JP6384921B2 - Silicon single crystal generation apparatus and silicon single crystal generation method - Google Patents

Silicon single crystal generation apparatus and silicon single crystal generation method Download PDF

Info

Publication number
JP6384921B2
JP6384921B2 JP2015508425A JP2015508425A JP6384921B2 JP 6384921 B2 JP6384921 B2 JP 6384921B2 JP 2015508425 A JP2015508425 A JP 2015508425A JP 2015508425 A JP2015508425 A JP 2015508425A JP 6384921 B2 JP6384921 B2 JP 6384921B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
crucible
crystal
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015508425A
Other languages
Japanese (ja)
Other versions
JPWO2014156986A1 (en
Inventor
浩一 柿本
浩一 柿本
原田 博文
博文 原田
冰 高
冰 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
National Institute for Materials Science
Original Assignee
Kyushu University NUC
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, National Institute for Materials Science filed Critical Kyushu University NUC
Publication of JPWO2014156986A1 publication Critical patent/JPWO2014156986A1/en
Application granted granted Critical
Publication of JP6384921B2 publication Critical patent/JP6384921B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/006Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、鋳造法によりシリコン単結晶を生成するシリコン単結晶生成装置等に関する。   The present invention relates to a silicon single crystal production apparatus that produces a silicon single crystal by a casting method.

シリコンの単結晶を生成する方法として、チョクラルスキー(CZ)法や浮遊帯域(FZ)法が一般的に行われている。CZ法は、坩堝内で多結晶のシリコンを溶融し、作成したい方位の種結晶と共に引き上げて単結晶を生成するものである。また、FZ法は、棒状の多結晶シリコンの下部に種結晶を配設し、加熱により種結晶と多結晶との境界部分を溶融して単結晶を生成するものである。いずれの方法においても高品質なシリコン単結晶を生成することができるが、設備が高価になるとともに、作業工程が煩わしいものとなり、太陽光パネルなどに用いるような大型のものや大量生産に不向きな技術である。   The Czochralski (CZ) method and the floating zone (FZ) method are generally performed as methods for producing a silicon single crystal. In the CZ method, polycrystalline silicon is melted in a crucible and pulled together with a seed crystal having an orientation desired to be produced to produce a single crystal. In the FZ method, a seed crystal is disposed under a rod-shaped polycrystalline silicon, and a boundary portion between the seed crystal and the polycrystalline is melted by heating to generate a single crystal. Either method can produce high-quality silicon single crystals, but the equipment is expensive and the work process is cumbersome, making it unsuitable for large-scale products such as solar panels and mass production. Technology.

そこで、太陽光パネルなどに用いる大型のシリコン結晶を効率よく生成するために鋳造法が用いられている(例えば、特許文献1を参照)。鋳造法は固体のシリコンを坩堝内で溶融し冷却することで、シリコン結晶を大量に安価に生成することができる。しかしながら、この従来の鋳造法では主に多結晶が生成されるため、鋳造法により高純度の単結晶を効率よく大量に生産する技術が望まれている。   Then, in order to produce | generate the large sized silicon crystal used for a solar panel etc. efficiently, the casting method is used (for example, refer patent document 1). In the casting method, solid silicon can be melted in a crucible and cooled to produce a large amount of silicon crystals at low cost. However, since this conventional casting method mainly produces polycrystals, a technique for efficiently producing a large amount of high-purity single crystals by the casting method is desired.

上記課題に関して、鋳造法を利用してシリコン単結晶を生成する技術が特許文献2に開示されている。特許文献2に示す技術には、種結晶が配置された坩堝底面に配置された熱シンクから熱を引き抜きながら、熱シンク上に載置された坩堝の壁部に配置された更なる加熱器により加熱することで種結晶の成長を側部領域に引き起こしてシリコン単結晶を生成する技術が開示されている。   With regard to the above problems, Patent Document 2 discloses a technique for producing a silicon single crystal using a casting method. The technique shown in Patent Document 2 uses a further heater arranged on the wall of the crucible placed on the heat sink while extracting heat from the heat sink arranged on the bottom of the crucible where the seed crystal is arranged. A technique for generating a silicon single crystal by causing growth of a seed crystal in a side region by heating is disclosed.

特開2003−267717号公報JP 2003-267717 A 特表2011−528308号公報Special table 2011-528308 gazette

しかしながら、特許文献2に示す技術は、種結晶の大きさを坩堝の底面全体に相当する大きさにする必要があるため、コストの増大を招き大型化するのに非常に困難なものとなってしまう。また、仮に種結晶を小さくしてしまうと、種結晶が配置されていない部分については種が無いために種結晶の情報が伝達されず、多結晶のシリコンが生成されてしまい、高品質なシリコン単結晶を生成することができないという課題を有する。   However, the technique shown in Patent Document 2 requires the seed crystal to have a size corresponding to the entire bottom surface of the crucible, which increases the cost and is very difficult to increase in size. End up. Also, if the seed crystal is made small, the seed crystal information is not transmitted to the portion where the seed crystal is not arranged, so that polycrystalline silicon is generated, resulting in high quality silicon. There is a problem that a single crystal cannot be produced.

また、坩堝の底面を複数のブロックに分割し、各ブロックごとに種結晶を配設して成長させる方法があるが、各ブロック間で成長が衝突して欠陥になってしまうという問題がある。   In addition, there is a method in which the bottom surface of the crucible is divided into a plurality of blocks and a seed crystal is arranged for each block to grow, but there is a problem in that the growth collides between the blocks, resulting in a defect.

本発明は、鋳造法を利用して高品質で大型のシリコン単結晶を容易に生成することができるシリコン単結晶生成装置を提供する。   The present invention provides a silicon single crystal production apparatus capable of easily producing a high-quality and large-sized silicon single crystal using a casting method.

本発明に係るシリコン単結晶生成装置は、底面部の一部の領域に単一のシリコン単結晶の種結晶が保持されると共に、固体及び/又は液体のシリコンが保持される坩堝と、前記坩堝内のシリコン溶融液を少なくとも前記種結晶の領域を含んで前記坩堝の下方から吸熱する吸熱部と、前記吸熱部により冷却される領域の周辺領域を加熱する加熱部とを備え、前記吸熱部による熱流束のベクトルAと前記加熱部による熱流束のベクトルBとが、A×B<0の関係を保って制御されるものである。   A silicon single crystal production apparatus according to the present invention includes a crucible in which a single silicon single crystal seed crystal is held in a partial region of a bottom portion and solid and / or liquid silicon is held, and the crucible An endothermic part that absorbs heat from below the crucible including at least the seed crystal region, and a heating part that heats a peripheral region of the region cooled by the endothermic part. The heat flux vector A and the heat flux vector B by the heating unit are controlled while maintaining a relationship of A × B <0.

このように、本発明に係るシリコン単結晶生成装置においては、吸熱部による熱流束のベクトルAと加熱部による熱流束のベクトルBとが、A×B<0の関係、すなわち、熱の流れる方向が逆向きの関係を保って制御されることで、種結晶から上方向への成長を行うと同時に、種から横方向への結晶成長も可能となり、小さい種結晶であっても全ての成長方向に対して確実に種結晶の情報を伝達することができ、多結晶の含有を最小限に抑えた高品質なシリコン単結晶を生成することができるという効果を奏する。   Thus, in the silicon single crystal production apparatus according to the present invention, the relationship between the heat flux vector A by the heat absorption part and the heat flux vector B by the heating part is A × B <0, that is, the direction of heat flow. Is controlled while maintaining the reverse relationship, it allows growth from the seed crystal in the upward direction and at the same time allows crystal growth from the seed to the lateral direction. In contrast, it is possible to reliably transmit seed crystal information and to produce a high-quality silicon single crystal with a minimum content of polycrystals.

また、鋳造法を利用して熱制御のみの簡易的な作業工程で、単一の小さな種結晶から高品質且つ大型のシリコン単結晶を生成することができるため、安価な設備で大量生産を行うことが可能になるという効果を奏する。   In addition, high-quality and large-sized silicon single crystals can be produced from a single small seed crystal in a simple work process using only a thermal control using a casting method, so mass production is performed with inexpensive equipment. There is an effect that it becomes possible.

本発明に係るシリコン単結晶生成装置は、前記吸熱部が前記坩堝の底面部から前記坩堝内を冷却すると同時に、前記加熱部が前記吸熱部により冷却される領域の周辺領域を前記坩堝の底面部より下方に配設された熱源により加熱するものである。   In the silicon single crystal production apparatus according to the present invention, the endothermic part cools the inside of the crucible from the bottom part of the crucible, and at the same time, the peripheral part of the region where the heating part is cooled by the endothermic part is defined as the bottom part of the crucible. It heats with the heat source arrange | positioned more downward.

このように、本発明に係るシリコン単結晶生成装置においては、シリコン単結晶の種結晶の領域を坩堝の底面部から吸熱しながら、その吸熱により冷却される領域の周辺領域を坩堝の底面より下方に配設された熱源により加熱することで、種結晶から上方向への成長を行うと共に、横方向への結晶成長も可能となり、小さい種結晶から多結晶を含まない高品質なシリコン単結晶を生成することができるという効果を奏する。   As described above, in the silicon single crystal generation apparatus according to the present invention, the peripheral region of the region cooled by the endotherm is lowered from the bottom surface of the crucible while absorbing the region of the seed crystal of the silicon single crystal from the bottom portion of the crucible. By heating with a heat source arranged in the above, it is possible to grow from the seed crystal in the upward direction and also to grow the crystal in the lateral direction, from a small seed crystal to a high-quality silicon single crystal containing no polycrystal There is an effect that it can be generated.

本発明に係るシリコン単結晶生成装置は、前記吸熱部及び前記加熱部の熱流速を制御する制御手段を備え、前記制御手段が、前記シリコン単結晶の少なくとも一部が種結晶として固体を維持するように、前記吸熱部及び前記加熱部の熱流速を制御して、前記種結晶の領域の温度を調整するものである。   The silicon single crystal generation apparatus according to the present invention includes a control unit that controls a heat flow rate of the heat absorption unit and the heating unit, and the control unit maintains at least a part of the silicon single crystal as a solid as a seed crystal. As described above, the temperature of the seed crystal region is adjusted by controlling the heat flow rate of the heat absorption part and the heating part.

このように、本発明に係るシリコン単結晶生成装置においては、シリコン単結晶の少なくとも一部が種結晶として固体を維持するように、吸熱部及び加熱部の熱流速を制御して、種結晶の領域の温度を調整するため、種結晶から確実に情報伝達を行って多結晶を含まない高品質なシリコン単結晶を生成することができるという効果を奏する。   As described above, in the silicon single crystal production apparatus according to the present invention, the heat flow rate of the endothermic part and the heating part is controlled so that at least a part of the silicon single crystal maintains a solid as a seed crystal. Since the temperature of the region is adjusted, there is an effect that information can be surely transmitted from the seed crystal to produce a high-quality silicon single crystal that does not contain a polycrystal.

本発明に係るシリコン単結晶生成装置は、前記吸熱部及び前記加熱部の熱流速を制御する制御手段を備え、前記制御手段が、前記シリコン単結晶の成長面及び前記坩堝の底面がなす固化された前記シリコン単結晶の角度が90°より大きく維持されるように前記吸熱部及び前記加熱部の熱流速を制御するものである。   The silicon single crystal production apparatus according to the present invention includes a control unit that controls a heat flow rate of the heat absorption unit and the heating unit, and the control unit is solidified by a growth surface of the silicon single crystal and a bottom surface of the crucible. Further, the heat flow rate of the heat absorption part and the heating part is controlled so that the angle of the silicon single crystal is maintained larger than 90 °.

このように、本発明に係るシリコン単結晶生成装置においては、シリコン単結晶の成長面及び前記坩堝の底面がなす固化された前記シリコン単結晶の角度が90°より大きく維持(すなわち、横方向に成長するシリコン結晶の固体/液体の境界面が、坩堝の底面に対して成長方向で90度未満に維持)されるように吸熱部及び加熱部の熱流速を制御するため、種結晶から確実に情報伝達が行われて多結晶を含まない高品質なシリコン単結晶を生成することができるという効果を奏する。   Thus, in the silicon single crystal production apparatus according to the present invention, the angle of the solidified silicon single crystal formed by the growth surface of the silicon single crystal and the bottom surface of the crucible is maintained larger than 90 ° (that is, in the lateral direction). Since the solid / liquid interface of the growing silicon crystal is maintained at less than 90 degrees in the growth direction with respect to the bottom of the crucible), the heat flow rate of the endothermic part and the heated part is controlled so As a result, information can be transmitted to produce a high-quality silicon single crystal that does not contain polycrystals.

本発明に係るシリコン単結晶生成装置は、前記坩堝内における所定箇所の温度を検出する温度検出手段と、検出された前記温度に基づいて、前記吸熱部及び/又は前記加熱部の熱流束を制御する制御手段とを備えるものである。   The silicon single crystal production apparatus according to the present invention controls the heat flux of the heat absorption part and / or the heating part based on the temperature detection means for detecting the temperature at a predetermined location in the crucible and the detected temperature. Control means.

このように、本発明に係るシリコン単結晶生成装置においては、坩堝内における所定箇所の温度を検出し、検出された温度に基づいて、吸熱部及び/又は加熱部の熱流束を制御するため、多結晶を含まない高品質なシリコン単結晶を生成することができると共に、作業を効率よく行うことができるという効果を奏する。   Thus, in the silicon single crystal production apparatus according to the present invention, in order to detect the temperature of a predetermined location in the crucible and control the heat flux of the endothermic part and / or the heating part based on the detected temperature, It is possible to produce a high-quality silicon single crystal that does not contain polycrystals and to perform work efficiently.

本発明に係るシリコン単結晶生成方法は、坩堝内の底面部にシリコン単結晶の種結晶を投入し、生成されるシリコン結晶の原料となる固体のシリコンを投入する原料投入ステップと、前記原料を加熱して溶融する溶融ステップと、溶融した前記原料を少なくとも前記種結晶の領域を含んで前記坩堝の下方から吸熱すると同時に、当該吸熱領域の周辺領域を加熱してシリコン結晶を生成する結晶生成ステップとを含み、前記吸熱による熱流束のベクトルAと前記加熱による熱流束のベクトルBとが、A×B<0の関係を保って実行されるものである。   A method for producing a silicon single crystal according to the present invention comprises a step of introducing a silicon single crystal seed crystal into a bottom portion of a crucible, and introducing solid silicon as a raw material of the generated silicon crystal; A melting step for heating and melting, and a crystal generation step for generating a silicon crystal by heating the molten raw material from below the crucible including at least the seed crystal region and simultaneously heating a peripheral region of the endothermic region The heat flux vector A due to heat absorption and the heat flux vector B due to heating are executed while maintaining a relationship of A × B <0.

本発明に係るシリコン単結晶生成方法は、前記結晶生成ステップが、前記坩堝の底面部から前記坩堝内を冷却すると同時に、当該冷却される領域の周辺領域を前記坩堝の底面部より下方に配設された熱源により加熱するものである。   In the silicon single crystal production method according to the present invention, the crystal production step cools the inside of the crucible from the bottom surface of the crucible, and at the same time, the peripheral region of the region to be cooled is disposed below the bottom surface of the crucible. It heats with the heat source made.

本発明に係るシリコン単結晶生成方法は、前記結晶生成ステップが、前記シリコン単結晶の少なくとも一部が種結晶として固体を維持するように、前記吸熱及び前記加熱の熱流速を制御して、前記種結晶の領域の温度を調整するものである。   In the silicon single crystal production method according to the present invention, the crystal production step controls the heat absorption and the heat flow rate of the heating so that at least a part of the silicon single crystal maintains a solid as a seed crystal, The temperature of the seed crystal region is adjusted.

本発明に係るシリコン単結晶生成方法は、前記結晶生成ステップが、前記シリコン単結晶の成長面及び前記坩堝の底面がなす前記シリコン単結晶の角度が90°より大きく維持されるように前記吸熱及び前記加熱の熱流速を制御して実行されるものである。   In the method for producing a silicon single crystal according to the present invention, the crystal production step includes the endothermic process and the endothermic process so that an angle of the silicon single crystal formed by a growth surface of the silicon single crystal and a bottom surface of the crucible is maintained larger than 90 °. It is executed by controlling the heat flow rate of the heating.

本発明に係るシリコン単結晶生成方法は、前記結晶生成ステップが、前記坩堝内の所定箇所で検出された温度に基づいて、前記吸熱及び/又は前記加熱の熱流束を制御して実行されるものである。   In the silicon single crystal production method according to the present invention, the crystal production step is executed by controlling the heat absorption and / or the heat flux of the heating based on the temperature detected at a predetermined location in the crucible. It is.

第1の実施形態に係るシリコン単結晶生成装置の断面図である。It is sectional drawing of the silicon single crystal production | generation apparatus which concerns on 1st Embodiment. 従来の一般的なシリコン結晶成長法を示す図である。It is a figure which shows the conventional general silicon crystal growth method. 第1の実施形態に係るシリコン単結晶生成装置で実現されるシリコンの結晶成長を示す図である。It is a figure which shows the crystal growth of the silicon | silicone implement | achieved with the silicon single crystal production | generation apparatus which concerns on 1st Embodiment. 従来における熱源からの加熱の一例及び第1の実施形態に係るシリコン単結晶生成装置における熱源からの加熱の一例を示すイメージ図である。It is an image figure which shows an example of the heating from a heat source in the past, and an example of the heating from the heat source in the silicon single crystal production | generation apparatus which concerns on 1st Embodiment. 第1の実施形態に係るシリコン単結晶生成方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the silicon single crystal production | generation method which concerns on 1st Embodiment. 第1の実施形態に係るシリコン単結晶生成方法でシリコン単結晶を成長させた場合の成長過程を示す図である。It is a figure which shows the growth process at the time of growing a silicon single crystal with the silicon single crystal production | generation method concerning 1st Embodiment. 第1の実施形態に係るシリコン単結晶生成方法で生成されたシリコンの単結晶と多結晶の分布を示す図である。It is a figure which shows the distribution of the single crystal and polycrystal of the silicon | silicone produced | generated with the silicon single crystal production | generation method concerning 1st Embodiment. 第1の実施形態に係るシリコン単結晶生成方法において坩堝底面及び成長面の間でシリコン溶融液がなす角度と成長時間との関係を示す図である。It is a figure which shows the relationship between the angle which a silicon melt makes between a crucible bottom face and a growth surface, and the growth time in the silicon single crystal production | generation method which concerns on 1st Embodiment.

以下、本発明の実施の形態を説明する。本発明は多くの異なる形態で実施可能である。また、本実施形態の全体を通して同じ要素には同じ符号を付けている。   Embodiments of the present invention will be described below. The present invention can be implemented in many different forms. Also, the same reference numerals are given to the same elements throughout the present embodiment.

(本発明の第1の実施形態)
本実施形態に係るシリコン単結晶生成装置及び当該シリコン単結晶生成装置を用いたシリコン単結晶生成方法について、図1ないし図8を用いて説明する。本実施形態に係るシリコン単結晶生成装置は、主に太陽光パネルとして利用されているシリコン(Si)半導体の単結晶を鋳造法により製造するものである。
(First embodiment of the present invention)
A silicon single crystal generation apparatus according to the present embodiment and a silicon single crystal generation method using the silicon single crystal generation apparatus will be described with reference to FIGS. The silicon single crystal production apparatus according to the present embodiment is for producing a silicon (Si) semiconductor single crystal mainly used as a solar panel by a casting method.

本実施形態に係るシリコン単結晶生成装置で用いられる鋳造法は、固体のシリコン原料を坩堝内に投入して高温で溶融し、当該溶融した液体のシリコンを所定の方法で冷却して固化することで、目的とする形状のシリコン結晶を得るものである。通常であれば、この鋳造法により固化されたシリコンは多結晶となるが、予め坩堝の底に単結晶の種を配置し、以下に詳細に示すような冷却方法を行うことで、欠陥の少ない高品質の単結晶を生成することができる。   The casting method used in the silicon single crystal production apparatus according to the present embodiment is to put a solid silicon raw material into a crucible and melt it at a high temperature, and to cool and solidify the molten liquid silicon by a predetermined method. Thus, a silicon crystal having a target shape is obtained. Normally, silicon solidified by this casting method becomes polycrystalline, but by placing a seed of single crystal in advance at the bottom of the crucible and performing a cooling method as described in detail below, there are few defects. High quality single crystals can be produced.

本実施形態に係るシリコン単結晶生成装置の一例を図1の断面図に示す。シリコン単結晶生成装置100において、溶融している液体シリコン1とその一部が固化することで生成されたシリコン結晶2とを収納するための容器である坩堝3,4が台座5に載置されており、台座5に連接して当該台座5を支持する軸受台6が上下移動可能に配設されている。坩堝3,4、台座5及び軸受台6の周囲にはヒータ12−14が配設されており、加熱及び冷却の温度制御が行われる。シリコン単結晶生成装置100の最外周には、熱を遮断するための断熱材7−11が配設され、外部との熱エネルギーの移動を遮断している構成である。   An example of the silicon single crystal generation apparatus according to this embodiment is shown in the cross-sectional view of FIG. In the silicon single crystal generation apparatus 100, crucibles 3 and 4, which are containers for storing molten liquid silicon 1 and silicon crystals 2 generated by solidification of a part thereof, are placed on a pedestal 5. A bearing stand 6 connected to the pedestal 5 and supporting the pedestal 5 is disposed so as to be vertically movable. A heater 12-14 is disposed around the crucibles 3 and 4, the pedestal 5 and the bearing base 6, and temperature control for heating and cooling is performed. On the outermost periphery of the silicon single crystal generation apparatus 100, a heat insulating material 7-11 for blocking heat is disposed to block the movement of heat energy from the outside.

図2に、従来の一般的なシリコン結晶成長法を示す。図2(A)は、ある瞬間における坩堝3,4内のシリコンの状態を示し、図2(B)は、図2(A)の状態から時間が経って成長が進んだ場合の坩堝3,4内のシリコンの状態を示す。従来は、図2(A)に示すように、坩堝3,4の中で溶融された液体のシリコンを坩堝3,4の底部から冷却して結晶成長させることが一般的に行われている。そして、そのまま冷却し続けると、図2(B)に示すように液体シリコンと固体シリコンの界面が、シリコン結晶の成長に伴って変動する。図2(B)から明らかなように、従来の方法でシリコン結晶の成長を行うと、シリコン単結晶の種結晶から成長できない領域(図中の一点鎖線が示す領域)が発生し、その領域で成長したシリコン結晶は多結晶となってしまう。   FIG. 2 shows a conventional general silicon crystal growth method. FIG. 2 (A) shows the state of silicon in the crucibles 3 and 4 at a certain moment, and FIG. 2 (B) shows the crucible 3 when the growth has progressed from the state of FIG. 2 (A) over time. The state of silicon in 4 is shown. Conventionally, as shown in FIG. 2 (A), it has been generally practiced to cool the liquid silicon melted in the crucibles 3 and 4 from the bottom of the crucibles 3 and 4 to grow crystals. If the cooling is continued as it is, the interface between the liquid silicon and the solid silicon changes as the silicon crystal grows as shown in FIG. As is apparent from FIG. 2B, when a silicon crystal is grown by a conventional method, a region that cannot grow from a seed crystal of a silicon single crystal (a region indicated by a one-dot chain line in the drawing) is generated. The grown silicon crystal becomes polycrystalline.

この多結晶の領域をなくすために、例えば単結晶の種結晶を坩堝3,4の底面全体を覆うように配置することが考えられるが、種結晶のサイズが非常に大きくなり、コスト面も含めて大型化するのに困難を有する。また、小さい種結晶で結晶成長させた場合は、図2(A)に示すように結晶成長の界面と坩堝3,4の底面とのなす角度(固体のシリコン単結晶がなす角度)が90度以下であるため、上述したように、シリコン単結晶の種結晶から成長できない領域が発生してしまう。このような問題を解決するために、本実施形態においては、坩堝3,4の底面から冷却される領域の周辺領域を坩堝3,4の底面から同時に加熱する。   In order to eliminate the polycrystalline region, for example, a single crystal seed crystal may be arranged so as to cover the entire bottom surface of the crucibles 3 and 4, but the size of the seed crystal becomes very large, including the cost. Difficult to enlarge. When crystal growth is performed with a small seed crystal, as shown in FIG. 2A, the angle formed by the crystal growth interface and the bottom surfaces of the crucibles 3 and 4 (angle formed by the solid silicon single crystal) is 90 degrees. Therefore, as described above, a region that cannot grow from the seed crystal of the silicon single crystal is generated. In order to solve such a problem, in the present embodiment, the peripheral region of the region cooled from the bottom surface of the crucibles 3 and 4 is simultaneously heated from the bottom surface of the crucibles 3 and 4.

図3は、本実施形態に係るシリコン単結晶生成装置で実現されるシリコンの結晶成長を示す図である。図3(A)は、ある瞬間における坩堝3,4内のシリコンの状態を示し、図3(B)は、図3(A)の状態から時間が経って成長が進んだ場合の坩堝3,4内のシリコンの状態を示す。図3(A)に示すように、本実施形態においては、坩堝3,4の底面に配置されたシリコン単結晶の種結晶の領域を冷却すると共に、その冷却される領域の周辺領域を同時に加熱する。   FIG. 3 is a diagram showing silicon crystal growth realized by the silicon single crystal generation apparatus according to the present embodiment. FIG. 3 (A) shows the state of silicon in the crucibles 3 and 4 at a certain moment, and FIG. 3 (B) shows the crucible 3 when the growth has progressed from the state of FIG. 3 (A) over time. The state of silicon in 4 is shown. As shown in FIG. 3A, in this embodiment, the seed crystal region of the silicon single crystal disposed on the bottom surfaces of the crucibles 3 and 4 is cooled, and the peripheral region of the cooled region is simultaneously heated. To do.

そうすることで、図3(A)に示すように液体シリコンと固体シリコンの界面が、略楕円体を形成するようにシリコン単結晶の成長が進む。すなわち、結晶成長の界面と坩堝3,4の底面とのなす角度(固体のシリコン単結晶がなす角度)が90度より大きくなり、図3(B)に示すように、小さい種結晶で成長させた場合であっても、図2(B)に示すようなシリコン単結晶の種結晶から成長できない領域が発生することなく、横方向の成長であっても種結晶の情報が正確に伝達され高品質のシリコン単結晶を生成することができる。   By doing so, the growth of the silicon single crystal proceeds so that the interface between the liquid silicon and the solid silicon forms a substantially ellipsoid as shown in FIG. That is, the angle formed by the crystal growth interface and the bottom surfaces of the crucibles 3 and 4 (the angle formed by the solid silicon single crystal) is larger than 90 degrees, and as shown in FIG. 2B, a region that cannot be grown from the seed crystal of the silicon single crystal as shown in FIG. 2B does not occur, and the seed crystal information is accurately transmitted even in the lateral growth. Quality silicon single crystals can be produced.

図4は、熱源からの加熱の一例を示す図である。図4(A)は、従来における坩堝の側面からの加熱の一例を示し、図4(B)は、本実施形態における坩堝の底面からの加熱の一例を示している。図4からわかるように、坩堝底部では、熱源Aへの熱流束aは下向きで、熱源Bからの熱流束bは斜め下向きであるため、熱流束aとbの関係がa×b≧0となる。すなわち、図4(A)に示すように、結晶成長の界面と坩堝3,4の底面との間でシリコン単結晶がなす角度が90度以下となり、上述したように、シリコン多結晶が成長する領域が発生してしまう。   FIG. 4 is a diagram illustrating an example of heating from a heat source. 4A shows an example of heating from the side surface of the conventional crucible, and FIG. 4B shows an example of heating from the bottom surface of the crucible in the present embodiment. As can be seen from FIG. 4, since the heat flux a to the heat source A is downward and the heat flux b from the heat source B is obliquely downward at the bottom of the crucible, the relationship between the heat flux a and b is a × b ≧ 0. Become. That is, as shown in FIG. 4A, the angle formed by the silicon single crystal between the crystal growth interface and the bottom surfaces of the crucibles 3 and 4 is 90 degrees or less, and the silicon polycrystal grows as described above. An area will be generated.

一方、本実施形態に係るシリコン単結晶生成装置で実現されるシリコンの結晶成長の場合は、図4(B)に示すように、熱流束aと熱流束bの向きがお互いに逆方向を向いているので、a×b<0の関係となっている。すなわち、結晶成長の界面と坩堝3,4の底面との間でシリコン単結晶がなす角度が90度より大きくなり、上述したように、種結晶の情報が正確に伝達され高品質のシリコン単結晶を生成することができる。   On the other hand, in the case of silicon crystal growth realized by the silicon single crystal generation apparatus according to the present embodiment, the directions of the heat flux a and the heat flux b are opposite to each other as shown in FIG. Therefore, the relationship is a × b <0. That is, the angle formed by the silicon single crystal between the crystal growth interface and the bottom surfaces of the crucibles 3 and 4 is greater than 90 degrees, and as described above, the information on the seed crystal is accurately transmitted and the high-quality silicon single crystal Can be generated.

次に、本実施形態に係るシリコン単結晶生成装置を用いたシリコン単結晶生成方法について説明する。図5は、本実施形態に係るシリコン単結晶生成方法の手順を示すフローチャートである。まず、坩堝3,4にシリコン単結晶の種結晶が投入され、坩堝3,4の底面部に配置される(S1)。なお、このとき、種結晶は坩堝3,4の底面部の中心付近に配置されることが好ましいが、必ずしも中心付近である必要はなく、吸熱部による吸熱が可能な位置であればよい。例えば、坩堝3,4の底面部が矩形である場合には、そのいずれかの角に配置してもよい。また、種結晶を複数に分割して複数の領域に配置することは好ましくなく、一の種結晶を一の領域に配置することが好ましい。種結晶が配置されると、生成するシリコン単結晶となる原料を坩堝3,4内に投入する(S2)。ヒータ12−14により坩堝3,4内を加熱してシリコン原料を溶融する(S3)。このとき、種結晶の少なくとも一部は固体として維持されるように加熱する。   Next, a silicon single crystal generation method using the silicon single crystal generation apparatus according to this embodiment will be described. FIG. 5 is a flowchart showing the procedure of the silicon single crystal generation method according to this embodiment. First, a seed crystal of silicon single crystal is put into the crucibles 3 and 4 and placed on the bottoms of the crucibles 3 and 4 (S1). At this time, the seed crystal is preferably arranged in the vicinity of the center of the bottom surface of the crucibles 3 and 4, but it is not always necessary to be in the vicinity of the center as long as the heat absorption by the heat absorption part is possible. For example, when the bottom surfaces of the crucibles 3 and 4 are rectangular, they may be arranged at any corner. Moreover, it is not preferable to divide the seed crystal into a plurality of regions and arrange them in a plurality of regions, and it is preferable to arrange one seed crystal in one region. When the seed crystal is arranged, a raw material to be a silicon single crystal to be generated is put into the crucibles 3 and 4 (S2). The crucibles 3 and 4 are heated by the heater 12-14 to melt the silicon raw material (S3). At this time, heating is performed so that at least a part of the seed crystal is maintained as a solid.

原料が溶融されると、坩堝3,4の底面部から種結晶の領域を冷却すると共に、その冷却される領域の周辺領域を同時に加熱しながら原料を固化する(S4)。このとき、種結晶の領域は坩堝3,4の底面部の熱源Aから吸熱され、その冷却される領域の周辺領域は坩堝3,4の底面より下方の熱源Bにより加熱される。そうすることで、熱源Aの熱流束aと熱源Bの熱流束bとの関係をa×b<0にすることができ、結晶成長の界面と坩堝3,4の底面とのなす角度(シリコン単結晶がなす角度)が90度より大きくなり、種結晶の情報が正確に伝達され高品質のシリコン単結晶を生成することができる。また、このとき、熱流束の制御を坩堝3,4全体の温度を監視して行う。坩堝3,4全体の温度を監視しながら、所定のタイミングで加熱及び吸熱をそれぞれ停止して(S5,S6)、シリコン単結晶の生成を完了する。なお、加熱及び吸熱の停止は、坩堝3,4の形状や融液の深さに応じて制御される。   When the raw material is melted, the seed crystal region is cooled from the bottoms of the crucibles 3 and 4, and the raw material is solidified while simultaneously heating the peripheral region of the cooled region (S4). At this time, the seed crystal region absorbs heat from the heat source A at the bottom of the crucibles 3 and 4, and the peripheral region of the cooled region is heated by the heat source B below the bottom of the crucibles 3 and 4. By doing so, the relationship between the heat flux a of the heat source A and the heat flux b of the heat source B can be a × b <0, and the angle formed by the crystal growth interface and the bottom surfaces of the crucibles 3 and 4 (silicon The angle formed by the single crystal is larger than 90 degrees, and the information of the seed crystal is accurately transmitted, so that a high-quality silicon single crystal can be generated. At this time, the heat flux is controlled by monitoring the temperature of the entire crucibles 3 and 4. While monitoring the temperature of the entire crucibles 3 and 4, heating and heat absorption are stopped at predetermined timings (S5 and S6) to complete the generation of the silicon single crystal. The stopping of heating and endothermic heat is controlled according to the shape of the crucibles 3 and 4 and the depth of the melt.

図6は、上記で説明した方法でシリコン単結晶を成長させた場合の成長過程を示す図である。図6(A)から順次シリコン結晶が成長し、最終的に図6(H)にまで成長してシリコン単結晶の生成が終了する。図6からわかるように、種結晶を中心として放射状(マシュマロ状、球体状、楕円体状)に成長が進み、最終的には図7に示すように、一部に多結晶が形成されているものの大部分を単結晶として生成することができる。   FIG. 6 is a diagram showing a growth process when a silicon single crystal is grown by the method described above. The silicon crystal grows sequentially from FIG. 6A and finally grows to FIG. 6H, and the generation of the silicon single crystal is completed. As can be seen from FIG. 6, the growth proceeds radially (marshmallows, spheres, ellipsoids) around the seed crystal, and finally a polycrystal is formed in part as shown in FIG. Most of it can be produced as a single crystal.

図8は、上記の方法でシリコン単結晶を成長させた場合の成長時間と、結晶成長の界面及び坩堝3,4の底面の間でシリコン原料の溶融液がなす角度との関係を示す図である。グラフ中の各プロット(a)〜(h)は、図6の(A)〜(H)に対応している。各工程において、坩堝全体の温度に基づいて吸熱と加熱を制御することで、結晶成長の界面及び坩堝3,4の底面の間で溶融液がなす角度(図8における縦軸に相当)を90度未満としている。すなわち、結晶成長の界面及び坩堝底面の間でシリコン結晶がなす角度は常に90度以上を保っており、結晶の成長がマシュマロ状(球体状、楕円体状)に進んでいることがわかる。   FIG. 8 is a diagram showing the relationship between the growth time when the silicon single crystal is grown by the above method and the angle formed by the silicon raw material melt between the crystal growth interface and the bottom surfaces of the crucibles 3 and 4. is there. Each plot (a) to (h) in the graph corresponds to (A) to (H) in FIG. In each step, by controlling the endotherm and heating based on the temperature of the entire crucible, the angle formed by the melt between the crystal growth interface and the bottom surfaces of the crucibles 3 and 4 (corresponding to the vertical axis in FIG. 8) is 90. Less than degrees. That is, it can be seen that the angle formed by the silicon crystal between the interface of crystal growth and the bottom of the crucible is always maintained at 90 degrees or more, and the crystal growth proceeds in a marshmallow shape (spherical shape, elliptical shape).

このように、本発明に係るシリコン単結晶生成装置及び当該装置を用いたシリコン単結晶生成方法によれば、種結晶から上方向ではなく横方向への結晶成長が可能となり、小さい種結晶から多結晶を含まない高品質なシリコン単結晶を生成することができる。また、鋳造法を利用して坩堝底面からの熱制御のみの簡易的な作業工程で、高品質且つ大型のシリコン結晶を生成することができるため、安価な設備で大量生産を行うことが可能になる。   As described above, according to the silicon single crystal generation apparatus and the silicon single crystal generation method using the apparatus according to the present invention, it is possible to grow a crystal from the seed crystal in the lateral direction instead of the upward direction. A high-quality silicon single crystal containing no crystals can be produced. In addition, high-quality and large-sized silicon crystals can be generated by a simple work process using only the heat control from the bottom of the crucible using the casting method, enabling mass production with inexpensive equipment. Become.

1 液体シリコン
2 シリコン結晶
3−4 坩堝
5 台座
6 軸受台
7−11 断熱材
12−14 ヒータ
100 シリコン単結晶生成装置
DESCRIPTION OF SYMBOLS 1 Liquid silicon 2 Silicon crystal 3-4 Crucible 5 Base 6 Bearing stand 7-11 Heat insulating material 12-14 Heater 100 Silicon single crystal production | generation apparatus

Claims (6)

底面部の一部の領域に単一のシリコン単結晶の種結晶が保持されると共に、固体及び/又は液体のシリコンが保持される坩堝と、
前記坩堝の底面より下方で且つ当該底面の面内における前記種結晶が保持される位置に対応する位置に配設され、シリコン溶融液を少なくとも前記種結晶の領域を含んで前記坩堝の下方から吸熱する吸熱部と、
前記坩堝の底面より下方で且つ当該底面の面内における前記吸熱部よりも外側の領域に配設され、前記吸熱部が前記坩堝の底面部から前記坩堝内を冷却すると同時に前記吸熱部により冷却される領域の周辺領域を加熱する加熱部とを備え、
前記吸熱部による熱流束のベクトルAが、前記坩堝の上部から下部に向かう方向であり、前記加熱部による熱流束のベクトルBが、前記坩堝の下部から上部に向かう方向であり、前記ベクトルA及び前記ベクトルBが、お互いに逆方向であるA×B<0の関係を保って制御され、前記坩堝内の液体/固体境界面であるシリコン単結晶の成長面を境にして、前記種結晶からのシリコン単結晶の成長に伴って、液体側のシリコン溶融液が前記加熱部により加熱されると共に、固体側のシリコン単結晶が前記吸熱部により冷却され、前記シリコン単結晶の成長面と前記坩堝の底面がなす固体側の角度が90°より大きくなるようにシリコン単結晶が成長することを特徴とするシリコン単結晶生成装置。
A crucible in which a single silicon single crystal seed crystal is held in a partial region of the bottom portion and solid and / or liquid silicon is held;
Wherein the seed crystal in and the plane of the bottom below the bottom surface of堝is disposed at a position corresponding to the position to be held, from below of the crucible contains a region of at least the seed crystal silicon melt An endothermic part that absorbs heat;
The heat sink is disposed in a region below the bottom surface of the crucible and outside the heat absorbing portion in the surface of the bottom surface, and the heat absorbing portion is cooled by the heat absorbing portion simultaneously with cooling the inside of the crucible from the bottom surface portion of the crucible. A heating section for heating the peripheral area of the area to be
The heat flux vector A by the heat absorption part is a direction from the top to the bottom of the crucible, and the heat flux vector B by the heating part is a direction from the bottom to the top of the crucible, the vector A and The vector B is controlled so as to maintain a relationship of A × B <0 that is opposite to each other, and from the seed crystal with respect to the growth surface of the silicon single crystal that is the liquid / solid interface in the crucible. As the silicon single crystal grows, the liquid-side silicon melt is heated by the heating unit, and the solid-side silicon single crystal is cooled by the heat-absorbing unit, so that the growth surface of the silicon single crystal and the crucible a silicon single crystal producing apparatus silicon single crystal which is characterized that you grow solid side of the angle bottom formed of to be larger than 90 °.
請求項1に記載のシリコン単結晶生成装置において、
前記吸熱部及び前記加熱部の熱流速を制御する制御手段を備え、
前記制御手段が、前記シリコン単結晶の少なくとも一部が種結晶として固体を維持するように、前記吸熱部及び前記加熱部の熱流速を制御して、前記種結晶の領域の温度を調整することを特徴とするシリコン単結晶生成装置。
The silicon single crystal production apparatus according to claim 1,
Control means for controlling the heat flow rate of the heat absorption part and the heating part,
The control means adjusts the temperature of the seed crystal region by controlling the heat flow rate of the heat absorption part and the heating part so that at least a part of the silicon single crystal maintains a solid as a seed crystal. A silicon single crystal production apparatus characterized by the above.
請求項1又は2に記載のシリコン単結晶生成装置において、
前記坩堝内における所定箇所の温度を検出する温度検出手段と、
前記吸熱部及び前記加熱部の熱流速を制御する制御手段とを備え、
前記温度検出手段で検出された前記温度に基づいて、前記吸熱部及び/又は前記加熱部の熱流束を制御することを特徴とするシリコン単結晶生成装置。
In the silicon single crystal production apparatus according to claim 1 or 2 ,
Temperature detecting means for detecting the temperature of a predetermined location in the crucible;
Control means for controlling a heat flow rate of the heat absorption part and the heating part ,
A silicon single crystal generating apparatus , wherein the heat flux of the heat absorption part and / or the heating part is controlled based on the temperature detected by the temperature detection means .
坩堝内の底面部にシリコン単結晶の種結晶を投入し、生成されるシリコン結晶の原料となる固体のシリコンを投入する原料投入ステップと、
前記原料を加熱して溶融する溶融ステップと、
前記坩堝の底面より下方で且つ当該底面の面内における前記種結晶が保持される位置に対応する位置に配設される吸熱部が、溶融した前記原料を少なくとも前記種結晶の領域を含んで前記坩堝の下方から吸熱すると同時に、前記坩堝の底面より下方で且つ当該底面の面内における前記吸熱部よりも外側の領域に配設された加熱部が、前記吸熱部により冷却される領域の周辺領域を加熱してシリコン結晶を生成する結晶生成ステップとを含み、
前記結晶生成ステップが、前記吸熱による前記坩堝の上部から下部に向かう方向の熱流束のベクトルAと前記加熱手段の加熱による前記坩堝の下部から上部に向かう方向の熱流束のベクトルBとが、お互いに逆方向であるA×B<0の関係を保って実行され、前記坩堝内の液体/固体境界面であるシリコン単結晶の成長面を境にして、前記種結晶からのシリコン単結晶の成長に伴って、液体側のシリコン溶融液が前記加熱部により加熱されると共に、固体側のシリコン単結晶が前記吸熱部により冷却され、前記シリコン単結晶の成長面と前記坩堝の底面がなす固体側の角度が90°より大きくなるようにシリコン単結晶が成長することを特徴とするシリコン単結晶生成方法
A raw material charging step of charging a seed crystal of silicon single crystal into the bottom part in the crucible and charging solid silicon as a raw material of the generated silicon crystal;
A melting step of heating and melting the raw material;
An endothermic portion disposed at a position below the bottom surface of the crucible and corresponding to a position where the seed crystal is held in the surface of the bottom surface includes at least the seed crystal region. At the same time as absorbing heat from the bottom of the crucible, a heating region disposed in a region below the bottom surface of the crucible and outside the endothermic portion in the plane of the bottom surface is a peripheral region of the region cooled by the endothermic portion Forming a silicon crystal by heating
In the crystal generation step, a heat flux vector A in the direction from the top to the bottom of the crucible due to the endotherm and a heat flux vector B in the direction from the bottom to the top of the crucible due to heating by the heating means are The silicon single crystal is grown from the seed crystal at the growth surface of the silicon single crystal, which is the liquid / solid interface in the crucible. Accordingly, the silicon melt on the liquid side is heated by the heating unit, and the silicon single crystal on the solid side is cooled by the endothermic unit, so that the growth surface of the silicon single crystal and the bottom surface of the crucible form the solid side A method for producing a silicon single crystal, characterized in that the silicon single crystal is grown so that the angle of is larger than 90 ° .
請求項4に記載のシリコン単結晶生成方法において、
前記結晶生成ステップが、前記シリコン単結晶の少なくとも一部が種結晶として固体を維持するように、前記吸熱及び前記加熱の熱流速を制御して、前記種結晶の領域の温度を調整することを特徴とするシリコン単結晶生成方法
In the silicon single crystal production method according to claim 4,
The crystal generation step adjusts the temperature of the region of the seed crystal by controlling the heat absorption and the heat flow rate of the heating so that at least a part of the silicon single crystal remains solid as a seed crystal. A method for producing a silicon single crystal.
請求項又はに記載のシリコン単結晶生成方法において、
前記結晶生成ステップが、前記坩堝内の所定箇所で検出された温度に基づいて、前記吸熱及び/又は前記加熱の熱流束を制御して実行されることを特徴とするシリコン単結晶生成方法。
In the silicon single crystal production method according to claim 4 or 5 ,
A method for producing a silicon single crystal, wherein the crystal production step is executed by controlling the heat absorption and / or the heat flux of the heating based on a temperature detected at a predetermined location in the crucible .
JP2015508425A 2013-03-25 2014-03-20 Silicon single crystal generation apparatus and silicon single crystal generation method Expired - Fee Related JP6384921B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013061698 2013-03-25
JP2013061698 2013-03-25
PCT/JP2014/057833 WO2014156986A1 (en) 2013-03-25 2014-03-20 Silicon single crystal production apparatus, and silicon single crystal production method

Publications (2)

Publication Number Publication Date
JPWO2014156986A1 JPWO2014156986A1 (en) 2017-02-16
JP6384921B2 true JP6384921B2 (en) 2018-09-05

Family

ID=51623963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015508425A Expired - Fee Related JP6384921B2 (en) 2013-03-25 2014-03-20 Silicon single crystal generation apparatus and silicon single crystal generation method

Country Status (4)

Country Link
JP (1) JP6384921B2 (en)
CN (1) CN105143524A (en)
TW (1) TW201445015A (en)
WO (1) WO2014156986A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109056062A (en) * 2018-08-03 2018-12-21 湖南红太阳光电科技有限公司 A kind of preparation method of casting monocrystalline silicon

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898051A (en) * 1973-12-28 1975-08-05 Crystal Syst Crystal growing
US4256530A (en) * 1978-12-07 1981-03-17 Crystal Systems Inc. Crystal growing
JPH11310496A (en) * 1998-02-25 1999-11-09 Mitsubishi Materials Corp Production of silicon ingot having unidirectionally solidified texture and apparatus therefor
JP2000327487A (en) * 1999-05-24 2000-11-28 Mitsubishi Materials Corp Method and apparatus for producing crystalline silicon
US20080257254A1 (en) * 2007-04-17 2008-10-23 Dieter Linke Large grain, multi-crystalline semiconductor ingot formation method and system
KR20100049078A (en) * 2007-07-20 2010-05-11 비피 코포레이션 노쓰 아메리카 인코포레이티드 Methods and apparatuses for manufacturing cast silicon from seed crystals
CN201512416U (en) * 2009-09-18 2010-06-23 南安市三晶阳光电力有限公司 Bottom heating device for polysilicon ingot furnace
CN202558970U (en) * 2012-05-24 2012-11-28 天威新能源控股有限公司 Single crystal like silicon ingot furnace

Also Published As

Publication number Publication date
TW201445015A (en) 2014-12-01
WO2014156986A1 (en) 2014-10-02
CN105143524A (en) 2015-12-09
JPWO2014156986A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5633732B2 (en) Sapphire single crystal manufacturing method and sapphire single crystal manufacturing apparatus
US10253430B2 (en) Method for preparing polycrystalline silicon ingot
KR101767268B1 (en) Apparatus for producing sapphire single crystal
JP4810346B2 (en) Method for producing sapphire single crystal
EP1571240B1 (en) Method for producing compound semiconductor single crystal
JP4830312B2 (en) Compound semiconductor single crystal and manufacturing method thereof
US9938633B2 (en) System for manufacturing a crystalline material by directional crystallization provided with an additional lateral heat source
JP6384921B2 (en) Silicon single crystal generation apparatus and silicon single crystal generation method
JP5370394B2 (en) Compound semiconductor single crystal substrate
JP2019218245A (en) MANUFACTURING METHOD OF Si INGOT CRYSTAL, AND MANUFACTURING APPARATUS THEREFOR
KR20150049327A (en) Manufacturing device for single crystal slicon ingot and manufacturing method thereof
JP5398775B2 (en) Method for producing Si ingot crystal
JP2019043788A (en) Method and apparatus for growing single crystal
US6428617B1 (en) Method and apparatus for growing a single crystal in various shapes
JP2758038B2 (en) Single crystal manufacturing equipment
JP2014156373A (en) Manufacturing apparatus for sapphire single crystal
RU2531514C1 (en) Heater for growth of monocrystals from melt by vertical pulling technique
JP2016204190A (en) Method for manufacturing aluminum oxide single crystal
JP2019172525A (en) Seed crystal for growing single crystal
JPH05124887A (en) Production of single crystal and device therefor
JP2000169278A (en) Production of semiconductor crystal and apparatus for production
TWM463741U (en) Heat-insulation side board structure of crystal growth furnace
KR20130107445A (en) Monocrystal growing apparatus
JPH04300278A (en) Production of crystal and apparatus for producing the same crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180802

R150 Certificate of patent or registration of utility model

Ref document number: 6384921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees