JP6385739B2 - Refrigeration circuit for refrigerators that can be cooled to extremely low temperatures - Google Patents

Refrigeration circuit for refrigerators that can be cooled to extremely low temperatures Download PDF

Info

Publication number
JP6385739B2
JP6385739B2 JP2014138436A JP2014138436A JP6385739B2 JP 6385739 B2 JP6385739 B2 JP 6385739B2 JP 2014138436 A JP2014138436 A JP 2014138436A JP 2014138436 A JP2014138436 A JP 2014138436A JP 6385739 B2 JP6385739 B2 JP 6385739B2
Authority
JP
Japan
Prior art keywords
pressure
compressor
valve
refrigerant gas
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014138436A
Other languages
Japanese (ja)
Other versions
JP2016017644A (en
Inventor
奥村 洋平
洋平 奥村
雅史 長瀬
雅史 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Corp
Original Assignee
Hoshizaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Corp filed Critical Hoshizaki Corp
Priority to JP2014138436A priority Critical patent/JP6385739B2/en
Publication of JP2016017644A publication Critical patent/JP2016017644A/en
Application granted granted Critical
Publication of JP6385739B2 publication Critical patent/JP6385739B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は冷却庫の冷凍回路に関し、詳しくは、ブラストチラーの冷凍回路のように、極低温まで冷却する冷凍回路に関する。   The present invention relates to a refrigeration circuit of a refrigerator, and more particularly to a refrigeration circuit that cools to an extremely low temperature, such as a blast chiller refrigeration circuit.

従来、極低温まで冷却する冷凍回路としては、例えば、特許文献1の図3に示されたブラストチラーの冷凍回路(冷媒回路)が知られている。そこでは、冷却器が、冷媒配管を介してアキュムレータに接続されている。そして、アキュムレータは、冷媒吸込管を介して圧縮機に接続されている。すなわち、冷却器からの低温・低圧の冷媒ガスがアキュムレータを介して圧縮機に吸込され、圧縮機によって高温・高圧の冷媒ガスとされる。   Conventionally, as a refrigeration circuit that cools to an extremely low temperature, for example, a blast chiller refrigeration circuit (refrigerant circuit) shown in FIG. There, the cooler is connected to an accumulator via a refrigerant pipe. The accumulator is connected to the compressor via a refrigerant suction pipe. That is, the low-temperature and low-pressure refrigerant gas from the cooler is sucked into the compressor through the accumulator, and is converted into the high-temperature and high-pressure refrigerant gas by the compressor.

特開2001−235267号公報JP 2001-235267 A

通常、冷却温度が低下するに応じて圧縮機に吸入される冷媒ガスの低圧圧力が低下する。冷媒ガスの低圧圧力が低下すると圧縮機の負荷が増加するため、一般に、冷凍回路には、低圧圧力が設定圧力を下回った場合に圧縮機の運転を停止する低圧カット機能が設けられている。しかしながら、庫内を極低温、例えば、−40℃まで冷却するブラストチラーの冷凍回路においては、庫内温度が設定温度に達する前に低圧カット機能が作動し、庫内温度が設定温度に達しないことが考えられる。   Usually, as the cooling temperature decreases, the low-pressure pressure of the refrigerant gas sucked into the compressor decreases. Since the load on the compressor increases when the low-pressure pressure of the refrigerant gas decreases, the refrigeration circuit is generally provided with a low-pressure cut function that stops the operation of the compressor when the low-pressure pressure falls below a set pressure. However, in a blast chiller refrigeration circuit that cools the interior to a very low temperature, for example, −40 ° C., the low-pressure cut function operates before the interior temperature reaches the set temperature, and the interior temperature does not reach the set temperature. It is possible.

また、庫内温度が設定温度に達する前に低圧カット機能が作動すると、冷媒の圧力が設定圧力を上回り圧縮機の運転が再開される。すると、再び低圧カット機能が作動し、その後、圧縮機の運転停止・再開のサイクルが短時間で繰り返されると、圧縮機の寿命を短縮する虞があった。   If the low-pressure cut function is activated before the internal temperature reaches the set temperature, the refrigerant pressure exceeds the set pressure, and the operation of the compressor is resumed. Then, the low-pressure cut function is activated again, and if the compressor stop / restart cycle is repeated in a short time, the compressor life may be shortened.

そのため、本明細書は、庫内を極低温まで冷却する際に、不要な低圧カット機能の作動を抑制することができる冷却庫の冷凍回路を提供するものである。   Therefore, this specification provides the freezing circuit of the refrigerator which can suppress the operation | movement of an unnecessary low voltage | pressure cut function, when cooling the inside to a cryogenic temperature.

本明細書によって開示される冷却庫の冷凍回路は、圧縮機、凝縮器、膨張機構及び蒸発器が冷媒配管により順次に接続されて形成された冷媒の循環経路を備えた、冷却庫の冷凍回路において、前記蒸発器から出力され前記圧縮機に吸入される冷媒ガスの圧力が規定圧力値以下に低下した場合に、前記圧縮機の動作を停止させる低圧カット機能を有し、前記圧縮機から出力された高圧の冷媒ガスを、前記蒸発器と前記圧縮機との間の冷媒配管に戻すバイパス管を含むバイパス回路が、前記循環経路に対して設けられ、前記圧縮機に吸入される冷媒ガスの圧力が前記規定圧力値より高い値に設定された開弁圧力値まで低下した場合に開弁するバルブが、前記バイパス回路に設けられている。
本構成によれば、圧縮機の出力側から出力された冷媒を蒸発器と圧縮機との間の冷媒配管に戻すバイパス回路が、循環経路に対して設けられる。それによって、圧縮機から出力される高圧圧力の冷媒ガスを、圧縮機に吸入される低圧圧力の冷媒ガスに供給することができ、冷媒ガスの低圧圧力を上昇させることができる。また、開弁圧力値が低圧カット機能を動作させる規定圧力値より高い値に設定されているため、低圧カット機能の作動を確実に抑制できる。その結果、庫内を極低温まで冷却する際に、不要な低圧カット機能の作動を確実に抑制することができる。
The refrigerator refrigeration circuit disclosed in the present specification includes a refrigerant circulation path formed by sequentially connecting a compressor, a condenser, an expansion mechanism, and an evaporator by a refrigerant pipe. The refrigerant gas output from the evaporator and sucked into the compressor has a low pressure cut function to stop the operation of the compressor when the refrigerant gas pressure falls below a specified pressure value, and is output from the compressor A bypass circuit including a bypass pipe that returns the high-pressure refrigerant gas returned to the refrigerant pipe between the evaporator and the compressor is provided for the circulation path, and the refrigerant gas sucked into the compressor A valve that opens when the pressure drops to a valve opening pressure value set to a value higher than the specified pressure value is provided in the bypass circuit.
According to this structure, the bypass circuit which returns the refrigerant | coolant output from the output side of the compressor to the refrigerant | coolant piping between an evaporator and a compressor is provided with respect to a circulation path. Thus, the high-pressure refrigerant gas output from the compressor can be supplied to the low-pressure refrigerant gas sucked into the compressor, and the low-pressure pressure of the refrigerant gas can be increased. Further, since the valve opening pressure value is set to a value higher than the specified pressure value for operating the low pressure cut function, the operation of the low pressure cut function can be reliably suppressed. As a result, when the interior is cooled to an extremely low temperature, the operation of the unnecessary low-pressure cut function can be reliably suppressed.

上記冷却庫の冷凍回路において、前記バルブは、冷媒ガスの圧力に応じて開閉する定圧膨張弁によって構成されることが好ましい。
本構成によれば、バルブを冷媒ガスの圧力に応じて開閉する定圧膨張弁によって構成することによって、圧力センサ等の他の部材を用いずに、簡易な構成で高圧の冷媒ガスを低圧側に自動的に戻すことができる。
In the refrigeration circuit of the refrigerator, the valve is preferably constituted by a constant pressure expansion valve that opens and closes according to the pressure of the refrigerant gas.
According to this configuration, by configuring the valve with a constant pressure expansion valve that opens and closes according to the pressure of the refrigerant gas, the high-pressure refrigerant gas is moved to the low pressure side with a simple configuration without using other members such as a pressure sensor. Can be returned automatically.

また、上記冷却庫の冷凍回路において、前記循環経路の前記蒸発器と前記圧縮機との間に、前記圧縮機に吸入される冷媒ガスの圧力が設定圧力以上に上昇しないように前記冷媒ガスの圧力を調整する吸入圧力調整弁が設けられ、前記バイパス回路の一端は前記圧縮機の出力側に接続され、前記バイパス回路の他端は前記蒸発器と前記吸入圧力調整弁との間に接続されるようにしてもよい。
本構成によれば、高圧の冷媒ガスが吸入圧力調整弁の上流側に戻される。そのため、バイパス回路によって過剰の高圧冷媒ガスが戻された場合であっても、吸入圧力調整弁によって冷媒ガスの低圧圧力が上昇し過ぎることを抑制できる。それによって、圧縮機に過剰な負荷がかかることを抑制できる。
Further, in the refrigeration circuit of the refrigerator, the refrigerant gas may be placed between the evaporator and the compressor in the circulation path so that the pressure of the refrigerant gas sucked into the compressor does not rise above a set pressure. A suction pressure adjusting valve for adjusting pressure is provided, one end of the bypass circuit is connected to the output side of the compressor, and the other end of the bypass circuit is connected between the evaporator and the suction pressure adjusting valve. You may make it do.
According to this configuration, the high-pressure refrigerant gas is returned to the upstream side of the suction pressure adjustment valve. Therefore, even when excessive high-pressure refrigerant gas is returned by the bypass circuit, it is possible to suppress the low-pressure pressure of the refrigerant gas from being excessively increased by the suction pressure adjustment valve. Thereby, it can suppress that an excessive load is applied to a compressor.

また、上記冷却庫の冷凍回路において、前記バイパス回路は、前記バイパス管に設けられ、前記バルブとは個別に前記バイパス管を開閉する開閉部材を含むようにしてもよい。
本構成によれば、庫内を極低温まで冷却しない場合に、バルブ等の開閉部材によってバイパス管を閉鎖してバイパス回路を無効にできる。一般に、庫内を極低温まで冷却しない場合等、低圧カット機能が作動することなく庫内を設定温度まで冷却することができる場合は、バイパス回路は必要とされない。そのため、開閉部材によって、必要に応じてバイパス回路の使用・不使用を適宜切替えることができる。
In the refrigeration circuit of the refrigerator, the bypass circuit may be provided in the bypass pipe, and may include an opening / closing member that opens and closes the bypass pipe separately from the valve.
According to this configuration, when the interior is not cooled to an extremely low temperature, the bypass circuit can be disabled by closing the bypass pipe with an opening / closing member such as a valve. In general, when the interior can be cooled to a set temperature without the low pressure cut function being operated, such as when the interior is not cooled to an extremely low temperature, the bypass circuit is not required. Therefore, the use / nonuse of the bypass circuit can be switched as needed by the opening / closing member.

明細書によって開示される冷却庫の冷凍回路によれば、庫内を極低温まで冷却する際に、不要な低圧カット機能の作動を抑制することができる。   According to the refrigeration circuit of the refrigerator disclosed in the specification, when the inside of the refrigerator is cooled to an extremely low temperature, the operation of an unnecessary low-pressure cut function can be suppressed.

実施形態に係る冷凍回路の回路構成図Circuit configuration diagram of refrigeration circuit according to the embodiment 冷凍回路のバイパス回路付近の概略斜視図Schematic perspective view near the bypass circuit of the refrigeration circuit

<実施形態>
以下、実施形態を、図1および図2を参照して説明する。
<Embodiment>
Hereinafter, embodiments will be described with reference to FIGS. 1 and 2.

1.冷凍回路の構成
本実施形態の冷却庫の冷凍回路(以下、単に「冷凍回路」と記す)2は、ブラストチラーあるいはショックフリーザー等の庫内を極低温まで冷却する冷却庫1に装備される。すなわち、本実施形態では冷却庫1として、ブラストチラーあるいはショックフリーザーが想定される。冷却庫1は、図1に示されるように、コンデンシングユニット1Aと本体部1Bとを含む。
1. Configuration of Refrigeration Circuit A refrigerator refrigeration circuit (hereinafter simply referred to as “refrigeration circuit”) 2 of the present embodiment is equipped in a refrigerator 1 that cools the interior of a refrigerator such as a blast chiller or a shock freezer to a very low temperature. That is, in this embodiment, a blast chiller or a shock freezer is assumed as the refrigerator 1. As shown in FIG. 1, the refrigerator 1 includes a condensing unit 1A and a main body 1B.

冷凍回路2は、図1に示すように、圧縮機12、凝縮器13、膨張弁14、及び蒸発器16が冷媒配管11により順次に接続されて形成された冷媒の循環経路10を備える。圧縮機12および凝縮器13はコンデンシングユニット1A内に設けられ、膨張弁14および蒸発器16は本体部1Bに設けられる。   As shown in FIG. 1, the refrigeration circuit 2 includes a refrigerant circulation path 10 formed by sequentially connecting a compressor 12, a condenser 13, an expansion valve 14, and an evaporator 16 through a refrigerant pipe 11. The compressor 12 and the condenser 13 are provided in the condensing unit 1A, and the expansion valve 14 and the evaporator 16 are provided in the main body 1B.

なお、本実施形態では、本体部1Bの庫内(破線枠1Cで示される)において蒸発器16が、第1蒸発器16Aと第2蒸発器16Bの2個設けられており、それに対応して、本体部1B内の一部において冷媒配管11は第1冷媒配管11Aと第2冷媒配管11Bとに分岐する。そして、第1冷媒配管11Aの途中に第1膨張弁14A、第1感温筒15A、および第1蒸発器16Aが設けられ、一方、第2冷媒配管11Bの途中に第2膨張弁14B、第2感温筒15B、および第2蒸発器16Bが設けられている。ここで、各膨張弁14A,14Bは、それぞれ、対応する感温筒15A,15Bによって検知された蒸発器16の出口側の冷媒ガスの温度に基づいて開度が調節される温度式膨張弁である。また、第1蒸発器16Aおよび第2蒸発器16Bに対して、冷気を庫内で拡散させるための複数のファン17が設けられている。   In the present embodiment, two evaporators 16, the first evaporator 16 </ b> A and the second evaporator 16 </ b> B, are provided in the interior of the main body 1 </ b> B (indicated by the broken line frame 1 </ b> C), and correspondingly The refrigerant pipe 11 branches into a first refrigerant pipe 11A and a second refrigerant pipe 11B in a part of the main body 1B. The first expansion valve 14A, the first temperature sensing cylinder 15A, and the first evaporator 16A are provided in the middle of the first refrigerant pipe 11A, while the second expansion valve 14B, the second evaporator 16A are provided in the middle of the second refrigerant pipe 11B. A two temperature sensing cylinder 15B and a second evaporator 16B are provided. Here, each expansion valve 14A, 14B is a temperature type expansion valve in which the opening degree is adjusted based on the temperature of the refrigerant gas on the outlet side of the evaporator 16 detected by the corresponding temperature sensing cylinders 15A, 15B, respectively. is there. In addition, a plurality of fans 17 are provided for diffusing the cool air in the cabinet with respect to the first evaporator 16A and the second evaporator 16B.

なお、以下の説明において、第1膨張弁14Aと第2膨張弁14B、第1感温筒15Aと第2感温筒15B、および第1蒸発器16Aと第2蒸発器16Bとを区別しない場合には単に、膨張弁14、感温筒15、および蒸発器16と記す。   In the following description, the first expansion valve 14A and the second expansion valve 14B, the first temperature sensing cylinder 15A and the second temperature sensing cylinder 15B, and the first evaporator 16A and the second evaporator 16B are not distinguished. Are simply referred to as an expansion valve 14, a temperature sensing cylinder 15, and an evaporator 16.

また、コンデンシングユニット1Aと本体部1Bとの間の冷媒配管11には、吸入圧力調整弁(Suction Pressure Regulator:SPR)18が設けられている。吸入圧力調整弁18は、圧縮機12に吸入される冷媒ガスの低圧圧力PLが所定の設定圧力以上に上昇しないように、低圧圧力PLを調整する。   The refrigerant pipe 11 between the condensing unit 1A and the main body 1B is provided with a suction pressure regulator (SPR) 18. The suction pressure adjusting valve 18 adjusts the low pressure PL so that the low pressure PL of the refrigerant gas sucked into the compressor 12 does not rise above a predetermined set pressure.

また、冷凍回路2は、図1に示すように、コンデンシングユニット1A内の循環経路10において、アキュムレータ21、圧力スイッチ22、油分離器23、受液器24、およびドライヤ25等を含む。   As shown in FIG. 1, the refrigeration circuit 2 includes an accumulator 21, a pressure switch 22, an oil separator 23, a liquid receiver 24, a dryer 25, and the like in the circulation path 10 in the condensing unit 1A.

アキュムレータ21は、蒸発器16と圧縮機12との間に設けられ、冷媒ガスに含まれる液状の冷媒を分離する。圧力スイッチ22は、アキュムレータ21と圧縮機12との間に設けられる。圧力スイッチ22は、アキュムレータ21と圧縮機12との間の冷媒配管11内の冷媒ガスの低圧圧力PLが低圧カット圧力値(規定圧力値の一例)Pth1以下に低下した場合にオンし、オンしたことに応じて圧縮機12の動作を停止させる。すなわち、冷凍回路2は、冷媒ガスの低圧圧力PLが低圧カット圧力値Pth1以下に低下した場合に圧縮機12の動作を停止させる低圧カット機能を有する。   The accumulator 21 is provided between the evaporator 16 and the compressor 12, and separates the liquid refrigerant contained in the refrigerant gas. The pressure switch 22 is provided between the accumulator 21 and the compressor 12. The pressure switch 22 is turned on and turned on when the low pressure PL of the refrigerant gas in the refrigerant pipe 11 between the accumulator 21 and the compressor 12 falls below a low pressure cut pressure value (an example of a specified pressure value) Pth1. Accordingly, the operation of the compressor 12 is stopped. That is, the refrigeration circuit 2 has a low-pressure cut function that stops the operation of the compressor 12 when the low-pressure pressure PL of the refrigerant gas falls below the low-pressure cut pressure value Pth1.

油分離器23は、圧縮機12と凝縮器13との間に設けられ、圧縮機12によって高圧・高温とされた冷媒ガスに含まれる油成分を分離する。受液器24は、凝縮器13とドライヤ25との間に設けられ、凝縮器13によって液体状にされた冷媒を貯留する。ドライヤ25は、冷媒液に含まれる水分を除去する。また、本体部1Bの膨張弁14の上流側に、冷媒中のゴミ等の不純物を除去するストレーナ26が設けられている。   The oil separator 23 is provided between the compressor 12 and the condenser 13 and separates an oil component contained in the refrigerant gas that has been increased in pressure and temperature by the compressor 12. The liquid receiver 24 is provided between the condenser 13 and the dryer 25 and stores the refrigerant made liquid by the condenser 13. The dryer 25 removes moisture contained in the refrigerant liquid. Further, a strainer 26 for removing impurities such as dust in the refrigerant is provided on the upstream side of the expansion valve 14 of the main body 1B.

さらに、冷凍回路2は、図1および図2に示されるように、圧縮機12の出力側から出力された高圧の冷媒ガスを、蒸発器16と圧縮機12との間の冷媒配管11に戻すバイパス管31を含むバイパス回路30が、循環経路10に対して設けられている。具体的には、バイパス回路30の一端30Aは圧縮機12の出力側に接続され、バイパス回路30の他端30Bは蒸発器16と吸入圧力調整弁18と間に接続される。   Further, as shown in FIGS. 1 and 2, the refrigeration circuit 2 returns the high-pressure refrigerant gas output from the output side of the compressor 12 to the refrigerant pipe 11 between the evaporator 16 and the compressor 12. A bypass circuit 30 including a bypass pipe 31 is provided for the circulation path 10. Specifically, one end 30 </ b> A of the bypass circuit 30 is connected to the output side of the compressor 12, and the other end 30 </ b> B of the bypass circuit 30 is connected between the evaporator 16 and the suction pressure adjustment valve 18.

バイパス管31には、蒸発器16から出力され圧縮機12に吸入される冷媒ガスの圧力PLが規定の開弁圧力値Pth2まで低下した場合に自動的に開弁する定圧膨張弁33が設けられている。ここで、開弁圧力値Pth2は、低圧カット機能を動作させる際の低圧カット圧力値Pth1より高い値に設定されている。ここで、低圧カット圧力値Pth1は、例えば、−0.02MPaに設定され、開弁圧力値Pth2は、例えば、0.01MPaに設定されている。そのため、冷媒ガスの低圧圧力PLが低圧カット圧力値Pth1に達する以前に定圧膨張弁33が開弁し、圧縮機12から出力された高圧の冷媒ガスの一部がバイパス管31を介して蒸発器16と圧縮機12との間の冷媒配管11に戻される。   The bypass pipe 31 is provided with a constant pressure expansion valve 33 that automatically opens when the pressure PL of the refrigerant gas output from the evaporator 16 and sucked into the compressor 12 decreases to a predetermined valve opening pressure value Pth2. ing. Here, the valve opening pressure value Pth2 is set to a value higher than the low pressure cut pressure value Pth1 when operating the low pressure cut function. Here, the low pressure cut pressure value Pth1 is set to, for example, -0.02 MPa, and the valve opening pressure value Pth2 is set to, for example, 0.01 MPa. Therefore, the constant pressure expansion valve 33 is opened before the low pressure PL of the refrigerant gas reaches the low pressure cut pressure value Pth1, and a part of the high pressure refrigerant gas output from the compressor 12 passes through the bypass pipe 31 to the evaporator. 16 is returned to the refrigerant pipe 11 between the compressor 16 and the compressor 12.

また、バイパス回路30のバイパス管31の定圧膨張弁33とバイパス回路30の一端30Aとの間には、定圧膨張弁33とは個別にバイパス管31を開閉するパックドバルブ(開閉部材の一例)32が設けられている。パックドバルブ32が閉鎖されている場合、バイパス回路30の機能は無効化される。なお、パックドバルブ32は、バイパス管31において、必ずしも定圧膨張弁33の下流側に設けられる必要はなく、パックドバルブ32は、定圧膨張弁33の上流側に設けられてもよい。また、開閉部材は、パックドバルブに限られず、例えば、制御装置によって開閉制御される電磁弁であってもよい。   Further, a packed valve (an example of an opening / closing member) 32 that opens and closes the bypass pipe 31 separately from the constant pressure expansion valve 33 between the constant pressure expansion valve 33 of the bypass pipe 31 of the bypass circuit 30 and one end 30A of the bypass circuit 30. Is provided. When the packed valve 32 is closed, the function of the bypass circuit 30 is disabled. The packed valve 32 is not necessarily provided on the downstream side of the constant pressure expansion valve 33 in the bypass pipe 31, and the packed valve 32 may be provided on the upstream side of the constant pressure expansion valve 33. Further, the opening / closing member is not limited to a packed valve, and may be, for example, an electromagnetic valve that is controlled to open and close by a control device.

なお、図示されないが、冷凍回路2は、その他、冷却温度を所定温度とするための、周知の温度センサ、制御装置、電磁弁等を備える。   Although not shown, the refrigeration circuit 2 includes other well-known temperature sensors, control devices, electromagnetic valves, and the like for setting the cooling temperature to a predetermined temperature.

2.冷凍回路の作用・効果
冷凍回路2の基本冷却動作として、圧縮機12によって高温・高圧の冷媒ガスが得られ、高温・高圧の冷媒ガスが凝縮器13によって凝縮されて高温・高圧の冷媒液とされ、膨張弁14へ送られる。次いで、膨張弁14では高温・高圧の冷媒液が膨張して低温・低圧の冷媒液とされ、これが蒸発器16内で蒸発してそのときの吸熱作用で所定の冷却作用が行われ、低温・低圧の冷媒ガスが圧縮機12側に戻される。
2. Action / Effect of Refrigeration Circuit As a basic cooling operation of the refrigeration circuit 2, a high-temperature / high-pressure refrigerant gas is obtained by the compressor 12, and the high-temperature / high-pressure refrigerant gas is condensed by the condenser 13 and And sent to the expansion valve 14. Next, the expansion valve 14 expands the high-temperature / high-pressure refrigerant liquid into a low-temperature / low-pressure refrigerant liquid, which evaporates in the evaporator 16 and performs a predetermined cooling action by the endothermic action at that time. The low-pressure refrigerant gas is returned to the compressor 12 side.

本実施形態による作用は以下のようである。すなわち、冷凍回路2によって庫内を、極低温の、例えば、−40℃まで冷却する際、パックドバルブ32を開状態としてバイパス回路30を有効化する。庫内の冷却中に、圧縮機12に吸入される冷媒ガスの圧力が開弁圧力値Pth2まで低下すると、定圧膨張弁33が開き、圧縮機12から出力された高圧の冷媒ガスの一部がバイパス回路30を介して吸入圧力調整弁18の上流側に戻される。それによって圧縮機12に吸入される冷媒ガスの圧力が増加し、冷媒ガスの圧力が開弁圧力値Pth2を超えると、定圧膨張弁33が閉じる。   The operation according to the present embodiment is as follows. That is, when the inside of the refrigerator is cooled to an extremely low temperature, for example, −40 ° C. by the refrigeration circuit 2, the bypass valve 30 is activated by opening the packed valve 32. When the pressure of the refrigerant gas sucked into the compressor 12 is lowered to the valve opening pressure value Pth2 during cooling in the refrigerator, the constant pressure expansion valve 33 is opened, and a part of the high-pressure refrigerant gas output from the compressor 12 is It is returned to the upstream side of the suction pressure adjusting valve 18 via the bypass circuit 30. As a result, the pressure of the refrigerant gas sucked into the compressor 12 increases, and when the refrigerant gas pressure exceeds the valve opening pressure value Pth2, the constant pressure expansion valve 33 is closed.

庫内の冷却中に再び冷媒ガスの圧力が開弁圧力値Pth2まで低下すると、再度、定圧膨張弁33が開き、圧縮機12から出力された高圧の冷媒ガスの一部がバイパス回路30を介して吸入圧力調整弁18の上流側に戻される。このように、庫内の冷却中に定圧膨張弁33の開閉が繰り返されて、庫内は、極低温の−40℃まで冷却される。その際、定圧膨張弁33の開弁動作が繰り替えされることによって高圧の冷媒ガスが圧縮機12の入力側に戻されるため、吸入冷媒ガスの圧力が低圧カット圧力値Pth1まで低下することが抑制される。それによって、低圧カット機能が作動することが抑制され、圧縮機12の寿命が短縮することを回避できる。   When the pressure of the refrigerant gas decreases again to the valve opening pressure value Pth2 during cooling in the chamber, the constant pressure expansion valve 33 opens again, and a part of the high-pressure refrigerant gas output from the compressor 12 passes through the bypass circuit 30. Thus, it is returned to the upstream side of the suction pressure adjusting valve 18. In this manner, the constant pressure expansion valve 33 is repeatedly opened and closed during the cooling of the interior, and the interior is cooled to an extremely low temperature of −40 ° C. At this time, since the high-pressure refrigerant gas is returned to the input side of the compressor 12 by repeating the valve opening operation of the constant pressure expansion valve 33, the pressure of the intake refrigerant gas is suppressed from decreasing to the low-pressure cut pressure value Pth1. Is done. Thereby, it is possible to prevent the low-pressure cut function from being activated and to shorten the life of the compressor 12.

また、その際、高圧の冷媒ガスが吸入圧力調整弁18の上流側に戻されるため、バイパス回路30によって過剰の高圧冷媒ガスが戻された場合であっても、吸入圧力調整弁18によって冷媒ガスの低圧圧力が上昇し過ぎることを抑制できる。それによって、コンデンシングユニット1Aに過剰な負荷がかかることを抑制できる。   At this time, since the high-pressure refrigerant gas is returned to the upstream side of the suction pressure adjusting valve 18, even when excessive high-pressure refrigerant gas is returned by the bypass circuit 30, the refrigerant pressure is reduced by the suction pressure adjusting valve 18. It is possible to suppress an excessive increase in the low-pressure pressure. Thereby, it is possible to suppress an excessive load on the condensing unit 1A.

また、庫内を極低温まで冷却しない場合に、パックドバルブ32によってバイパス管31を閉鎖してバイパス回路30の機能を無効にできる。一般に、庫内を極低温まで冷却しない場合等、低圧カット機能が作動することなく庫内を設定温度まで冷却することができる場合は、バイパス回路30は必ずしも必要とされない。そのため、パックドバルブ32によって、必要に応じてバイパス回路30の使用・不使用を適宜切替えることができる。   Further, when the inside of the refrigerator is not cooled to a very low temperature, the bypass pipe 31 can be closed by the packed valve 32 to invalidate the function of the bypass circuit 30. Generally, the bypass circuit 30 is not necessarily required when the interior can be cooled to the set temperature without the low pressure cut function being activated, such as when the interior is not cooled to an extremely low temperature. Therefore, the packed valve 32 can switch the use / non-use of the bypass circuit 30 as necessary.

以上のように本実施形態では、圧縮機12から出力された高圧の冷媒ガスを蒸発器16と圧縮機12との間の冷媒配管11に戻すバイパス回路30が、循環経路10に対して設けられる。それによって、高圧の冷媒ガスを、圧縮機12に吸入される低圧の冷媒ガスに供給し、吸入冷媒ガスの低圧圧力を上昇させることができる。その結果、庫内を極低温まで冷却する際に、不要な低圧カット機能の作動を抑制することができる。   As described above, in the present embodiment, the bypass circuit 30 that returns the high-pressure refrigerant gas output from the compressor 12 to the refrigerant pipe 11 between the evaporator 16 and the compressor 12 is provided for the circulation path 10. . Thereby, the high-pressure refrigerant gas can be supplied to the low-pressure refrigerant gas sucked into the compressor 12, and the low-pressure pressure of the sucked refrigerant gas can be increased. As a result, when the interior is cooled to a very low temperature, the operation of the unnecessary low-pressure cut function can be suppressed.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.

(1)上記実施形態では、冷媒ガスの低圧圧力が開弁圧力値Pth2まで低下した場合に開弁するバルブとして、冷媒ガスの低圧圧力に基づいて自動的に開閉する定圧膨張弁33を設ける例を示したが、これに限られない。同バルブとして、例えば、定圧膨張弁33に代えて、冷媒ガスの圧力を検出する圧力センサの検出結果に基づいて制御装置によって開弁制御される電磁弁を、バイパス回路30に設けるようにしてもよい。   (1) In the above embodiment, the constant pressure expansion valve 33 that automatically opens and closes based on the low pressure of the refrigerant gas is provided as the valve that opens when the low pressure of the refrigerant gas decreases to the valve opening pressure value Pth2. However, the present invention is not limited to this. As the valve, for example, instead of the constant pressure expansion valve 33, an electromagnetic valve that is controlled to open by a control device based on a detection result of a pressure sensor that detects the pressure of the refrigerant gas may be provided in the bypass circuit 30. Good.

(2)上記実施形態では、蒸発器16と圧縮機12との間に吸入圧力調整弁18を設ける例を示したが、これに限らず、吸入圧力調整弁18は省略されてもよい。   (2) In the above embodiment, an example in which the suction pressure adjustment valve 18 is provided between the evaporator 16 and the compressor 12 is shown, but the present invention is not limited to this, and the suction pressure adjustment valve 18 may be omitted.

(3)上記実施形態では、バイパス回路30にパックドバルブ32を設ける例を示したが、これに限らず、パックドバルブ32は省略されてもよい。   (3) Although the example which provided the packed valve 32 in the bypass circuit 30 was shown in the said embodiment, not only this but the packed valve 32 may be abbreviate | omitted.

(4)上記実施形態では、蒸発器16に係る構成を2系統設ける例を示したが、これに限られない。蒸発器16に係る構成は、例えば、1系統であってもよいし、3系統であってもよい。   (4) In the above embodiment, an example in which two systems related to the evaporator 16 are provided has been described, but the present invention is not limited to this. The configuration related to the evaporator 16 may be, for example, one system or three systems.

(5)上記実施形態では、冷却庫として、ブラストチラーあるいはショックフリーザーを想定したが、これに限られない。例えば、冷却庫は、冷凍冷蔵庫等の冷却貯蔵庫であってもよい。   (5) In the above embodiment, a blast chiller or a shock freezer is assumed as the refrigerator, but the present invention is not limited to this. For example, the refrigerator may be a cooling storage such as a refrigerator-freezer.

2…冷凍回路、10…循環経路、11…冷媒配管、12…圧縮機、13…凝縮器、14…膨張弁(膨張機構)、15…感温筒(膨張機構)、16…蒸発器、18…吸入圧力調整弁、30…バイパス回路、31…バイパス管、32…パックドバルブ、33…定圧膨張弁 DESCRIPTION OF SYMBOLS 2 ... Refrigeration circuit, 10 ... Circulation path, 11 ... Refrigerant piping, 12 ... Compressor, 13 ... Condenser, 14 ... Expansion valve (expansion mechanism), 15 ... Temperature sensing cylinder (expansion mechanism), 16 ... Evaporator, 18 ... Suction pressure regulating valve, 30 ... Bypass circuit, 31 ... Bypass pipe, 32 ... Packed valve, 33 ... Constant pressure expansion valve

Claims (3)

圧縮機、凝縮器、膨張機構及び蒸発器が冷媒配管により順次に接続されて形成された冷媒の循環経路を備えた、極低温まで冷却可能な冷却庫の冷凍回路において、
前記蒸発器から出力され前記圧縮機に吸入される冷媒ガスの圧力が規定圧力値以下に低下した場合に、前記圧縮機の動作を停止させる低圧カット機能を有し、
前記圧縮機から出力された高圧の冷媒ガスを、前記蒸発器と前記圧縮機との間の冷媒配管に戻すバイパス管を含むバイパス回路が、前記循環経路に対して設けられ、
前記圧縮機に吸入される冷媒ガスの圧力が前記規定圧力値より高い値に設定された開弁圧力値まで低下した場合に開弁するバルブが、前記バイパス回路に設けられ
前記バイパス回路は、前記バイパス管に設けられ、前記バルブとは個別に前記バイパス管を開閉する開閉部材を含み、
極低温まで冷却する場合に、前記開閉部材を開状態として前記バイパス回路を有効化し、極低温まで至らない温度に冷却する場合に、前記開閉部材を閉状態として前記バイパス回路を無効化するように構成された、極低温まで冷却可能な冷却庫の冷凍回路。
In a refrigeration circuit of a refrigerator capable of cooling to a cryogenic temperature , including a refrigerant circulation path formed by sequentially connecting a compressor, a condenser, an expansion mechanism, and an evaporator by a refrigerant pipe,
Having a low-pressure cut function for stopping the operation of the compressor when the pressure of the refrigerant gas output from the evaporator and sucked into the compressor drops below a specified pressure value;
A bypass circuit including a bypass pipe for returning the high-pressure refrigerant gas output from the compressor to a refrigerant pipe between the evaporator and the compressor is provided for the circulation path;
A valve that opens when the pressure of the refrigerant gas sucked into the compressor drops to a valve opening pressure value set to a value higher than the specified pressure value is provided in the bypass circuit ;
The bypass circuit is provided in the bypass pipe, and includes an opening / closing member that opens and closes the bypass pipe separately from the valve,
When cooling to a very low temperature, the open / close member is opened to enable the bypass circuit, and when cooling to a temperature that does not reach a very low temperature, the open / close member is closed to invalidate the bypass circuit. A refrigeration circuit for a refrigerator that can be cooled to extremely low temperatures .
請求項1記載の極低温まで冷却可能な冷却庫の冷凍回路において、
前記バルブは、冷媒ガスの圧力に応じて開閉する定圧膨張弁によって構成される、極低温まで冷却可能な冷却庫の冷凍回路。
In the refrigerating circuit of the refrigerator which can be cooled to the cryogenic temperature according to claim 1,
The said valve is a refrigeration circuit of the refrigerator which can be cooled to very low temperature comprised by the constant pressure expansion valve opened and closed according to the pressure of refrigerant gas.
請求項1または請求項2に記載の極低温まで冷却可能な冷却庫の冷凍回路において、
前記循環経路の前記蒸発器と前記圧縮機との間に、前記圧縮機に吸入される冷媒ガスの圧力が設定圧力以上に上昇しないように前記冷媒ガスの圧力を調整する吸入圧力調整弁が設けられ、
前記バイパス回路の一端は前記圧縮機の出力側に接続され、前記バイパス回路の他端は前記蒸発器と前記吸入圧力調整弁との間に接続される、極低温まで冷却可能な冷却庫の冷凍回路。
In the freezing circuit of the refrigerator which can be cooled to the cryogenic temperature according to claim 1 or 2,
A suction pressure adjusting valve is provided between the evaporator and the compressor in the circulation path to adjust the pressure of the refrigerant gas so that the pressure of the refrigerant gas sucked into the compressor does not rise above a set pressure. And
One end of the bypass circuit is connected to the output side of the compressor, the other end of the bypass circuit is connected between the evaporator the suction pressure regulating valve, frozen coolable cooling chamber to cryogenic temperatures circuit.
JP2014138436A 2014-07-04 2014-07-04 Refrigeration circuit for refrigerators that can be cooled to extremely low temperatures Expired - Fee Related JP6385739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014138436A JP6385739B2 (en) 2014-07-04 2014-07-04 Refrigeration circuit for refrigerators that can be cooled to extremely low temperatures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014138436A JP6385739B2 (en) 2014-07-04 2014-07-04 Refrigeration circuit for refrigerators that can be cooled to extremely low temperatures

Publications (2)

Publication Number Publication Date
JP2016017644A JP2016017644A (en) 2016-02-01
JP6385739B2 true JP6385739B2 (en) 2018-09-05

Family

ID=55232998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014138436A Expired - Fee Related JP6385739B2 (en) 2014-07-04 2014-07-04 Refrigeration circuit for refrigerators that can be cooled to extremely low temperatures

Country Status (1)

Country Link
JP (1) JP6385739B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320143B2 (en) * 1973-03-12 1978-06-24
JPS58117968A (en) * 1982-01-06 1983-07-13 株式会社日立製作所 Refrigeration cycle of air conditioner
JPS62196555A (en) * 1986-02-24 1987-08-29 三洋電機株式会社 Refrigerator
JP2506141B2 (en) * 1988-02-19 1996-06-12 株式会社日立製作所 Refrigeration equipment
JPH0473552A (en) * 1990-07-13 1992-03-09 Hitachi Ltd Freezing device
JPH0464061U (en) * 1990-10-12 1992-06-01
JPH06293214A (en) * 1993-04-05 1994-10-21 Seiko Epson Corp Cooling system for electric vehicle
JP2547703B2 (en) * 1993-07-13 1996-10-23 三洋電機株式会社 Refrigeration equipment
JP4061494B2 (en) * 2003-03-27 2008-03-19 三菱電機株式会社 Connection pipe cleaning method, refrigerating device renewal method, and freezing device
JP4966741B2 (en) * 2007-05-25 2012-07-04 オリオン機械株式会社 Compressed air dehumidifier
JP5232554B2 (en) * 2008-07-22 2013-07-10 東プレ株式会社 Pressure adjusting device and refrigeration apparatus provided with the same

Also Published As

Publication number Publication date
JP2016017644A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
US20150059367A1 (en) Active charge control methods for vapor cycle refrigeration or heat pump systems
JP5932971B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
GB201102485D0 (en) Flash defrost system
US10145608B2 (en) Refrigerator and method of controlling the same
US10180269B2 (en) Refrigeration device
JP2015148406A (en) Refrigeration device
JP2015148407A (en) Refrigeration device
AU2017265130A1 (en) System for controlling a refrigeration system with a parallel compressor
JP2008164288A (en) Refrigerating device
JP5119513B2 (en) Dual refrigerator
WO2014021076A1 (en) Refrigerator
JP6385739B2 (en) Refrigeration circuit for refrigerators that can be cooled to extremely low temperatures
CN111765614A (en) Air conditioning system and control method thereof
JPWO2016170680A1 (en) Refrigeration air conditioner
JP5538061B2 (en) Refrigeration equipment
JP2016151410A (en) Transport refrigeration unit
JP2016128734A (en) Refrigeration device
US11353244B2 (en) Cooling system with flexible evaporating temperature
KR101837985B1 (en) Refrigerating cycle for reducing noise in refrigerator
US10408513B2 (en) Oil line control system
KR20180056854A (en) High-capacity rapid-cooling cryogenic freezer capable of controlling the suction temperature of the compressor
JP4859203B2 (en) Refrigeration apparatus and operation control method thereof
KR101820683B1 (en) Cryogenic refrigeration system capable of capacity control by intermediate pressure control
WO2009061120A3 (en) Control method of refrigerator
JP2016080304A (en) Control device and control method of cooling box

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180808

R150 Certificate of patent or registration of utility model

Ref document number: 6385739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees