JPH06293214A - Cooling system for electric vehicle - Google Patents

Cooling system for electric vehicle

Info

Publication number
JPH06293214A
JPH06293214A JP7830193A JP7830193A JPH06293214A JP H06293214 A JPH06293214 A JP H06293214A JP 7830193 A JP7830193 A JP 7830193A JP 7830193 A JP7830193 A JP 7830193A JP H06293214 A JPH06293214 A JP H06293214A
Authority
JP
Japan
Prior art keywords
pressure
accumulator
valve
refrigerant
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7830193A
Other languages
Japanese (ja)
Inventor
Hiroichi Sekino
博一 関野
Shigenobu Urata
滋宣 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7830193A priority Critical patent/JPH06293214A/en
Publication of JPH06293214A publication Critical patent/JPH06293214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To carry out harmless and efficient cooling by leading a hot temperature and high pressure compressed refrigerant gas into an accumulator located at the low pressure side in a refrigerating cycle. CONSTITUTION:A low temperature, low pressure refrigerant which is reduced in pressure in an expansion valve 7b is fed to an accumulator 10 through a solenoid valve 9a after cooling an electric motor 6. However, when a pressure detected by a pressure sensor 12 is lower than a suction pressure of a compressor 1, it cannot be adjusted stably by a suction pressure regulating valve 11 only. Therefore, when a pressure valve is lowered than the suction pressure, a solenoid valve 9b on a bypass line 14 is opened to lead a part of high temperature, high pressure refrigerant gas into the accumulator 10. Thus the stable operation of refrigerating cycle under a specified pressure condition can be maintained, and also its equipment constitution can be facilitated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は無公害かつ効率よく自由
に人あるいは貨物を運搬できる電気自動車の冷却システ
ムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling system for an electric vehicle that is pollution-free and can efficiently and freely carry people or cargo.

【0002】[0002]

【従来の技術】電気自動車は、現行の内燃式エンジンか
らの排気ガスによる二酸化炭素の大気中への濃縮による
温室効果および大気汚染問題を解決するものとして注目
を浴びつつある。しかしながら電気自動車は内燃式エン
ジン車に比べ最高速度も低く、さらに電動機の効率また
はバッテリーの電気容量および充放電効率等の問題から
一充電当りの走行距離も決して充分とは言えない。これ
らの効率における損失分はほとんどが発熱として現れ、
この発熱をいかに冷却するかあるいはいかに有効利用す
るかにより、電動機の寿命および電気自動車の総合効率
が向上する。そこで従来では電気自動車の電動機、電動
機の駆動回路ユニットおよびバッテリーを個々に、ある
いは少なくとも2つ以上を自動車の空気調和機の冷凍サ
イクル内に設置することで従来通り車室内空調を行いか
つ各部を十分に冷却し、それら各部からの発熱を冷凍サ
イクルの運転に有効に利用する方法がとられていた。
2. Description of the Related Art Electric vehicles have been attracting attention as a solution to the problems of greenhouse effect and air pollution caused by the concentration of carbon dioxide in the atmosphere by the exhaust gas from current internal combustion engines. However, the maximum speed of an electric vehicle is lower than that of an internal combustion engine vehicle, and the traveling distance per charge is not sufficient due to the problems of the efficiency of the electric motor, the electric capacity of the battery and the charging / discharging efficiency. Most of the loss in these efficiencies appears as heat generation,
The life of the electric motor and the overall efficiency of the electric vehicle are improved depending on how the generated heat is cooled or effectively utilized. Therefore, conventionally, the electric motor of the electric vehicle, the drive circuit unit of the electric motor, and the battery are individually installed, or at least two or more of them are installed in the refrigeration cycle of the air conditioner of the vehicle to perform air conditioning in the vehicle interior as usual and to sufficiently maintain each part The cooling method was used to effectively utilize the heat generated from each of these parts in the operation of the refrigeration cycle.

【0003】[0003]

【発明が解決しようとする課題】しかしながら車室内、
電動機、駆動回路およびバッテリーの冷却にはそれぞれ
に最適温度が存在するため、冷媒の蒸発温度、すなわち
蒸発圧力をそれぞれ別の値に設定する必要がある。例え
ば車室内冷却用の熱交換器の蒸発圧力が、電動機側の蒸
発圧力よりも低い場合、さらにそれぞれの冷媒流量が熱
負荷変動の影響を受けて大きく変化する場合が度々ある
ため、圧縮機の吸入側に備えたアキュムレータでこれら
それぞれに圧力、温度および流量の異なる冷媒ものを混
合すると、アキュムレータ内の圧力も大きく変動する。
ただしこの場合、アキュムレータ内の圧力が圧縮機の吸
入圧力よりも大きな場合は、キャピラリーあるいは圧力
調整弁等を圧縮機の冷媒吸入口手前に配することで、所
定の吸入圧力状態での冷凍サイクルの安定運転が可能と
なる。しかしながらアキュムレータ内の圧力が吸入圧力
よりも低い場合はアキュムレータ内の圧力が吸入圧力と
なるため、圧縮比が増加し、体積効率および冷媒流量の
低下あるいは圧縮負荷が下がることにより圧縮機回転数
が急激に上昇するなどにより、冷凍サイクルの運転が不
安定となる。その結果冷凍能力の低下および消費電力の
増加により冷却システム全体の効率が低下してしまう。
However, the vehicle interior,
Since there are optimum temperatures for cooling the electric motor, the drive circuit, and the battery, it is necessary to set the evaporation temperature of the refrigerant, that is, the evaporation pressure to different values. For example, when the evaporating pressure of the heat exchanger for cooling the vehicle interior is lower than the evaporating pressure of the electric motor side, the flow rate of each refrigerant often changes greatly under the influence of heat load fluctuations. When refrigerants having different pressures, temperatures and flow rates are mixed in the accumulators provided on the suction side, the pressure in the accumulators also fluctuates greatly.
However, in this case, if the pressure in the accumulator is higher than the suction pressure of the compressor, by placing a capillary or pressure control valve in front of the refrigerant suction port of the compressor, the refrigeration cycle Stable operation becomes possible. However, when the pressure in the accumulator is lower than the suction pressure, the pressure in the accumulator becomes the suction pressure, so the compression ratio increases and the compressor efficiency increases rapidly due to a decrease in volumetric efficiency and refrigerant flow rate or a decrease in compression load. As a result, the refrigeration cycle becomes unstable. As a result, the efficiency of the entire cooling system is reduced due to the reduction in refrigeration capacity and the increase in power consumption.

【0004】[0004]

【課題を解決するための手段】そこで本発明はこの欠点
を解決するもので、電動機を駆動源とし、前記電動機を
自動車用空気調和機の冷凍サイクル内に設置した電気自
動車において、前記冷凍サイクル内の低圧側に配したア
キュムレータに、高温高圧の圧縮冷媒ガスを導入させる
ことにより達成される。
SUMMARY OF THE INVENTION Therefore, the present invention is to solve this drawback. In an electric vehicle having an electric motor as a drive source and the electric motor installed in a refrigeration cycle of an air conditioner for a vehicle, This is achieved by introducing a compressed refrigerant gas of high temperature and high pressure into an accumulator arranged on the low pressure side of the.

【0005】[0005]

【実施例】本発明の電気自動車の冷却サイクルを図1に
基づき説明する。
The cooling cycle of the electric vehicle of the present invention will be described with reference to FIG.

【0006】車室内空調機が冷房運転されている場合
は、圧縮機1により圧縮された高温高圧の冷媒ガスはオ
イルセパレータ2に送られ、そこで冷媒ガスとオイルが
分離され、オイルはキャピラリーチューブ13を介して
圧縮機1に戻される。一方冷媒ガスは四方弁3を介して
車室外熱交換器4に送られて冷却される。冷却後の低温
高圧の液冷媒は、逆止弁8aを通して車室内熱交換器5
と電動機6の両方向に送られる。車室内熱交換器5の方
向に送られた冷媒は、膨張弁7bで減圧され車室内熱交
換器5で車室内の熱負荷を冷却して蒸発した冷媒は四方
弁3を通りアキュムレータ10に送られる。一方電動機
6の方向に送られた冷媒は、膨張弁7aとは圧力の設定
値の異なる膨張弁7bで減圧されて低温低圧冷媒となり
電動機6を冷却し、蒸発した冷媒はアキュムレータ10
に送られる。アキュムレータ10で両方向から送られて
きた冷媒が混合してある圧力を示し、その圧力が吸入圧
力よりも大きな圧力であるならば、アキュムレータ10
の下流に配した吸入圧力調整弁11で減圧調整され、安
定した圧力状態で冷媒が圧縮機1に吸引される。一方ア
キュムレータ10内の圧力が吸入圧力よりも低い場合
は、吸入圧力調整弁11のみでは調整不可能である。そ
こでアキュムレータ10内の圧力を圧力センサ12で常
時測定し、圧力値が吸入圧力よりも低下した時、バイパ
ス路14上の電磁弁9bを開き、高温高圧の冷媒ガスの
一部をアキュムレータ10に導入する。ここでバイパス
路14は凝縮圧力の低下に大きな影響を与えないような
内径のもの(例えばキャピラリーチューブ)とする。高
圧の冷媒ガスと混合させることでアキュムレータ10内
の圧力は上昇し、かつ温度上昇によってアキュムレータ
10に溜っている液冷媒の一部が蒸発してアキュムレー
タ10内の圧力はさらに上昇する。このようにしてアキ
ュムレータ10内の圧力が吸入圧力よりも高い値を示す
ようになった時、電磁弁9bを閉じて冷媒ガスの導入を
停止する。その後アキュムレータ10内の圧力が再び吸
入圧力以下に下がるまでは、吸入圧力調整弁11により
安定した圧力状態の冷媒圧縮が行われる。なお電磁弁9
bの開閉の圧力設定値をそれぞれ所定の吸入圧力および
吸入圧力よりもある程度高い(例えば吸入圧力0.4M
Paに対してO.5MPa)値とすることで電磁弁9b
の開閉の頻度を低減され、吐出圧力のハンチングや電磁
弁9bの破損等を防止することができる。
When the vehicle interior air conditioner is in a cooling operation, the high temperature and high pressure refrigerant gas compressed by the compressor 1 is sent to the oil separator 2, where the refrigerant gas and the oil are separated, and the oil is the capillary tube 13. It is returned to the compressor 1 via. On the other hand, the refrigerant gas is sent to the vehicle exterior heat exchanger 4 via the four-way valve 3 to be cooled. The low-temperature and high-pressure liquid refrigerant after cooling passes through the check valve 8a and the heat exchanger 5 in the vehicle interior
Is sent to both directions of the electric motor 6. The refrigerant sent in the direction of the vehicle interior heat exchanger 5 is decompressed by the expansion valve 7b, cools the heat load in the vehicle interior in the vehicle interior heat exchanger 5, and the evaporated refrigerant is sent to the accumulator 10 through the four-way valve 3. To be On the other hand, the refrigerant sent in the direction of the electric motor 6 is decompressed by the expansion valve 7b whose pressure setting value is different from that of the expansion valve 7a to become a low-temperature low-pressure refrigerant, which cools the electric motor 6, and the evaporated refrigerant is the accumulator
Sent to. If the pressure of the refrigerant sent from the accumulator 10 from both directions is mixed and the pressure is higher than the suction pressure, the accumulator 10
The suction pressure adjusting valve 11 disposed downstream of the compressor 1 reduces the pressure and the refrigerant is sucked into the compressor 1 in a stable pressure state. On the other hand, when the pressure in the accumulator 10 is lower than the suction pressure, the suction pressure adjustment valve 11 alone cannot adjust the pressure. Therefore, the pressure in the accumulator 10 is constantly measured by the pressure sensor 12, and when the pressure value becomes lower than the suction pressure, the solenoid valve 9b on the bypass 14 is opened to introduce a part of the high temperature and high pressure refrigerant gas into the accumulator 10. To do. Here, the bypass passage 14 has an inner diameter (for example, a capillary tube) that does not significantly affect the decrease in the condensation pressure. By mixing with the high-pressure refrigerant gas, the pressure in the accumulator 10 rises, and due to the temperature rise, a part of the liquid refrigerant accumulated in the accumulator 10 evaporates and the pressure in the accumulator 10 further rises. In this way, when the pressure in the accumulator 10 becomes higher than the suction pressure, the solenoid valve 9b is closed and the introduction of the refrigerant gas is stopped. Then, until the pressure inside the accumulator 10 falls below the suction pressure again, the suction pressure adjusting valve 11 performs the compression of the refrigerant in a stable pressure state. Solenoid valve 9
The pressure set values for opening and closing b are respectively higher than the predetermined suction pressure and suction pressure to some extent (for example, suction pressure 0.4M).
O for Pa. 5 MPa) value, the solenoid valve 9b
It is possible to reduce the frequency of opening and closing, and to prevent hunting of the discharge pressure and damage to the solenoid valve 9b.

【0007】車室内空調機が暖房運転されている場合
は、冷房運転時同様に圧縮された高温高圧の冷媒ガスは
オイルセパレータ2で冷媒ガスとオイルが分離され、オ
イルは圧縮機1に戻される。冷媒ガスは四方弁3を介し
て車室内熱交換器5に送られて、車室内の空気との熱交
換により車室内を暖房し、一方冷媒ガスは冷却される。
冷却後の低温高圧の液冷媒は、車室外熱交換器4と電動
機6の両方向に送られる。車室外熱交換器4の方向に送
られた冷媒は、膨張弁7cで減圧され車室外熱交換器4
で外気と熱交換で蒸発し、四方弁3を通りアキュムレー
タ10に送られる。一方電動機6の方向に送られた冷媒
は、冷房運転時と同様に電動機6を冷却し、蒸発した冷
媒はアキュムレータ10に送られ、アキュムレータ10
内の圧力調整以降の作用は冷房運転時と全く同様であ
る。
When the vehicle interior air conditioner is in heating operation, the compressed high-temperature and high-pressure refrigerant gas is separated from the refrigerant gas and oil in the oil separator 2 as in the cooling operation, and the oil is returned to the compressor 1. . The refrigerant gas is sent to the vehicle interior heat exchanger 5 via the four-way valve 3 to heat the vehicle interior by heat exchange with the air in the vehicle interior, while the refrigerant gas is cooled.
The cooled low-temperature high-pressure liquid refrigerant is sent to both the vehicle exterior heat exchanger 4 and the electric motor 6. The refrigerant sent to the exterior heat exchanger 4 is decompressed by the expansion valve 7c and exterior heat exchanger 4
Is evaporated by heat exchange with the outside air and is sent to the accumulator 10 through the four-way valve 3. On the other hand, the refrigerant sent in the direction of the electric motor 6 cools the electric motor 6 as in the cooling operation, and the evaporated refrigerant is sent to the accumulator 10 and the accumulator 10
The operation after adjusting the internal pressure is exactly the same as during the cooling operation.

【0008】以上のように高温高圧の冷媒ガスのバイパ
ス路を含めた冷却システムを構成することにより、異な
る蒸発圧力で個々に冷却を行った後にアキュムレータで
混合されて圧縮機に吸入される冷媒の圧力低下を解消
し、所定の圧力条件での安定した冷凍サイクルの運転が
容易に維持できる。また吸入圧力の安定化が吐出側の圧
縮ガスの一部をキャピラリーチューブ等で圧縮機吸入手
前に導入および混合させるのみで得られるため極めて容
易に冷却システムが構成できる。
By configuring the cooling system including the bypass passage for the high-temperature and high-pressure refrigerant gas as described above, the refrigerants that are individually cooled at different evaporating pressures and then mixed by the accumulator and sucked into the compressor are It is possible to eliminate the pressure drop and easily maintain stable operation of the refrigeration cycle under a predetermined pressure condition. Further, since the suction pressure can be stabilized only by introducing and mixing a part of the compressed gas on the discharge side in front of the compressor suction with a capillary tube or the like, a cooling system can be configured very easily.

【0009】[0009]

【発明の効果】本発明は以上説明したように電動機を駆
動源とし、前記電動機を自動車用空気調和機の冷凍サイ
クル内に設置した電気自動車において、前記冷凍サイク
ル内の低圧側に配したアキュムレータに、高温高圧の圧
縮冷媒ガスを導入させることにより、異なる蒸発圧力で
個々に冷却を行った後に圧縮機に吸入される冷媒の圧力
低下が解消され、所定の圧力条件での安定した冷凍サイ
クルの運転が容易に維持でき、またキャピラリーチュー
ブ等でバイパス路が構成できるため容易に構成可能な冷
却システムとすることができる。
INDUSTRIAL APPLICABILITY As described above, the present invention uses an electric motor as a drive source, and in an electric vehicle in which the electric motor is installed in the refrigeration cycle of an automobile air conditioner, an accumulator arranged on the low pressure side in the refrigeration cycle. By introducing high-temperature and high-pressure compressed refrigerant gas, the pressure drop of the refrigerant sucked into the compressor after cooling individually at different evaporation pressures is eliminated, and stable refrigeration cycle operation under predetermined pressure conditions is achieved. Can be easily maintained, and the bypass passage can be configured by a capillary tube or the like, so that the cooling system can be easily configured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の電気自動車の冷却システムの実施例
の説明図。
FIG. 1 is an explanatory diagram of an embodiment of a cooling system for an electric vehicle according to the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 オイルセパレータ 3 四方弁 4 車室外熱交換器 5 車室内熱交換器 6 電動機 7a 膨張弁 7b 膨張弁 7c 膨張弁 8a 逆止弁 8b 逆止弁 9a 電磁弁 9b 電磁弁 10 アキュムレータ 11 吸入圧力調整弁 12 圧力センサ 13 キャピラリーチューブ 14 バイパス路 1 compressor 2 oil separator 3 four-way valve 4 vehicle exterior heat exchanger 5 vehicle interior heat exchanger 6 electric motor 7a expansion valve 7b expansion valve 7c expansion valve 8a check valve 8b check valve 9a solenoid valve 9b solenoid valve 10 accumulator 11 intake Pressure control valve 12 Pressure sensor 13 Capillary tube 14 Bypass passage

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F25B 13/00 N 9335−3L Q 9335−3L Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location F25B 13/00 N 9335-3L Q 9335-3L

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電動機を駆動源とし、前記電動機を自動
車用空気調和機の冷凍サイクル内に設置した電気自動車
において、前記冷凍サイクル内の低圧側に配したアキュ
ムレータに、高温高圧の圧縮冷媒ガスを導入させること
を特徴とする電気自動車の冷却システム。
1. An electric vehicle using an electric motor as a drive source, wherein the electric motor is installed in a refrigeration cycle of an automobile air conditioner, and a high-temperature high-pressure compressed refrigerant gas is stored in an accumulator arranged on the low-pressure side of the refrigeration cycle. A cooling system for electric vehicles characterized by being introduced.
JP7830193A 1993-04-05 1993-04-05 Cooling system for electric vehicle Pending JPH06293214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7830193A JPH06293214A (en) 1993-04-05 1993-04-05 Cooling system for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7830193A JPH06293214A (en) 1993-04-05 1993-04-05 Cooling system for electric vehicle

Publications (1)

Publication Number Publication Date
JPH06293214A true JPH06293214A (en) 1994-10-21

Family

ID=13658105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7830193A Pending JPH06293214A (en) 1993-04-05 1993-04-05 Cooling system for electric vehicle

Country Status (1)

Country Link
JP (1) JPH06293214A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037093A (en) * 2010-08-04 2012-02-23 Honda Motor Co Ltd Cooling equipment
JP2016017644A (en) * 2014-07-04 2016-02-01 ホシザキ電機株式会社 Refrigeration circuit of freezer
CN105365525A (en) * 2015-09-24 2016-03-02 珠海格力电器股份有限公司 Refrigerator car and refrigerating system thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037093A (en) * 2010-08-04 2012-02-23 Honda Motor Co Ltd Cooling equipment
JP2016017644A (en) * 2014-07-04 2016-02-01 ホシザキ電機株式会社 Refrigeration circuit of freezer
CN105365525A (en) * 2015-09-24 2016-03-02 珠海格力电器股份有限公司 Refrigerator car and refrigerating system thereof

Similar Documents

Publication Publication Date Title
CN203489519U (en) Automobile refrigerating system
EP0756954A3 (en) Air conditioning apparatus
US11370271B2 (en) Device for an air conditioning system of a motor vehicle and method for operating the device
KR102566889B1 (en) Vapor injection module and heat pump system using the same
CN109869941B (en) Heat pump system, air suction superheat degree and vapor-liquid separator accumulated liquid evaporation control method
CN105691147A (en) Heat pump air-conditioning system of blade electric vehicle
JP2000146328A (en) Refrigerating and air-conditioning device
JP3223670B2 (en) Electric car
CN110260569B (en) Heat pump unit, air conditioning system and regulation and control method thereof
JP4321043B2 (en) Automotive air conditioning system
CN114940046B (en) Heat pump air conditioning system integrating waste heat recovery function and control method
JPH06293210A (en) Electric vehicle
CN111251805B (en) Vehicle, thermal management system of vehicle and control method of thermal management system
CN115143658B (en) Double-working-condition water chilling unit and control method thereof
JPH06293214A (en) Cooling system for electric vehicle
CN217685941U (en) Double-working-condition water chilling unit
CN116605005A (en) Automotive thermal management system and automobile
CN108240715B (en) High-efficient air supplementing type heat pump air conditioning system
CN110626146A (en) Heat pump air conditioning system and control logic of electric automobile
KR101427920B1 (en) Air conditioner system for vehicle
CN109682105B (en) Air Conditioning System
CN109556306B (en) Circulating refrigerant control device and method for refrigerated transport vehicle
CN113085481A (en) Air conditioning system, control method of air conditioning system and vehicle
JPS6137522A (en) Intake cooling and air conditioning device of engine for car
CN220892440U (en) Air conditioning system with adjustable air supply temperature and accurate humidity control