JP2016151410A - Transport refrigeration unit - Google Patents

Transport refrigeration unit Download PDF

Info

Publication number
JP2016151410A
JP2016151410A JP2015030709A JP2015030709A JP2016151410A JP 2016151410 A JP2016151410 A JP 2016151410A JP 2015030709 A JP2015030709 A JP 2015030709A JP 2015030709 A JP2015030709 A JP 2015030709A JP 2016151410 A JP2016151410 A JP 2016151410A
Authority
JP
Japan
Prior art keywords
heat exchangers
heat exchanger
outside
pressure
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015030709A
Other languages
Japanese (ja)
Other versions
JP6426024B2 (en
Inventor
政和 甲斐
Masakazu Kai
政和 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2015030709A priority Critical patent/JP6426024B2/en
Priority to EP16155458.9A priority patent/EP3059522A3/en
Publication of JP2016151410A publication Critical patent/JP2016151410A/en
Application granted granted Critical
Publication of JP6426024B2 publication Critical patent/JP6426024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0251Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • F25B2313/02533Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0254Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
    • F25B2313/02542Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02791Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using shut-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/15Hunting, i.e. oscillation of controlled refrigeration variables reaching undesirable values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transport refrigeration unit capable of preventing a refrigerator temperature from being reduced during defrosting operation, defrosting within a short period of time, appropriately adjusting a condensing capability during cooling operation, restricting a frequent starting or stopping operation of a compressor at the time of thermo-on or -off and assuring its reliability in operation.SOLUTION: This invention relates to a transport refrigeration unit 1 having a heat-pump type heating function constituted in such a way that when a heat pump heating operation is carried out under an arrangement that two heat exchangers in a plurality of heat exchangers 8A to 8C are arranged in parallel outside a refrigerator as outside heat exchangers 8A, 8B of the refrigerator, one heat exchanger is arranged in the refrigerator as an inside heat exchanger 8C. The outside heat exchangers 8A, 8B are applied as evaporators and the inside heat exchanger 8C is applied as a condenser, if the outside heat exchangers 8A, 8B are frosted, a flow of refrigerant against the inside heat exchanger 8C is stopped, a defrosting operation is carried out while one of the outside heat exchangers 8A, 8B being applied as a condenser and the other being applied as an evaporator.SELECTED DRAWING: Figure 1

Description

本発明は、冷凍車両やトレーラー等に搭載されるヒートポンプ方式の加温機能を備えた輸送用冷凍ユニットに関するものである。   The present invention relates to a transport refrigeration unit equipped with a heat pump heating function mounted on a refrigerated vehicle, a trailer or the like.

輸送用冷凍ユニットにおいて、近年、ヒートポンプ方式の加温機能を備えたものが提供されており、その一例が特許文献1,2に示されている。これらは、圧縮機の吐出側に複数台の熱交換器の一端側を各々高圧ガス配管および高圧開閉弁を介して接続し、その複数台の熱交換器の一端側を各々低圧ガス配管および低圧開閉弁を介して圧縮機の吸入側に接続するとともに、各熱交換器の他端側に各々開閉弁機能付き減圧手段(開閉弁と膨張弁を直列に接続したもの、あるいは開閉弁機能を有する電動膨張弁を用いたもの等)と逆止弁との並列回路を備えた液側配管を接続し、その液側配管同士を互いに連通接続して冷媒回路を構成したものである。   In recent years, a transport refrigeration unit having a heat pump heating function has been provided, and examples thereof are shown in Patent Documents 1 and 2. These are connected to one end side of a plurality of heat exchangers via a high pressure gas pipe and a high pressure on-off valve on the discharge side of the compressor, respectively, and one end side of the plurality of heat exchangers is respectively connected to a low pressure gas pipe and a low pressure Connected to the suction side of the compressor via an on-off valve, and a pressure reducing means with an on-off valve function on each other end of each heat exchanger (having an on-off valve and an expansion valve connected in series, or having an on-off valve function A liquid side pipe provided with a parallel circuit of a check valve and the like is connected, and the liquid side pipes are connected in communication with each other to constitute a refrigerant circuit.

そして、複数台の熱交換器の中の1台を庫外側熱交換器として保冷庫の外部に配設するとともに、1台以上の熱交換器を庫内側熱交換器としてそれぞれ保冷庫内に配設し、高圧ガス配管に設けられた各高圧開閉弁、低圧ガス配管に設けられた各低圧開閉弁および液側配管に設けられた各開閉弁機能付き減圧手段の開閉弁機能を開閉して各熱交換器への冷媒の流れを切換え、庫外側熱交換器を凝縮器、庫内側熱交換器を蒸発器として機能させて冷却運転を行い、庫内側熱交換器を凝縮器、庫外側熱交換器を蒸発器として機能させてヒートポンプ加温運転を行うようにしている。   In addition, one of the plurality of heat exchangers is disposed outside the cold storage as an outside heat exchanger, and one or more heat exchangers are respectively disposed in the cold storage as inside heat exchangers. Open and close the open / close valve function of each high pressure open / close valve provided in the high pressure gas pipe, each low pressure open / close valve provided in the low pressure gas pipe, and each pressure reducing means with open / close valve function provided in the liquid side pipe. The refrigerant flow to the heat exchanger is switched, the outside heat exchanger functions as a condenser, and the inside heat exchanger functions as an evaporator to perform a cooling operation, and the inside heat exchanger is a condenser and outside heat exchange. The heater functions as an evaporator and heat pump heating operation is performed.

一方、上記と同様の冷媒回路を採用し、冷・暖房同時運転ができるようにしたマルチ形空気調和装置、いわゆる冷・暖房フリーマルチ形空気調和装置にあって、室外側熱交換器を複数台並列に配設し、暖房運転時に室外側熱交換器が着霜したとき、室内側熱交換器にホットガス冷媒を流して暖房運転を継続しながら、室外側熱交換器の1台を蒸発器、他の1台を凝縮器として機能させ、着霜した複数台の室外側熱交換器を交互にデフロストするようにしたものが特許文献3,4に開示されている。   On the other hand, in a multi-type air conditioner that employs a refrigerant circuit similar to the above and is capable of simultaneous cooling and heating operations, a so-called cooling / heating-free multi-type air conditioner, comprising a plurality of outdoor heat exchangers When the outdoor heat exchanger is frosted during heating operation, one of the outdoor heat exchangers is evaporated while flowing the hot gas refrigerant through the indoor heat exchanger and continuing the heating operation. Patent Documents 3 and 4 disclose that the other unit functions as a condenser and a plurality of frosted outdoor heat exchangers are alternately defrosted.

特許第5535510号公報Japanese Patent No. 5535510 特開2013−234784号公報JP 2013-234784 A 特開平3−55474号公報JP-A-3-55474 特開平9−26219号公報JP-A-9-26219

しかしながら、輸送用冷凍ユニットにおいて、効率のよいヒートポンプ加温方式を採用した場合、加温運転時に蒸発器として機能する庫外側熱交換器に着霜する運転条件が多々存在し、特に寒冷地においては、加温運転する機会が多くなることから庫外側熱交換器に着霜するケースが必然的に多くなる。この場合、リバースサイクル、すなわちヒートポンプ加温サイクルを冷却サイクルに切換えてデフロスト運転を行うことになるが、冷却サイクルでは、庫内側熱交換器が蒸発器として作用し、庫内空気から吸熱することから、デフロスト運転中に庫内温度が低下してしまい、積荷を損傷する虞がある等の課題を有する。   However, in the transport refrigeration unit, when an efficient heat pump heating method is adopted, there are many operating conditions for frosting the outside heat exchanger that functions as an evaporator during heating operation, especially in cold regions Since there are many opportunities for heating operation, the number of cases where the outside heat exchanger is frosted inevitably increases. In this case, the reverse cycle, that is, the defrost operation is performed by switching the heat pump heating cycle to the cooling cycle, but in the cooling cycle, the internal heat exchanger acts as an evaporator and absorbs heat from the internal air. In addition, there is a problem that the temperature inside the cabinet is lowered during the defrosting operation and the cargo may be damaged.

一方、特許文献3,4に示されるように、室外側熱交換器を複数台並列に配設した構成とすることにより、暖房運転時、室外側熱交換器に着霜が発生した場合でも、ヒートポンプ暖房を継続しながら、着霜した室外側熱交換器を交互にデフロストすることができる。しかし、この場合、室内熱交換器側にホットガス冷媒を流して暖房運転を継続しながらデフロストを行うため、全冷媒をデフロスト用に供することができず、その分だけデフロスト時間が長くなってしまう等の課題があり、従って、かかる技術をそのまま輸送用冷凍ユニットに適用するのには問題がある。   On the other hand, as shown in Patent Documents 3 and 4, by adopting a configuration in which a plurality of outdoor heat exchangers are arranged in parallel, even when frosting occurs in the outdoor heat exchanger during heating operation, The frosted outdoor heat exchanger can be alternately defrosted while continuing the heat pump heating. However, in this case, since the defrosting is performed while flowing the hot gas refrigerant to the indoor heat exchanger side and continuing the heating operation, it is not possible to use all the refrigerant for defrosting, and the defrost time is increased accordingly. Therefore, there is a problem in applying this technique as it is to a transport refrigeration unit.

つまり、人が居る空間を空調する空気調和機の場合、デフロスト運転により暖房運転が中断することによる急激な温度変化で人に不快感を与えてしまう事態を避けるため、暖房運転を中断するよりも、デフロストに多少時間がかかっても暖房運転を継続する方を優先しているが、輸送用冷凍ユニットの場合、断熱性が高い保冷庫内の冷却、加温を行うものであるため、一時的に冷却運転または加温運転が中断しても、庫内温度が急激に変化することはなく、その間に短時間でデフロストを行い、加温運転できる状態に復帰させる方が積荷に対する温度制御性を確保する上で望ましいと云えるからである。   In other words, in the case of an air conditioner that air-conditions a space where people are present, rather than interrupting the heating operation in order to avoid a situation in which the sudden temperature change caused by the interruption of the heating operation due to the defrost operation causes the person to feel uncomfortable Priority is given to continuing heating operation even if it takes some time to defrost. However, in the case of a transport refrigeration unit, it cools and heats the inside of the cool box with high heat insulation, so it is temporarily Even if the cooling operation or heating operation is interrupted, the internal temperature does not change abruptly, and defrosting in a short period of time and returning to a state in which heating operation can be performed provide better temperature controllability for the load. This is because it is desirable in securing.

本発明は、このような事情に鑑みてなされたものであって、デフロスト中の庫内温度の低下を防止できるとともに、短時間でデフロストでき、また冷却運転時に凝縮能力を適正に調整し、サーモオンオフ時の圧縮機の頻繁な発停を抑制して信頼性を確保することができるヒートポンプ加温方式を採用した輸送用冷凍ユニットを提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to prevent a decrease in the internal temperature during defrosting, to defrost in a short time, and to appropriately adjust the condensation capacity during cooling operation, It is an object of the present invention to provide a transport refrigeration unit that employs a heat pump heating system that can ensure reliability by suppressing frequent start / stop of a compressor during on / off.

上記した課題を解決するために、本発明の輸送用冷凍ユニットは、以下の手段を採用している。
すなわち、本発明にかかる輸送用冷凍ユニットは、圧縮機と、前記圧縮機の吐出側に一端側が各々高圧ガス配管および高圧開閉弁を介して接続された複数台の熱交換器と、前記複数台の熱交換器の一端側を各々前記圧縮機の吸入側に低圧開閉弁を介して接続する低圧ガス配管と、前記複数台の熱交換器の他端側に各々接続された開閉弁機能付き減圧手段と逆止弁との並列回路の他端側同士を互いに連通接続している液側配管と、を備え、前記複数台の熱交換器の中の少なくとも2台の熱交換器を庫外側熱交換器として保冷庫外に並列に配設し、少なくとも1台の熱交換器を庫内側熱交換器として保冷庫内に配設するとともに、前記庫外側熱交換器を蒸発器、前記庫内側熱交換器を凝縮器として機能させたヒートポンプ加温運転時、前記庫外側熱交換器に着霜したとき、前記庫内側熱交換器に対する冷媒の流通を停止し、複数台の前記庫外側熱交換器の少なくとも1台を凝縮器、他の1台を蒸発器としてデフロスト運転する構成としたことを特徴とする。
In order to solve the above-described problems, the transport refrigeration unit of the present invention employs the following means.
That is, the transport refrigeration unit according to the present invention includes a compressor, a plurality of heat exchangers each having one end connected to a discharge side of the compressor via a high-pressure gas pipe and a high-pressure on-off valve, and the plurality of units. A low-pressure gas pipe that connects one end side of each of the heat exchangers to the suction side of the compressor via a low-pressure on-off valve; Liquid-side piping connecting the other ends of the parallel circuit of the means and the check valve to each other, and at least two of the plurality of heat exchangers are connected to the outside heat. As an exchanger, it is arranged in parallel outside the cold storage, and at least one heat exchanger is arranged as an internal heat exchanger in the cold storage, and the external heat exchanger is an evaporator, the internal heat During the heat pump heating operation with the exchanger functioning as a condenser, When the exchanger is frosted, the refrigerant flow to the inside heat exchanger is stopped, and at least one of the plurality of outside heat exchangers is a condenser and the other one is a defrost operation. It is characterized by having a configuration.

本発明によれば、圧縮機の吐出側に一端側が各々高圧ガス配管および高圧開閉弁を介して接続された複数台の熱交換器の一端側を、各々低圧ガス配管および低圧開閉弁を介して圧縮機の吸入側に接続するとともに、その複数台の熱交換器の他端側に各々開閉弁機能付き減圧手段と逆止弁との並列回路を備えた液側配管を接続し、該液側配管の他端側同士を互いに連通接続することにより冷媒回路を構成としており、その複数台の熱交換器の中の少なくとも2台の熱交換器を庫外側熱交換器として保冷庫外に並列に配設し、少なくとも1台の熱交換器を庫内側熱交換器として保冷庫内に配設した構成としているため、庫外側の2台の庫外側熱交換器を凝縮器として機能させ、庫内側の1台の庫内側熱交換器を蒸発器として機能させることにより、庫内を冷却する冷却運転を行い、庫内側の1台の庫内側熱交換器を凝縮器として機能させ、庫外側の2台の庫外側熱交換器を蒸発器として機能させることにより、庫内を加温するヒートポンプ加温運転を行うことができる。従って、ヒートポンプ方式による高能力で効率のよい加温運転を行うことができる。一方、ヒートポンプ加温運転時、庫外側熱交換器に着霜した場合、庫内側熱交換器に対する冷媒の流通を停止し、複数台の庫外側熱交換器の少なくとも1台を凝縮器、他の1台を蒸発器としてデフロスト運転する構成としているため、圧縮機から吐出されたホットガス冷媒の全てを着霜した庫外側熱交換器の少なくとも1台に供給し、他の1台の庫外側熱交換器を蒸発器として機能させ、その蒸発器によって吸熱をしながらデフロスト運転することができる。従って、庫内空気から吸熱を行うことなく、ヒートポンプの全能力(全冷媒)を用いて庫外側熱交換器のデフロストを行うことができ、デフロスト運転時間を短縮化することができるとともに、デフロスト運転中における庫内温度の変化を小さくすることができる。   According to the present invention, one end side of a plurality of heat exchangers, one end side of which is connected to the discharge side of the compressor via a high-pressure gas pipe and a high-pressure on-off valve, respectively, is connected via a low-pressure gas pipe and a low-pressure on-off valve, respectively. Connected to the suction side of the compressor, and connected to the other end of each of the plurality of heat exchangers is a liquid side pipe provided with a parallel circuit of a pressure reducing means with an on-off valve function and a check valve. A refrigerant circuit is configured by connecting the other end sides of the pipes to each other, and at least two of the heat exchangers are arranged in parallel outside the cool box as external storage heat exchangers. Since at least one heat exchanger is arranged in the cold storage as an internal heat exchanger, the two external heat exchangers outside the storage function as condensers, By functioning one internal heat exchanger as an evaporator By performing a cooling operation to cool the inside of the cabinet, one inside heat exchanger inside the warehouse functions as a condenser, and two outside heat exchangers outside the warehouse function as evaporators, It is possible to perform a heat pump heating operation for heating Therefore, it is possible to perform a high-performance and efficient heating operation by the heat pump method. On the other hand, when the outside heat exchanger is frosted during the heat pump heating operation, the circulation of the refrigerant to the inside heat exchanger is stopped, and at least one of the plurality of outside heat exchangers is a condenser, Since one unit is configured to perform defrost operation as an evaporator, all the hot gas refrigerant discharged from the compressor is supplied to at least one of the frosted outside heat exchangers, and the other one of the outside heats The exchanger can function as an evaporator, and defrost operation can be performed while absorbing heat by the evaporator. Therefore, the defrosting of the outside heat exchanger can be performed using the full capacity of the heat pump (all refrigerants) without absorbing heat from the inside air, and the defrosting operation time can be shortened and the defrosting operation can be performed. The change in the inside temperature can be reduced.

さらに、本発明の輸送用冷凍ユニットは、上記の輸送用冷凍ユニットにおいて、着霜した複数台の前記庫外側熱交換器の少なくとも1台を凝縮器、他の1台を蒸発器として順次切換え、複数台の前記庫外側熱交換器を順次デフロスト運転する構成としたことを特徴とする。   Furthermore, the transport refrigeration unit of the present invention is the above transport refrigeration unit, wherein at least one of the plurality of frosted outside heat exchangers is sequentially switched as a condenser and the other one as an evaporator, A plurality of the outside heat exchangers are sequentially defrosted.

本発明によれば、着霜した複数台の庫外側熱交換器の少なくとも1台を凝縮器、他の1台を蒸発器として順次切換え、複数台の庫外側熱交換器を順次デフロスト運転する構成としているため、各庫外側熱交換器に接続されている高圧ガス配管中の高圧開閉弁、低圧ガス配管中の低圧開閉弁および液側配管側の並列回路中の開閉弁機能付き減圧手段の開閉弁機能を開閉して、複数台の庫外側熱交換器間で冷媒の流れを切換えることにより、複数台の庫外側熱交換器を順次デフロスト運転することができる。従って、複数台の庫外側熱交換器をヒートポンプの全能力(全冷媒)を用いて交互にデフロストでき、短時間でデフロストすることができる。   According to the present invention, at least one of a plurality of frosted outside heat exchangers is sequentially switched as a condenser and the other one as an evaporator, and the plurality of outside heat exchangers are sequentially defrosted. Therefore, the high-pressure on-off valve in the high-pressure gas pipe connected to each outside heat exchanger, the low-pressure on-off valve in the low-pressure gas pipe, and the opening / closing of the decompression means with the on-off valve function in the parallel circuit on the liquid side pipe side By opening and closing the valve function and switching the flow of the refrigerant between the plurality of outside heat exchangers, the plurality of outside heat exchangers can be sequentially defrosted. Therefore, a plurality of outside heat exchangers can be alternately defrosted using the full capacity (all refrigerants) of the heat pump, and can be defrosted in a short time.

さらに、本発明の輸送用冷凍ユニットは、上述のいずれかの輸送用冷凍ユニットにおいて、複数台の前記庫外側熱交換器に対する庫外側ファンを含む送風系を、それぞれ独立して設けたことを特徴とする。   Furthermore, the transport refrigeration unit according to the present invention is characterized in that, in any of the transport refrigeration units described above, a blower system including an outside fan for the plurality of outside heat exchangers is provided independently. And

本発明によれば、複数台の庫外側熱交換器に対する庫外側ファンを含む送風系を、それぞれ独立して設けた構成としているため、デフロスト運転時、凝縮器として機能する庫外側熱交換器用の庫外側ファンを停止するとともに、蒸発器として機能する庫外側熱交換器用の庫外側ファンを運転してデフロストすることができる。従って、蒸発器として機能する庫外側熱交換器での吸熱量を増大し、その熱をデフロストする庫外側熱交換器で放熱することによって効率的に、かつ短時間でデフロストすることができる。   According to this invention, since it is set as the structure which provided the ventilation system containing the warehouse outer side fan with respect to the several warehouse outer side heat exchanger each independently, it is for the warehouse outer side heat exchanger which functions as a condenser at the time of a defrost operation. While the outside fan is stopped, the outside fan for the outside heat exchanger functioning as an evaporator can be operated and defrosted. Accordingly, the amount of heat absorbed in the outside heat exchanger functioning as an evaporator is increased, and the heat can be defrosted efficiently and in a short time by radiating the heat with the outside heat exchanger that defrosts.

さらに、本発明の輸送用冷凍ユニットは、上述のいずれかの輸送用冷凍ユニットにおいて、デフロスト運転時、庫内温度と設定温度との差が規定値以上となったとき、前記庫内側熱交換器に接続されている前記高圧ガス配管中の前記高圧開閉弁を開として前記庫内側熱交換器に高圧ガス冷媒を流通し、加温運転する構成としたことを特徴とする。   Furthermore, the transport refrigeration unit of the present invention is the above-described internal heat exchanger when any of the above transport refrigeration units has a difference between the internal temperature and the set temperature equal to or higher than a specified value during the defrost operation. The high-pressure on-off valve in the high-pressure gas pipe connected to is opened, the high-pressure gas refrigerant is circulated through the internal heat exchanger, and a heating operation is performed.

本発明によれば、デフロスト運転時、庫内温度と設定温度との差が規定値以上となったとき、庫内側熱交換器に接続されている高圧ガス配管中の高圧開閉弁を開として庫内側熱交換器に高圧ガス冷媒を流通し、加温運転する構成としているため、デフロスト運転中に何等かの原因によって庫内温度が急変し、設定温度との差が規定値を超えるようなことがあっても、高圧開閉弁を開とするだけで庫内側熱交換器に圧縮機からのホットガス冷媒の一部を導入し、デフロスト運転を継続しながら、加温運転することができる。従って、デフロスト運転中に庫内温度が規定値以下に低下することはなく、デフロスト中でも温度制御性を維持して積荷の品質を確保でき、輸送用冷凍ユニットの信頼性を向上することができる。   According to the present invention, during the defrost operation, when the difference between the internal temperature and the set temperature becomes equal to or greater than the specified value, the high pressure on-off valve in the high pressure gas pipe connected to the internal heat exchanger is opened. Since the high-temperature gas refrigerant is circulated through the inner heat exchanger and heated, the internal temperature suddenly changes for some reason during the defrost operation, and the difference from the set temperature exceeds the specified value. Even if there is, a part of the hot gas refrigerant from the compressor is introduced into the internal heat exchanger just by opening the high pressure on-off valve, and the heating operation can be performed while continuing the defrost operation. Therefore, the internal temperature does not drop below the specified value during the defrost operation, the temperature controllability can be maintained even during the defrost, and the quality of the cargo can be ensured, and the reliability of the transport refrigeration unit can be improved.

さらに、本発明の輸送用冷凍ユニットは、上述のいずれかの輸送用冷凍ユニットにおいて、前記庫外側熱交換器を凝縮器として機能させた冷却運転時、凝縮能力が過大となって高圧圧力が下がり過ぎたとき、複数台の前記庫外側熱交換器の運転台数を減らすことにより凝縮能力を調整する構成としたことを特徴とする。   Furthermore, in the transport refrigeration unit of the present invention, in any one of the transport refrigeration units described above, during the cooling operation in which the outside heat exchanger functions as a condenser, the condensation capacity becomes excessive and the high pressure decreases. When it passes, it is set as the structure which adjusts a condensation capacity | capacitance by reducing the number of operation | movement of a plurality of said outside heat exchangers.

本発明によれば、庫外側熱交換器を凝縮器として機能させた冷却運転時、凝縮能力が過大となって高圧圧力が下がり過ぎたとき、複数台の庫外側熱交換器の運転台数を減らすことにより凝縮能力を調整する構成としているため、例えば外気温が比較的低い条件下で冷却運転を行っている場合、複数台の庫外側熱交換器を全て使用して運転すると、庫内側熱交換器の熱交換量に対して、凝縮能力が過多となって高圧側回路の圧力が低下し、高低圧の差圧が小さくなり過ぎて膨張弁の流量調整可能範囲を逸脱することにより、圧縮機の吸入圧力異常の原因となることがあるが、複数台の庫外側熱交換器の運転台数を減らすことにより凝縮能力を調整し、高低圧の差圧を適正範囲に維持することができる。従って、庫内側熱交換器での熱交換量に対応して庫外側熱交換器側の能力を適正に調整し、運転バランスを保つことにより輸送用冷凍ユニットを安定的に運転することができる。   According to the present invention, during the cooling operation in which the outside heat exchanger functions as a condenser, when the condensing capacity is excessive and the high pressure is excessively lowered, the number of operating units of the plurality of outside heat exchangers is reduced. For example, when the cooling operation is performed under a condition where the outside air temperature is relatively low, if the operation is performed using all the plurality of outside heat exchangers, the inside heat exchange is performed. Compressor capacity is excessive due to excessive heat condensing capacity and the pressure in the high-pressure side circuit decreases, causing the differential pressure between the high and low pressures to become too small and deviate from the flow controllable range of the expansion valve. However, it is possible to adjust the condensation capacity by reducing the number of operating external heat exchangers and maintain the high / low pressure differential pressure within an appropriate range. Therefore, the transport refrigeration unit can be stably operated by appropriately adjusting the capacity on the outside heat exchanger side corresponding to the heat exchange amount in the inside heat exchanger and maintaining the operation balance.

さらに、本発明の輸送用冷凍ユニットは、上述のいずれかの輸送用冷凍ユニットにおいて、複数台の前記庫外側熱交換器を、それぞれ異なる能力の熱交換器としたことを特徴とする。   Furthermore, the transport refrigeration unit according to the present invention is characterized in that, in any of the transport refrigeration units described above, the plurality of outside heat exchangers are heat exchangers having different capacities.

本発明によれば、複数台の庫外側熱交換器を、それぞれ異なる能力の熱交換器としているため、庫外側熱交換器での凝縮能力を複数台の熱交換器の稼動選択により、その台数よりも多い多段階に調整することが可能となる。従って、様々な外気温度や庫内設定温度条件下において、それに対応して凝縮能力を細かく調整し、高低圧差を適正範囲に保つことによって、より安定した運転を行うことができ、輸送用冷凍ユニットの信頼性を向上することができる。   According to the present invention, since the plurality of outside heat exchangers are heat exchangers having different capacities, the condensation capacity in the outside heat exchanger is determined by selecting the operation of the plurality of heat exchangers. It is possible to adjust in many more stages. Therefore, under various outdoor air temperature and internal set temperature conditions, the condensing capacity is finely adjusted to maintain the high / low pressure difference within the appropriate range, so that more stable operation can be performed. Reliability can be improved.

また、本発明にかかる輸送用冷凍ユニットは、圧縮機と、前記圧縮機の吐出側に一端側が各々高圧ガス配管および高圧開閉弁を介して接続された複数台の熱交換器と、前記複数台の熱交換器の一端側を各々前記圧縮機の吸入側に低圧開閉弁を介して接続する低圧ガス配管と、前記複数台の熱交換器の他端側に各々接続された開閉弁機能付き減圧手段と逆止弁との並列回路の他端側同士を互いに連通接続している液側配管と、を備え、前記複数台の熱交換器の中の少なくとも2台の熱交換器を庫外側熱交換器として保冷庫外に並列に配設し、少なくとも1台の熱交換器を庫内側熱交換器として保冷庫内に配設するとともに、庫内温度が設定温度に到達後のサーモオフ時、前記圧縮機の運転時間が規定時間以下の場合、前記庫内側熱交換器に対する冷媒の流通を停止し、複数台の前記庫外側熱交換器の1台を凝縮器、他の1台を蒸発器として前記圧縮機を運転時間が前記規定時間を超えるまで継続運転する構成としたことを特徴とする。   The transport refrigeration unit according to the present invention includes a compressor, a plurality of heat exchangers each having one end connected to a discharge side of the compressor via a high-pressure gas pipe and a high-pressure on-off valve, and the plurality of units. A low-pressure gas pipe connecting one end side of each of the heat exchangers to the suction side of the compressor via a low-pressure on-off valve, and a pressure-reducing valve with an on-off valve function connected to the other end side of the plurality of heat exchangers Liquid-side piping connecting the other ends of the parallel circuit of the means and the check valve to each other, and at least two of the plurality of heat exchangers are connected to the outside heat. As an exchanger, it is arranged in parallel outside the cold storage, and at least one heat exchanger is arranged in the cold storage as an internal heat exchanger, and when the thermostat is turned off after the internal temperature reaches the set temperature, If the compressor operating time is less than the specified time, The circulation of the refrigerant is stopped, and the compressor is continuously operated until the operation time exceeds the specified time by using one of the plurality of outside heat exchangers as a condenser and the other as an evaporator. It is characterized by that.

本発明によれば、圧縮機の吐出側に一端側が各々高圧ガス配管および高圧開閉弁を介して接続された複数台の熱交換器の一端側を、各々低圧ガス配管および低圧開閉弁を介して圧縮機の吸入側に接続するとともに、その複数台の熱交換器の他端側に各々開閉弁機能付き減圧手段と逆止弁との並列回路を備えた液側配管を接続し、該液側配管の他端側同士を互いに連通接続することにより冷媒回路を構成としており、その複数台の熱交換器の中の少なくとも2台の熱交換器を庫外側熱交換器として保冷庫外に並列に配設し、少なくとも1台の熱交換器を庫内側熱交換器として保冷庫内に配設した構成としているため、庫外側の2台の庫外側熱交換器を凝縮器として機能させ、庫内側の1台の庫内側熱交換器を蒸発器として機能させることにより、庫内を冷却する冷却運転を行い、庫内側の1台の庫内側熱交換器を凝縮器として機能させ、庫外側の2台の庫外側熱交換器を蒸発器として機能させることにより、庫内を加温するヒートポンプ加温運転を行うことができる。従って、ヒートポンプ方式による高能力で効率のよい加温運転を行うことができる。一方、冷却運転や加温運転により庫内温度が設定温度に到達後は、通常サーモオン/オフを繰り返す。この場合、短時間でサーモオン/オフすると、圧縮機が頻繁に発停を繰り返すため、故障や寿命低下の要因となるが、サーモオフ時、圧縮機の運転時間が規定時間以下の場合、庫内側熱交換器に対する冷媒の流通を停止し、複数台の庫外側熱交換器の1台を凝縮器、他の1台を蒸発器として圧縮機を運転時間が規定時間を超えるまで継続運転する構成としているため、例えば複数の室(庫内)間での温度干渉により短時間にサーモオン/オフを繰り返すような場合でも、サーモオフ時に、圧縮機の運転時間が規定時間を越えるまで継続運転し、複数台の庫外側熱交換器の1台を凝縮器、他の1台を蒸発器として冷凍ユニットを空運転することにより、圧縮機の頻繁な発停を防止することができる。従って、圧縮機の発停頻度を抑制し、その信頼性を確保することができる。   According to the present invention, one end side of a plurality of heat exchangers, one end side of which is connected to the discharge side of the compressor via a high-pressure gas pipe and a high-pressure on-off valve, respectively, is connected via a low-pressure gas pipe and a low-pressure on-off valve, respectively. Connected to the suction side of the compressor, and connected to the other end of each of the plurality of heat exchangers is a liquid side pipe provided with a parallel circuit of a pressure reducing means with an on-off valve function and a check valve. A refrigerant circuit is configured by connecting the other end sides of the pipes to each other, and at least two of the heat exchangers are arranged in parallel outside the cool box as external storage heat exchangers. Since at least one heat exchanger is arranged in the cold storage as an internal heat exchanger, the two external heat exchangers outside the storage function as condensers, By functioning one internal heat exchanger as an evaporator By performing a cooling operation to cool the inside of the cabinet, one inside heat exchanger inside the warehouse functions as a condenser, and two outside heat exchangers outside the warehouse function as evaporators, It is possible to perform a heat pump heating operation for heating Therefore, it is possible to perform a high-performance and efficient heating operation by the heat pump method. On the other hand, after the inside temperature reaches the set temperature by the cooling operation or the heating operation, the thermo-ON / OFF is normally repeated. In this case, if the thermo is turned on / off in a short time, the compressor will frequently start and stop, which may cause failure and reduced life. However, if the compressor's operating time is less than the specified time when the thermo is off, The refrigerant flow to the exchanger is stopped, and the compressor is continuously operated until the operating time exceeds a specified time by using one of the plurality of outside heat exchangers as a condenser and the other as an evaporator. Therefore, for example, even when thermo-ON / OFF is repeated in a short time due to temperature interference between multiple chambers (inside the room), when the thermo-off is performed, the compressor is continuously operated until the operating time of the compressor exceeds a specified time. Frequent start / stop of the compressor can be prevented by idling the refrigeration unit using one of the outside heat exchangers as a condenser and the other as an evaporator. Therefore, the start / stop frequency of the compressor can be suppressed and its reliability can be ensured.

本発明によると、庫外側の2台の庫外側熱交換器を凝縮器として機能させ、庫内側の1台の庫内側熱交換器を蒸発器として機能させることにより、庫内を冷却する冷却運転を行い、庫内側の1台の庫内側熱交換器を凝縮器として機能させ、庫外側の2台の庫外側熱交換器を蒸発器として機能させることにより、庫内を加温するヒートポンプ加温運転を行うことができるため、ヒートポンプ方式による高能力で効率のよい加温運転を行うことができる一方、圧縮機から吐出されたホットガス冷媒の全てを着霜した庫外側熱交換器の少なくとも1台に供給し、他の1台の庫外側熱交換器を蒸発器として機能させ、その蒸発器によって吸熱をしながらデフロスト運転することができるため、庫内空気から吸熱を行うことなく、ヒートポンプの全能力(全冷媒)を用いて庫外側熱交換器のデフロストを行うことができ、デフロスト運転時間を短縮化することができるとともに、デフロスト運転中における庫内温度の変化を小さくすることができる。   According to the present invention, the cooling operation for cooling the interior by causing the two outside heat exchangers on the outside of the warehouse to function as condensers, and the one inside heat exchanger on the inside of the warehouse to function as an evaporator. Heat pump heating that heats the inside of the warehouse by causing one inside heat exchanger inside the warehouse to function as a condenser and two outside heat exchangers outside the warehouse to function as evaporators Since the operation can be performed, a high-capacity and efficient heating operation by a heat pump method can be performed, while at least one of the outside heat exchangers that has frosted all of the hot gas refrigerant discharged from the compressor. Since it can be supplied to the stand and the other one outside heat exchanger functions as an evaporator, and defrost operation can be performed while absorbing heat by the evaporator, the heat pump does not absorb heat from the inside air. Full capacity All refrigerant) can perform defrosting of the refrigerator outer heat exchanger with, it is possible to shorten the defrosting operation time, it is possible to reduce the change in the internal temperature during the defrosting operation.

本発明によると、短時間にサーモオン/オフを繰り返すような場合でも、サーモオフ時に、圧縮機の運転時間が規定時間を越えるまで継続運転し、複数台の庫外側熱交換器の1台を凝縮器、他の1台を蒸発器として冷凍ユニットを空運転することにより、圧縮機の頻繁な発停を防止することができるため、圧縮機の発停頻度を抑制し、その信頼性を確保することができる。   According to the present invention, even when thermo-ON / OFF is repeated in a short time, when the thermo-off is performed, the compressor is continuously operated until the operating time of the compressor exceeds the specified time, and one of the plurality of outside heat exchangers is connected to the condenser. By operating the refrigeration unit idly with the other one as an evaporator, frequent start / stop of the compressor can be prevented, so the start / stop frequency of the compressor is suppressed and its reliability is ensured. Can do.

本発明の第1実施形態に係る輸送用冷凍ユニットの冷媒回路図である。It is a refrigerant circuit figure of the refrigerating unit for transportation concerning a 1st embodiment of the present invention. 上記輸送用冷凍ユニットの庫外熱交換器(A)側のデフロスト運転時の冷媒回路構成図である。It is a refrigerant circuit block diagram at the time of the defrost driving | operation on the external heat exchanger (A) side of the said transport refrigeration unit. 上記輸送用冷凍ユニットの庫外熱交換器(B)側のデフロスト運転時の冷媒回路構成図である。It is a refrigerant circuit block diagram at the time of the defrost driving | operation on the external heat exchanger (B) side of the said transport refrigeration unit. 上記輸送用冷凍ユニットのデフロスト運転時の制御フローチャート図である。It is a control flowchart figure at the time of the defrost driving | operation of the said transport refrigeration unit. 本発明の第2実施形態に係る輸送用冷凍ユニットの冷却運転時における凝縮能力調整時の冷媒回路構成図である。It is a refrigerant circuit block diagram at the time of condensation capacity adjustment at the time of the cooling operation of the transport refrigeration unit concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係る輸送用冷凍ユニットの圧縮機発停頻度低減制御時のフローチャート図である。It is a flowchart figure at the time of the compressor start / stop frequency reduction control of the transport refrigeration unit according to the third embodiment of the present invention.

以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
以下、本発明の第1実施形態について、図1ないし図4を用いて説明する。
図1には、本発明の第1実施形態に係る輸送用冷凍ユニットの冷媒回路図が示され、図2および3には、そのデフロスト運転時の冷媒回路構成図、図4には、デフロスト運転時の制御フローチャート図が示されている。
本実施形態においては、冷凍車両等の荷台側に搭載されているバンボディと称される保冷庫内を冷却または加温する一体型の輸送用冷凍ユニット1に適用した例について説明するが、必ずしも一体型の輸送用冷凍ユニットに限定されるものではなく、輸送用冷凍ユニット全般について広く適用できることはもちろんである。
Embodiments according to the present invention will be described below with reference to the drawings.
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
FIG. 1 is a refrigerant circuit diagram of the transport refrigeration unit according to the first embodiment of the present invention. FIGS. 2 and 3 are refrigerant circuit configuration diagrams during the defrost operation, and FIG. 4 is a defrost operation. A control flowchart diagram of the hour is shown.
In this embodiment, an example will be described in which the present invention is applied to an integrated transport refrigeration unit 1 that cools or heats the inside of a cool box called a van body mounted on the loading platform side of a refrigerated vehicle or the like. Of course, the present invention is not limited to the body-type transport refrigeration unit, and can be widely applied to all transport refrigeration units.

この輸送用冷凍ユニット1の冷媒回路2は、図1に示されるように、圧縮機3(ここでは電動圧縮機とする)と、圧縮機3の吐出配管4に接続された高圧ガスポート5と、高圧ガスポート5から分岐された複数本(本例では、3本)の高圧ガス配管6A,6B,6Cと、各高圧ガス配管6A,6B,6Cに設けられた高圧開閉弁(電磁弁)7A,7B,7Cと、各高圧ガス配管6A,6B,6Cに一端側が接続された複数台の熱交換器8A,8B,8Cとを備えている。   As shown in FIG. 1, the refrigerant circuit 2 of the transport refrigeration unit 1 includes a compressor 3 (here, an electric compressor), and a high-pressure gas port 5 connected to a discharge pipe 4 of the compressor 3. , A plurality (three in this example) of high-pressure gas pipes 6A, 6B, 6C branched from the high-pressure gas port 5, and high-pressure on-off valves (solenoid valves) provided in the respective high-pressure gas pipes 6A, 6B, 6C 7A, 7B, 7C, and a plurality of heat exchangers 8A, 8B, 8C having one end connected to each of the high-pressure gas pipes 6A, 6B, 6C.

この複数台の熱交換器8A,8B,8Cの中の2台の熱交換器8A,8Bは、それぞれ庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bとして、保冷庫の外部、すなわち庫外に配設されるものであり、他の1台は、庫内側熱交換器8Cとして保冷庫内に配設されるものである。   Two of the heat exchangers 8A, 8B, and 8C among the plurality of heat exchangers 8A, 8B, and 8C are respectively an outside heat exchanger (A) 8A and an outside heat exchanger (B) 8B. The other one is arranged in the cold storage as the inside heat exchanger 8C.

また、上記庫外側熱交換器(A)8A、庫外側熱交換器(B)8Bおよび庫内側熱交換器8Cとされる複数台の熱交換器8A,8B,8Cの一端側には、さらに各高圧ガス配管6A,6B,6Cから分岐するように接続された複数本(3本)の低圧ガス配管9A,9B,9Cと、その低圧ガス配管9A,9B,9C中に設けられた低圧開閉弁(電磁弁)10A,10B,10Cと、各低圧ガス配管9A,9B,9Cが接続された低圧ガスポート11とが具備されており、低圧ガスポート11が吸入配管12を介して圧縮機3に接続された構成とされている。   Further, at one end side of the plurality of heat exchangers 8A, 8B, 8C, which are the outside heat exchanger (A) 8A, the outside heat exchanger (B) 8B, and the inside heat exchanger 8C, A plurality of (three) low-pressure gas pipes 9A, 9B, 9C connected so as to branch off from the respective high-pressure gas pipes 6A, 6B, 6C, and low-pressure opening / closing provided in the low-pressure gas pipes 9A, 9B, 9C Valves (solenoid valves) 10A, 10B, and 10C and low-pressure gas ports 11 to which the low-pressure gas pipes 9A, 9B, and 9C are connected are provided. The low-pressure gas port 11 is connected to the compressor 3 via the suction pipe 12. It is configured to be connected to.

同様に庫外側熱交換器(A)8A、庫外側熱交換器(B)8Bおよび庫内側熱交換器8Cの他端側には、逆止弁14A,14B,14Cに対して各々膨張弁15A,15B,15Cおよび開閉弁(電磁弁)16A,16B,16Cの直列回路を並列に接続して構成した並列回路13A,13B,13Cの一端が接続され、その並列回路13A,13B,13Cの他端を高圧液ポート17に接続することによって、互いが連通接続される液側配管18A,18B,18Cを設けことで、閉サイクルのヒートポンプ式の冷媒回路2を構成している。   Similarly, on the other end side of the outside heat exchanger (A) 8A, the outside heat exchanger (B) 8B, and the inside heat exchanger 8C, an expansion valve 15A is provided for each of the check valves 14A, 14B, and 14C. , 15B, 15C and open / close valves (solenoid valves) 16A, 16B, 16C are connected in parallel to one end of parallel circuits 13A, 13B, 13C, and other parallel circuits 13A, 13B, 13C are connected. By connecting the ends to the high-pressure liquid port 17, liquid-side pipes 18 </ b> A, 18 </ b> B, and 18 </ b> C that are connected in communication with each other are provided, thereby forming a closed-cycle heat pump refrigerant circuit 2.

なお、上記膨張弁15A,15B,15Cと開閉弁(電磁弁)16A,16B,16Cとの直列回路を、本発明では、開閉弁機能付き減圧手段と称している。ここでは、別々の膨張弁と開閉弁(電磁弁)とを直列に接続した構成としているが、一体構成とした弁としてもよく、あるいは開閉弁機能を有する電動膨張弁により代替してもよく、これらを包含する意味で「開閉弁機能付き減圧手段」と総称するものである。   In the present invention, the series circuit of the expansion valves 15A, 15B, 15C and the on-off valves (solenoid valves) 16A, 16B, 16C is referred to as pressure reducing means with on-off valve function. Here, a separate expansion valve and an on-off valve (solenoid valve) are connected in series, but may be an integrated valve, or may be replaced by an electric expansion valve having an on-off valve function, In the meaning including these, it is a collective term of “a pressure reducing means with an on-off valve function”.

一方、上記一体型輸送用冷凍ユニット1では、庫内側熱交換器8Cが庫内に面するようにユニット側の庫内空気循環路中に配設され、その他の機器類が庫外に架装されるユニット本体側に配設されることになる。庫内側熱交換器8Cには、庫内側ファン19が付設されることにより、庫内空気が庫内側熱交換器8Cを通して循環可能とされ、また、庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bに対しては、それぞれ庫外側ファン20A,20Bが付設されることにより、庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bに対して外気を送風する独立した送風系が構成されている。   On the other hand, in the integrated transport refrigeration unit 1, the internal heat exchanger 8C is disposed in the internal air circulation path on the unit side so that the internal heat exchanger 8C faces the internal, and other equipment is mounted outside the internal storage. It will be arranged on the unit main body side. The internal heat exchanger 8C is provided with an internal fan 19 so that the internal air can be circulated through the internal heat exchanger 8C, and the external heat exchanger (A) 8A and the external side With respect to the heat exchanger (B) 8B, the outside fans 20A and 20B are respectively attached, so that outside air is supplied to the outside heat exchanger (A) 8A and the outside heat exchanger (B) 8B. An independent blower system for blowing air is configured.

また、上記冷媒回路2において、高圧ガスポート5、低圧ガスポート11および高圧液ポート17は、それぞれ吐出配管4と各高圧ガス配管6A,6B,6C、吸入配管12と各低圧ガス配管9A,9B,9C並びに各液側配管18A,18B,18C同士を直接接続とすることにより省略した構成としてもよく、また、高圧液ポート17は、レシーバによって代替してもよい。   In the refrigerant circuit 2, the high pressure gas port 5, the low pressure gas port 11 and the high pressure liquid port 17 are respectively connected to the discharge pipe 4 and the high pressure gas pipes 6A, 6B and 6C, and the suction pipe 12 and the low pressure gas pipes 9A and 9B. 9C and the liquid side pipes 18A, 18B, 18C may be omitted, and the high pressure liquid port 17 may be replaced by a receiver.

上記したヒートポンプ式冷媒回路2を備えた輸送用冷凍ユニット1において、冷却運転およびヒートポンプ加温運転は、以下によって行われる。
[冷却運転]
冷却運転は、庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bをそれぞれ凝縮器、庫内側熱交換器8Cを蒸発器として機能させて行う運転となる。この場合、高圧ガス配管6A,6B,6C中の高圧開閉弁7A,7Bが開、高圧開閉弁7Cが閉、低圧ガス配管9A,9B,9C中の低圧開閉弁10A,10Bが閉、低圧開閉弁10Cが開、液側配管18A,18B,18Cの並列回路13A,13B,13C中の開閉弁16A,16Bが閉、開閉弁16Cが開とされることになる。
In the transport refrigeration unit 1 including the heat pump refrigerant circuit 2 described above, the cooling operation and the heat pump heating operation are performed as follows.
[Cooling operation]
The cooling operation is an operation performed by causing the outside heat exchanger (A) 8A and the outside heat exchanger (B) 8B to function as a condenser and the inside heat exchanger 8C as an evaporator, respectively. In this case, the high-pressure on-off valves 7A and 7B in the high-pressure gas pipes 6A, 6B and 6C are opened, the high-pressure on-off valve 7C is closed, and the low-pressure on-off valves 10A and 10B in the low-pressure gas pipes 9A, 9B and 9C are closed. The valve 10C is opened, the on-off valves 16A, 16B in the parallel circuits 13A, 13B, 13C of the liquid side pipes 18A, 18B, 18C are closed, and the on-off valve 16C is opened.

これによって、圧縮機4から吐出された高温高圧の冷媒ガスは、吐出配管4、高圧ガスポート5、高圧ガス配管6A,6Bを経て庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bに導かれ、凝縮液化された後、並列回路13A,13Bの逆止弁14A,14B、液側配管18A,18Bを経て高圧液ポート17に導かれる。高圧液ポート17で合流された高圧液冷媒は、液側配管18C、並列回路13C中の開閉弁16Cおよび膨張弁15Cを経て断熱膨張された後、庫内側熱交換器8Cに導かれ、庫内空気を冷却することにより蒸発し、低圧開閉弁10C、低圧ガス配管9C、低圧ガスポート11、吸入配管12を経て圧縮機3の戻るサイクル内を循環する。これによって庫内が冷却される。   As a result, the high-temperature and high-pressure refrigerant gas discharged from the compressor 4 passes through the discharge pipe 4, the high-pressure gas port 5, and the high-pressure gas pipes 6A and 6B, and the outside heat exchanger (A) 8A and the outside heat exchanger ( B) After being led to 8B and condensed, it is led to the high pressure liquid port 17 through the check valves 14A and 14B and the liquid side pipes 18A and 18B of the parallel circuits 13A and 13B. The high-pressure liquid refrigerant merged at the high-pressure liquid port 17 is adiabatically expanded through the liquid side pipe 18C, the on-off valve 16C and the expansion valve 15C in the parallel circuit 13C, and then led to the internal heat exchanger 8C, The air evaporates by cooling and circulates in the return cycle of the compressor 3 through the low-pressure on-off valve 10C, the low-pressure gas pipe 9C, the low-pressure gas port 11, and the suction pipe 12. As a result, the interior is cooled.

[ヒートポンプ加温運転]
ヒートポンプ加温運転は、庫内側熱交換器8Cを凝縮器、庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bをそれぞれ蒸発器として機能させて行う運転となる。この場合、高圧ガス配管6A,6B,6C中の高圧開閉弁7A,7Bが閉、高圧開閉弁7Cが開、低圧ガス配管9A,9B,9C中の低圧開閉弁10A,10Bが開、低圧開閉弁10Cが閉、液側配管18A,18B,18Cの並列回路13A,13B,13C中の開閉弁16A,16Bが開、開閉弁16Cが閉とされることになる。
[Heat pump heating operation]
The heat pump heating operation is an operation performed by causing the inside heat exchanger 8C to function as a condenser, and the outside heat exchanger (A) 8A and the outside heat exchanger (B) 8B to function as an evaporator, respectively. In this case, the high pressure on / off valves 7A and 7B in the high pressure gas pipes 6A, 6B and 6C are closed, the high pressure on / off valve 7C is opened, the low pressure on / off valves 10A and 10B in the low pressure gas pipes 9A, 9B and 9C are opened, and the low pressure on / off The valve 10C is closed, the on-off valves 16A, 16B in the parallel circuits 13A, 13B, 13C of the liquid side pipes 18A, 18B, 18C are opened, and the on-off valve 16C is closed.

これによって、圧縮機4から吐出された高温高圧の冷媒ガスは、吐出配管4、高圧ガスポート5、高圧ガス配管6Cを経て庫内側熱交換器8Cに導かれ、放熱して庫内の加温に供されて凝縮液化した後、並列回路13Cの逆止弁14C、液側配管18Cを経て高圧液ポート17に導かれる。この高圧液ポート17に導入された高圧液冷媒は、液側配管18A,18B、並列回路13A,13B中の開閉弁16A,16Bおよび膨張弁15A,15Bを経て断熱膨張された後、庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bに導かれ、外気から吸熱して蒸発ガス化し、低圧開閉弁10A,10B、低圧ガス配管9A,9B、低圧ガスポート11、吸入配管12を経て圧縮機3の戻るサイクル内を循環する。これによって庫内が加温される。   As a result, the high-temperature and high-pressure refrigerant gas discharged from the compressor 4 is guided to the internal heat exchanger 8C through the discharge pipe 4, the high-pressure gas port 5, and the high-pressure gas pipe 6C, and radiates heat to warm the interior. Then, the liquid is condensed and then led to the high pressure liquid port 17 through the check valve 14C and the liquid side pipe 18C of the parallel circuit 13C. The high-pressure liquid refrigerant introduced into the high-pressure liquid port 17 is adiabatically expanded via the liquid side pipes 18A and 18B, the on-off valves 16A and 16B and the expansion valves 15A and 15B in the parallel circuits 13A and 13B, and then the outside heat It is led to the exchanger (A) 8A and the outside heat exchanger (B) 8B and absorbs heat from the outside air to be evaporated and gasified, and the low pressure on-off valves 10A and 10B, the low pressure gas pipes 9A and 9B, the low pressure gas port 11 and the suction pipe 12 and circulates in the return cycle of the compressor 3. As a result, the interior is heated.

このヒートポンプ加温運転時、外気温が低いと、蒸発器として機能している庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bの表面に着霜し、能力が低下する。このため、着霜が検知されたとき、除霜(デフロスト)する必要がある。本実施形態では、庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bをデフロストするため、以下の構成を採用している。   During this heat pump heating operation, if the outside air temperature is low, frost is formed on the surfaces of the outside heat exchanger (A) 8A and the outside heat exchanger (B) 8B functioning as an evaporator, and the capacity is reduced. . For this reason, it is necessary to defrost (defrost) when frost formation is detected. In this embodiment, in order to defrost the outside heat exchanger (A) 8A and the outside heat exchanger (B) 8B, the following configuration is adopted.

庫外側熱交換器(A)8A、庫外側熱交換器(B)8Bへの着霜が検知されたとき、
(1)高圧開閉弁7Cおよび並列回路13Cの開閉弁16Cを閉とし、庫内側熱交換器8Cへの冷媒流通を停止して加温運転を中断する。
(2)2台の庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bの一方を凝縮器として機能させ、他方を蒸発器として機能させることにより、順次デフロストする。
When frost formation on the outside heat exchanger (A) 8A and the outside heat exchanger (B) 8B is detected,
(1) The high pressure on-off valve 7C and the on-off valve 16C of the parallel circuit 13C are closed, the refrigerant flow to the internal heat exchanger 8C is stopped, and the heating operation is interrupted.
(2) Defrosting is sequentially performed by causing one of the two outside heat exchangers (A) 8A and the outside heat exchanger (B) 8B to function as a condenser and the other as an evaporator.

つまり、2台の庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bに対し、図2に示されるように、まず高圧ガス配管6A中の高圧開閉弁7A、並列回路13B中の開閉弁16Bおよび低圧ガス配管9B中の低圧開閉弁10Bを開、高圧ガス配管6B中の高圧開閉弁7B、並列回路13A中の開閉弁16Aおよび低圧ガス配管9A中の低圧開閉弁10Aを閉とし、圧縮機3から吐出されたホットガス冷媒を庫外側熱交換器(A)8Aに導入して放熱させ、庫外側熱交換器(A)8Aの霜を溶かす。   That is, as shown in FIG. 2, for the two outside heat exchangers (A) 8A and the outside heat exchanger (B) 8B, first, the high pressure on-off valve 7A and the parallel circuit 13B in the high pressure gas pipe 6A are used. The on-off valve 16B in the inside and the low-pressure on-off valve 10B in the low-pressure gas pipe 9B are opened, the high-pressure on-off valve 7B in the high-pressure gas pipe 6B, the on-off valve 16A in the parallel circuit 13A, and the low-pressure on-off valve 10A in the low-pressure gas pipe 9A. The hot gas refrigerant discharged from the compressor 3 is introduced into the external heat exchanger (A) 8A to dissipate heat, and the frost in the external heat exchanger (A) 8A is melted.

庫外側熱交換器(A)8Aの除霜に供されることにより凝縮液化した冷媒を、並列回路13B中の膨張弁15Bにより断熱膨張させて庫外側熱交換器(B)8Bに導入し、外気から吸熱して蒸発させた後、低圧ガス配管9A、低圧ガスポート11、吸入配管12を経て圧縮機3に吸入するサイクルを循環させる。このように、庫外に配設されている複数台の庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bの一方を凝縮器、他方を蒸発器として冷凍サイクルを構成し、着霜した庫外側熱交換器(A)8Aを除霜できる構成としている。この際、庫外側熱交換器(A)8A用の庫外側ファン20Aは停止、庫外側熱交換器(B)8B用の庫外側ファン20Bは運転されるようになっている。   The refrigerant condensed and liquefied by being subjected to defrosting of the outside heat exchanger (A) 8A is adiabatically expanded by the expansion valve 15B in the parallel circuit 13B and introduced into the outside heat exchanger (B) 8B. After the heat is absorbed from the outside air and evaporated, the cycle of sucking into the compressor 3 through the low pressure gas pipe 9A, the low pressure gas port 11 and the suction pipe 12 is circulated. In this way, a refrigeration cycle is configured with one of the plurality of outside heat exchangers (A) 8A and outside heat exchanger (B) 8B disposed outside the refrigerator as a condenser and the other as an evaporator. The frosted outside heat exchanger (A) 8A can be defrosted. At this time, the outside fan 20A for the outside heat exchanger (A) 8A is stopped, and the outside fan 20B for the outside heat exchanger (B) 8B is operated.

庫外側熱交換器(A)8Aの除霜が完了すると、図3に示されるように、高圧ガス配管6B中の高圧開閉弁7B、並列回路13A中の開閉弁16Aおよび低圧ガス配管9A中の低圧開閉弁10Aを開、高圧ガス配管6A中の高圧開閉弁7A、並列回路13B中の開閉弁16Bおよび低圧ガス配管9B中の低圧開閉弁10Bを閉とし、圧縮機3から吐出されたホットガス冷媒を庫外側熱交換器(B)8Bに導入して放熱させることにより、庫外側熱交換器(B)8Bの除霜を行う構成としている。この場合、凝縮器となる庫外側熱交換器(B)8B用の庫外側ファン20Bは停止、蒸発器となる庫外側熱交換器(A)8A用の庫外側ファン20Aは運転されることになる。   When the defrosting of the outside heat exchanger (A) 8A is completed, as shown in FIG. 3, the high-pressure on-off valve 7B in the high-pressure gas pipe 6B, the on-off valve 16A in the parallel circuit 13A, and the low-pressure gas pipe 9A Hot gas discharged from the compressor 3 is opened by opening the low-pressure on-off valve 10A, closing the high-pressure on-off valve 7A in the high-pressure gas pipe 6A, the on-off valve 16B in the parallel circuit 13B, and the low-pressure on-off valve 10B in the low-pressure gas pipe 9B. A refrigerant is introduced into the outside heat exchanger (B) 8B to dissipate heat, thereby defrosting the outside heat exchanger (B) 8B. In this case, the outside fan 20B for the outside heat exchanger (B) 8B serving as a condenser is stopped, and the outside fan 20A for the outside heat exchanger (A) 8A serving as an evaporator is operated. Become.

図4は、上記したデフロスト運転時の制御フローチャートを示すものである。
制御が開始されると、ステップS1において、庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bがデフロスト開始条件を満たすか否かが判定される。満たしていなければ、NOと判定されて終了に移行する。一方、YESと判定されると、ステップS2に進み、ここで庫外側熱交換器(A)8Aをデフロストするための回路(サイクル)に切換えられる。この切換えは、上記(2)の切換えであり、それぞれ開閉弁(電磁弁)および庫外側ファンが上記の通り、開閉および運転停止されることになる。
FIG. 4 shows a control flowchart during the above-described defrost operation.
When the control is started, in step S1, it is determined whether or not the outside heat exchanger (A) 8A and the outside heat exchanger (B) 8B satisfy the defrost start condition. If not satisfied, it is determined as NO and the process proceeds to the end. On the other hand, if it determines with YES, it will progress to step S2 and will be switched to the circuit (cycle) for defrosting the outside heat exchanger (A) 8A here. This switching is the switching of (2) above, and the on-off valve (solenoid valve) and the outside fan are opened / closed and stopped as described above.

ステップS2での切換え動作が完了すると、ステップS3に進み、ここで庫内側熱交換器8Cへの冷媒供給が停止される。これは上記(1)の制御であり、庫内の加温運転が停止されることになる。ステップS3で冷媒の供給停止処理を終えると、ステップS4に移行し、庫外側熱交換器(A)8Aのデフロストが終了したか否かの判定が行われる。デフロストが終了したか否かは、庫外側熱交換器の温度を検出する等、公知の方法で判断すればよい。   When the switching operation in step S2 is completed, the process proceeds to step S3, where the supply of refrigerant to the internal heat exchanger 8C is stopped. This is the control of (1) above, and the heating operation in the cabinet is stopped. When the supply stop process of the refrigerant is completed in step S3, the process proceeds to step S4, and it is determined whether or not the defrosting of the outside heat exchanger (A) 8A is completed. Whether or not the defrosting is completed may be determined by a known method such as detecting the temperature of the outside heat exchanger.

ステップS4で庫外側熱交換器(A)8Aのデフロスト終了が判定されると、ステップS5に移行し、引き続き、庫外側熱交換器(B)8Bの除霜を行うべく、ステップS2に準じた各開閉弁(電磁弁)および各庫外側ファンの開閉および運転停止の切換え動作が実行される。これによって、庫外側熱交換器(B)8Bのデフロストが開始されると、ステップS6に進み、庫外側熱交換器(B)8Bのデフロストが終了したか否かの判定が行われる。ステップS6でデフロスト終了条件が満たされていると判定されると、ステップS7に進み、庫内温度調整運転が再開されることになる。   When it is determined in step S4 that the defrosting of the outside heat exchanger (A) 8A has been completed, the process proceeds to step S5, and subsequently, in accordance with step S2 in order to defrost the outside heat exchanger (B) 8B. A switching operation of opening / closing and stopping the operation of each on-off valve (solenoid valve) and each outside fan is executed. Thus, when defrosting of the outside heat exchanger (B) 8B is started, the process proceeds to step S6, and it is determined whether or not the defrosting of the outside heat exchanger (B) 8B is finished. If it is determined in step S6 that the defrost end condition is satisfied, the process proceeds to step S7, and the internal temperature adjustment operation is resumed.

以上に説明した通り、本実施形態では、ヒートポンプ式の冷媒回路2において、庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bを複数台(2台)並列に配設した構成としており、その複数台の庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bを蒸発器、庫内側熱交換器8Cを凝縮器として機能させることにより、庫内をヒートポンプ加温運転することができる。従って、ヒートポンプ方式による高能力で効率のよい加温運転を行うことができる。   As described above, in the present embodiment, in the heat pump type refrigerant circuit 2, the outside heat exchanger (A) 8A and the outside heat exchanger (B) 8B are arranged in parallel (two units). The inside heat exchanger (A) 8A and the outside heat exchanger (B) 8B function as an evaporator, and the inside heat exchanger 8C functions as a condenser, so that the inside of the warehouse is a heat pump. Heating operation is possible. Therefore, it is possible to perform a high-performance and efficient heating operation by the heat pump method.

一方、低外気温下でのヒートポンプ加温運転によって、庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bに着霜した場合、庫内側熱交換器8Cへの冷媒の供給を停止して加温運転を中断した状態で、複数台の庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bの一方を凝縮器、他方を蒸発器としてデフロストサイクルを構成し、一方の庫外側熱交換器(A)8Aまたは庫外側熱交換器(B)8Bで外気から吸熱しながら交互に順次デフロストすることができる。   On the other hand, when the outside heat exchanger (A) 8A and the outside heat exchanger (B) 8B are frosted by the heat pump heating operation under a low outside air temperature, supply of the refrigerant to the inside heat exchanger 8C In a state where the heating operation is interrupted and the defrost cycle is configured with one of the multiple outside heat exchanger (A) 8A and the outside heat exchanger (B) 8B as a condenser and the other as an evaporator. However, it is possible to defrost alternately and sequentially while absorbing heat from the outside air with one of the outside heat exchanger (A) 8A or the outside heat exchanger (B) 8B.

従って、庫内空気から吸熱を行うことなく、ヒートポンプの全能力(全冷媒)を用いて複数台の庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bのデフロストを行うことができ、デフロスト運転時間を短縮化することができるとともに、デフロスト運転中における庫内温度の変化を小さくすることができる。
なお、2台の庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bをデフロストする際、いずれの庫外側熱交換器を先にデフロストするかは、任意に決めればよく、複数台の庫外側熱交換器8A,8Bを順次交互にデフロストすることにより、各庫外側熱交換器8A,8Bをヒートポンプの全能力(全冷媒)を用いてデフロストでき、短時間でデフロストすることができる。
Therefore, defrosting of the plurality of outside heat exchangers (A) 8A and outside heat exchangers (B) 8B is performed using the full capacity of the heat pump (all refrigerants) without absorbing heat from the inside air. The defrosting operation time can be shortened, and the change in the internal temperature during the defrosting operation can be reduced.
In addition, when defrosting the two outside heat exchangers (A) 8A and the outside heat exchanger (B) 8B, which of the outside heat exchangers is to be defrosted first may be arbitrarily determined, By defrosting a plurality of storage-side heat exchangers 8A and 8B alternately in sequence, each storage-side heat exchanger 8A and 8B can be defrosted using the full capacity of the heat pump (all refrigerants) and defrosted in a short time. Can do.

また、本実施形態においては、複数台の庫外側熱交換器8A,8Bに対し、庫外側ファン20A,20Bを含む送風系をそれぞれ独立して設けた構成としている。このため、デフロスト運転時、凝縮器として機能する庫外側熱交換器8Aまたは8B用の庫外側ファン20Aまたは20Bを停止するとともに、蒸発器として機能する庫外側熱交換器8Aまたは8B用の庫外側ファン20Aまたは20Bを運転してデフロストすることができる。従って、蒸発器として機能する庫外側熱交換器8Aまたは8Bでの吸熱量を増大し、その熱をデフロストする庫外側熱交換器8Aまたは8Bで放熱することによって効率的に、かつ短時間でデフロストすることができる。   Moreover, in this embodiment, it is set as the structure which provided independently the ventilation system containing the outer side fans 20A and 20B with respect to the multiple unit outer side heat exchangers 8A and 8B. For this reason, at the time of defrost operation, the outside fan 20A or 20B for the outside heat exchanger 8A or 8B that functions as a condenser is stopped, and the outside for the outside heat exchanger 8A or 8B that functions as an evaporator. The fan 20A or 20B can be operated and defrosted. Therefore, the amount of heat absorbed by the outside heat exchanger 8A or 8B functioning as an evaporator is increased, and the heat is released by the outside heat exchanger 8A or 8B that defrosts the heat efficiently and in a short time. can do.

なお、庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bを複数台(2台)並列に配設したことにより、以下のような構成とすることができる。
[変形例1]
冷却運転時、2台の庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bは凝縮器として運転されるが、外気温が低い場合等において、凝縮能力が過大となって高圧圧力が下がり過ぎることがある。このため、高圧圧力を監視し高圧が下がり過ぎたとき、図5に示されるように、庫外側熱交換器(A)8Aおよび庫外側熱交換器(B)8Bのいずれかを停止(図5の場合、庫外側熱交換器(B)8Bを停止)し、運転台数を減らすことにより凝縮能力を調整できるように構成してもよい。
In addition, it can be set as the following structures by having arrange | positioned multiple units | sets (2 units | sets) in parallel with the outside heat exchanger (A) 8A and the outside heat exchanger (B) 8B.
[Modification 1]
During the cooling operation, the two outside heat exchangers (A) 8A and the outside heat exchanger (B) 8B are operated as condensers. However, when the outside air temperature is low, the condensation capacity becomes excessive. High pressure may drop too much. For this reason, when the high pressure is monitored and the high pressure falls too much, either the outside heat exchanger (A) 8A or the outside heat exchanger (B) 8B is stopped (see FIG. 5). In this case, the outside heat exchanger (B) 8B may be stopped), and the condensation capacity may be adjusted by reducing the number of operating units.

つまり、外気温が比較的低い条件下で冷却運転を行っている場合、複数台の庫外側熱交換器8A,8Bの全てを運転すると、庫内側熱交換器8Cの熱交換量に対して、凝縮能力が過多となって高圧側回路の圧力が低下し、高低圧の差圧が小さくなり過ぎて膨張弁15Cの流量調整可能範囲を逸脱することにより、圧縮機3の吸入圧力が異常の原因となることがある。   That is, when the cooling operation is performed under a condition where the outside air temperature is relatively low, when all of the plurality of outside heat exchangers 8A and 8B are operated, the heat exchange amount of the inside heat exchanger 8C is The condensation pressure becomes excessive, the pressure in the high-pressure side circuit decreases, the differential pressure between the high and low pressures becomes too small, and deviates from the flow rate adjustable range of the expansion valve 15C. It may become.

この場合、図5に示されるように、庫外側熱交換器(B)8Bに接続された高圧ガス配管6B中の高圧開閉弁7Bを閉、低圧開閉弁10Bを開とするとともに、庫外側ファン20Bを停止して庫外側熱交換器(B)8Bを停止状態し、庫外側熱交換器8A,8Bの運転台数を減らして凝縮能力を調整(低下)することにより、高低圧の差圧を適正範囲に維持することができる。従って、庫内側熱交換器8Cでの熱交換量に対応して庫外側熱交換器8A,8B側の能力を適正に調整し、運転バランスを保つことにより輸送用冷凍ユニット1を安定的に運転することができる。   In this case, as shown in FIG. 5, the high-pressure on-off valve 7B in the high-pressure gas pipe 6B connected to the outside heat exchanger (B) 8B is closed, the low-pressure on-off valve 10B is opened, and the outside fan 20B is stopped and the outside heat exchanger (B) 8B is stopped, and the condensation capacity is adjusted (decreased) by reducing the number of operating outside heat exchangers 8A and 8B, thereby reducing the pressure difference between high and low pressures. It can be maintained within an appropriate range. Therefore, the transport refrigeration unit 1 is stably operated by appropriately adjusting the capacity of the outside heat exchangers 8A and 8B in accordance with the amount of heat exchange in the inside heat exchanger 8C and maintaining the operation balance. can do.

また、上記変形例1を採用するに当たり、複数台の庫外側熱交換器8A,8Bを、それぞれ異なる能力の熱交換器とすることができる。このように能力の異なる熱交換器を用いて庫外側熱交換器8A,8Bを構成することにより、2台の庫外側熱交換器8A,8Bでの凝縮能力をその熱交換器の稼動選択により、その台数よりも多い3段階に調整することが可能となる。このため、様々な外気温度や庫内設定温度条件下において、それに対応して凝縮能力を細かく調整し、高低圧差を適正範囲に保ってより安定した運転を行うことができ、輸送用冷凍ユニット1の信頼性を向上することができる。   Moreover, when employ | adopting the said modification 1, the multiple unit outside heat exchangers 8A and 8B can be made into the heat exchanger of a respectively different capability. By configuring the outside heat exchangers 8A and 8B using heat exchangers having different capacities as described above, the condensation capacity of the two outside heat exchangers 8A and 8B can be determined by selecting the operation of the heat exchanger. , It is possible to adjust to three stages more than the number. For this reason, under various outdoor air temperatures and internal set temperature conditions, the condensing capacity can be finely adjusted accordingly, and a more stable operation can be performed while keeping the high-low pressure difference within an appropriate range. Reliability can be improved.

[変形例2]
上記実施形態では、庫外側熱交換器8A,8Bのデフロスト運転時、図2、図3に示されるように、庫内側熱交換器8Cに対する冷媒流通を停止するようにしているが、庫内温度と設定温度との差が規定値を超えるような場合、積荷を保護する観点から、庫内側熱交換器8Cに接続されている高圧ガス配管6C中の高圧開閉弁7Cを開として庫内側熱交換器8Cに高圧ガス冷媒を流通し、加温運転を行う構成としてもよい。
[Modification 2]
In the above embodiment, during the defrost operation of the outside heat exchangers 8A and 8B, as shown in FIGS. 2 and 3, the refrigerant flow to the inside heat exchanger 8C is stopped. When the difference between the temperature and the set temperature exceeds the specified value, from the viewpoint of protecting the cargo, the high-pressure on-off valve 7C in the high-pressure gas pipe 6C connected to the internal heat exchanger 8C is opened, and the internal heat exchange is performed. It is good also as a structure which distribute | circulates a high pressure gas refrigerant | coolant to the container 8C, and performs a heating operation.

つまり、デフロスト運転中に何等かの原因により庫内温度が急変し、設定温度との差が規定値を超えるような事態が発生すると、積荷の品質を保証できなくなる虞がある。このため、庫内温度と設定温度との差が規定値以上となったとき、庫内側熱交換器8Cに接続されている高圧ガス配管6C中の高圧開閉弁7Cを開とし、庫内側熱交換器8Cに高圧ガス冷媒の一部を供給することによって、デフロスト運転を継続しながら、加温運転することができる。従って、デフロスト運転中に庫内温度が規定値以下に低下することはなく、デフロスト中でも温度制御性を維持して積荷の品質を確保でき、輸送用冷凍ユニット1の信頼性を向上することができる。   That is, if a situation occurs in which the internal temperature suddenly changes for some reason during the defrost operation and the difference from the set temperature exceeds a specified value, the quality of the load may not be guaranteed. For this reason, when the difference between the internal temperature and the set temperature exceeds a specified value, the high pressure on-off valve 7C in the high pressure gas pipe 6C connected to the internal heat exchanger 8C is opened, and the internal heat exchange is performed. By supplying a part of the high-pressure gas refrigerant to the vessel 8C, the heating operation can be performed while continuing the defrost operation. Accordingly, the internal temperature does not drop below the specified value during the defrost operation, the temperature controllability can be maintained even during the defrost, and the quality of the cargo can be ensured, and the reliability of the transport refrigeration unit 1 can be improved. .

[変形例3]
上記した実施形態および変形例においては、2台の庫外側熱交換器8A,8Bと、1台の庫内側熱交換器8Cと、を並列に配設している実施形態について説明したが、庫外側熱交換器8A,8Bは、2台に限らず、3台以上の庫外側熱交換器を並列に配設した構成としてもよい。また、庫内側熱交換器8Cについて、複数台を並列に配設し、それぞれの庫内側熱交換器を保冷庫内の区画された複数の室に個別に配設した構成としてもよい。この場合、区画された複数の室を同時に冷却または加温できることはもちろんのこと、1つの室を冷却、他の1つの室を加温する等、冷却・加温の同時運転を行うこともできる。
[Modification 3]
In the above-described embodiment and modification, the embodiment has been described in which two outside heat exchangers 8A and 8B and one inside heat exchanger 8C are arranged in parallel. The outer heat exchangers 8A and 8B are not limited to two, and three or more outside heat exchangers may be arranged in parallel. Moreover, about the warehouse inner side heat exchanger 8C, it is good also as a structure which arrange | positioned multiple units | sets in parallel and arrange | positioned each warehouse inner side heat exchanger separately to the some chamber divided in the cold storage. In this case, it is possible not only to cool or warm a plurality of partitioned rooms at the same time, but also to perform simultaneous cooling and heating operations such as cooling one room and heating another room. .

[第2実施形態]
次に、本発明の第2実施形態について、図6を用いて説明する。
本実施形態は、上記した第1実施形態に対して、複数台の庫外側熱交換器8A,8Bを利用して、圧縮機3の発停頻度を低減できるようにしている点が異なる。その他の点については、第1実施形態と同様であるので説明は省略する。
本実施形態は、冷却運転または加温運転により庫内温度が設定温度に到達した後、輸送用冷凍ユニット1はサーモオン/オフ運転されることになるが、その際の圧縮機3の過度な発停を抑制しようとするものである。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG.
The present embodiment is different from the first embodiment described above in that the frequency of starting and stopping of the compressor 3 can be reduced by using a plurality of outside heat exchangers 8A and 8B. Since other points are the same as those in the first embodiment, description thereof will be omitted.
In the present embodiment, the transport refrigeration unit 1 is thermo-on / off after the inside temperature reaches the set temperature by the cooling operation or the heating operation. It is intended to suppress outages.

輸送用冷凍ユニット1は、庫内温度が設定温度に到達すると、所定のディファレンシャルを以ってオン/オフ運転(サーモオン/オフ)されるが、サーモオンされている時間が短いと、圧縮機3が頻繁に発停を繰り返し、それが故障や寿命低下の要因となり、信頼性を損ねることになる。そこで、サーモオフの条件とされたとき、庫内側熱交換器8Cに対する冷媒の流通を止め冷却運転または加温運転を停止した状態で、並列に配設されている複数台の庫外側熱交換器8A,8Bを用いて冷凍サイクルを構成し、圧縮機3を規定時間だけ継続運転した後、停止することにより頻繁な発停を防ぐようにしたものである。   When the internal temperature reaches the set temperature, the transport refrigeration unit 1 is turned on / off (thermo on / off) with a predetermined differential. When the thermo-on time is short, the compressor 3 is turned on. Repeated start and stop frequently, which causes failure and reduced life, impairing reliability. Therefore, when the thermo-off condition is established, a plurality of storage-side heat exchangers 8A arranged in parallel with the refrigerant flowing to the storage-side heat exchanger 8C stopped and the cooling operation or heating operation stopped. , 8B is used to constitute a refrigeration cycle, and the compressor 3 is continuously operated for a specified time and then stopped to prevent frequent start and stop.

以下に、図6に示す制御フローチャート図に基づいて、その具体的構成を説明する。
制御が開始されると、ステップS11において、サーモオフ条件か否かが判定され、NOの場合、そのまま制御終了に移行し、YESの場合、ステップS12に進む。ステップS12では、圧縮機3のオン時間(運転時間)が予め設定されている規定時間を超えているか否かが判定され、YESの場合は、ステップS17に移行してそのまま圧縮機3の運転を停止し、サーモオフの状態とする。
Below, the specific structure is demonstrated based on the control flowchart figure shown in FIG.
When the control is started, it is determined in step S11 whether or not the thermo-off condition is satisfied. If NO, the control is immediately terminated, and if YES, the process proceeds to step S12. In step S12, it is determined whether or not the ON time (operation time) of the compressor 3 exceeds a preset specified time. If YES, the process proceeds to step S17 and the compressor 3 is operated as it is. Stop and turn off the thermo.

一方、規定時間を達しておらず、NOと判定された場合、ステップS13に進み、以下の運転回路(空運転回路)に切換え、圧縮機3を継続運転するようにしている。ここでの運転回路は、複数台(2台)の庫外側熱交換器8A,8Bの中の一方、例えば庫外側熱交換器(A)8Aを凝縮器、他方の庫外側熱交換器(B)8Bを蒸発器とし、双方の庫外側ファン20A,20Bを運転した冷凍サイクルを構成すべく、高圧開閉弁7A、開閉弁16Bおよび低圧開閉弁10Bを開とするとともに、高圧開閉弁7B、開閉弁16Aおよび低圧開閉弁10Aを閉とし、更に庫外側ファン20A,20Bをオンに切換え、圧縮機3からの冷媒を高圧ガスポート5、庫外側熱交換器(A)8A、高圧液ポート17、膨張弁16B、庫外側熱交換器(B)8B、低圧ガスポート11の順に循環する回路を構成するものである。なお、庫外側熱交換器8A,8Bの機能が逆になるように切換えてもよい。   On the other hand, if the prescribed time has not been reached and it is determined as NO, the process proceeds to step S13 to switch to the following operation circuit (idle operation circuit), and the compressor 3 is continuously operated. The operation circuit here is one of a plurality (two) of the outside heat exchangers 8A and 8B, for example, the outside heat exchanger (A) 8A is a condenser, and the other outside heat exchanger (B ) Opening the high-pressure on-off valve 7A, the on-off valve 16B, and the low-pressure on-off valve 10B, and opening and closing the high-pressure on-off valve 7B in order to form a refrigeration cycle in which 8B is an evaporator and both the outside fans 20A, 20B are operated. The valve 16A and the low pressure on-off valve 10A are closed, and the outside fans 20A and 20B are switched on, the refrigerant from the compressor 3 is supplied to the high pressure gas port 5, the outside heat exchanger (A) 8A, the high pressure liquid port 17, A circuit that circulates in the order of the expansion valve 16B, the outside heat exchanger (B) 8B, and the low-pressure gas port 11 is configured. Note that the outside heat exchangers 8A and 8B may be switched so that their functions are reversed.

ステップS13で上記切換えをした後、ステップS14に移行し、高圧開閉弁7C、開閉弁16Cおよび低圧開閉弁10Cを閉とし、庫内側熱交換器8Cへの冷媒の流通を停止してサーモオフ状態とする。この際、圧縮機3は、上記冷凍サイクルを構成し、そのまま運転継続されるようになっている。この状態でステップS15に移行し、ここでサーモオンに復帰する条件を満たしているか否かが判定され、YESと判定されると、ステップS18に進み、庫内側熱交換器8Cに対する冷媒の供給開始処理を行い、ステップS19に移行する。   After the switching in step S13, the process proceeds to step S14, the high pressure on-off valve 7C, the on-off valve 16C, and the low-pressure on-off valve 10C are closed, the refrigerant flow to the internal heat exchanger 8C is stopped, and the thermo-off state is established. To do. At this time, the compressor 3 constitutes the refrigeration cycle and is continuously operated. In this state, the process proceeds to step S15, where it is determined whether or not the condition for returning to thermo-on is satisfied. If it is determined YES, the process proceeds to step S18, and the refrigerant supply start process to the internal heat exchanger 8C is performed. Then, the process proceeds to step S19.

ステップS19では、高圧開閉弁7Aないし7C、開閉弁16Aないし16C、低圧開閉弁10Aないし10Cの切換えを行い、冷媒回路2を元の冷却運転または加温運転サイクル、すなわち庫内側熱交換器8Cを蒸発器、庫外側熱交換器8A,8Bを凝縮器とした冷却運転サイクル、または庫内側熱交換器8Cを凝縮器、庫外側熱交換器8A,8Bを蒸発器としたヒートポンプ加温運転サイクルに切換え、サーモオン運転を行う。以下、同様の動作を繰り返すことになる。   In step S19, the high pressure on / off valves 7A to 7C, the on / off valves 16A to 16C, and the low pressure on / off valves 10A to 10C are switched, and the refrigerant circuit 2 is switched to the original cooling operation or heating operation cycle, that is, the internal heat exchanger 8C. Cooling operation cycle using evaporator and outside heat exchangers 8A and 8B as condensers, or heat pump heating operation cycle using inside heat exchanger 8C as condenser and outside heat exchangers 8A and 8B as evaporator Perform switching and thermo-on operation. Thereafter, the same operation is repeated.

また、ステップS15でサーモオン復帰条件を満たしていないと判定された場合、ステップS16に進み、圧縮機3のオン時間(運転時間)が規定時間を超えているか否かが判定され、NOであれば、ステップS15に戻り、ステップS15、ステップS16の動作を繰り返す。ステップS16において、圧縮機3の運転時間が規定時間を超えていると判定(YES)されると、ステップS17に進み、ここで圧縮機3をオフとし、その運転を停止する処理を行い、以下、同様の動作を繰り返す。   When it is determined in step S15 that the thermo-on return condition is not satisfied, the process proceeds to step S16, where it is determined whether or not the ON time (operating time) of the compressor 3 exceeds the specified time. Returning to step S15, the operations of steps S15 and S16 are repeated. If it is determined in step S16 that the operation time of the compressor 3 exceeds the specified time (YES), the process proceeds to step S17, where the compressor 3 is turned off and the operation is stopped. Repeat the same operation.

これによって、サーモオン/オフ運転下において、サーモオフ状態となっても、複数台の庫外側熱交換器8A,8Bを利用して冷凍サイクルを構成し、冷凍ユニット1を空運転することによって、圧縮機3を必ず規定時間以上運転することができ、圧縮機3が頻繁に発停するのを防止することができる。従って、圧縮機3の発停頻度を抑制し、その信頼性を確保することができる。特に、庫内が複数室に区画されている保冷庫の場合、室間の温度干渉により短時間にサーモオン/オフを繰り返すことがあるが、かかる場合でも、サーモオフ時、圧縮機の運転時間が規定時間を越えるまで継続運転することで、圧縮機の頻繁な発停を防止することができる。   Thus, even if the thermo-off state is established under the thermo-on / off operation, the refrigeration cycle is configured by using the plurality of outside heat exchangers 8A and 8B, and the refrigeration unit 1 is operated idly, thereby the compressor 3 can always be operated for a specified time or more, and the compressor 3 can be prevented from frequently starting and stopping. Therefore, the start / stop frequency of the compressor 3 can be suppressed and its reliability can be ensured. In particular, in the case of a cold storage compartment that is divided into multiple chambers, thermo-ON / OFF may be repeated in a short time due to temperature interference between the chambers. By continuing the operation until the time is exceeded, frequent start / stop of the compressor can be prevented.

なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、上記実施形態では、圧縮機3に電動圧縮機を用いた一体型輸送用冷凍ユニット1に適用した例について説明したが、これに限らず、本発明は、開放型の圧縮機を車両の走行用エンジンにより電磁クラッチを介して駆動する直結タイプの輸送用冷凍ユニットあるいは冷凍ユニットを駆動する専用のサブエンジンを備えたサブエンジン方式の輸送用冷凍ユニットにも同様に適用できることは云うまでもない。   In addition, this invention is not limited to the invention concerning the said embodiment, In the range which does not deviate from the summary, it can change suitably. For example, in the above-described embodiment, an example in which the compressor 3 is applied to the integrated transportation refrigeration unit 1 using an electric compressor has been described. However, the present invention is not limited thereto, and the present invention is not limited to an open compressor. Needless to say, the present invention can also be applied to a direct-coupled transport refrigeration unit driven by a traveling engine via an electromagnetic clutch or a sub-engine type transport refrigeration unit having a dedicated sub-engine for driving the refrigeration unit. .

また、一体型の輸送用冷凍ユニット1に限らず、庫内に設置される庫内ユニットと庫外に設置される庫外ユニットとを分離したタイプの分離型輸送用冷凍ユニットにも同様に適用できることはもちろんである。   Moreover, not only the integrated transport refrigeration unit 1, but also the separation transport refrigeration unit of the type in which the internal unit installed inside the storage and the external unit installed outside the storage are separated are similarly applied. Of course you can.

1 輸送用冷凍ユニット
2 冷媒回路
3 圧縮機
6A,6B,6C 高圧ガス配管
7A,7B,7C 高圧開閉弁
8A,8B 庫外側熱交換器(A),(B)(熱交換器)
8C 庫内側熱交換器(熱交換器)
9A,9B,9C 低圧ガス配管
10A,10B,10C 低圧開閉弁
13A,13B,13C 並列回路
14A,14B,14C 逆止弁
15A,15B,15C 膨張弁
16A,16B,16C 開閉弁
18A,18B,18C 液側配管
19 庫内側ファン
20A,20B 庫外側ファン
DESCRIPTION OF SYMBOLS 1 Refrigeration unit for transport 2 Refrigerant circuit 3 Compressor 6A, 6B, 6C High pressure gas piping 7A, 7B, 7C High pressure on-off valve 8A, 8B Outside heat exchanger (A), (B) (heat exchanger)
8C Inside heat exchanger (heat exchanger)
9A, 9B, 9C Low pressure gas piping 10A, 10B, 10C Low pressure on-off valve 13A, 13B, 13C Parallel circuit 14A, 14B, 14C Check valve 15A, 15B, 15C Expansion valve 16A, 16B, 16C On-off valve 18A, 18B, 18C Liquid side piping 19 Inside fan 20A, 20B Outside fan

Claims (7)

圧縮機と、
前記圧縮機の吐出側に一端側が各々高圧ガス配管および高圧開閉弁を介して接続された複数台の熱交換器と、
前記複数台の熱交換器の一端側を各々前記圧縮機の吸入側に低圧開閉弁を介して接続する低圧ガス配管と、
前記複数台の熱交換器の他端側に各々接続された開閉弁機能付き減圧手段と逆止弁との並列回路の他端側同士を互いに連通接続している液側配管と、を備え、
前記複数台の熱交換器の中の少なくとも2台の熱交換器を庫外側熱交換器として保冷庫外に並列に配設し、少なくとも1台の熱交換器を庫内側熱交換器として保冷庫内に配設するとともに、
前記庫外側熱交換器を蒸発器、前記庫内側熱交換器を凝縮器として機能させたヒートポンプ加温運転時、前記庫外側熱交換器に着霜したとき、前記庫内側熱交換器に対する冷媒の流通を停止し、複数台の前記庫外側熱交換器の少なくとも1台を凝縮器、他の1台を蒸発器としてデフロスト運転する構成としたことを特徴とする輸送用冷凍ユニット。
A compressor,
A plurality of heat exchangers, one end of which is connected to the discharge side of the compressor via a high-pressure gas pipe and a high-pressure on-off valve,
Low-pressure gas pipes each connecting one end side of the plurality of heat exchangers to the suction side of the compressor via a low-pressure on-off valve;
A liquid side pipe that connects the other end sides of the parallel circuit of the decompression means with check valve function and the check valve respectively connected to the other end side of the plurality of heat exchangers,
At least two heat exchangers among the plurality of heat exchangers are arranged in parallel outside the cold storage as external storage heat exchangers, and at least one heat exchanger is a cold storage as internal storage heat exchangers. In the inside,
During heat pump heating operation in which the outside heat exchanger functions as an evaporator and the inside heat exchanger functions as a condenser, when the outside heat exchanger is frosted, the refrigerant with respect to the inside heat exchanger A transport refrigeration unit characterized in that the circulation is stopped and at least one of the plurality of outside heat exchangers is configured as a condenser and the other one as an evaporator.
着霜した複数台の前記庫外側熱交換器の少なくとも1台を凝縮器、他の1台を蒸発器として順次切換え、複数台の前記庫外側熱交換器を順次デフロスト運転する構成としたことを特徴とする請求項1に記載の輸送用冷凍ユニット。   A configuration in which at least one of the plurality of frosted outside heat exchangers is sequentially switched as a condenser and the other one as an evaporator, and the plurality of outside heat exchangers are sequentially defrosted. The transport refrigeration unit according to claim 1, wherein 複数台の前記庫外側熱交換器に対する庫外側ファンを含む送風系を、それぞれ独立して設けたことを特徴とする請求項1または2に記載の輸送用冷凍ユニット。   The transport refrigeration unit according to claim 1 or 2, wherein an air blowing system including an outside fan for the plurality of outside heat exchangers is provided independently. デフロスト運転時、庫内温度と設定温度との差が規定値以上となったとき、前記庫内側熱交換器に接続されている前記高圧ガス配管中の前記高圧開閉弁を開として前記庫内側熱交換器に高圧ガス冷媒を流通し、加温運転する構成としたことを特徴とする請求項1ないし3のいずれかに記載の輸送用冷凍ユニット。   During the defrost operation, when the difference between the internal temperature and the set temperature becomes a specified value or more, the high-pressure on-off valve in the high-pressure gas pipe connected to the internal heat exchanger is opened and the internal heat The transport refrigeration unit according to any one of claims 1 to 3, wherein a high-pressure gas refrigerant is circulated through the exchanger and a heating operation is performed. 前記庫外側熱交換器を凝縮器として機能させた冷却運転時、凝縮能力が過大となって高圧圧力が下がり過ぎたとき、複数台の前記庫外側熱交換器の運転台数を減らすことにより凝縮能力を調整する構成としたことを特徴とする請求項1ないし4のいずれかに記載の輸送用冷凍ユニット。   During cooling operation with the outside heat exchanger functioning as a condenser, if the condensation capacity is excessive and the high pressure is too low, the condensation capacity can be reduced by reducing the number of operating multiple outside heat exchangers. The transport refrigeration unit according to any one of claims 1 to 4, wherein the refrigeration unit for transport according to any one of claims 1 to 4 is configured. 複数台の前記庫外側熱交換器を、それぞれ異なる能力の熱交換器としたことを特徴とする請求項1ないし5のいずれかに記載の輸送用冷凍ユニット。   The transport refrigeration unit according to any one of claims 1 to 5, wherein the plurality of the outside heat exchangers are heat exchangers having different capacities. 圧縮機と、
前記圧縮機の吐出側に一端側が各々高圧ガス配管および高圧開閉弁を介して接続された複数台の熱交換器と、
前記複数台の熱交換器の一端側を各々前記圧縮機の吸入側に低圧開閉弁を介して接続する低圧ガス配管と、
前記複数台の熱交換器の他端側に各々接続された開閉弁機能付き減圧手段と逆止弁との並列回路の他端側同士を互いに連通接続している液側配管と、を備え、
前記複数台の熱交換器の中の少なくとも2台の熱交換器を庫外側熱交換器として保冷庫外に並列に配設し、少なくとも1台の熱交換器を庫内側熱交換器として保冷庫内に配設するとともに、
庫内温度が設定温度に到達後のサーモオフ時、前記圧縮機の運転時間が規定時間以下の場合、前記庫内側熱交換器に対する冷媒の流通を停止し、複数台の前記庫外側熱交換器の1台を凝縮器、他の1台を蒸発器として前記圧縮機を運転時間が前記規定時間を超えるまで継続運転する構成としたことを特徴とする輸送用冷凍ユニット。
A compressor,
A plurality of heat exchangers, one end of which is connected to the discharge side of the compressor via a high-pressure gas pipe and a high-pressure on-off valve,
Low-pressure gas pipes each connecting one end side of the plurality of heat exchangers to the suction side of the compressor via a low-pressure on-off valve;
A liquid side pipe that connects the other end sides of the parallel circuit of the decompression means with check valve function and the check valve respectively connected to the other end side of the plurality of heat exchangers,
At least two heat exchangers among the plurality of heat exchangers are arranged in parallel outside the cold storage as external storage heat exchangers, and at least one heat exchanger is a cold storage as internal storage heat exchangers. In the inside,
At the time of thermo-off after the internal temperature reaches the set temperature, when the operation time of the compressor is not more than a specified time, the refrigerant flow to the internal heat exchanger is stopped, and a plurality of the external heat exchangers A transport refrigeration unit characterized in that one compressor serves as a condenser and the other serves as an evaporator, and the compressor is continuously operated until the operating time exceeds the specified time.
JP2015030709A 2015-02-19 2015-02-19 Transport refrigeration unit Active JP6426024B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015030709A JP6426024B2 (en) 2015-02-19 2015-02-19 Transport refrigeration unit
EP16155458.9A EP3059522A3 (en) 2015-02-19 2016-02-12 Transport refrigeration unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015030709A JP6426024B2 (en) 2015-02-19 2015-02-19 Transport refrigeration unit

Publications (2)

Publication Number Publication Date
JP2016151410A true JP2016151410A (en) 2016-08-22
JP6426024B2 JP6426024B2 (en) 2018-11-21

Family

ID=55353115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015030709A Active JP6426024B2 (en) 2015-02-19 2015-02-19 Transport refrigeration unit

Country Status (2)

Country Link
EP (1) EP3059522A3 (en)
JP (1) JP6426024B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110236A1 (en) 2016-12-14 2018-06-21 三菱重工サーマルシステムズ株式会社 Refrigerant circuit system, control device and control method
JP2020067229A (en) * 2018-10-24 2020-04-30 三菱重工サーマルシステムズ株式会社 Refrigeration device
CN112665203A (en) * 2020-12-11 2021-04-16 珠海格力电器股份有限公司 Refrigerating unit, refrigeration control method and air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523844A (en) * 1978-08-02 1980-02-20 Sanyo Electric Co Heattpumpptype refrigerator
JPH0355474A (en) * 1989-07-21 1991-03-11 Sanyo Electric Co Ltd Air conditioning apparatus
JPH03236570A (en) * 1990-02-14 1991-10-22 Toshiba Corp Air-conditioner
JPH0926219A (en) * 1996-07-30 1997-01-28 Sanyo Electric Co Ltd Cooling/heating apparatus for many rooms
JP2008134025A (en) * 2006-11-29 2008-06-12 Corona Corp Heat pump type heating device
JP2013234784A (en) * 2012-05-08 2013-11-21 Mitsubishi Heavy Ind Ltd Refrigerator for transportation
JP5535510B2 (en) * 2009-03-31 2014-07-02 三菱重工業株式会社 Refrigeration equipment for land transportation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1197710B1 (en) * 2000-10-13 2006-09-27 Eaton-Williams Group Limited Heat pump equipment
JP6053201B2 (en) * 2013-02-06 2016-12-27 ダイキン工業株式会社 Refrigeration equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523844A (en) * 1978-08-02 1980-02-20 Sanyo Electric Co Heattpumpptype refrigerator
JPH0355474A (en) * 1989-07-21 1991-03-11 Sanyo Electric Co Ltd Air conditioning apparatus
JPH03236570A (en) * 1990-02-14 1991-10-22 Toshiba Corp Air-conditioner
JPH0926219A (en) * 1996-07-30 1997-01-28 Sanyo Electric Co Ltd Cooling/heating apparatus for many rooms
JP2008134025A (en) * 2006-11-29 2008-06-12 Corona Corp Heat pump type heating device
JP5535510B2 (en) * 2009-03-31 2014-07-02 三菱重工業株式会社 Refrigeration equipment for land transportation
JP2013234784A (en) * 2012-05-08 2013-11-21 Mitsubishi Heavy Ind Ltd Refrigerator for transportation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110236A1 (en) 2016-12-14 2018-06-21 三菱重工サーマルシステムズ株式会社 Refrigerant circuit system, control device and control method
JP2020067229A (en) * 2018-10-24 2020-04-30 三菱重工サーマルシステムズ株式会社 Refrigeration device
JP7235473B2 (en) 2018-10-24 2023-03-08 三菱重工サーマルシステムズ株式会社 refrigeration equipment
CN112665203A (en) * 2020-12-11 2021-04-16 珠海格力电器股份有限公司 Refrigerating unit, refrigeration control method and air conditioner

Also Published As

Publication number Publication date
EP3059522A2 (en) 2016-08-24
EP3059522A3 (en) 2016-12-14
JP6426024B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP5210626B2 (en) Refrigeration equipment for land transportation and operation control method for refrigeration equipment for land transportation
US6938430B2 (en) Refrigerating device
US20120011866A1 (en) Refrigerant vapor compression system with hot gas bypass
JP4624223B2 (en) Refrigeration system
JP6426024B2 (en) Transport refrigeration unit
US11486616B2 (en) Refrigeration device
JP5818993B2 (en) refrigerator
JP2005180815A (en) Cooling device
US9297558B2 (en) Refrigerating system
WO2017006723A1 (en) Refrigeration device
JP2000205672A (en) Refrigerating system
JP6615354B2 (en) Freezer refrigerator
JP2019203536A (en) Four-way switching valve and freezing device
WO2014030238A1 (en) Refrigeration device
JP4614642B2 (en) Refrigeration system
JP2007085720A (en) Refrigeration system
US20160238293A1 (en) Oil line control system
JP2002277098A (en) Refrigerator
KR102144467B1 (en) A refrigerator and a control method the same
JP7568955B2 (en) Heat source unit and refrigeration device
JP2018004170A (en) Refrigerator
JP4169667B2 (en) Refrigeration system
JP4123255B2 (en) Refrigeration equipment
JP2005249242A (en) Air conditioning and refrigerating device
JP2004361001A (en) Refrigerating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181024

R150 Certificate of patent or registration of utility model

Ref document number: 6426024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150