Gの位置となる反射材料層70上と接合領域J上とに亘って設ければよい。   For example, the release agent placement region 40 may be provided with the release agent 41 in the gap G extending to the position of the length of the diameter of the sealing resin 60. The release agent 41 may be provided in the gap G from a position exceeding one end of the sealing resin 60 to a position exceeding the other end. Further, when the release agent 41 is provided so as to exceed the diameter of the sealing resin 60, when the light emitting device includes the reflective material layer 70 (see FIG. 6), the surface of the reflective material layer 70 where the gap G is located and the bonding region. What is necessary is just to provide over J.

このように、封止樹脂60の直径の長さを越えて離型剤41を設けることで、気泡による空洞が発生しやすい界面となる発光素子50の下方で異方性導電部材30の下側を縦断するように離型剤配置領域40を形成できる。そのため、発光装置では、異方性導電部材30で空洞から移動する気泡と離型剤配置領域40との接触する面積が増えるとともに、封止樹脂60の一方の端部の位置と他方の端部の位置とに気泡の排出口が2箇所形成されることになるため、気泡がより外部に排出されやすくなる。   Thus, by providing the release agent 41 beyond the length of the diameter of the sealing resin 60, the lower side of the anisotropic conductive member 30 below the light emitting element 50, which becomes an interface where cavities due to bubbles tend to occur. The mold release agent arrangement region 40 can be formed so as to be longitudinally cut. Therefore, in the light emitting device, the area of contact between the release agent placement region 40 and the bubbles moving from the cavity in the anisotropic conductive member 30 increases, and the position of one end and the other end of the sealing resin 60 are increased. Since two bubble outlets are formed at the position, the bubbles are more easily discharged to the outside.

また、離型剤配置領域40は、異方性導電部材30の端部の位置から封止樹脂60の端部の位置までの間隙G内に設けられていてもよい。この場合、発光装置を製造する際の離型剤配置工程は、異方性導電部材配置工程の後に行われても構わない。離型剤配置領域40は、図2に示す発光装置1よりも短い範囲であっても、少なくとも異方性導電部材30の端部から封止樹脂60の端部までの範囲に離型剤配置領域40が形成されていれば、異方性導電部材30の界面に形成されやすい空洞から移動する気泡に逃げ道を与え外部に排出することが容易となる。   Further, the release agent arrangement region 40 may be provided in the gap G from the position of the end portion of the anisotropic conductive member 30 to the position of the end portion of the sealing resin 60. In this case, the releasing agent arranging step in manufacturing the light emitting device may be performed after the anisotropic conductive member arranging step. Even if the release agent placement region 40 is shorter than the light emitting device 1 shown in FIG. 2, the release agent placement region is at least in the range from the end of the anisotropic conductive member 30 to the end of the sealing resin 60. If the region 40 is formed, it becomes easy to provide an escape path to the bubbles moving from the cavity that is likely to be formed at the interface of the anisotropic conductive member 30 and to discharge the bubbles to the outside.

また、発光装置1は、図2に示すように、離型剤41が発光素子50の直下の位置から封止樹脂60の端部の位置までの間隙G内に設けられているが、例えば離型剤41が発光素子50の直下の位置から間隙G内に設けられるとともに、封止樹脂60の外側まで延長して設けられていても構わない。そして、発光装置1Bは、図5に示すように、離型剤41Bにより形成された離型剤配置領域40Bが異方性導電部材30の端部の位置から封止樹脂60の端部の位置までの配線部20上に設けられていたが、例えば離型剤41Bが平面視で異方性導電部材30の下面に対向する位置から封止樹脂60の端部に亘って配線部20上に設けられていても構わない。   In the light emitting device 1, as shown in FIG. 2, the release agent 41 is provided in the gap G from the position immediately below the light emitting element 50 to the end position of the sealing resin 60. The mold material 41 may be provided in the gap G from a position immediately below the light emitting element 50 and extended to the outside of the sealing resin 60. As shown in FIG. 5, in the light emitting device 1 </ b> B, the release agent placement region 40 </ b> B formed by the release agent 41 </ b> B is positioned from the end position of the anisotropic conductive member 30 to the end position of the sealing resin 60. The release agent 41B is, for example, on the wiring unit 20 from the position facing the lower surface of the anisotropic conductive member 30 in plan view to the end of the sealing resin 60. It may be provided.

さらに、発光装置1〜1Cは、図2、図4および図5に示すように、一枚の基板10に対して一つの発光素子50が配置されるとともに、配線部20が円形状の領域と、当該円形状の領域から基板10の左右の端部にそれぞれ伸びる線状の領域とから構成されていたが、基板10および配線部20の構成はこれに限定されない。   Furthermore, as shown in FIGS. 2, 4, and 5, the light emitting devices 1 to 1 </ b> C are configured such that one light emitting element 50 is disposed on one substrate 10 and the wiring portion 20 is a circular region. The linear regions extending from the circular region to the left and right ends of the substrate 10 are configured, but the configurations of the substrate 10 and the wiring unit 20 are not limited thereto.

例えば、図8A〜図8Cに示すように、一枚の長尺状の基板10A上に、一対の配線部20Aが複数形成され、それぞれの配線部20Aに発光素子50が接合された構成でも構わない。この場合、発光装置1Dの基板10Aは、可撓性を有し、屈曲および変形が可能なフレキシブル基板であり、例えばポリエチレンテレフタレート(PET)またはポリイミド(PI)で構成されている。図8Aに示すように、この基板10A上には配線部20Aが設けられている。   For example, as shown in FIGS. 8A to 8C, a plurality of pairs of wiring parts 20A may be formed on a single long substrate 10A, and the light emitting element 50 may be joined to each of the wiring parts 20A. Absent. In this case, the substrate 10A of the light emitting device 1D is a flexible substrate that is flexible and can be bent and deformed, and is made of, for example, polyethylene terephthalate (PET) or polyimide (PI). As shown in FIG. 8A, a wiring portion 20A is provided on the substrate 10A.

発光装置1Dの配線部20Aは、反射率を高めるために、例えばアルミニウムで構成されており、発光素子50が接合される一対の配線部20Aのうちの一方または他方が、隣接する発光素子50が接合される一対の配線部20Aの他方または一方を兼ねるように構成されている。すなわち、発光装置1Dは、図8Aに示すように、中央の発光素子50bを接合する一方の配線部20Abが、図上において左側に隣接する発光素子50aが接合される他方の配線部20Abとなるように構成されている。また同様に、発光装置1Dは、中央の発光素子50bを接合する他方の配線部20Acが、図上において右側に隣接する発光素子50cが接合される一方の配線部20Acとなるように構成されている。なお、図8Aにおける符号20Ab,20Acおよび符号50a,50b,50cは、配線部20Aおよび発光素子50の位置を区別するために便宜的に使用したものであり、構成はそれぞれ同一である。   The wiring portion 20A of the light emitting device 1D is made of, for example, aluminum in order to increase the reflectance, and one or the other of the pair of wiring portions 20A to which the light emitting element 50 is bonded is adjacent to the light emitting element 50. It is comprised so that it may serve as the other or one of a pair of wiring part 20A joined. That is, in the light emitting device 1D, as shown in FIG. 8A, one wiring part 20Ab that joins the central light emitting element 50b becomes the other wiring part 20Ab that joins the light emitting element 50a adjacent to the left side in the drawing. It is configured as follows. Similarly, the light emitting device 1D is configured such that the other wiring part 20Ac that joins the central light emitting element 50b becomes one wiring part 20Ac that joins the light emitting element 50c adjacent to the right side in the drawing. Yes. Note that reference numerals 20Ab and 20Ac and reference numerals 50a, 50b, and 50c in FIG. 8A are used for convenience to distinguish the positions of the wiring portion 20A and the light emitting element 50, and have the same configuration.

このような構成を備える発光装置1Dであっても、前記した発光装置1〜1Cと同様に、異方性導電部材30から封止樹脂60の外まで離型剤配置領域40〜40Cを形成することで、異方性導電部材30とその他の部材との界面等に仮に空洞があり、その空洞の気泡が熱により膨張・移動したときに、部材間の界面に沿って移動する気泡を外部に排出することができる。なお、発光装置1Dは、図8A〜図8Cに示すように、基板10A上に配線部20のみが設けられているが、前記した発光装置1C(図6参照)のように、さらに反射材料層70を設けた構成であっても構わない。この場合、発光装置1Dの配線部20Aは、例えば銅で構成される。   Even in the light emitting device 1 </ b> D having such a configuration, the release agent placement regions 40 to 40 </ b> C are formed from the anisotropic conductive member 30 to the outside of the sealing resin 60 similarly to the light emitting devices 1 to 1 </ b> C described above. Thus, if there is a cavity at the interface between the anisotropic conductive member 30 and the other member, and the bubbles in the cavity expand and move due to heat, the bubbles that move along the interface between the members are exposed to the outside. Can be discharged. As shown in FIGS. 8A to 8C, the light emitting device 1D is provided with only the wiring portion 20 on the substrate 10A. However, like the light emitting device 1C (see FIG. 6), a reflective material layer is further provided. 70 may be provided. In this case, the wiring part 20A of the light emitting device 1D is made of, for example, copper.

なお、図5に示す発光装置1Bでは、異方性導電部材30の端部から封止樹脂60の端部まで設けた離型剤41Bによる離型剤配置領域40Bを2か所、3か所、4か所等、複数等間隔に設ける構成としても構わない。なお、複数の離型剤41Bを設ける場合には、異方性導電部材30の外周に沿った所定長さの離型剤(図2の第1離型剤部と同様の働き)部分を設けることでより気泡の排出能力が向上する。また、図4に示す発光装置1Aでは、発光素子50の上側と下側にそれぞれ2つずつ、一対で離型剤配置領域40Aが設けられているが、どちらか一方でも構わない。   In the light emitting device 1B shown in FIG. 5, two or three release agent placement regions 40B are provided by the release agent 41B provided from the end of the anisotropic conductive member 30 to the end of the sealing resin 60. A configuration may be adopted in which four or the like are provided at equal intervals. In addition, when providing the some release agent 41B, the part of the release agent (function similar to the 1st release agent part of FIG. 2) of predetermined length along the outer periphery of the anisotropic conductive member 30 is provided. As a result, the ability to discharge bubbles is improved. Further, in the light emitting device 1A shown in FIG. 4, two release agent placement regions 40A are provided in pairs, two on each of the upper side and the lower side of the light emitting element 50, but either one may be used.

さらに、図4の発光装置1Aの製造方法における離型剤配置工程において、第1離型剤部41aと第2離型剤部41bとを別々のタイミングで設けても構わない。すなわち、離型剤配置工程において、発光素子50が設置される部分に沿って第1離型剤部41aを形成する(第1離型剤配置工程)。そして、異方性導電部材配置工程と封止樹脂形成工程との間に、第1離型剤部41aに連続して封止樹脂60の端部に対応する位置まで第2離型剤部41b設ける(第2離型剤配置工程)こととしても構わない。なお、離型剤41,41A〜41Cは、封止樹脂60の端部を越える位置まで延長して設けてもよく、設けられる幅や、形状(直線状)は特に限定されない。つまり、離型剤41,41A〜41Cは、異方性導電部材30のような粘性部材を介して発光素子50を設ける場合に、その粘性部材に発生する空洞から熱により部材間の界面を移動する気泡を排出することができる状態であれば、設けられる幅や形状や長さは限定されるものではない。   Furthermore, in the release agent arranging step in the method for manufacturing the light emitting device 1A of FIG. 4, the first release agent portion 41a and the second release agent portion 41b may be provided at different timings. That is, in the release agent arranging step, the first release agent portion 41a is formed along the portion where the light emitting element 50 is installed (first release agent arranging step). And between the anisotropic conductive member arrangement | positioning process and sealing resin formation process, it continues to the 1st mold release agent part 41a and the 2nd mold release agent part 41b to the position corresponding to the edge part of the sealing resin 60. It may be provided (second release agent arranging step). Note that the release agents 41, 41A to 41C may be provided so as to extend beyond the end of the sealing resin 60, and the width and shape (linear shape) provided are not particularly limited. That is, when the light emitting element 50 is provided via a viscous member such as the anisotropic conductive member 30, the release agents 41 and 41 </ b> A to 41 </ b> C move the interface between the members by heat from the cavity generated in the viscous member. The width, shape, and length provided are not limited as long as the bubbles to be discharged can be discharged.

また、前記した異方性導電部材30は、前記したように、透光性を有する熱硬化性樹脂または光反射材を主成分とすることにより、より好ましくは熱硬化性樹脂を主成分とすることにより、当該異方性導電部材による光の吸収を最大限に防止することができる。また、このような透光性の熱硬化性樹脂中に、光反射材が半田よりも多く、かつ均一に分散しているために、半田による光の吸収を最小限に止めるのみならず、配線間の基体11への光照射を最小限に止めることができ、基板10の劣化を回避することができる。さらに、発光素子50から出射した光が直接異方性導電部材30に当たり反射される以外の光、つまり、周辺部材からの反射・散乱光が当該異方性導電部材30に再度入射した場合でも、効率よく光を反射させることができる。   Further, as described above, the anisotropic conductive member 30 described above has a light-transmitting thermosetting resin or light reflecting material as a main component, and more preferably a thermosetting resin as a main component. Thus, light absorption by the anisotropic conductive member can be prevented to the maximum. Moreover, in such a light-transmitting thermosetting resin, since the light reflecting material is more uniformly distributed than the solder, not only the light absorption by the solder is minimized, but also the wiring. In the meantime, light irradiation to the base 11 can be minimized, and deterioration of the substrate 10 can be avoided. Furthermore, even when light emitted from the light emitting element 50 is not directly reflected by the anisotropic conductive member 30 and reflected, that is, when reflected / scattered light from the peripheral member enters the anisotropic conductive member 30 again, Light can be reflected efficiently.

異方性導電部材30は、例えば、熱硬化性樹脂が25〜85重量部、半田が5〜30重量部及び光反射材が10〜70重量部含有されていることが好ましく、熱硬化性樹脂が35〜85重量部、半田が5〜30重量部及び光反射材が10〜40重量部含有されることがより好ましい。   The anisotropic conductive member 30 preferably contains, for example, 25 to 85 parts by weight of a thermosetting resin, 5 to 30 parts by weight of solder, and 10 to 70 parts by weight of a light reflecting material. It is more preferable that 35 to 85 parts by weight, 5 to 30 parts by weight of solder, and 10 to 40 parts by weight of light reflecting material are contained.

1,1A,1B,1C,1D 発光装置
10,10A 基板
11 基体(樹脂層)
12 接着層
20,20A,20Ab,20Ac 配線部
30 異方性導電部材
31 透光性樹脂
32 導電粒子
40,40A,40B,40C 離型剤配置領域
40a 第1離型剤配置領域
40b 第2離型剤配置領域
41,41A,41B,41C 離型剤
41a 第1離型剤部(第1離型剤)
41b 第2離型剤部(第2離型剤)
50,50a,50b,50c 発光素子
51 電極
60 封止樹脂
70 反射材料層
G 間隙
J 接合領域
1, 1A, 1B, 1C, 1D Light emitting device 10, 10A Substrate 11 Base (resin layer)
12 Adhesive layer 20, 20A, 20Ab, 20Ac Wiring part 30 Anisotropic conductive member 31 Translucent resin 32 Conductive particles 40, 40A, 40B, 40C Release agent placement region 40a First release agent placement region 40b Second release Mold release regions 41, 41A, 41B, 41C Release agent 41a First release agent part (first release agent)
41b Second release agent part (second release agent)
50, 50a, 50b, 50c Light-emitting element 51 Electrode 60 Sealing resin 70 Reflective material layer G Gap J Bonding region

Claims (10)

基体上に離間して配置された少なくとも一対の配線部を有する基板と、
異方性導電部材を介して、前記一対の配線部上に接合された発光素子と、
前記発光素子を封止する封止樹脂と、を備え、
前記配線部上および前記一対の配線部が離間した間隙内の少なくとも一方に設けられた離型剤を有し、
前記離型剤は、前記封止樹脂の下方に対向して配置され平面視で前記異方性導電部材の下面に対向する位置から前記封止樹脂の端部に亘って前記配線部上に設けられている発光装置。
A substrate having at least a pair of wiring portions disposed apart from each other on the substrate;
A light-emitting element bonded onto the pair of wiring parts via an anisotropic conductive member;
A sealing resin for sealing the light emitting element ,
Have a release agent disposed on at least one of the gap the upper wiring portions and the pair of the wiring portions are separated from each other,
The release agent is arranged to face the lower side of the sealing resin, and on the wiring part from the position facing the lower surface of the anisotropic conductive member in a plan view to the end of the sealing resin. A light emitting device provided .
基体上に離間して配置された少なくとも一対の配線部を有する基板と、
異方性導電部材を介して、前記一対の配線部上に接合された発光素子と、
前記発光素子を封止する封止樹脂と、を備え、
前記配線部上および前記一対の配線部が離間した間隙内の少なくとも一方に設けられた離型剤を有し、
前記離型剤は、前記封止樹脂の下方に対向して配置され、平面視で前記異方性導電部材の下面に対向する位置において前記発光素子の直下の位置から前記封止樹脂の端部の位置までの前記間隙内に設けられている発光装置。
A substrate having at least a pair of wiring portions disposed apart from each other on the substrate;
A light-emitting element bonded onto the pair of wiring parts via an anisotropic conductive member;
A sealing resin for sealing the light emitting element,
A release agent provided on at least one of the wiring part and a gap between the pair of wiring parts,
The release agent is arranged to face the lower side of the sealing resin, and from the position directly below the light emitting element at the position facing the lower surface of the anisotropic conductive member in plan view, the end of the sealing resin light emission device provided in the gap of the position to the.
平面視において、前記封止樹脂は、円形であり、前記発光素子は前記封止樹脂の中心部に設けられており、前記間隙は、前記封止樹脂の直径に対応する位置に設けられ、前記離型剤は、前記発光素子の直下の位置から前記間隙内に設けられるとともに、前記封止樹脂の外側まで延長して設けられている請求項2に記載の発光装置。 In plan view, the sealing resin is circular, the light emitting element is provided at a central portion of the sealing resin, and the gap is provided at a position corresponding to the diameter of the sealing resin, The light-emitting device according to claim 2 , wherein the release agent is provided in the gap from a position immediately below the light-emitting element and extended to the outside of the sealing resin. 前記離型剤は、平面視において前記発光素子の外形に沿う第1離型剤部と、この第1離型剤部に連続し、前記封止樹脂の端部に延長する第2離型剤部と、を有する請求項1から請求項3のいずれか一項に記載の発光装置。 The release agent includes a first release agent portion that follows the outer shape of the light emitting element in a plan view, and a second release agent that is continuous with the first release agent portion and extends to an end portion of the sealing resin. the light emitting device as claimed in any one of claims 3 having a section, a. 記発光素子から出射された光を反射する反射材料層が、前記発光素子と接合される接合領域以外の前記配線部上および前記基体上に設けられ
接合領域以外における前記離型剤は、前記反射材料層上に設けられている請求項1から請求項4のいずれか一項に記載の発光装置。
Before SL reflective material layer for reflecting light emitted from the light emitting element is provided on the on the wiring portion other than the junction area is joined with the light-emitting element and the substrate,
The releasing agent in the non-pre-Symbol junction region, the light emitting device according to any one of claims 1 to 4 is provided on the reflective material layer.
基体上に少なくとも一対の配線部が離間して設けられた基板を準備する基板準備工程と、
前記基板上に異方性導電部材を配置する異方性導電部材配置工程と、
前記異方性導電部材を介して、発光素子を前記一対の配線部上に接合する発光素子接合工程と、
前記発光素子接合工程の後に、前記異方性導電部材および前記発光素子を封止樹脂で被覆する封止樹脂形成工程と、を含み、
前記異方性導電部材配置工程の前に、平面視で前記異方性導電部材の下面に対向する位置に、離型剤を少なくとも線状に配置する離型剤配置工程をさらに含み、
前記離型剤配置工程において、離型剤を、平面視で前記異方性導電部材の下面から前記封止樹脂の端部に亘って設ける発光装置の製造方法。
A substrate preparation step of preparing a substrate in which at least a pair of wiring portions are provided apart from each other on a base;
An anisotropic conductive member arrangement step of arranging an anisotropic conductive member on the substrate;
A light emitting element bonding step of bonding a light emitting element on the pair of wiring portions via the anisotropic conductive member;
A sealing resin forming step of covering the anisotropic conductive member and the light emitting element with a sealing resin after the light emitting element bonding step ;
Before the anisotropic conductive member arranging step, at a position opposed to the lower surface of the anisotropic conductive member in a plan view, further seen containing a release agent disposing step of disposing the mold release agent to at least a linear,
The method for manufacturing a light emitting device, wherein in the releasing agent arranging step, the releasing agent is provided from the lower surface of the anisotropic conductive member to the end portion of the sealing resin in a plan view .
基体上に少なくとも一対の配線部が離間して設けられた基板を準備する基板準備工程と、
前記基板上に異方性導電部材を配置する異方性導電部材配置工程と、
前記異方性導電部材を介して、発光素子を前記一対の配線部上に接合する発光素子接合工程と、
前記発光素子接合工程の後に、前記異方性導電部材および前記発光素子を封止樹脂で被覆する封止樹脂形成工程と、を含み、
前記異方性導電部材配置工程の前に、平面視で前記異方性導電部材の下面に対向する位置に、離型剤を少なくとも線状に配置する離型剤配置工程をさらに含み、
前記離型剤配置工程において、前記異方性導電部材の端部の位置から前記封止樹脂の端部の位置までの前記配線部上に前記離型剤を配置する発光装置の製造方法。
A substrate preparation step of preparing a substrate in which at least a pair of wiring portions are provided apart from each other on a base;
An anisotropic conductive member arrangement step of arranging an anisotropic conductive member on the substrate;
A light emitting element bonding step of bonding a light emitting element on the pair of wiring portions via the anisotropic conductive member;
A sealing resin forming step of covering the anisotropic conductive member and the light emitting element with a sealing resin after the light emitting element bonding step;
Before the anisotropic conductive member placement step, further includes a release agent placement step of placing the release agent at least linearly at a position facing the lower surface of the anisotropic conductive member in plan view,
In the release agent disposing step, the production method of the anisotropic conductive member end the releasing agent you place a light emission device on the wiring part to the position of the end portion of the sealing resin from the position of .
前記離型剤配置工程は、前記発光素子の直下の位置から前記封止樹脂の端部の位置まで、前記配線部が離間した間隙内に前記離型剤を配置する請求項6または請求項7に記載の発光装置の製造方法。 The releasing agent disposing step, from the position directly below the light emitting element to the position of the end portion of the sealing resin, according to claim 6 or claim 7 placing the releasing agent in the gap to the wiring portion spaced A method for manufacturing the light emitting device according to claim 1. 平面視において、前記封止樹脂は円形であり、前記発光素子は前記封止樹脂の中心部に設けられ、前記間隙は、前記封止樹脂の直径に対応する位置で前記封止樹脂の外側まで延長して設けられ、
前記離型剤配置工程において、前記離型剤は前記封止樹脂の外側まで延長されるように前記間隙内に配置される請求項8に記載の発光装置の製造方法。
In plan view, the sealing resin is circular, the light emitting element is provided at the center of the sealing resin, and the gap extends to the outside of the sealing resin at a position corresponding to the diameter of the sealing resin. Extended,
The method for manufacturing a light emitting device according to claim 8 , wherein in the releasing agent arranging step, the releasing agent is arranged in the gap so as to extend to the outside of the sealing resin.
前記基板準備工程において、前記基板は、さらに前記発光素子を接合する接合領域以外の前記配線部上および前記基体上に設けられ、前記発光素子の光を反射する反射材料層を備え、
前記離型剤配置工程において、前記反射材料層上と前記接合領域の間とに亘って前記離型剤を線状に配置する請求項6から請求項9のいずれか一項に記載の発光装置の製造方法。
In the substrate preparing step, the substrate is provided further the on the wiring portion other than the bonding region for bonding the light emitting element and the substrate, a reflective material layer which reflects light before Symbol emitting element,
The light emitting device according to any one of claims 6 to 9 , wherein, in the releasing agent arranging step, the releasing agent is arranged linearly over the reflective material layer and between the bonding regions. Manufacturing method.
JP2014202563A 2014-09-30 2014-09-30 Light emitting device and manufacturing method thereof Active JP6398554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014202563A JP6398554B2 (en) 2014-09-30 2014-09-30 Light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014202563A JP6398554B2 (en) 2014-09-30 2014-09-30 Light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016072524A JP2016072524A (en) 2016-05-09
JP6398554B2 true JP6398554B2 (en) 2018-10-03

Family

ID=55867302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014202563A Active JP6398554B2 (en) 2014-09-30 2014-09-30 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6398554B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108054266B (en) * 2017-12-14 2019-07-26 浙江小正科技有限公司 A kind of processing technology and spray separation agent device of paster type light emitting type
KR102121409B1 (en) * 2018-05-02 2020-06-10 주식회사 세미콘라이트 Semiconductor light emitting device
EP3915360B1 (en) * 2019-01-24 2024-04-10 Dai Nippon Printing Co., Ltd. Led illumination unit for animal and plant growth, led illumination module for animal and plant growth, shelf for an animals and plants growth rack, animals and plants growth rack, animal and plant growth factory
JP7118904B2 (en) * 2019-01-24 2022-08-16 大日本印刷株式会社 Animal and plant growing LED lighting sheet, animal and plant growing LED lighting module, animal and plant growing shelf plate, animal and plant growing shelf, and animal and plant growing factory
JP6780715B2 (en) * 2019-02-05 2020-11-04 大日本印刷株式会社 LED lighting device for growing animals and plants, LED lighting module for growing animals and plants, shelf board for growing shelves for animals and plants, growing shelves for animals and plants, and plant for growing animals and plants.
JP7051732B2 (en) * 2019-02-01 2022-04-11 大日本印刷株式会社 LED lighting modules for growing animals and plants, shelves for growing animals and plants, and plants and animals growing factories
JP7340166B2 (en) * 2019-01-24 2023-09-07 大日本印刷株式会社 LED lighting sheets for growing animals and plants, LED lighting modules for growing animals and plants, shelves for growing shelves for animals and plants, shelves for growing animals and plants, and plants for growing animals and plants
JP7404769B2 (en) * 2019-02-04 2023-12-26 大日本印刷株式会社 LED lighting sheet assembly for animal and plant growing shelves, animal and plant growing shelves, and animal and plant growing factories
JP2021022572A (en) * 2020-10-15 2021-02-18 大日本印刷株式会社 Led lighting device for animal/plant growth, led lighting module for animal/plant growth, shelf board for animal/plant growth shelf, animal/plant growth shelf, and animal/plant growth factory
JP7248002B2 (en) 2020-11-24 2023-03-29 大日本印刷株式会社 Animal and plant growing LED lighting module, animal and plant growing shelf, and animal and plant growing factory
WO2022119050A1 (en) * 2020-12-03 2022-06-09 삼성전자주식회사 Led chip and display device comprising same
EP4191691A4 (en) 2021-01-04 2024-03-20 Samsung Electronics Co Ltd Display device and light source device therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693060B2 (en) * 2003-09-24 2005-09-07 セイコーエプソン株式会社 Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
JP5029597B2 (en) * 2006-02-13 2012-09-19 パナソニック株式会社 Card type recording medium and method for manufacturing card type recording medium
JP5343334B2 (en) * 2007-07-17 2013-11-13 株式会社デンソー Welded structure and manufacturing method thereof
JP5402804B2 (en) * 2010-04-12 2014-01-29 デクセリアルズ株式会社 Method for manufacturing light emitting device
CN103378282A (en) * 2012-04-27 2013-10-30 展晶科技(深圳)有限公司 Method for manufacturing light emitting diode encapsulating structures
US9231178B2 (en) * 2012-06-07 2016-01-05 Cooledge Lighting, Inc. Wafer-level flip chip device packages and related methods
JP6070188B2 (en) * 2012-12-28 2017-02-01 日亜化学工業株式会社 Light emitting device

Also Published As

Publication number Publication date
JP2016072524A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
JP6398554B2 (en) Light emitting device and manufacturing method thereof
JP5169263B2 (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE
KR102210072B1 (en) Light emitting device package and package for mounting light emitting device
JP5673190B2 (en) Light emitting device
JP5860289B2 (en) Manufacturing method of LED device
JP6068175B2 (en) WIRING BOARD, LIGHT EMITTING DEVICE, WIRING BOARD MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP5940799B2 (en) Electronic component mounting package, electronic component package, and manufacturing method thereof
JP2012195587A (en) Light-emitting element package and manufacturing method for the same
JP2013153068A (en) Wiring board, light emitting device, and manufacturing method of wiring board
JP6681139B2 (en) Light emitting device
JP6280710B2 (en) WIRING BOARD, LIGHT EMITTING DEVICE AND WIRING BOARD MANUFACTURING METHOD
JP6221696B2 (en) Light emitting device manufacturing method and light emitting device
JP6582827B2 (en) Substrate, light emitting device, and method of manufacturing light emitting device
KR20130051206A (en) Light emitting module
US11223000B2 (en) Method of manufacturing light emitting element mounting base member, method of manufacturing light emitting device using the light emitting element mounting base member, light emitting element mounting base member, and light emitting device using the light emitting element mounting base member
US9564565B2 (en) Light emitting device, light emitting module, and method for manufacturing light emitting device
JP2011035040A (en) Light emitting device, and method of manufacturing the same
JP6484983B2 (en) Light emitting device and manufacturing method thereof
JP6361374B2 (en) Light emitting device and manufacturing method thereof
JP6464646B2 (en) Light emitting device and manufacturing method thereof
JP5359662B2 (en) Light emitting device and manufacturing method thereof
JP6551210B2 (en) Light emitting device
JP2006049715A (en) Luminous light source, illuminating unit, and display unit
JP7011148B2 (en) A method for manufacturing a light emitting element mounting substrate and a method for manufacturing a light emitting device using the same, and a light emitting element mounting substrate and a light emitting device using the same.
JP2014195127A (en) Lead frame, method of manufacturing the same, semiconductor device, and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R150 Certificate of patent or registration of utility model

Ref document number: 6398554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250