WO2014021076A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2014021076A1
WO2014021076A1 PCT/JP2013/069035 JP2013069035W WO2014021076A1 WO 2014021076 A1 WO2014021076 A1 WO 2014021076A1 JP 2013069035 W JP2013069035 W JP 2013069035W WO 2014021076 A1 WO2014021076 A1 WO 2014021076A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
refrigerant
flow resistance
decompression device
capillary tube
Prior art date
Application number
PCT/JP2013/069035
Other languages
French (fr)
Japanese (ja)
Inventor
雄亮 田代
中津 哲史
西澤 章
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to SG11201408426WA priority Critical patent/SG11201408426WA/en
Priority to JP2014528059A priority patent/JP5818993B2/en
Priority to CN201380040457.9A priority patent/CN104508408B/en
Publication of WO2014021076A1 publication Critical patent/WO2014021076A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the present invention relates to a refrigerator having a condensation prevention pipe for preventing condensation.
  • a refrigerator having a dew condensation prevention pipe (or also referred to as a cabinet pipe or a dew prevention pipe) for preventing dew condensation.
  • a dew condensation prevention pipe installed at the periphery of the opening of the refrigerator body.
  • the dew condensation prevention pipe is heated by condensing the high-pressure refrigerant discharged from the compressor with the dew condensation prevention pipe, and dew condensation on the periphery of the opening of the refrigerator body is prevented.
  • the refrigerant in the dew condensation prevention pipe is installed on the back, top or side of the refrigerator main body and is condensed at the same refrigerant pressure as the condensation pipe for condensing the refrigerant. Is heated, and there is a problem that an extra compressor input is required.
  • JP-A-8-285426 (see, for example, FIG. 1)
  • the refrigerant flow rate to the dew condensation prevention pipe changes depending on the refrigerant flow rate to the bypass pipe.
  • coolant flow rate of a refrigerator is small compared with an air conditioning apparatus etc., for example. That is, in the technique described in Patent Document 1, when the refrigerant flow rate to the dew condensation prevention pipe is reduced, the refrigerant flow rate flowing through the dew condensation prevention pipe becomes very small, and it is necessary to heat the dew condensation prevention pipe to a target temperature. Time (response time) becomes longer. For this reason, the technique described in Patent Document 1 has a problem that the temperature of the dew condensation prevention pipe cannot be stabilized.
  • the dew condensation prevention pipe is provided at a position close to the interior of the refrigerator, and a heat insulating structure with the interior is not taken through a heat insulating material or the like. For this reason, most of the condensation heat from the dew condensation prevention pipe 13 penetrates into the inside of the box, increasing the load inside the box, and accordingly, it is necessary to operate the compressor, and the power consumption increases. There was a problem.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a refrigerator that can stabilize the temperature of a dew condensation prevention pipe and can reduce power consumption. .
  • a refrigerator includes a compressor, a condensing pipe, a decompression device, a dew condensation prevention pipe, a capillary tube, and a refrigeration cycle in which a cooler is connected in this order.
  • the flow resistance is adjusted in two stages, ie, a first flow resistance and a second flow resistance smaller than the first flow resistance.
  • the flow resistance of the refrigerant flowing through the decompression device is configured to be two stages of the first flow resistance and the second flow resistance smaller than the first flow resistance
  • the temperature of the condensation prevention pipe can be stabilized.
  • the condensing pipe, the decompression device, and the dew condensation prevention pipe are connected, and the refrigerant temperature of the dew condensation prevention pipe is lowered with respect to the condensation pipe by the decompression device, so that the internal temperature and the dew condensation prevention pipe are reduced.
  • the temperature difference can be reduced.
  • the heat of condensation entering the interior from the dew condensation prevention pipe is reduced, and the power consumption can be reduced by the amount that the compressor input can be reduced.
  • Refrigerator 100 according to the present embodiment is provided with improvements that enable “stabilization of temperature” and “reduction of power consumption” of the dew condensation prevention pipe embedded in the periphery of the opening of the refrigerator main body. .
  • FIG. 1 is a diagram illustrating a configuration of a refrigeration cycle of refrigerator 100 according to Embodiment 1. Based on FIG. 1, the structure of the refrigerating cycle of the refrigerator 100 is demonstrated.
  • the refrigerator 100 cools the inside of the refrigerator 100 to a target temperature using a vapor compression refrigeration cycle.
  • the refrigeration cycle of the refrigerator 100 includes a compressor 11 that compresses and discharges a refrigerant, a condensing pipe 12 that condenses the refrigerant supplied from the compressor 11, and refrigerant that flows out of the condensing pipe 12.
  • generates the cool air supplied to each chamber in the refrigerator 100 is connected and comprised by piping.
  • the refrigeration cycle of the refrigerator 100 is provided with a heat exchange portion 17 for exchanging heat between the refrigerant flowing through the capillary tube 15 and the refrigerant flowing through the pipe (suction pipe) between the cooler 16 and the compressor 11. Yes.
  • the compressor 11 compresses and discharges the sucked refrigerant.
  • the compressor 11 has a suction side connected to the heat exchange portion 17 and a discharge side connected to the condensing pipe 12.
  • the compressor 11 is arrange
  • FIG. The compressor 11 compresses the refrigerant into a high-temperature and high-pressure refrigerant, is driven by an inverter, and the operation is controlled according to the state in the warehouse.
  • the condensing pipe 12 is configured to condense and liquefy the refrigerant as the refrigerant discharged from the compressor 11 dissipates heat.
  • One of the condensation pipes 12 is connected to the discharge side of the compressor 11, and the other is connected to the decompression device 18.
  • the condensing pipe 12 is embedded in a hot pipe for drain evaporation, an air-cooled condenser placed in an installation space of the compressor 11, and a heat insulating material on the side and back of the refrigerator.
  • the decompression device 18 decompresses the refrigerant that has flowed out of the condensation pipe 12.
  • One of the decompression devices 18 is connected to the condensation pipe 12, and the other is connected to the dew condensation prevention pipe 13.
  • the decompression device 18 according to the first embodiment will be described on the assumption that the refrigerant is decompressed and expanded, and the opening degree can be variably controlled, for example, an electronic expansion valve.
  • the decompression device 18 can be set to two flow resistance values by adjusting the valve opening (see FIG. 4).
  • the decompression device 18 will be described in detail in [about the decompression amount of the decompression device 18] and [detailed configuration and operation of the decompression device 18].
  • the dew condensation prevention pipe 13 is a pipe which is provided for preventing dew condensation on the front surface portion of the refrigerator main body and acts as a condenser. That is, the dew condensation prevention pipe 13 acts as a condenser and is embedded in the periphery of the opening of the refrigerator body so that the heat of the refrigerant flowing out of the decompression device 18 can be transmitted to the periphery of the opening of the refrigerator body. ing.
  • One of the dew condensation prevention pipes 13 is connected to the decompression device 18 and the other is connected to the dryer 14. The configuration of the condensation prevention pipe 13 will be described in detail with reference to FIG.
  • the dryer 14 is configured by a filter for preventing dust, metal powder, and the like in the refrigeration cycle of the refrigerator 100 from flowing into the compressor 11, an adsorbing member that adsorbs moisture in the refrigeration cycle, and the like.
  • One of the dryers 14 is connected to the condensation prevention pipe 13 and the other is connected to the capillary tube 15.
  • the capillary tube 15 acts as a decompression device using the refrigerant flowing out of the dryer 14.
  • One of the capillary tubes 15 is connected to the dryer 14 and the other is connected to the cooler 16.
  • the refrigerant flowing through the capillary tube 15 exchanges heat with the refrigerant flowing through the pipe (suction pipe) between the cooler 16 and the compressor 11 by the action of the heat exchange portion 17.
  • the cooler 16 generates cool air to be supplied to each room of the refrigerator (see the refrigerator compartment 3 and the like in FIG. 2), and functions as an evaporator.
  • One of the coolers 16 is connected to the capillary tube 15, and the other is connected to the suction side of the compressor 11 via the heat exchange portion 17.
  • the cooler 16 is provided, for example, in a cooler chamber provided on the back side of the refrigerator 100.
  • a blower fan is provided, for example, above the cooler 16. Air is supplied to the cooler 16 by the blower fan, and cool air cooled around the cooler 16 is supplied to each chamber.
  • the heat exchanging portion 17 is a portion that exchanges heat between the refrigerant flowing through the capillary tube 15 and the refrigerant sucked into the compressor 11.
  • a control device 10 including a microcomputer for controlling the operation of the refrigerator 100 is provided on the upper rear surface of the refrigerator 100.
  • FIG. 2 is a diagram for explaining an installation example of the dew condensation prevention pipe 13 of the refrigerator 100. Based on FIG. 2, the installation example of the dew condensation prevention pipe 13 is demonstrated.
  • the refrigerator 100 includes a box-shaped cabinet portion 21 whose front side is open.
  • the cabinet portion 21 includes an outer box that forms the outer shell of the refrigerator main body and an inner box that forms the inner wall of the refrigerator main body, and a heat insulating material such as urethane is provided therebetween.
  • a divider part (partition wall) 22 that partitions the internal space of the cabinet part 21 into a plurality of storage chambers is provided inside the cabinet part 21.
  • a refrigerator compartment 3 an ice making compartment 4, a switching compartment 5, a freezer compartment 6, and a vegetable compartment 7 are provided as storage compartments.
  • the refrigerator compartment 3 is provided in the uppermost part of the refrigerator 100, and the front surface is covered with the double-opening door which has a heat insulation structure so that opening and closing is possible.
  • the ice making chamber 4 and the switching chamber 5 are provided side by side on the lower side of the refrigeration chamber 3, and the front surfaces of the ice making chamber 4 and the switching chamber 5 are covered with a drawer-type door having a heat insulating structure so as to be freely opened and closed.
  • the freezing room 6 is provided below the ice making room 4 and the switching room 5, and the front surface is covered with a drawer-type door having a heat insulating structure so as to be opened and closed.
  • the vegetable compartment 7 is provided below the freezer compartment 6 and at the bottom of the refrigerator 100, and the front surface is covered with a drawer-type door having a heat insulating structure so as to be freely opened and closed.
  • Each door of the storage room is usually provided with a door open / close sensor (not shown) for detecting the open / closed state.
  • the control apparatus 10 receives the output from each door opening / closing sensor, detects the open / closed state of each door, for example, when a door remains open for a long time, an operation panel (illustration omitted) or a voice output device Thus, it is possible to notify the user to that effect.
  • Each storage room is distinguished by a settable temperature zone (set temperature zone).
  • the refrigerator compartment 3 is about 0 ° C. to 4 ° C.
  • the vegetable compartment 7 is about 3 ° C. to 10 ° C.
  • the ice making room 4 is about
  • the temperature in the freezer compartment 6 can be set to about -16 ° C to -22 ° C.
  • the switching chamber 5 can be switched to a temperature range such as chilled (about 0 ° C.) or soft freezing (about ⁇ 7 ° C.).
  • the set temperature of each storage room is not limited to this.
  • an operation panel composed of an operation switch for adjusting the temperature and setting of each storage room and a liquid crystal for displaying the temperature of each storage room at that time.
  • the operation panel may be provided with an outside air temperature sensor that detects the temperature of the outside air around the refrigerator 100.
  • the control device 10 controls the operation of the refrigeration cycle and the operation of each part so that the detection value of the internal temperature sensor arranged in each storage room becomes the set temperature set by the operation panel.
  • the surface temperature of the cabinet unit 21 and the divider unit 22 in which the inside of the refrigerator and the outside of the refrigerator are close to each other is equal to or lower than the outside dew point temperature. If this happens, condensation may occur. Therefore, in the refrigerator 100, as shown in FIG. 2, the surface temperature of the cabinet part 21 and the divider part 22 is maintained above the dew point of the outside air by the refrigerant condensation heat by the dew condensation prevention pipe 13.
  • the anti-condensation pipe 13 is bent and installed at the peripheral edge of the front opening of the cabinet portion 21 and the front edge of the divider portion 22.
  • This dew condensation prevention pipe 13 is installed in the cabinet part 21 or the divider part 22 through an elastic member having a large heat capacity such as butyl rubber.
  • the dew condensation prevention pipes 13 may be disposed on all front side edges of the cabinet part 21 and the divider part 22.
  • the anti-condensation pipe 13 is arranged only on the front side edge of the ice making room 4, the switching room 5, and the freezing room 6 and the front edge of the divider part 22 (the area where the cold air in the freezing temperature zone can leak). You may set up.
  • dew condensation prevention pipe 13 positioning of the dew condensation prevention pipe 13 is not limited to what was illustrated in FIG.
  • the dew condensation prevention pipe 13 may be arranged at an arbitrary place where dew condensation due to low temperature cold air leaking to the outside can be suppressed.
  • the rise in the surface temperature of the cabinet part 21 and the divider part 22 and the necessary input of the compressor 11 will be described.
  • the surface temperature of the cabinet part 21 or the divider part 22 is raised by the heater instead of the dew condensation prevention pipe 13, if the heater input is increased, the surface temperature of the cabinet part 21 or the divider part 22 rises.
  • the surface temperature is set to be equal to or higher than the outside air dew point temperature in order to prevent dew condensation on the cabinet part 21 and the divider part 22, if the surface temperature becomes equal to the outside air dew point temperature at a certain heater input Wh, an input exceeding Wh is added.
  • the surface temperature is equal to or higher than the outside air dew point temperature.
  • the surface temperature is equal to or lower than the outside air dew point temperature. That is, there is a correlation between the heater input and the surface temperature of the cabinet part 21 or the divider part 22, and as the heater input increases, the heater temperature rises and the surface temperature of the cabinet part 21 or the divider part 22 increases.
  • the dew condensation prevention pipe 13 plays the same role as the heater, and the heater input is the compressor input. That is, if the surface temperature of the cabinet part 21 or the divider part 22 can be lowered, that is, the temperature of the dew condensation prevention pipe 13 can be lowered, the compressor input is reduced.
  • FIG. 3 is a Mollier diagram of isobutane, which is a refrigerant generally used in refrigerators, and a diagram showing the state transition of the refrigerant in the refrigeration cycle of the refrigerator 100.
  • a refrigeration cycle of the refrigerator 100 having the decompression device 18 in series between the condensation pipe 12 and the dew condensation prevention pipe 13 will be described with reference to FIG.
  • symbol in FIG. 3 has shown the same thing as FIG. In FIG. 3, the horizontal axis represents enthalpy and the vertical axis represents pressure.
  • the outside air temperature outside the warehouse is assumed to be 30 (° C.), and the temperature of the air flowing into the cooler 16 is assumed to be ⁇ 15 (° C.).
  • the refrigerant in the refrigerator is compressed by the compressor 11 (A ⁇ B in FIG. 3) to become a high-temperature and high-pressure refrigerant, and the refrigerant saturation pressure becomes equal to or higher than the outside air temperature.
  • the refrigerant whose refrigerant saturation pressure is equal to or higher than the outside air temperature flows into the condensation pipe 12 and dissipates the heat of condensation to the outside air (B ⁇ E in FIG. 3).
  • the refrigerant that has flowed out of the condensing pipe 12 flows into the decompression device 18 and is depressurized from the refrigerant pressure in the condensing pipe 12 (E ⁇ F in FIG. 3).
  • the refrigerant pressure in the dew condensation prevention pipe 13 is reduced with respect to the refrigerant pressure in the condensation pipe 12.
  • the refrigerant that has flowed into the dew condensation prevention pipe 13 condenses in an environment including the inside of the warehouse (F ⁇ C in FIG. 3).
  • condensation in the environment including the inside of the room here means that the heat of the dew condensation prevention pipe 13 is transmitted to the outer box and the inner box or the air inside the box forming the outer shell of the refrigerator body, It means that the refrigerant in the dew condensation prevention pipe 13 is condensed.
  • the refrigerant flowing out from the dew condensation prevention pipe 13 flows into the capillary tube 15 and is depressurized, and also exchanges heat with the refrigerant flowing through the suction pipe of the compressor 11 in the heat exchange portion 17 (C ⁇ D in FIG. 3). . Then, the refrigerant flowing out from the capillary tube 15 flows into the cooler 16 and exchanges heat with air supplied to the cooler 16 by a fan (not shown). That is, the refrigerant flowing out from the capillary tube 15 absorbs heat from the air supplied to the cooler 16 and evaporates. The refrigerant that has absorbed heat and evaporated from the air supplied to the cooler 16 passes through the heat exchange portion 17 and returns to the compressor 11 (D ⁇ A in FIG. 3).
  • the internal load of the refrigerator 100 includes two loads: “a load resulting from the heat insulation performance of the refrigerator 100” and “an internal load in which condensation heat of the condensation pipe 12 and the dew condensation prevention pipe 13 enters the refrigerator”. There is one.
  • the condensation pipe 12 is installed on the side surface or the back surface of the refrigerator 100. If the heat insulation performance of the refrigerator 100 is improved as described above, the heat of condensation in the refrigerator can be reduced.
  • the condensation prevention pipe 13 is in a position close to the inside of the cabinet and does not have a heat insulation structure with the inside of the cabinet via a heat insulating material or the like. Most of them invade into the warehouse and become a large part of the warehouse load.
  • the decompression device 18 lowers the refrigerant temperature of the dew condensation prevention pipe 13 with respect to the condensation pipe 12.
  • the temperature difference between the inside temperature and the dew condensation prevention pipe 13 is reduced, and the condensation heat entering the inside from the condensation prevention pipe 13 can be reduced.
  • the amount of decompression in the decompression device 18 is up to the saturation pressure at which the refrigerant saturation temperature in the dew condensation prevention pipe 13 is “a temperature 3-5 ° C. lower than the outside air temperature”.
  • the reason for limiting the amount of pressure reduction in the pressure reducing device 18 is as follows. In other words, the refrigerant cannot be condensed when the refrigerant saturation pressure in the dew condensation prevention pipe 13 is originally lower than the outside air temperature. However, as shown in FIG. 2, the dew condensation prevention pipe 13 is in a position close to the inside of the compartment, and as a result, is in contact with the inside of the compartment below the outside air temperature.
  • the refrigerant can be condensed even if the pressure is reduced to a saturation pressure corresponding to a temperature lower than the outside air temperature.
  • the outside air dew point temperature must also be taken into consideration so that the outside air does not condense.
  • the amount of decompression in the decompression device 18 during the stable operation of the refrigerator 100 may be “the refrigerant saturation temperature of the dew condensation prevention pipe 13 is equal to or lower than the outside air temperature”.
  • the pressure may be reduced to a saturation pressure of “temperature 3-5 ° C. lower than temperature” or “open-air dew point temperature”.
  • the amount of decompression in the decompression device 18 is set not to fall below the “outside air dew point temperature” in order to prevent condensation.
  • the decompression device 18 may be constituted by a general decompression device mounted on a refrigerator or the like, such as an electronic expansion valve (LEV). This is because the capillary tube has a fixed length and an inner diameter, so that the amount of pressure reduction is fixed, but the LEV can be adjusted to an appropriate opening degree with respect to the target value by using a stepping motor or the like. In general air-conditioning equipment and refrigeration equipment, the flow resistance is changed by LEV so that the target evaporation temperature (suction temperature) and the target discharge temperature are reached.
  • LEV electronic expansion valve
  • the temperature of the dew condensation prevention pipe 13 is controlled to “outside air dew point temperature” or “temperature 3 to 5 ° C. lower than the outside air temperature”. Is applied to the decompression device 18.
  • LEV is described in, for example, the document “Refrigeration and Air Conditioning Handbook II”.
  • the refrigerant flow rate of the refrigerator 100 is about 1 (kg / h) at the time of stable operation with the outside air 30 (° C.). Moreover, in low external air, it is 1 (kg / h) or less.
  • FIG. 4 is a diagram showing the relationship between the opening degree and the flow resistance of the decompression device 18 according to the first embodiment.
  • the configuration of the decompression device 18 will be described in detail with reference to FIG.
  • the refrigerant amount M is approximately 80 (g).
  • the response time ⁇ 288 (seconds) from the equation (1).
  • control is performed using an LEV used in general air conditioning equipment and refrigeration equipment, it takes almost 5 minutes for the refrigerant flow to stabilize for one change in flow resistance. It is that you need.
  • the “operating time” of the refrigerator 100 is, for example, 30 minutes to 1 hour.
  • the decompression device 18 is configured so that the flow resistance of the decompression device 18 has the characteristics shown in FIG. 4 in consideration of the change in the refrigerant flow rate associated with the flow change of the decompression device 18. That is, in the conventional pressure reducing device, the flow resistance is gradually increased as the opening degree is increased, but the pressure reducing device 18 according to the first embodiment is a compressor input by the pressure reducing effect. In order to obtain the reduction effect as much as possible, it is configured to have two regions of a large resistance (first flow resistance) and a small resistance (second flow resistance).
  • the decompression device 18 is configured to be adjustable in two stages of a first flow resistance and a second flow resistance having a smaller flow resistance than the first flow resistance. Further, the adjustable opening range of the decompression device 18 includes an opening A as an opening when the resistance is large, an opening C as an opening when the resistance is small, and a large resistance and a small resistance. An opening B is provided as an opening when switching between the two.
  • the decompression device 18 is adjusted to the opening degree (opening degree A) in the region of large resistance in order to obtain the decompression effect of the decompression device 18 in all of the “operation time”.
  • the opening degree A the opening degree of the decompression device 18 is reduced, the flow resistance in the decompression device 18 is large, and the refrigerant flow rate of the decompression device 18 is small.
  • the decompression device 18 is throttled to an opening A, and the refrigerant temperature of the dew condensation prevention pipe 13 is lowered relative to the condensation pipe 12.
  • the temperature difference between the internal temperature and the dew condensation prevention pipe 13 is reduced, and the condensation heat entering the inside from the dew condensation prevention pipe 13 can be reduced.
  • the load in the refrigerator 100 can be reduced, the compressor input can be reduced, and the power consumption can be reduced.
  • the decompression device 18 is adjusted to the opening degree (opening degree C) of the region having a small resistance during a transient operation such as when the door is opened or closed, when the door is started, or after the defrosting operation is completed.
  • the opening degree C the opening degree of the decompression device 18 is increased, the flow resistance in the decompression device 18 is small, and the refrigerant flow rate of the decompression device 18 is large.
  • the internal load cannot be clearly defined (for example, the internal temperature changes with time), so the effect of reducing the refrigerant pressure in the dew condensation prevention pipe 13 relative to the refrigerant pressure in the condensation pipe 12 cannot be obtained. it is conceivable that. For this reason, the flow resistance of the decompression device 18 is made as small as possible, and the refrigerant pressure loss in the condenser including the condensation pipe 12 and the dew condensation prevention pipe 13 is reduced.
  • the decompression device 18 divides large resistance and small resistance with the opening B as a boundary.
  • the decompression device 18 is used to ensure manufacturing variation and a control range of the decompression device 18. It is desirable to use the opening B at a position that is approximately half of the total opening.
  • the pressure reducing device 18 has a small resistance when it is larger than the substantially middle opening of the entire opening range of the decompressing device 18, and when it is smaller than the substantially middle opening of the entire opening range of the decompressing device 18, It is desirable that the resistance is increased.
  • the flow resistance value when the pressure reducing device 18 has a small resistance is preferably as small as described above, and the flow resistance value when the resistance is large is, for example, at the outside air 30 (° C.), the dew condensation prevention pipe 13. It is good to set it as the resistance value set so that the inside refrigerant
  • the flow resistance is a LEV having two regions of a large resistance and a small resistance
  • the present invention is not limited thereto.
  • a plurality of capillary tubes may be installed and the flow resistance may be changed by a switching valve.
  • the decompression device 18 is provided between the condensation pipe 12 and the condensation prevention pipe 13, and the refrigerant temperature of the condensation prevention pipe 13 is set to the condensation pipe 12 by the decompression device 18. It is decreasing. As a result, the temperature difference between the internal temperature and the dew condensation prevention pipe 13 is reduced, and the condensation heat entering the interior from the dew condensation prevention pipe 13 is reduced, so that the compressor input is reduced and the power consumption is reduced. it can.
  • FIG. FIG. 5 is a diagram illustrating the configuration of the refrigeration cycle of refrigerator 100A according to Embodiment 2 of the present invention. Based on FIG. 5, the structure of the refrigerating cycle of refrigerator 100A is demonstrated. Similarly to the refrigerator 100 according to the first embodiment, the refrigerator 100 cools the inside of the refrigerator 100A to the target temperature using a vapor compression refrigeration cycle. In the second embodiment, the difference from the first embodiment described above will be mainly described, and parts having the same functions as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted. And
  • the refrigeration cycle in which one capillary tube 15 is connected has been described as an example.
  • the refrigerator 100A according to the second embodiment as shown in FIG.
  • a refrigeration cycle to which tubes (capillary tube 52 and capillary tube 53) are connected is provided.
  • a three-way valve 54 as a flow path changing device for switching the refrigerant flow path is provided on the upstream side of the capillary tube 52 and the capillary tube 53.
  • Other configurations of the refrigerator 100A are the same as those of the refrigerator 100 according to the first embodiment.
  • the three-way valve 54 is not only changed to a refrigerant flow path for flowing refrigerant to the capillary tube 52 or a refrigerant flow path for flowing refrigerant to the capillary tube 53, but also a refrigerant flow for flowing refrigerant to both the capillary tube 52 and the capillary tube 53. It can be changed to a road.
  • the three-way valve 54 changes the refrigerant flow path according to the necessary refrigerant flow rate of the refrigerator 100A. Specifically, the controller 10 that has determined the necessary refrigerant flow rate controls the three-way valve 54, whereby the refrigerant flow path through which the refrigerant flows is changed.
  • the flow path changing device is not limited to the three-way valve 54.
  • a flow path changing device may be configured by combining two-way valves, or a flow path changing device may be configured using a four-way valve.
  • the refrigerant flow path is determined by controlling the frequency of the compressor 11, the opening degree of the decompression device 18, and the flow path changing device in accordance with the required refrigerant flow rate. ing. That is, the refrigerator 100A individually controls each of the compressor 11, the pressure reducing device 18, and the flow path changing device according to the refrigerant flow rate.
  • the control device 10 when increasing the refrigerant flow rate, the control device 10 increases the frequency of the compressor 11 and simultaneously causes the three-way valve 54 to flow the refrigerant to the capillary tube 52 or to both the capillary tube 52 and the capillary tube 53. Select the refrigerant flow path.
  • the control device 10 selects the refrigerant flow path for flowing the refrigerant through the capillary tube 53 by the three-way valve 54 at the same time as reducing the frequency of the compressor 11.
  • the refrigerant flow path (the refrigerant flow path for flowing the refrigerant through the capillary tube 52, the refrigerant flow path for flowing the refrigerant through the capillary tube 53, the refrigerant that flows the refrigerant through both the capillary tube 52 and the capillary tube 53) If the selection of the flow path) does not match the relationship with the amount of supplied refrigerant, an abnormality such as a low pressure pull-in occurs.
  • coolant flow path should just be matched as mentioned above, but in the refrigerator 100A, the refrigerant
  • a decompressor 18 is included. As described in the first embodiment, the decompression device 18 changes to the opening degree A when the resistance is large and the opening degree C where the resistance is small according to the internal load. For this reason, it is necessary to adjust the selection of the refrigerant flow path including not only the frequency of the compressor 11 but also the opening of the decompression device 18. This is because the total refrigerant flow resistance in the refrigerant circuit is the sum of the resistance of the decompression device 18 and the resistance of the capillary tubes (capillary tube 52, capillary tube 53).
  • FIG. 6 is a table showing the magnitude relationship of the total refrigerant flow resistance by the combination of the pressure reducing device 18 and the three-way valve 54.
  • “H” ⁇ “M (M1, M2)” ⁇ “L” is indicated from the combination having a large refrigerant flow resistance.
  • the operation of the refrigerator 100A will be described with reference to FIG. Although the basic operation is as described above, since the refrigerator 100A includes the decompression device 18, the operation is as follows. The difference between “M1” and “M2” will be described later.
  • the control device 10 increases (increases) the frequency of the compressor 11 and simultaneously selects the combination of the decompression device 18 and the three-way valve 54 as “L” in FIG. 6. Specifically, when “L” is selected, the decompression device 18 is controlled to the opening degree C, and the three-way valve 54 is controlled so that the refrigerant flows through both the capillary tube 52 and the capillary tube 53.
  • the control device 10 When reducing the refrigerant flow rate, the control device 10 lowers (decreases) the frequency of the compressor 11 and simultaneously selects the combination of the decompression device 18 and the three-way valve 54 as “H” in FIG. 6.
  • “H” specifically, the decompression device 18 is controlled to the opening degree A, and the three-way valve 54 is controlled so that the refrigerant flows through the capillary tube 53 in the refrigerant flow path.
  • the frequency reduction amount of the compressor 11 and the total refrigerant flow resistance “H” do not match (for example, when the low pressure is reduced and the refrigerant is depleted (SH) in the cooler 16), the pressure is reduced.
  • the combination of the device 18 and the three-way valve 54 is changed from “H” to “M” in FIG.
  • M1 the resistance value of the decompression device 18 is reduced. Therefore, the saturation pressures of the condensation pipe 12 and the dew condensation prevention pipe 13 are substantially equal, and the refrigerant temperature of the dew condensation prevention pipe 13 is maintained at or above the outside air temperature as shown in the first embodiment. Therefore, when the outside air humidity is high or when condensation is avoided (for example, when the internal temperature is set lower than usual), “M1” is selected.
  • M1 the decompression device 18 is controlled to the opening degree C, and the three-way valve 54 is controlled so that the refrigerant flows through the capillary tube 53 or the capillary tube 52 in the refrigerant flow path.
  • the resistance value of the decompression device 18 is set large. Therefore, as shown in the first embodiment, although depending on the resistance value of the opening A, the refrigerant saturation temperature in the dew condensation prevention pipe 13 becomes a saturation pressure of “a temperature 3 to 5 ° C. lower than the outside air temperature”. . As shown in the first embodiment, the refrigerant saturation temperature in the dew condensation prevention pipe 13 becomes “a temperature 3 to 5 ° C. lower than the outside air temperature”, thereby reducing the internal load of the refrigerator 100A and reducing the compressor input. The power consumption can be reduced. Therefore, when reducing the power consumption, “M2” is selected.
  • the decompression device 18 is controlled to an opening A, and the refrigerant flow path is a three-way valve so that the refrigerant flows through the capillary tube 52 or both the capillary tube 52 and the capillary tube 53. 54 is controlled.
  • the refrigerator 100A according to the second embodiment is provided with two capillary tubes and a flow path changing device in addition to the effect of the refrigerator 100 according to the first embodiment, and adjusts the selection between the decompression device 18 and the refrigerant flow path. By doing, it can be set as the flow resistance suitable for a refrigerant

Abstract

A refrigerator is provided with a refrigeration cycle formed by connecting a compressor, a condensing pipe, a pressure reduction device, a dew formation prevention pipe, a capillary tube, and a cooler in this order. The pressure reduction device is configured so as to be capable of adjusting the flow resistance of a refrigerant in two stages of flow resistance which are first flow resistance and second flow resistance which is smaller than the first flow resistance.

Description

冷蔵庫refrigerator
 本発明は、結露を防止する結露防止パイプを有する冷蔵庫に関するものである。 The present invention relates to a refrigerator having a condensation prevention pipe for preventing condensation.
 従来から、結露を防止するための結露防止パイプ(またはキャビネットパイプ、または防露パイプ等とも称する)を有する冷蔵庫が存在している。このような冷蔵庫の多くは、結露防止パイプを冷蔵庫本体の開口部周縁に設置している。そして、圧縮機から吐出された高圧冷媒を、結露防止パイプで凝縮させることで結露防止パイプを加熱し、冷蔵庫本体の開口部周縁の結露を防止している。
 しかしながら、結露防止パイプ中の冷媒は、冷蔵庫本体の背面、天面または側面側に設置され、冷媒を凝縮させるための凝縮パイプと同等の冷媒圧力で凝縮されることとなり、必要以上に結露防止パイプが加熱されてしまい、余分な圧縮機入力が必要となるという問題点があった。
Conventionally, there is a refrigerator having a dew condensation prevention pipe (or also referred to as a cabinet pipe or a dew prevention pipe) for preventing dew condensation. Many of such refrigerators have a condensation prevention pipe installed at the periphery of the opening of the refrigerator body. And the dew condensation prevention pipe is heated by condensing the high-pressure refrigerant discharged from the compressor with the dew condensation prevention pipe, and dew condensation on the periphery of the opening of the refrigerator body is prevented.
However, the refrigerant in the dew condensation prevention pipe is installed on the back, top or side of the refrigerator main body and is condensed at the same refrigerant pressure as the condensation pipe for condensing the refrigerant. Is heated, and there is a problem that an extra compressor input is required.
 このため、結露防止パイプを必要以上に加熱しないために、結露防止パイプへの冷媒流量を調節するようにした冷蔵庫が種々提案されている。そのようなものとして、放熱コンデンサ(2a)と結露防止コンデンサ(2b)との間に冷媒流量分配装置(7)を介装し、周囲温度と結露防止コンデンサの温度差に応じて結露防止コンデンサとバイパス管(6)へ冷媒分配を行い、冷蔵庫本体の開口部周縁が必要以上に加熱されないようにした冷蔵庫が提案されている(たとえば、特許文献1参照)。 For this reason, various refrigerators have been proposed in which the flow rate of refrigerant to the condensation prevention pipe is adjusted so that the condensation prevention pipe is not heated more than necessary. As such, a refrigerant flow distribution device (7) is interposed between the heat radiation capacitor (2a) and the dew condensation prevention capacitor (2b), and the dew condensation prevention capacitor and the dew condensation capacitor according to the temperature difference between the ambient temperature and the dew condensation prevention capacitor. There has been proposed a refrigerator in which refrigerant is distributed to the bypass pipe (6) so that the periphery of the opening of the refrigerator body is not heated more than necessary (for example, see Patent Document 1).
特開平8-285426号公報(たとえば、図1参照)JP-A-8-285426 (see, for example, FIG. 1)
 特許文献1に記載の技術では、バイパス管への冷媒流量により結露防止パイプへの冷媒流量が変化する。また、冷蔵庫の冷媒流量は、たとえば空気調和装置などと比較すると小さい。すなわち、特許文献1に記載の技術では、結露防止パイプへの冷媒流量が低減すると、結露防止パイプを流れる冷媒流量が非常に小さくなってしまい、結露防止パイプを目標の温度まで加熱するのに要する時間(応答時間)が長くなってしまう。このため、特許文献1に記載の技術では、結露防止パイプの温度を安定化させることができないという課題があった。 In the technique described in Patent Document 1, the refrigerant flow rate to the dew condensation prevention pipe changes depending on the refrigerant flow rate to the bypass pipe. Moreover, the refrigerant | coolant flow rate of a refrigerator is small compared with an air conditioning apparatus etc., for example. That is, in the technique described in Patent Document 1, when the refrigerant flow rate to the dew condensation prevention pipe is reduced, the refrigerant flow rate flowing through the dew condensation prevention pipe becomes very small, and it is necessary to heat the dew condensation prevention pipe to a target temperature. Time (response time) becomes longer. For this reason, the technique described in Patent Document 1 has a problem that the temperature of the dew condensation prevention pipe cannot be stabilized.
 また、特許文献1に記載のような冷蔵庫は、結露防止パイプが庫内に近い位置に設けられ、また、断熱材などを介して庫内との断熱構造をとられていない。このため、結露防止パイプ13からの凝縮熱の大半は、庫内へと侵入し、庫内負荷を増大させてしまい、その分圧縮機を運転させる必要が生じ、消費電力が大きくなってしまうという課題があった。 Further, in the refrigerator as described in Patent Document 1, the dew condensation prevention pipe is provided at a position close to the interior of the refrigerator, and a heat insulating structure with the interior is not taken through a heat insulating material or the like. For this reason, most of the condensation heat from the dew condensation prevention pipe 13 penetrates into the inside of the box, increasing the load inside the box, and accordingly, it is necessary to operate the compressor, and the power consumption increases. There was a problem.
 本発明は、上記のような課題を解決するためになされたもので、結露防止パイプの温度を安定化させること、及び、消費電力を低減することを実現する冷蔵庫を提供することを目的としている。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a refrigerator that can stabilize the temperature of a dew condensation prevention pipe and can reduce power consumption. .
 本発明に係る冷蔵庫は、圧縮機、凝縮パイプ、減圧装置、結露防止パイプ、キャピラリーチューブ、及び、冷却器がこの順番で接続されて構成された冷凍サイクルを備えた冷蔵庫において、減圧装置は、冷媒の流動抵抗を、第1の流動抵抗及び当該第1の流動抵抗より小さい第2の流動抵抗の二段階で調整可能に構成されたものである。 A refrigerator according to the present invention includes a compressor, a condensing pipe, a decompression device, a dew condensation prevention pipe, a capillary tube, and a refrigeration cycle in which a cooler is connected in this order. The flow resistance is adjusted in two stages, ie, a first flow resistance and a second flow resistance smaller than the first flow resistance.
 本発明の冷蔵庫によれば、減圧装置を流れる冷媒の流動抵抗が、第1の流動抵抗及び当該第1の流動抵抗より小さい第2の流動抵抗の二段階となるように構成しているので、結露防止パイプの温度を安定化させることができる。
 また、本発明の冷蔵庫によれば、凝縮パイプ、減圧装置及び結露防止パイプが接続されており、減圧装置により結露防止パイプの冷媒温度を凝縮パイプに対して低下させ、庫内温度と結露防止パイプの温度差を小さくすることができる。これにより、結露防止パイプから庫内に侵入する凝縮熱が低減し、圧縮機入力を低減させることができる分、消費電力を低減することができる。
According to the refrigerator of the present invention, since the flow resistance of the refrigerant flowing through the decompression device is configured to be two stages of the first flow resistance and the second flow resistance smaller than the first flow resistance, The temperature of the condensation prevention pipe can be stabilized.
Further, according to the refrigerator of the present invention, the condensing pipe, the decompression device, and the dew condensation prevention pipe are connected, and the refrigerant temperature of the dew condensation prevention pipe is lowered with respect to the condensation pipe by the decompression device, so that the internal temperature and the dew condensation prevention pipe are reduced. The temperature difference can be reduced. As a result, the heat of condensation entering the interior from the dew condensation prevention pipe is reduced, and the power consumption can be reduced by the amount that the compressor input can be reduced.
本発明の実施の形態1に係る冷蔵庫の冷凍サイクルの構成を説明する図である。It is a figure explaining the structure of the refrigerating cycle of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫の結露防止パイプの設置例を説明する図である。It is a figure explaining the example of installation of the dew condensation prevention pipe of the refrigerator which concerns on Embodiment 1 of this invention. 冷蔵庫で一般的に用いられている冷媒であるイソブタンのモリエル線図と、本発明の実施の形態1に係る冷蔵庫の冷凍サイクルにおける冷媒の状態遷移を示した図である。It is the Mollier diagram of isobutane which is the refrigerant | coolant generally used with the refrigerator, and the figure which showed the state transition of the refrigerant | coolant in the refrigerating cycle of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る減圧装置の開度と流動抵抗との関係を示す図である。It is a figure which shows the relationship between the opening degree of the decompression device which concerns on Embodiment 1 of this invention, and flow resistance. 本発明の実施の形態2に係る冷蔵庫の冷凍サイクルの構成を説明する図である。It is a figure explaining the structure of the refrigerating cycle of the refrigerator which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷蔵庫の減圧装置と三方弁との組み合わせによる全冷媒流動抵抗の大小関係を示した表である。It is the table | surface which showed the magnitude relationship of the total refrigerant | coolant flow resistance by the combination of the pressure reduction apparatus of the refrigerator which concerns on Embodiment 2 of this invention, and a three-way valve.
 以下、本発明に係る冷蔵庫の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 本実施の形態に係る冷蔵庫100は、冷蔵庫本体の開口部周縁に埋設されている結露防止パイプの「温度を安定化」及び「消費電力の低減」を可能とする改良が加えられたものである。
Hereinafter, embodiments of a refrigerator according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
Refrigerator 100 according to the present embodiment is provided with improvements that enable “stabilization of temperature” and “reduction of power consumption” of the dew condensation prevention pipe embedded in the periphery of the opening of the refrigerator main body. .
実施の形態1.
 図1は、実施の形態1に係る冷蔵庫100の冷凍サイクルの構成を説明する図である。図1に基づいて、冷蔵庫100の冷凍サイクルの構成について説明する。冷蔵庫100は、蒸気圧縮式冷凍サイクルを利用して冷蔵庫100の庫内を目標温度まで冷却するものである。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration of a refrigeration cycle of refrigerator 100 according to Embodiment 1. Based on FIG. 1, the structure of the refrigerating cycle of the refrigerator 100 is demonstrated. The refrigerator 100 cools the inside of the refrigerator 100 to a target temperature using a vapor compression refrigeration cycle.
 図1に示すように、冷蔵庫100の冷凍サイクルは、冷媒を圧縮して吐出する圧縮機11と、圧縮機11から供給された冷媒を凝縮させる凝縮パイプ12と、凝縮パイプ12から流出した冷媒を減圧させる減圧装置18と、冷蔵庫本体の開口部周縁に埋設されている結露防止パイプ13と、結露防止パイプ13に接続されたドライヤ14と、ドライヤ14から流出した冷媒を減圧させるキャピラリーチューブ15と、冷蔵庫100内の各室に供給される冷気を生成する冷却器16とが、配管にて接続されて構成されている。
 また、冷蔵庫100の冷凍サイクルには、キャピラリーチューブ15を流れる冷媒と、冷却器16と圧縮機11との間における配管(吸入パイプ)を流れる冷媒とで熱交換させる熱交換部分17が設けられている。
As shown in FIG. 1, the refrigeration cycle of the refrigerator 100 includes a compressor 11 that compresses and discharges a refrigerant, a condensing pipe 12 that condenses the refrigerant supplied from the compressor 11, and refrigerant that flows out of the condensing pipe 12. A decompression device 18 for decompressing, a dew condensation prevention pipe 13 embedded in the periphery of the opening of the refrigerator body, a dryer 14 connected to the condensation prevention pipe 13, a capillary tube 15 for decompressing the refrigerant flowing out of the dryer 14, The cooler 16 which produces | generates the cool air supplied to each chamber in the refrigerator 100 is connected and comprised by piping.
Further, the refrigeration cycle of the refrigerator 100 is provided with a heat exchange portion 17 for exchanging heat between the refrigerant flowing through the capillary tube 15 and the refrigerant flowing through the pipe (suction pipe) between the cooler 16 and the compressor 11. Yes.
(圧縮機11)
 圧縮機11は、吸入した冷媒を圧縮して吐出するものである。圧縮機11は、吸入側が熱交換部分17に接続され、吐出側が凝縮パイプ12に接続されている。圧縮機11は、たとえば冷蔵庫100の背面下部に設けられた機械室内に配置されている。圧縮機11は、冷媒を圧縮して高温・高圧の冷媒とするものであり、インバータで駆動され、庫内状況に応じて運転が制御されるようになっている。
(Compressor 11)
The compressor 11 compresses and discharges the sucked refrigerant. The compressor 11 has a suction side connected to the heat exchange portion 17 and a discharge side connected to the condensing pipe 12. The compressor 11 is arrange | positioned, for example in the machine room provided in the back lower part of the refrigerator 100. FIG. The compressor 11 compresses the refrigerant into a high-temperature and high-pressure refrigerant, is driven by an inverter, and the operation is controlled according to the state in the warehouse.
(凝縮パイプ12)
 凝縮パイプ12は、圧縮機11から吐出された冷媒が放熱することで、冷媒を凝縮液化させるものである。凝縮パイプ12は、一方が圧縮機11の吐出側に接続され、他方が減圧装置18に接続されている。この凝縮パイプ12は、ドレン蒸発のためのホットパイプや、圧縮機11の設置空間に置かれた空冷凝縮器、冷蔵庫の側面や背面に断熱材を解して埋設されている。
(Condensation pipe 12)
The condensing pipe 12 is configured to condense and liquefy the refrigerant as the refrigerant discharged from the compressor 11 dissipates heat. One of the condensation pipes 12 is connected to the discharge side of the compressor 11, and the other is connected to the decompression device 18. The condensing pipe 12 is embedded in a hot pipe for drain evaporation, an air-cooled condenser placed in an installation space of the compressor 11, and a heat insulating material on the side and back of the refrigerator.
(減圧装置18)
 減圧装置18は、凝縮パイプ12から流出した冷媒を減圧させるものである。減圧装置18は、一方が凝縮パイプ12に接続され、他方が結露防止パイプ13に接続されている。本実施の形態1に係る減圧装置18は、冷媒を減圧して膨張させるものであり、開度が可変に制御可能なもの、たとえば電子式膨張弁であるものとして説明する。減圧装置18は、後述するように、弁開度を調整することによって、2つの流量抵抗値に設定することができるようになっている(図4参照)。なお、減圧装置18については、[減圧装置18の減圧量について]及び[減圧装置18の詳細構成及び動作について]で詳細に説明する。
(Decompression device 18)
The decompression device 18 decompresses the refrigerant that has flowed out of the condensation pipe 12. One of the decompression devices 18 is connected to the condensation pipe 12, and the other is connected to the dew condensation prevention pipe 13. The decompression device 18 according to the first embodiment will be described on the assumption that the refrigerant is decompressed and expanded, and the opening degree can be variably controlled, for example, an electronic expansion valve. As will be described later, the decompression device 18 can be set to two flow resistance values by adjusting the valve opening (see FIG. 4). The decompression device 18 will be described in detail in [about the decompression amount of the decompression device 18] and [detailed configuration and operation of the decompression device 18].
(結露防止パイプ13)
 結露防止パイプ13は、冷蔵庫本体の前面部分における露付き防止用に設けられ、凝縮器として作用するパイプである。すなわち、結露防止パイプ13は、凝縮器として作用して、減圧装置18から流出した冷媒の熱を冷蔵庫本体の開口部周縁に伝達させることが可能なように、冷蔵庫本体の開口部周縁に埋設されている。結露防止パイプ13は、一方が減圧装置18に接続され、他方がドライヤ14に接続されている。
 なお、結露防止パイプ13の構成については、後述の図2で詳しく説明する。
(Condensation prevention pipe 13)
The dew condensation prevention pipe 13 is a pipe which is provided for preventing dew condensation on the front surface portion of the refrigerator main body and acts as a condenser. That is, the dew condensation prevention pipe 13 acts as a condenser and is embedded in the periphery of the opening of the refrigerator body so that the heat of the refrigerant flowing out of the decompression device 18 can be transmitted to the periphery of the opening of the refrigerator body. ing. One of the dew condensation prevention pipes 13 is connected to the decompression device 18 and the other is connected to the dryer 14.
The configuration of the condensation prevention pipe 13 will be described in detail with reference to FIG.
(ドライヤ14)
 ドライヤ14は、冷蔵庫100の冷凍サイクル内のゴミや金属粉などを圧縮機11へ流入させないためのフィルターや、冷凍サイクル内の水分を吸着する吸着部材などで構成されているものである。ドライヤ14は、一方が結露防止パイプ13に接続され、他方がキャピラリーチューブ15に接続されている。
(Dryer 14)
The dryer 14 is configured by a filter for preventing dust, metal powder, and the like in the refrigeration cycle of the refrigerator 100 from flowing into the compressor 11, an adsorbing member that adsorbs moisture in the refrigeration cycle, and the like. One of the dryers 14 is connected to the condensation prevention pipe 13 and the other is connected to the capillary tube 15.
(キャピラリーチューブ15)
 キャピラリーチューブ15は、ドライヤ14から流出した冷媒を減圧装置として作用するものである。キャピラリーチューブ15は、一方がドライヤ14に接続され、他方が冷却器16に接続されている。キャピラリーチューブ15を流れる冷媒は、熱交換部分17の作用により、冷却器16と圧縮機11との間における配管(吸入パイプ)を流れる冷媒との間で熱交換がなされる。
(Capillary tube 15)
The capillary tube 15 acts as a decompression device using the refrigerant flowing out of the dryer 14. One of the capillary tubes 15 is connected to the dryer 14 and the other is connected to the cooler 16. The refrigerant flowing through the capillary tube 15 exchanges heat with the refrigerant flowing through the pipe (suction pipe) between the cooler 16 and the compressor 11 by the action of the heat exchange portion 17.
(冷却器16)
 冷却器16は、冷蔵庫の各室(図2の冷蔵室3などを参照)に供給される冷気を生成するものであり、蒸発器として作用するものである。冷却器16は、一方がキャピラリーチューブ15に接続され、他方が熱交換部分17を介して圧縮機11の吸入側に接続されている。
 この冷却器16は、たとえば冷蔵庫100の背面側に設けられた冷却器室内に設けられている。そして、冷却器16のたとえば上方には、送風ファンが設けられている。この送風ファンにより冷却器16に空気が供給されるとともに、冷却器16周辺で冷却された冷気が各室へと供給されるようになっている。
(Cooler 16)
The cooler 16 generates cool air to be supplied to each room of the refrigerator (see the refrigerator compartment 3 and the like in FIG. 2), and functions as an evaporator. One of the coolers 16 is connected to the capillary tube 15, and the other is connected to the suction side of the compressor 11 via the heat exchange portion 17.
The cooler 16 is provided, for example, in a cooler chamber provided on the back side of the refrigerator 100. A blower fan is provided, for example, above the cooler 16. Air is supplied to the cooler 16 by the blower fan, and cool air cooled around the cooler 16 is supplied to each chamber.
(熱交換部分17)
 熱交換部分17は、キャピラリーチューブ15を流れる冷媒と、圧縮機11へ吸入される冷媒と、の間で熱交換を行わせる部分である。
(Heat exchange part 17)
The heat exchanging portion 17 is a portion that exchanges heat between the refrigerant flowing through the capillary tube 15 and the refrigerant sucked into the compressor 11.
 また、たとえば冷蔵庫100の背面上部には、この冷蔵庫100の運転を制御するマイコンなどを備えた制御装置10が設けられている。 Further, for example, a control device 10 including a microcomputer for controlling the operation of the refrigerator 100 is provided on the upper rear surface of the refrigerator 100.
 図2は、冷蔵庫100の結露防止パイプ13の設置例を説明する図である。図2に基づいて、結露防止パイプ13の設置例について説明する。 FIG. 2 is a diagram for explaining an installation example of the dew condensation prevention pipe 13 of the refrigerator 100. Based on FIG. 2, the installation example of the dew condensation prevention pipe 13 is demonstrated.
 図2に示すように、冷蔵庫100は、前面側が開口した箱状のキャビネット部21を備えている。このキャビネット部21は、冷蔵庫本体の外郭を形成する外箱と、冷蔵庫本体の内壁を形成する内箱とを有し、その間にたとえばウレタンなどの断熱材が設けられて構成されている。また、キャビネット部21の内部には、キャビネット部21の内部空間を複数の貯蔵室に仕切るディバイダ部(仕切り壁)22が設けられている。冷蔵庫100では、貯蔵室として、冷蔵室3、製氷室4、切替室5、冷凍室6、野菜室7が設けられている。 As shown in FIG. 2, the refrigerator 100 includes a box-shaped cabinet portion 21 whose front side is open. The cabinet portion 21 includes an outer box that forms the outer shell of the refrigerator main body and an inner box that forms the inner wall of the refrigerator main body, and a heat insulating material such as urethane is provided therebetween. Further, a divider part (partition wall) 22 that partitions the internal space of the cabinet part 21 into a plurality of storage chambers is provided inside the cabinet part 21. In the refrigerator 100, a refrigerator compartment 3, an ice making compartment 4, a switching compartment 5, a freezer compartment 6, and a vegetable compartment 7 are provided as storage compartments.
 冷蔵室3は、冷蔵庫100の最上部に設けられており、前面は断熱構造を有する両開き式の扉により開閉自在に覆われる。
 製氷室4及び切替室5は、冷蔵室3の下側の左右に並んで設けられており、それぞれの前面は断熱構造を有する引出し式の扉により開閉自在に覆われる。
 冷凍室6は、製氷室4及び切替室5の下側に設けられており、前面は断熱構造を有する引出し式の扉により開閉自在に覆われる。
 野菜室7は、冷凍室6の下側、冷蔵庫100の最下部に設けられており、前面は断熱構造を有する引出し式の扉により開閉自在に覆われる。
The refrigerator compartment 3 is provided in the uppermost part of the refrigerator 100, and the front surface is covered with the double-opening door which has a heat insulation structure so that opening and closing is possible.
The ice making chamber 4 and the switching chamber 5 are provided side by side on the lower side of the refrigeration chamber 3, and the front surfaces of the ice making chamber 4 and the switching chamber 5 are covered with a drawer-type door having a heat insulating structure so as to be freely opened and closed.
The freezing room 6 is provided below the ice making room 4 and the switching room 5, and the front surface is covered with a drawer-type door having a heat insulating structure so as to be opened and closed.
The vegetable compartment 7 is provided below the freezer compartment 6 and at the bottom of the refrigerator 100, and the front surface is covered with a drawer-type door having a heat insulating structure so as to be freely opened and closed.
 各貯蔵室の扉には、通常、その開閉状態を検出する扉開閉センサー(図示省略)が設けられている。そして、制御装置10は、各扉開閉センサーからの出力を受けて各扉の開閉状態を検出し、たとえば扉が長時間開放されたままの場合には、操作パネル(図示省略)や音声出力装置により、その旨を使用者に報知することができる。 Each door of the storage room is usually provided with a door open / close sensor (not shown) for detecting the open / closed state. And the control apparatus 10 receives the output from each door opening / closing sensor, detects the open / closed state of each door, for example, when a door remains open for a long time, an operation panel (illustration omitted) or a voice output device Thus, it is possible to notify the user to that effect.
 各貯蔵室は、設定可能な温度帯(設定温度帯)によって区別されており、たとえば、冷蔵室3は約0℃~4℃、野菜室7は約3℃~10℃、製氷室4は約-18℃、冷凍室6は約-16℃~-22℃にそれぞれ設定可能となっている。
 また、切替室5は、チルド(約0℃)やソフト冷凍(約-7℃)などの温度帯に切り替えることが可能である。なお、各貯蔵室の設定温度はこれに限るものではない。
Each storage room is distinguished by a settable temperature zone (set temperature zone). For example, the refrigerator compartment 3 is about 0 ° C. to 4 ° C., the vegetable compartment 7 is about 3 ° C. to 10 ° C., and the ice making room 4 is about The temperature in the freezer compartment 6 can be set to about -16 ° C to -22 ° C.
The switching chamber 5 can be switched to a temperature range such as chilled (about 0 ° C.) or soft freezing (about −7 ° C.). The set temperature of each storage room is not limited to this.
 たとえば冷蔵室3の扉の表面には、各貯蔵室の温度や設定を調節する操作スイッチと、そのときの各貯蔵室の温度を表示する液晶などから構成される操作パネルが設けられている。
 この操作パネルには、冷蔵庫100の周囲の外気の温度を検出する外気温度センサーを設けておくとよい。制御装置10は、各貯蔵室に配置された庫内温度センサーの検出値が、操作パネルにより設定された設定温度となるように、冷凍サイクルの運転や各部の動作を制御する。
For example, on the surface of the door of the refrigerator compartment 3, there is provided an operation panel composed of an operation switch for adjusting the temperature and setting of each storage room and a liquid crystal for displaying the temperature of each storage room at that time.
The operation panel may be provided with an outside air temperature sensor that detects the temperature of the outside air around the refrigerator 100. The control device 10 controls the operation of the refrigeration cycle and the operation of each part so that the detection value of the internal temperature sensor arranged in each storage room becomes the set temperature set by the operation panel.
 このように冷蔵庫100の内部は、温度帯の異なる複数の貯蔵室に区画されているため、庫内と庫外とが近接するキャビネット部21やディバイダ部22では、その表面温度が外気露点温度以下になると結露が発生する可能性がある。
 そのため、冷蔵庫100では、図2に示すように結露防止パイプ13により、キャビネット部21、ディバイダ部22の表面温度を冷媒凝縮熱により外気露点温度以上に維持している。
Thus, since the inside of the refrigerator 100 is partitioned into a plurality of storage rooms having different temperature zones, the surface temperature of the cabinet unit 21 and the divider unit 22 in which the inside of the refrigerator and the outside of the refrigerator are close to each other is equal to or lower than the outside dew point temperature. If this happens, condensation may occur.
Therefore, in the refrigerator 100, as shown in FIG. 2, the surface temperature of the cabinet part 21 and the divider part 22 is maintained above the dew point of the outside air by the refrigerant condensation heat by the dew condensation prevention pipe 13.
 結露防止パイプ13は、キャビネット部21の前面開口の周縁部及びディバイダ部22の前面側の縁に、折り曲げて内装されている。この結露防止パイプ13は、ブチルゴムなどの熱容量の大きい弾性部材を介して、キャビネット部21やディバイダ部22に設置されている。図2に示すように、キャビネット部21とディバイダ部22のすべての前面側の縁に結露防止パイプ13を配設してもよい。
 また、製氷室4、切替室5、及び冷凍室6に隣接するキャビネット部21及びディバイダ部22の前面側の縁(冷凍温度帯の冷気が漏れ出しうる領域)にのみ、結露防止パイプ13を配設してもよい。なお、結露防止パイプ13の配置は、図2に図示したものに限定されるものではない。たとえば、低温冷気が外部に漏れ出すことによる露付きを抑制可能な任意の場所に結露防止パイプ13を配置してよい。
The anti-condensation pipe 13 is bent and installed at the peripheral edge of the front opening of the cabinet portion 21 and the front edge of the divider portion 22. This dew condensation prevention pipe 13 is installed in the cabinet part 21 or the divider part 22 through an elastic member having a large heat capacity such as butyl rubber. As shown in FIG. 2, the dew condensation prevention pipes 13 may be disposed on all front side edges of the cabinet part 21 and the divider part 22.
In addition, the anti-condensation pipe 13 is arranged only on the front side edge of the ice making room 4, the switching room 5, and the freezing room 6 and the front edge of the divider part 22 (the area where the cold air in the freezing temperature zone can leak). You may set up. In addition, arrangement | positioning of the dew condensation prevention pipe 13 is not limited to what was illustrated in FIG. For example, the dew condensation prevention pipe 13 may be arranged at an arbitrary place where dew condensation due to low temperature cold air leaking to the outside can be suppressed.
 ここで、キャビネット部21、ディバイダ部22の表面温度の上昇と、圧縮機11の必要入力について説明する。
 たとえば、キャビネット部21やディバイダ部22の表面温度を結露防止パイプ13でなくヒータにより上昇させる場合、ヒータ入力を増加させればキャビネット部21やディバイダ部22の表面温度は上昇する。そして、キャビネット部21やディバイダ部22の結露防止のため表面温度を外気露点温度以上にする場合、あるヒータ入力Whにて表面温度が外気露点温度と同等になったとすると、Wh以上の入力を加えると表面温度は外気露点温度以上になり、Wh以下の入力では表面温度は外気露点温度以下となる。つまり、ヒータ入力とキャビネット部21やディバイダ部22の表面温度には相関があり、ヒータ入力が増えればヒータ温度が上昇し、キャビネット部21やディバイダ部22の表面温度は高くなる。
Here, the rise in the surface temperature of the cabinet part 21 and the divider part 22 and the necessary input of the compressor 11 will be described.
For example, when the surface temperature of the cabinet part 21 or the divider part 22 is raised by the heater instead of the dew condensation prevention pipe 13, if the heater input is increased, the surface temperature of the cabinet part 21 or the divider part 22 rises. When the surface temperature is set to be equal to or higher than the outside air dew point temperature in order to prevent dew condensation on the cabinet part 21 and the divider part 22, if the surface temperature becomes equal to the outside air dew point temperature at a certain heater input Wh, an input exceeding Wh is added. The surface temperature is equal to or higher than the outside air dew point temperature. When the input is less than Wh, the surface temperature is equal to or lower than the outside air dew point temperature. That is, there is a correlation between the heater input and the surface temperature of the cabinet part 21 or the divider part 22, and as the heater input increases, the heater temperature rises and the surface temperature of the cabinet part 21 or the divider part 22 increases.
 これに対し、冷蔵庫100の場合は結露防止パイプ13がヒータと同等の役割をしており、ヒータ入力が圧縮機入力となる。すなわち、キャビネット部21やディバイダ部22の表面温度を低下、つまり結露防止パイプ13の温度を低下することができれば圧縮機入力が低減するということである。 On the other hand, in the case of the refrigerator 100, the dew condensation prevention pipe 13 plays the same role as the heater, and the heater input is the compressor input. That is, if the surface temperature of the cabinet part 21 or the divider part 22 can be lowered, that is, the temperature of the dew condensation prevention pipe 13 can be lowered, the compressor input is reduced.
 図3は、冷蔵庫で一般的に用いられている冷媒であるイソブタンのモリエル線図と、冷蔵庫100の冷凍サイクルにおける冷媒の状態遷移を示した図である。図3に基づいて、凝縮パイプ12と結露防止パイプ13との間に直列で減圧装置18を持つ冷蔵庫100の冷凍サイクルについて説明する。なお、図3中の符号は、図1と同じものを示している。また、図3において、横軸はエンタルピ、縦軸は圧力である。さらに、庫外の外気温を30(℃)と想定し、冷却器16への流入空気温度を-15(℃)と想定している。 FIG. 3 is a Mollier diagram of isobutane, which is a refrigerant generally used in refrigerators, and a diagram showing the state transition of the refrigerant in the refrigeration cycle of the refrigerator 100. A refrigeration cycle of the refrigerator 100 having the decompression device 18 in series between the condensation pipe 12 and the dew condensation prevention pipe 13 will be described with reference to FIG. In addition, the code | symbol in FIG. 3 has shown the same thing as FIG. In FIG. 3, the horizontal axis represents enthalpy and the vertical axis represents pressure. Furthermore, the outside air temperature outside the warehouse is assumed to be 30 (° C.), and the temperature of the air flowing into the cooler 16 is assumed to be −15 (° C.).
 冷蔵庫内の冷媒は圧縮機11で圧縮(図3中のA→B)され高温高圧の冷媒となり、冷媒飽和圧力が外気温度以上となる。冷媒飽和圧力が外気温度以上となった冷媒は、凝縮パイプ12に流入し、外気に凝縮熱を放熱する(図3中のB→E)。
 凝縮パイプ12から流出した冷媒は、減圧装置18に流入し、凝縮パイプ12における冷媒圧力から減圧される(図3中のE→F)。この減圧装置18が冷蔵庫100に設けられていることにより、結露防止パイプ13の冷媒圧力は、凝縮パイプ12の冷媒圧力に対して低下する。
 結露防止パイプ13に流入した冷媒は、庫内を含めた環境下で凝縮する(図3中のF→C)。なお、ここでいう「庫内を含めた環境下で凝縮する」とは、冷蔵庫本体の外郭を形成する外箱及び内箱や庫内空気に対して、結露防止パイプ13の熱が伝達され、結露防止パイプ13内の冷媒が凝縮することを指す。
The refrigerant in the refrigerator is compressed by the compressor 11 (A → B in FIG. 3) to become a high-temperature and high-pressure refrigerant, and the refrigerant saturation pressure becomes equal to or higher than the outside air temperature. The refrigerant whose refrigerant saturation pressure is equal to or higher than the outside air temperature flows into the condensation pipe 12 and dissipates the heat of condensation to the outside air (B → E in FIG. 3).
The refrigerant that has flowed out of the condensing pipe 12 flows into the decompression device 18 and is depressurized from the refrigerant pressure in the condensing pipe 12 (E → F in FIG. 3). Since the decompression device 18 is provided in the refrigerator 100, the refrigerant pressure in the dew condensation prevention pipe 13 is reduced with respect to the refrigerant pressure in the condensation pipe 12.
The refrigerant that has flowed into the dew condensation prevention pipe 13 condenses in an environment including the inside of the warehouse (F → C in FIG. 3). In addition, "condensation in the environment including the inside of the room" here means that the heat of the dew condensation prevention pipe 13 is transmitted to the outer box and the inner box or the air inside the box forming the outer shell of the refrigerator body, It means that the refrigerant in the dew condensation prevention pipe 13 is condensed.
 結露防止パイプ13から流出した冷媒は、キャピラリーチューブ15に流入して減圧されるとともに、熱交換部分17にて圧縮機11の吸入管を流れる冷媒と熱交換する(図3中のC→D)。そして、キャピラリーチューブ15から流出した冷媒は、冷却器16に流入し、図示省略のファンにより冷却器16に供給された空気と熱交換する。すなわち、キャピラリーチューブ15から流出した冷媒は、冷却器16に供給された空気から吸熱して蒸発する。
 この冷却器16に供給された空気から吸熱して蒸発した冷媒は、熱交換部分17を通過して圧縮機11に戻る(図3中のD→A)。
The refrigerant flowing out from the dew condensation prevention pipe 13 flows into the capillary tube 15 and is depressurized, and also exchanges heat with the refrigerant flowing through the suction pipe of the compressor 11 in the heat exchange portion 17 (C → D in FIG. 3). . Then, the refrigerant flowing out from the capillary tube 15 flows into the cooler 16 and exchanges heat with air supplied to the cooler 16 by a fan (not shown). That is, the refrigerant flowing out from the capillary tube 15 absorbs heat from the air supplied to the cooler 16 and evaporates.
The refrigerant that has absorbed heat and evaporated from the air supplied to the cooler 16 passes through the heat exchange portion 17 and returns to the compressor 11 (D → A in FIG. 3).
[減圧装置18の減圧量について]
 次に、冷蔵庫100の消費電力量を低減させる手段について説明する。冷蔵庫100の消費電力は、そのほとんどが庫内温度を維持するための蒸気圧縮式冷凍サイクルの動作源である圧縮機入力である。
 たとえば、冷蔵庫100の側面や背面に断熱材として真空断熱材を利用する場合のように、冷却対象となる冷蔵庫の断熱性能が高い場合には、庫内温度を維持するための負荷が小さいため、必要となる圧縮機入力は低減する。ここで、冷蔵庫100の庫内負荷には、「冷蔵庫100の断熱性能に起因する負荷」と、「凝縮パイプ12や結露防止パイプ13の凝縮熱が冷蔵庫内に侵入する庫内負荷」との二つがある。
[Decompression amount of decompression device 18]
Next, means for reducing the power consumption of the refrigerator 100 will be described. Most of the power consumption of the refrigerator 100 is a compressor input which is an operation source of a vapor compression refrigeration cycle for maintaining the internal temperature.
For example, when the heat insulation performance of the refrigerator to be cooled is high, such as when using a vacuum heat insulating material as a heat insulating material on the side and back of the refrigerator 100, the load for maintaining the internal temperature is small. The required compressor input is reduced. Here, the internal load of the refrigerator 100 includes two loads: “a load resulting from the heat insulation performance of the refrigerator 100” and “an internal load in which condensation heat of the condensation pipe 12 and the dew condensation prevention pipe 13 enters the refrigerator”. There is one.
 凝縮パイプ12は、冷蔵庫100の側面や背面に設置されており、上述のように冷蔵庫100の断熱性能を向上させれば庫内への凝縮熱を低減することが可能である。一方で、図2に示すように結露防止パイプ13は庫内に近い位置にあり、且つ、断熱材などを介して庫内との断熱構造をとっていないため、結露防止パイプ13からの凝縮熱の大半は庫内へと侵入し、庫内負荷の大部分となっている。
 図3に示すように、冷蔵庫100では、減圧装置18により結露防止パイプ13の冷媒温度を凝縮パイプ12に対して低下させる。減圧装置18により結露防止パイプ13の温度が低下することで、庫内温度と結露防止パイプ13の温度差が小さくなり、結露防止パイプ13から庫内に侵入する凝縮熱を低減可能である。これにより、冷蔵庫100の庫内負荷を軽減し、圧縮機入力が低減するため、消費電力量が低減可能である。
The condensation pipe 12 is installed on the side surface or the back surface of the refrigerator 100. If the heat insulation performance of the refrigerator 100 is improved as described above, the heat of condensation in the refrigerator can be reduced. On the other hand, as shown in FIG. 2, the condensation prevention pipe 13 is in a position close to the inside of the cabinet and does not have a heat insulation structure with the inside of the cabinet via a heat insulating material or the like. Most of them invade into the warehouse and become a large part of the warehouse load.
As shown in FIG. 3, in the refrigerator 100, the decompression device 18 lowers the refrigerant temperature of the dew condensation prevention pipe 13 with respect to the condensation pipe 12. By reducing the temperature of the dew condensation prevention pipe 13 by the decompression device 18, the temperature difference between the inside temperature and the dew condensation prevention pipe 13 is reduced, and the condensation heat entering the inside from the condensation prevention pipe 13 can be reduced. Thereby, since the load in the refrigerator 100 is reduced and the compressor input is reduced, the power consumption can be reduced.
 ただし、減圧装置18における減圧量は、結露防止パイプ13内の冷媒飽和温度が「外気温度から3~5℃低い温度」の飽和圧力までである。このように、減圧装置18における減圧量を制限する理由は次の通りである。
 すなわち、本来は結露防止パイプ13内の冷媒飽和圧力が外気温度を下回った場合、冷媒は凝縮できない。しかし、図2に示すように結露防止パイプ13は、庫内に近い位置にあるため、結果的に外気温度以下の庫内と接している。このため、外気温度より低い温度に対応する飽和圧力まで減圧させても、冷媒は凝縮することができる。ただし、外気が結露してしまうことがないように、外気露点温度も考慮する必要がある。
However, the amount of decompression in the decompression device 18 is up to the saturation pressure at which the refrigerant saturation temperature in the dew condensation prevention pipe 13 is “a temperature 3-5 ° C. lower than the outside air temperature”. Thus, the reason for limiting the amount of pressure reduction in the pressure reducing device 18 is as follows.
In other words, the refrigerant cannot be condensed when the refrigerant saturation pressure in the dew condensation prevention pipe 13 is originally lower than the outside air temperature. However, as shown in FIG. 2, the dew condensation prevention pipe 13 is in a position close to the inside of the compartment, and as a result, is in contact with the inside of the compartment below the outside air temperature. For this reason, the refrigerant can be condensed even if the pressure is reduced to a saturation pressure corresponding to a temperature lower than the outside air temperature. However, the outside air dew point temperature must also be taken into consideration so that the outside air does not condense.
 以上より、冷蔵庫100の安定運転時における減圧装置18における減圧量は、「結露防止パイプ13の冷媒飽和温度は外気温度以下」とするとよく、より圧縮機入力を低減させたい場合には、「外気温度から3~5℃低い温度」又は「外気露点温度」の飽和圧力まで減圧させるとよい。ただし、「外気温度から3~5℃低い温度」とする場合においては、減圧装置18における減圧量が、結露防止のため、「外気露点温度」を下回らないようにする。 From the above, the amount of decompression in the decompression device 18 during the stable operation of the refrigerator 100 may be “the refrigerant saturation temperature of the dew condensation prevention pipe 13 is equal to or lower than the outside air temperature”. The pressure may be reduced to a saturation pressure of “temperature 3-5 ° C. lower than temperature” or “open-air dew point temperature”. However, in the case of “a temperature 3 to 5 ° C. lower than the outside air temperature”, the amount of decompression in the decompression device 18 is set not to fall below the “outside air dew point temperature” in order to prevent condensation.
[減圧装置18の詳細構成及び動作について]
(LEVの採用について)
 減圧装置18は、電子式膨張弁(LEV)などのように、冷蔵庫などに搭載される一般的な減圧装置によって構成するとよい。キャピラリーチューブは、長さや内径が固定となるため、減圧量が固定となるが、LEVは、ステッピングモータなどを用いて目標値に対する適正な開度となるように調整可能であるからである。
 一般的な空調機器や冷蔵冷凍機器では、LEVにより目標蒸発温度(吸入温度)や目標吐出温度となるよう流動抵抗を変化させる。そこで、本実施の形態1に係る冷蔵庫100においても、先に述べたように結露防止パイプ13の温度を「外気露点温度」又は「外気温度から3~5℃低い温度」に制御するため、LEVを減圧装置18に適用するものとして説明する。
 なお、LEVについては、たとえば文献「冷凍空調便覧II巻」に記載されている。
[Detailed configuration and operation of decompression device 18]
(About adoption of LEV)
The decompression device 18 may be constituted by a general decompression device mounted on a refrigerator or the like, such as an electronic expansion valve (LEV). This is because the capillary tube has a fixed length and an inner diameter, so that the amount of pressure reduction is fixed, but the LEV can be adjusted to an appropriate opening degree with respect to the target value by using a stepping motor or the like.
In general air-conditioning equipment and refrigeration equipment, the flow resistance is changed by LEV so that the target evaporation temperature (suction temperature) and the target discharge temperature are reached. Therefore, also in the refrigerator 100 according to the first embodiment, as described above, the temperature of the dew condensation prevention pipe 13 is controlled to “outside air dew point temperature” or “temperature 3 to 5 ° C. lower than the outside air temperature”. Is applied to the decompression device 18.
Note that LEV is described in, for example, the document “Refrigeration and Air Conditioning Handbook II”.
 冷蔵庫100の冷媒流量は、外気30(℃)で安定運転時で1(kg/h)程度である。また、低外気では1(kg/h)以下である。LEVなどの冷媒制御機器に対する冷媒の応答時間τは、冷媒流量Grと機器の冷媒量Mにより以下のように与えられる。
[数1]
 τ=M/Gr・・・(1)
 なお、この(1)式などの事項については、たとえば文献「冷凍サイクルの動特性と制御」に記載されている。
The refrigerant flow rate of the refrigerator 100 is about 1 (kg / h) at the time of stable operation with the outside air 30 (° C.). Moreover, in low external air, it is 1 (kg / h) or less. The refrigerant response time τ with respect to the refrigerant control device such as LEV is given by the refrigerant flow rate Gr and the refrigerant amount M of the device as follows.
[Equation 1]
τ = M / Gr (1)
Note that matters such as the equation (1) are described in, for example, the document “Dynamic characteristics and control of refrigeration cycle”.
(減圧装置18の流動抵抗について)
 図4は、本実施の形態1に係る減圧装置18の開度と流動抵抗との関係を示す図である。図4を参照して、減圧装置18の構成について詳しく説明する。
 冷蔵庫100のように、一般的な冷蔵冷凍機器では、冷媒量Mがおおよそ80(g)である。このことから、(1)式より応答時間τ=288(秒)となる。つまり、一般的な空調機器や冷蔵冷凍機器で使用されているLEVを用いて制御を行った場合には、1回の流動抵抗の変更に対して、冷媒の流れが安定するまでに5分近くを必要とするということである。
(About the flow resistance of the decompression device 18)
FIG. 4 is a diagram showing the relationship between the opening degree and the flow resistance of the decompression device 18 according to the first embodiment. The configuration of the decompression device 18 will be described in detail with reference to FIG.
In a general refrigeration equipment such as the refrigerator 100, the refrigerant amount M is approximately 80 (g). From this, the response time τ = 288 (seconds) from the equation (1). In other words, when control is performed using an LEV used in general air conditioning equipment and refrigeration equipment, it takes almost 5 minutes for the refrigerant flow to stabilize for one change in flow resistance. It is that you need.
 ここで、冷蔵庫100の「運転時間」は、たとえば30分~1時間である。なお、「運転時間」とは、圧縮機11が起動してから停止するまでの時間を指す。すなわち、冷蔵庫100は、圧縮機11が起動してから所定の時間運転した後に停止するサイクルを繰り返しているが、このサイクルのうちの1つの期間を「運転時間」と称する。
 このため、一般的な空調機器や冷蔵冷凍機器で使用されているLEVを3~6回程度の制御を繰り返した場合には、5分×3~6回=15~30分程度が流動抵抗の変更に対する安定化に必要となる。すなわち、運転時間の半分以上が、冷媒の流れの安定化に必要となり、減圧装置18の減圧効果が得られるのは残りの約半分の運転時間となる。
Here, the “operating time” of the refrigerator 100 is, for example, 30 minutes to 1 hour. The “operation time” refers to the time from when the compressor 11 is started to when it is stopped. That is, the refrigerator 100 repeats a cycle of stopping after being operated for a predetermined time after the compressor 11 is activated, and one period of the cycle is referred to as “operation time”.
Therefore, when the LEV used in general air-conditioning equipment and refrigeration equipment is repeatedly controlled 3 to 6 times, the flow resistance is 5 minutes × 3 to 6 times = 15 to 30 minutes. Necessary for stabilization against changes. That is, more than half of the operation time is necessary for stabilizing the refrigerant flow, and the decompression effect of the decompression device 18 is obtained for the remaining half of the operation time.
 そこで、減圧装置18は、減圧装置18の流動変更に伴う冷媒流量の変化を考慮し、減圧装置18の流動抵抗が図4に示す特性を有するように構成されている。
 つまり、従来の減圧装置では、開度を大きくしていくと徐々に流動抵抗が大きくなるように構成されていたが、本実施の形態1に係る減圧装置18は、減圧効果による圧縮機入力の低減効果を最大限得るため、抵抗大(第1の流動抵抗)及び抵抗小(第2の流動抵抗)の二領域を有するように構成されている。減圧装置18は、第1の流動抵抗及び当該第1の流動抵抗より流動抵抗が小さい第2の流動抵抗の二段階で調整可能に構成されたものであるということである。
 また、減圧装置18の調整可能な開度範囲には、抵抗大のときの開度としての開度A、抵抗小のときの開度としての開度C、及び、抵抗大と抵抗小との間を切り替える際の開度としての開度Bが設けられている。
Therefore, the decompression device 18 is configured so that the flow resistance of the decompression device 18 has the characteristics shown in FIG. 4 in consideration of the change in the refrigerant flow rate associated with the flow change of the decompression device 18.
That is, in the conventional pressure reducing device, the flow resistance is gradually increased as the opening degree is increased, but the pressure reducing device 18 according to the first embodiment is a compressor input by the pressure reducing effect. In order to obtain the reduction effect as much as possible, it is configured to have two regions of a large resistance (first flow resistance) and a small resistance (second flow resistance). The decompression device 18 is configured to be adjustable in two stages of a first flow resistance and a second flow resistance having a smaller flow resistance than the first flow resistance.
Further, the adjustable opening range of the decompression device 18 includes an opening A as an opening when the resistance is large, an opening C as an opening when the resistance is small, and a large resistance and a small resistance. An opening B is provided as an opening when switching between the two.
(減圧装置18の動作について)
 減圧装置18の動作方法について説明する。
 減圧装置18は、冷蔵庫100の安定運転時においては、減圧装置18の減圧効果を「運転時間」中のすべてで得るため、抵抗大の領域の開度(開度A)に調整される。この開度Aのときは減圧装置18の開度を絞っており、減圧装置18における流動抵抗が大きく、減圧装置18の冷媒流量が小さくなっている。
 このように、冷媒を多く循環させる必要がない安定運転時においては、減圧装置18を開度Aとして絞り、結露防止パイプ13の冷媒温度を凝縮パイプ12に対して低下させる。これにより、庫内温度と結露防止パイプ13の温度差が小さくなり、結露防止パイプ13から庫内に侵入する凝縮熱を低減することができる。そして、冷蔵庫100の庫内負荷を軽減し、圧縮機入力が低減し、消費電力量が低減することができる。
(About operation of decompression device 18)
An operation method of the decompression device 18 will be described.
In the stable operation of the refrigerator 100, the decompression device 18 is adjusted to the opening degree (opening degree A) in the region of large resistance in order to obtain the decompression effect of the decompression device 18 in all of the “operation time”. At the opening degree A, the opening degree of the decompression device 18 is reduced, the flow resistance in the decompression device 18 is large, and the refrigerant flow rate of the decompression device 18 is small.
In this way, during stable operation where it is not necessary to circulate a large amount of refrigerant, the decompression device 18 is throttled to an opening A, and the refrigerant temperature of the dew condensation prevention pipe 13 is lowered relative to the condensation pipe 12. As a result, the temperature difference between the internal temperature and the dew condensation prevention pipe 13 is reduced, and the condensation heat entering the inside from the dew condensation prevention pipe 13 can be reduced. And the load in the refrigerator 100 can be reduced, the compressor input can be reduced, and the power consumption can be reduced.
 一方で、減圧装置18は、扉開閉時や起動時、除霜運転終了後など過渡的な運転時においては、抵抗小の領域の開度(開度C)に調整される。この開度Cのときは減圧装置18の開度を大きくしており、減圧装置18における流動抵抗が小さく、減圧装置18の冷媒流量が大きくなっている。
 過渡的運転時には、庫内負荷が明確に定義できないため(たとえば庫内温度が時間的に変化)、凝縮パイプ12の冷媒圧力に対して結露防止パイプ13の冷媒圧力を減圧させる効果が得られないと考えられる。このため、減圧装置18の流動抵抗を極力小さくし、凝縮パイプ12と結露防止パイプ13を含めた凝縮器での冷媒圧力損失を低減するようにしている。
On the other hand, the decompression device 18 is adjusted to the opening degree (opening degree C) of the region having a small resistance during a transient operation such as when the door is opened or closed, when the door is started, or after the defrosting operation is completed. At the opening degree C, the opening degree of the decompression device 18 is increased, the flow resistance in the decompression device 18 is small, and the refrigerant flow rate of the decompression device 18 is large.
During transient operation, the internal load cannot be clearly defined (for example, the internal temperature changes with time), so the effect of reducing the refrigerant pressure in the dew condensation prevention pipe 13 relative to the refrigerant pressure in the condensation pipe 12 cannot be obtained. it is conceivable that. For this reason, the flow resistance of the decompression device 18 is made as small as possible, and the refrigerant pressure loss in the condenser including the condensation pipe 12 and the dew condensation prevention pipe 13 is reduced.
 また、図4に示すように、減圧装置18は、開度Bを境に、抵抗大と抵抗小とを分けているが、減圧装置18の製造ばらつきや制御範囲の確保のため、減圧装置18の全開度のおおよそ半分程度の位置に開度Bを用いることが望ましい。つまり、減圧装置18は、減圧装置18の全開度範囲のうちの略中間の開度より大きい場合に、抵抗小となり、減圧装置18の全開度範囲のうちの略中間開度より小さい場合に、抵抗大となるように構成されていることが望ましい。
 なお、図4に示すように、抵抗大の領域及び抵抗小の領域において、小さな傾きを有していてもよい。すなわち、抵抗大の領域及び抵抗小の領域において、開度を変化させることで流動抵抗値がわずかに変化しても問題はない。
 また、減圧装置18が抵抗小のときの流動抵抗値としては、上述のように極力小さい方がよく、抵抗大のときの流動抵抗値としては、たとえば外気30(℃)にて結露防止パイプ13内の冷媒飽和温度が目標温度となるように設定された抵抗値とするとよい。
Further, as shown in FIG. 4, the decompression device 18 divides large resistance and small resistance with the opening B as a boundary. However, the decompression device 18 is used to ensure manufacturing variation and a control range of the decompression device 18. It is desirable to use the opening B at a position that is approximately half of the total opening. In other words, the pressure reducing device 18 has a small resistance when it is larger than the substantially middle opening of the entire opening range of the decompressing device 18, and when it is smaller than the substantially middle opening of the entire opening range of the decompressing device 18, It is desirable that the resistance is increased.
In addition, as shown in FIG. 4, you may have a small inclination in a high resistance area | region and a low resistance area | region. That is, there is no problem even if the flow resistance value slightly changes by changing the opening degree in the high resistance region and the low resistance region.
Further, the flow resistance value when the pressure reducing device 18 has a small resistance is preferably as small as described above, and the flow resistance value when the resistance is large is, for example, at the outside air 30 (° C.), the dew condensation prevention pipe 13. It is good to set it as the resistance value set so that the inside refrigerant | coolant saturation temperature may become target temperature.
 なお、本実施の形態1では、減圧装置18として、流動抵抗が抵抗大と抵抗小との二領域を有するLEVである場合を例に説明したが、それに限定されるものではない。たとえば、キャピラリーチューブを複数個設置して切り替え弁により流動抵抗を変化させてもよい。ただし、冷蔵庫100の内容積や必要材料費を考慮すると、本実施の形態1のように流動抵抗が抵抗大と抵抗小の二種類を有する減圧装置18を採用することが望ましい。 In the first embodiment, the case where the flow resistance is a LEV having two regions of a large resistance and a small resistance has been described as an example of the decompression device 18, but the present invention is not limited thereto. For example, a plurality of capillary tubes may be installed and the flow resistance may be changed by a switching valve. However, in consideration of the internal volume of the refrigerator 100 and the necessary material cost, it is desirable to employ a decompression device 18 having two types of flow resistances, a large resistance and a small resistance, as in the first embodiment.
[本実施の形態1に係る冷蔵庫100の有する効果]
 本実施の形態1に係る冷蔵庫100は、減圧装置18が抵抗大及び抵抗小の二つの領域を有しているため、冷媒流量の小さい冷蔵庫においても目標温度となるまでの応答時間が長くなることを抑制し、結露防止パイプ13の温度を安定化させることができる。
[Effects of refrigerator 100 according to Embodiment 1]
In the refrigerator 100 according to the first embodiment, since the decompression device 18 has two regions of high resistance and low resistance, the response time until the target temperature is reached becomes long even in a refrigerator with a small refrigerant flow rate. And the temperature of the dew condensation prevention pipe 13 can be stabilized.
 本実施の形態1に係る冷蔵庫100は、減圧装置18が凝縮パイプ12と結露防止パイプ13との間に設けられており、減圧装置18により結露防止パイプ13の冷媒温度を凝縮パイプ12に対して低下させている。これにより、庫内温度と結露防止パイプ13の温度差が小さくなって結露防止パイプ13から庫内に侵入する凝縮熱が低減する分、圧縮機入力が低減させ、消費電力量を低減させることができる。 In the refrigerator 100 according to the first embodiment, the decompression device 18 is provided between the condensation pipe 12 and the condensation prevention pipe 13, and the refrigerant temperature of the condensation prevention pipe 13 is set to the condensation pipe 12 by the decompression device 18. It is decreasing. As a result, the temperature difference between the internal temperature and the dew condensation prevention pipe 13 is reduced, and the condensation heat entering the interior from the dew condensation prevention pipe 13 is reduced, so that the compressor input is reduced and the power consumption is reduced. it can.
実施の形態2.
 図5は、本発明の実施の形態2に係る冷蔵庫100Aの冷凍サイクルの構成を説明する図である。図5に基づいて、冷蔵庫100Aの冷凍サイクルの構成について説明する。冷蔵庫100は、実施の形態1に係る冷蔵庫100と同様に、蒸気圧縮式冷凍サイクルを利用して冷蔵庫100Aの庫内を目標温度まで冷却するものである。なお、この実施の形態2では上述した実施の形態1との相違点を中心に説明するものとし、実施の形態1と同一作用である部分には、同一符号を付して説明を省略するものとする。
Embodiment 2. FIG.
FIG. 5 is a diagram illustrating the configuration of the refrigeration cycle of refrigerator 100A according to Embodiment 2 of the present invention. Based on FIG. 5, the structure of the refrigerating cycle of refrigerator 100A is demonstrated. Similarly to the refrigerator 100 according to the first embodiment, the refrigerator 100 cools the inside of the refrigerator 100A to the target temperature using a vapor compression refrigeration cycle. In the second embodiment, the difference from the first embodiment described above will be mainly described, and parts having the same functions as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted. And
 実施の形態1に係る冷蔵庫100では、1本のキャピラリーチューブ15が接続された冷凍サイクルを例に説明したが、実施の形態2に係る冷蔵庫100Aでは、図5に示すように、2本のキャピラリーチューブ(キャピラリーチューブ52、キャピラリーチューブ53)が接続された冷凍サイクルを備えている。また、冷媒流路を切り替える流路変更装置としての三方弁54が、キャピラリーチューブ52及びキャピラリーチューブ53の上流側に設けられている。冷蔵庫100Aのそれ以外の構成については、実施の形態1に係る冷蔵庫100と同様である。 In the refrigerator 100 according to the first embodiment, the refrigeration cycle in which one capillary tube 15 is connected has been described as an example. In the refrigerator 100A according to the second embodiment, as shown in FIG. A refrigeration cycle to which tubes (capillary tube 52 and capillary tube 53) are connected is provided. A three-way valve 54 as a flow path changing device for switching the refrigerant flow path is provided on the upstream side of the capillary tube 52 and the capillary tube 53. Other configurations of the refrigerator 100A are the same as those of the refrigerator 100 according to the first embodiment.
 2本のキャピラリーチューブには、それぞれ流動抵抗の異なるものが使用されている。ここでは、キャピラリーチューブ52が、流動抵抗が相対的に小さい(つまり内径が太い)ものであり、キャピラリーチューブ53が、流動抵抗が相対的に大きい(つまり内径が細い)ものである場合を想定している。なお、キャピラリーチューブ52、キャピラリーチューブ53の流動抵抗の大小が逆であっても問題ない。 ∙ Two capillary tubes with different flow resistances are used. Here, it is assumed that the capillary tube 52 has a relatively small flow resistance (that is, a large inner diameter), and the capillary tube 53 has a relatively large flow resistance (that is, a small inner diameter). ing. Note that there is no problem even if the flow resistances of the capillary tube 52 and the capillary tube 53 are reversed.
 三方弁54は、冷媒をキャピラリーチューブ52に流す冷媒流路、又は、冷媒をキャピラリーチューブ53に流す冷媒流路に変更するだけでなく、冷媒をキャピラリーチューブ52及びキャピラリーチューブ53の両方に流す冷媒流路に変更することも可能なもので構成されている。三方弁54は、冷蔵庫100Aの必要冷媒流量に応じて冷媒流路を変更する。具体的には、必要冷媒流量を判断した制御装置10が三方弁54を制御することで、冷媒が流れる冷媒流路が変更される。なお、流路変更装置として三方弁54を例に挙げて説明するが、流路変更装置を三方弁54に限定するものではない。例えば、二方弁を組み合わせて流路変更装置を構成してもよく、四方弁を用いて流路変更装置を構成してもよい。 The three-way valve 54 is not only changed to a refrigerant flow path for flowing refrigerant to the capillary tube 52 or a refrigerant flow path for flowing refrigerant to the capillary tube 53, but also a refrigerant flow for flowing refrigerant to both the capillary tube 52 and the capillary tube 53. It can be changed to a road. The three-way valve 54 changes the refrigerant flow path according to the necessary refrigerant flow rate of the refrigerator 100A. Specifically, the controller 10 that has determined the necessary refrigerant flow rate controls the three-way valve 54, whereby the refrigerant flow path through which the refrigerant flows is changed. Although the three-way valve 54 is described as an example of the flow path changing device, the flow path changing device is not limited to the three-way valve 54. For example, a flow path changing device may be configured by combining two-way valves, or a flow path changing device may be configured using a four-way valve.
 次に、冷蔵庫100Aの動作について記す。
 冷蔵庫100Aでは、必要な冷媒流量に応じて、圧縮機11の周波数を制御し、減圧装置18の開度を制御し、流路変更装置を制御することで冷媒流路が決定されるようになっている。つまり、冷蔵庫100Aは、な冷媒流量に応じて、圧縮機11、減圧装置18、及び、流路変更装置のそれぞれを個々に制御するようになっている。
Next, the operation of the refrigerator 100A will be described.
In the refrigerator 100 </ b> A, the refrigerant flow path is determined by controlling the frequency of the compressor 11, the opening degree of the decompression device 18, and the flow path changing device in accordance with the required refrigerant flow rate. ing. That is, the refrigerator 100A individually controls each of the compressor 11, the pressure reducing device 18, and the flow path changing device according to the refrigerant flow rate.
 例えば冷媒流量を大きくする際は、制御装置10は、圧縮機11の周波数を高くすると同時に、三方弁54によって冷媒をキャピラリーチューブ52に流す冷媒流路又はキャピラリーチューブ52及びキャピラリーチューブ53の両方に流す冷媒流路を選択する。
 一方で冷媒流量を小さくする際は、制御装置10は、圧縮機11の周波数を低くすると同時に、三方弁54によって冷媒をキャピラリーチューブ53に流す冷媒流路に選択する。
For example, when increasing the refrigerant flow rate, the control device 10 increases the frequency of the compressor 11 and simultaneously causes the three-way valve 54 to flow the refrigerant to the capillary tube 52 or to both the capillary tube 52 and the capillary tube 53. Select the refrigerant flow path.
On the other hand, when decreasing the refrigerant flow rate, the control device 10 selects the refrigerant flow path for flowing the refrigerant through the capillary tube 53 by the three-way valve 54 at the same time as reducing the frequency of the compressor 11.
 ただし、圧縮機11の回転数と、冷媒流路(キャピラリーチューブ52に冷媒を流す冷媒流路、キャピラリーチューブ53に冷媒を流す冷媒流路、キャピラリーチューブ52及びキャピラリーチューブ53の両方に冷媒を流す冷媒流路)の選択とを、供給冷媒量との関係でマッチしないと、低圧の引込み等の異常が発生する。 However, the number of rotations of the compressor 11, the refrigerant flow path (the refrigerant flow path for flowing the refrigerant through the capillary tube 52, the refrigerant flow path for flowing the refrigerant through the capillary tube 53, the refrigerant that flows the refrigerant through both the capillary tube 52 and the capillary tube 53) If the selection of the flow path) does not match the relationship with the amount of supplied refrigerant, an abnormality such as a low pressure pull-in occurs.
 減圧装置18を有していない従来の冷蔵庫であれば、上記のように圧縮機11の周波数と冷媒流路の選択をマッチさせればよいが、冷蔵庫100Aでは三方弁54の冷媒流れ上流側に減圧装置18を有している。減圧装置18は、実施の形態1で説明した通り、庫内負荷に応じて抵抗大のときの開度Aと抵抗小の開度Cとに変化する。このため、冷媒流路の選択を、圧縮機11の周波数だけでなく、減圧装置18の開度も含めて調整する必要がある。これは、冷媒回路内での全冷媒流動抵抗は、減圧装置18の抵抗とキャピラリーチューブ(キャピラリーチューブ52、キャピラリーチューブ53)の抵抗の合計となるためである。 If it is the conventional refrigerator which does not have the decompression device 18, the selection of the frequency of the compressor 11 and the refrigerant | coolant flow path should just be matched as mentioned above, but in the refrigerator 100A, the refrigerant | coolant flow upstream of the three-way valve 54 is sufficient. A decompressor 18 is included. As described in the first embodiment, the decompression device 18 changes to the opening degree A when the resistance is large and the opening degree C where the resistance is small according to the internal load. For this reason, it is necessary to adjust the selection of the refrigerant flow path including not only the frequency of the compressor 11 but also the opening of the decompression device 18. This is because the total refrigerant flow resistance in the refrigerant circuit is the sum of the resistance of the decompression device 18 and the resistance of the capillary tubes (capillary tube 52, capillary tube 53).
 図6は、減圧装置18と三方弁54との組み合わせによる全冷媒流動抵抗の大小関係を示した表である。図6では、冷媒流動抵抗が大きい組み合わせから「H」→「M(M1、M2)」→「L」と表記している。図6を用いて、冷蔵庫100Aの動作について説明する。基本的な動作は前述した通りであるが、冷蔵庫100Aは減圧装置18を備えているため、動作が以下のようになる。なお、「M1」と「M2」との差異については、後述する。 FIG. 6 is a table showing the magnitude relationship of the total refrigerant flow resistance by the combination of the pressure reducing device 18 and the three-way valve 54. In FIG. 6, “H” → “M (M1, M2)” → “L” is indicated from the combination having a large refrigerant flow resistance. The operation of the refrigerator 100A will be described with reference to FIG. Although the basic operation is as described above, since the refrigerator 100A includes the decompression device 18, the operation is as follows. The difference between “M1” and “M2” will be described later.
 冷媒流量を大きくする際は、制御装置10は、圧縮機11の周波数を高く(増加)すると同時に、減圧装置18と三方弁54との組み合わせを図6の「L」として選択する。「L」が選択されると、具体的には、減圧装置18は開度Cに制御され、冷媒流路はキャピラリーチューブ52及びキャピラリーチューブ53の両方に冷媒を流すように三方弁54が制御される。 When increasing the refrigerant flow rate, the control device 10 increases (increases) the frequency of the compressor 11 and simultaneously selects the combination of the decompression device 18 and the three-way valve 54 as “L” in FIG. 6. Specifically, when “L” is selected, the decompression device 18 is controlled to the opening degree C, and the three-way valve 54 is controlled so that the refrigerant flows through both the capillary tube 52 and the capillary tube 53. The
 冷媒流量を小さくする際は、制御装置10は、圧縮機11の周波数を低く(低下)すると同時に、減圧装置18と三方弁54との組み合わせを図6の「H」として選択する。「H」が選択されると、具体的には、減圧装置18は開度Aに制御され、冷媒流路はキャピラリーチューブ53に冷媒を流すように三方弁54が制御される。
 ただし、圧縮機11の周波数低下量と全冷媒流動抵抗「H」とがマッチしない場合(例えば、低圧が低下、冷却器16内での冷媒渇き(SH)が発生している場合など)、減圧装置18と三方弁54との組み合わせを図6の「H」から「M」に変更する。
When reducing the refrigerant flow rate, the control device 10 lowers (decreases) the frequency of the compressor 11 and simultaneously selects the combination of the decompression device 18 and the three-way valve 54 as “H” in FIG. 6. When “H” is selected, specifically, the decompression device 18 is controlled to the opening degree A, and the three-way valve 54 is controlled so that the refrigerant flows through the capillary tube 53 in the refrigerant flow path.
However, when the frequency reduction amount of the compressor 11 and the total refrigerant flow resistance “H” do not match (for example, when the low pressure is reduced and the refrigerant is depleted (SH) in the cooler 16), the pressure is reduced. The combination of the device 18 and the three-way valve 54 is changed from “H” to “M” in FIG.
 ここで、「M1」と「M2」とに差異について説明する。
 「M1」では、減圧装置18の抵抗値を小さくしている。そのため、凝縮パイプ12と結露防止パイプ13の飽和圧力はほぼ等しく、実施の形態1で示したように結露防止パイプ13の冷媒温度は外気温度以上に維持されている。そのため、外気湿度が高い場合又は結露を回避する場合(例えば、庫内温度を通常以上に低く設定した場合)には「M1」を選択するようにしている。「M1」が選択されると、具体的には、減圧装置18は開度Cに制御され、冷媒流路はキャピラリーチューブ53又はキャピラリーチューブ52に冷媒を流すように三方弁54が制御される。
Here, the difference between “M1” and “M2” will be described.
In “M1”, the resistance value of the decompression device 18 is reduced. Therefore, the saturation pressures of the condensation pipe 12 and the dew condensation prevention pipe 13 are substantially equal, and the refrigerant temperature of the dew condensation prevention pipe 13 is maintained at or above the outside air temperature as shown in the first embodiment. Therefore, when the outside air humidity is high or when condensation is avoided (for example, when the internal temperature is set lower than usual), “M1” is selected. When “M1” is selected, specifically, the decompression device 18 is controlled to the opening degree C, and the three-way valve 54 is controlled so that the refrigerant flows through the capillary tube 53 or the capillary tube 52 in the refrigerant flow path.
 一方、「M2」では、減圧装置18の抵抗値を大きく設定している。そのため、実施の形態1で示したように、開度Aの抵抗値にも依存するが、結露防止パイプ13内の冷媒飽和温度は「外気温度から3~5℃低い温度」の飽和圧力となる。実施の形態1で示したように、結露防止パイプ13内の冷媒飽和温度が「外気温度から3~5℃低い温度」となることで、冷蔵庫100Aの庫内負荷を軽減し、圧縮機入力が低減し、消費電力量が低減することができる。そのため、消費電力量を低減する場合は「M2」を選択するようにしている。「M2」が選択されると、具体的には、減圧装置18は開度Aに制御され、冷媒流路はキャピラリーチューブ52又はキャピラリーチューブ52及びキャピラリーチューブ53の両方に冷媒を流すように三方弁54が制御される。 On the other hand, in “M2”, the resistance value of the decompression device 18 is set large. Therefore, as shown in the first embodiment, although depending on the resistance value of the opening A, the refrigerant saturation temperature in the dew condensation prevention pipe 13 becomes a saturation pressure of “a temperature 3 to 5 ° C. lower than the outside air temperature”. . As shown in the first embodiment, the refrigerant saturation temperature in the dew condensation prevention pipe 13 becomes “a temperature 3 to 5 ° C. lower than the outside air temperature”, thereby reducing the internal load of the refrigerator 100A and reducing the compressor input. The power consumption can be reduced. Therefore, when reducing the power consumption, “M2” is selected. When “M2” is selected, specifically, the decompression device 18 is controlled to an opening A, and the refrigerant flow path is a three-way valve so that the refrigerant flows through the capillary tube 52 or both the capillary tube 52 and the capillary tube 53. 54 is controlled.
[本実施の形態2に係る冷蔵庫100Aの有する効果]
 本実施の形態2に係る冷蔵庫100Aは、実施の形態1に係る冷蔵庫100が有する効果に加え、2本のキャピラリーチューブと流路変更装置を設け、減圧装置18と冷媒流路との選択を調整することで、冷媒流量に適した流動抵抗とすることができる。
[Effects of Refrigerator 100A according to Embodiment 2]
The refrigerator 100A according to the second embodiment is provided with two capillary tubes and a flow path changing device in addition to the effect of the refrigerator 100 according to the first embodiment, and adjusts the selection between the decompression device 18 and the refrigerant flow path. By doing, it can be set as the flow resistance suitable for a refrigerant | coolant flow volume.
 1 冷蔵室、3 冷蔵室、4 製氷室、5 切替室、6 冷凍室、7 野菜室、10 制御装置、11 圧縮機、12 凝縮パイプ、13 結露防止パイプ、14 ドライヤ、15 キャピラリーチューブ、16 冷却器、17 熱交換部分、18 減圧装置、21 キャビネット部、22 ディバイダ部、52 キャピラリーチューブ、53 キャピラリーチューブ、54 三方弁、100 冷蔵庫、100A 冷蔵庫。 1 cold storage room, 3 cold storage room, 4 ice making room, 5 switching room, 6 freezing room, 7 vegetable room, 10 control device, 11 compressor, 12 condensation pipe, 13 condensation prevention pipe, 14 dryer, 15 capillary tube, 16 cooling 17 heat exchanger, 18 decompressor, 21 cabinet, 22 divider, 52 capillary tube, 53 capillary tube, 54 three-way valve, 100 refrigerator, 100A refrigerator.

Claims (13)

  1.  圧縮機、凝縮パイプ、減圧装置、結露防止パイプ、キャピラリーチューブ、及び、冷却器がこの順番で接続されて構成された冷凍サイクルを備えた冷蔵庫において、
     前記減圧装置は、
     冷媒の流動抵抗を、
     第1の流動抵抗及び当該第1の流動抵抗より小さい第2の流動抵抗の二段階で調整可能に構成された
     ことを特徴とする冷蔵庫。
    In a refrigerator having a refrigeration cycle in which a compressor, a condensation pipe, a decompression device, a dew condensation prevention pipe, a capillary tube, and a cooler are connected in this order,
    The decompressor is
    The flow resistance of the refrigerant,
    A refrigerator configured to be adjustable in two stages of a first flow resistance and a second flow resistance smaller than the first flow resistance.
  2.  前記第1の流動抵抗を前記冷蔵庫が安定運転時に、
     前記第2の流動抵抗を前記冷蔵庫が過渡的運転時に、
     用いる
     ことを特徴とする請求項1に記載の冷蔵庫。
    When the refrigerator is in stable operation, the first flow resistance is
    When the refrigerator is in a transient operation, the second flow resistance is
    The refrigerator according to claim 1, wherein the refrigerator is used.
  3.  前記第1の流動抵抗は、
     前記冷蔵庫が安定運転時に、前記結露防止パイプの冷媒飽和温度が外気温度から所定温度低い温度の飽和圧力となるように設定されている
     ことを特徴とする請求項1に記載の冷蔵庫。
    The first flow resistance is:
    2. The refrigerator according to claim 1, wherein the refrigerant saturation temperature of the dew condensation prevention pipe is set to a saturation pressure that is lower than the outside air temperature by a predetermined temperature during the stable operation.
  4.  前記第1の流動抵抗は、
     前記冷蔵庫が安定運転時に、前記結露防止パイプの冷媒飽和温度が外気温度と略同一の温度の飽和圧力となるように設定されている
     ことを特徴とする請求項1に記載の冷蔵庫。
    The first flow resistance is:
    2. The refrigerator according to claim 1, wherein the refrigerant saturation temperature of the dew condensation prevention pipe is set to a saturation pressure that is substantially the same as the outside air temperature during stable operation.
  5.  前記第2の流動抵抗は、
     前記冷蔵庫の過渡的運転時に、前記凝縮パイプと前記結露防止パイプとの間の冷媒圧力損失に基づいて設定されている
     ことを特徴とする請求項1~4のいずれか一項に記載の冷蔵庫。
    The second flow resistance is
    The refrigerator according to any one of claims 1 to 4, wherein the refrigerator is set based on a refrigerant pressure loss between the condensing pipe and the dew condensation prevention pipe during a transient operation of the refrigerator.
  6.  前記第1の流動抵抗は、
     前記減圧装置の全開度範囲の略中間開度よりも小さい開度で設定され、
     前記第2の流動抵抗は、
     前記減圧装置の全開度範囲の前記略中間開度よりも大きい開度で設定されている
     ことを特徴とする請求項1~5のいずれか一項に記載の冷蔵庫。
    The first flow resistance is:
    It is set at an opening smaller than a substantially intermediate opening of the entire opening range of the decompression device,
    The second flow resistance is
    The refrigerator according to any one of claims 1 to 5, wherein the refrigerator is set to an opening larger than the substantially intermediate opening of the entire opening range of the decompression device.
  7.  前記減圧装置は、
     電子式膨張弁によって構成された
     ことを特徴とする請求項1~6のいずれか一項に記載の冷蔵庫。
    The decompressor is
    The refrigerator according to any one of claims 1 to 6, wherein the refrigerator is configured by an electronic expansion valve.
  8.  前記減圧装置は、
     冷媒を減圧させるキャピラリーチューブと、冷媒の流れを切り換える切替弁とによって構成された
     ことを特徴とする請求項1~7のいずれか一項に記載の冷蔵庫。
    The decompressor is
    The refrigerator according to any one of claims 1 to 7, comprising a capillary tube for depressurizing the refrigerant and a switching valve for switching a flow of the refrigerant.
  9.  前記キャピラリーチューブを流動抵抗の異なる2本のキャピラリーチューブで構成し、 前記キャピラリーチューブの上流側に設けられ、冷媒を前記キャピラリーチューブのいずれかに流す冷媒流路、又は、冷媒を前記キャピラリーチューブの両方に流す冷媒流路に変更する流路変更装置を備え、
     冷媒流量に応じて、前記圧縮機、前記減圧装置、及び、前記流路変更装置のそれぞれを個々に制御する
     ことを特徴とする請求項1~8のいずれか一項に記載の冷蔵庫。
    The capillary tube is composed of two capillary tubes having different flow resistances, provided on the upstream side of the capillary tube, and a refrigerant flow path for flowing a refrigerant to one of the capillary tubes, or a refrigerant for both the capillary tubes Provided with a flow path changing device for changing to a refrigerant flow path flowing through
    The refrigerator according to any one of claims 1 to 8, wherein each of the compressor, the pressure reducing device, and the flow path changing device is individually controlled according to a refrigerant flow rate.
  10.  冷媒流量を大きくする際、
     前記圧縮機の周波数を増加させ、前記減圧装置の流動抵抗を小さくし、前記流路変更装置により流動抵抗の小さい方のキャピラリーチューブ又は2本の前記キャピラリーチューブの両方を選択する
     ことを特徴とする請求項9に記載の冷蔵庫。
    When increasing the refrigerant flow rate,
    The frequency of the compressor is increased, the flow resistance of the decompression device is decreased, and either the capillary tube having the smaller flow resistance or the two capillary tubes is selected by the flow path changing device. The refrigerator according to claim 9.
  11.  冷媒流量を小さくする際、
     前記圧縮機の周波数を低下させ、前記減圧装置の流動抵抗を大きくし、前記流路変更装置により流動抵抗の大きい方のキャピラリーチューブ選択する
     ことを特徴とする請求項9に記載の冷蔵庫。
    When reducing the coolant flow rate,
    The refrigerator according to claim 9, wherein the frequency of the compressor is decreased, the flow resistance of the decompression device is increased, and the capillary tube having the larger flow resistance is selected by the flow path changing device.
  12.  外気湿度が高い場合又は結露を回避する場合、
     前記減圧装置の流動抵抗を小さくし、前記流路変更装置により流動抵抗の大きい方のキャピラリーチューブを選択する
     ことを特徴とする請求項9に記載の冷蔵庫。
    When the outside air humidity is high or when condensation is avoided,
    The refrigerator according to claim 9, wherein the flow resistance of the decompression device is reduced, and the capillary tube having the larger flow resistance is selected by the flow path changing device.
  13.  消費電力量を低下させる場合、
     前記減圧装置の流動抵抗を大きくし、前記流路変更装置により流動抵抗の小さい方のキャピラリーチューブを選択する
     ことを特徴とする請求項9に記載の冷蔵庫。
    When reducing power consumption,
    The flow resistance of the decompression device is increased, and the capillary tube with the smaller flow resistance is selected by the flow path changing device.
PCT/JP2013/069035 2012-07-30 2013-07-11 Refrigerator WO2014021076A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201408426WA SG11201408426WA (en) 2012-07-30 2013-07-11 Refrigerator
JP2014528059A JP5818993B2 (en) 2012-07-30 2013-07-11 refrigerator
CN201380040457.9A CN104508408B (en) 2012-07-30 2013-07-11 Refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-168425 2012-07-30
JP2012168425 2012-07-30

Publications (1)

Publication Number Publication Date
WO2014021076A1 true WO2014021076A1 (en) 2014-02-06

Family

ID=50027760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069035 WO2014021076A1 (en) 2012-07-30 2013-07-11 Refrigerator

Country Status (4)

Country Link
JP (1) JP5818993B2 (en)
CN (1) CN104508408B (en)
SG (1) SG11201408426WA (en)
WO (1) WO2014021076A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032481A (en) * 2019-08-26 2021-03-01 パナソニックIpマネジメント株式会社 Refrigeration cycle device
WO2024009395A1 (en) * 2022-07-05 2024-01-11 三菱電機株式会社 Refrigerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101688166B1 (en) * 2015-06-12 2016-12-20 엘지전자 주식회사 Refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421660A (en) * 1977-07-20 1979-02-19 Hitachi Ltd Refrigerator
JPS63259354A (en) * 1987-04-16 1988-10-26 タバイエスペツク株式会社 Method of obtaining low temperature by refrigerator and refrigerator
JP2003302146A (en) * 2002-04-05 2003-10-24 Toshiba Corp Refrigerator
JP2004353972A (en) * 2003-05-29 2004-12-16 Toshiba Corp Refrigerator
JP2005030679A (en) * 2003-07-14 2005-02-03 Mitsubishi Electric Corp Refrigerating air conditioner and control method for refrigerating air conditioner
JP2009275964A (en) * 2008-05-14 2009-11-26 Panasonic Corp Refrigerator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197122A (en) * 1997-01-08 1998-07-31 Toshiba Corp Sprit type refrigerator
KR100687933B1 (en) * 2005-08-18 2007-02-27 삼성전자주식회사 Refrigerator and its operation control method
JP2007078205A (en) * 2005-09-12 2007-03-29 Sanyo Electric Co Ltd Refrigerator
JP2007248005A (en) * 2006-03-17 2007-09-27 Sanyo Electric Co Ltd Refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421660A (en) * 1977-07-20 1979-02-19 Hitachi Ltd Refrigerator
JPS63259354A (en) * 1987-04-16 1988-10-26 タバイエスペツク株式会社 Method of obtaining low temperature by refrigerator and refrigerator
JP2003302146A (en) * 2002-04-05 2003-10-24 Toshiba Corp Refrigerator
JP2004353972A (en) * 2003-05-29 2004-12-16 Toshiba Corp Refrigerator
JP2005030679A (en) * 2003-07-14 2005-02-03 Mitsubishi Electric Corp Refrigerating air conditioner and control method for refrigerating air conditioner
JP2009275964A (en) * 2008-05-14 2009-11-26 Panasonic Corp Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032481A (en) * 2019-08-26 2021-03-01 パナソニックIpマネジメント株式会社 Refrigeration cycle device
WO2024009395A1 (en) * 2022-07-05 2024-01-11 三菱電機株式会社 Refrigerator

Also Published As

Publication number Publication date
JPWO2014021076A1 (en) 2016-07-21
JP5818993B2 (en) 2015-11-18
CN104508408B (en) 2016-08-10
CN104508408A (en) 2015-04-08
SG11201408426WA (en) 2015-03-30

Similar Documents

Publication Publication Date Title
US6935127B2 (en) Refrigerator
US20040112082A1 (en) Regfrigerating device
US10145608B2 (en) Refrigerator and method of controlling the same
KR20110072441A (en) Refrigerator and method for controlling operation thereof
JP2014020715A (en) Refrigerator
KR20160091106A (en) Refrigerator
US11226145B2 (en) Refrigerator and method for controlling a compressor based on temperature of storage compartment
JP2012017920A (en) Refrigerator
JP2007010220A (en) Refrigerating unit and refrigerator comprising the same
JP5818993B2 (en) refrigerator
JP2007309585A (en) Refrigerating device
JP4289237B2 (en) Refrigerant cooling circuit
JP5501407B2 (en) refrigerator
JP2016151410A (en) Transport refrigeration unit
JP2001108319A (en) Refrigerator
KR100634312B1 (en) The refrigerator of control-method using a electronic expansion valve
JP3639426B2 (en) refrigerator
JP6615354B2 (en) Freezer refrigerator
JP5579290B1 (en) refrigerator
JP4169080B2 (en) Freezer refrigerator
JP2014059110A (en) Refrigerator and cooling mechanism
JP5981275B2 (en) Refrigerator and cooling mechanism
JP2005098605A (en) Refrigerator
JP4425104B2 (en) refrigerator
KR102144467B1 (en) A refrigerator and a control method the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825570

Country of ref document: EP

Kind code of ref document: A1