JPH04300278A - Production of crystal and apparatus for producing the same crystal - Google Patents

Production of crystal and apparatus for producing the same crystal

Info

Publication number
JPH04300278A
JPH04300278A JP2881791A JP2881791A JPH04300278A JP H04300278 A JPH04300278 A JP H04300278A JP 2881791 A JP2881791 A JP 2881791A JP 2881791 A JP2881791 A JP 2881791A JP H04300278 A JPH04300278 A JP H04300278A
Authority
JP
Japan
Prior art keywords
heating element
crystal
main heating
raw material
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2881791A
Other languages
Japanese (ja)
Other versions
JP2977297B2 (en
Inventor
Chiku Katano
片野 築
Fumio Orito
文夫 折戸
Fumikazu Yajima
矢島 文和
Shinichiro Kawabata
紳一郎 川端
Hideo Okada
英夫 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Polytec Co
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Polytec Co, Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Polytec Co
Priority to JP3028817A priority Critical patent/JP2977297B2/en
Publication of JPH04300278A publication Critical patent/JPH04300278A/en
Application granted granted Critical
Publication of JP2977297B2 publication Critical patent/JP2977297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To reduce dislocation and defects occurring in a single crystal by maintaining the ratio of exothermic power of a main heating unit to that of an auxiliary heating unit constant, controlling the temperature of the main heating unit and performing seeding operation. CONSTITUTION:A crucible 5 is vertically installed in a susceptor 6 provided in an airtight vessel 11 having a heat insulating material 10 and a seed crystal 1 is contained in the bottom of the crucible 5. A raw material 3 and a liquid encapsulating agent 4 are filled in a place above the seed crystal 1. A current is then passed through a main heating unit 19 and auxiliary heating units (20a) and (20b) to maintain the ratio of the exothermic power of the main heating unit 19 to that of the auxiliary heating units (20a) and (20b) at 0.5-0.7. Thereby, the raw material 3 and the liquid encapsulating agent 4 are melted to bring the seed crystal 1 into contact with the raw material melt 3 and seeding operation is performed. The exothermic power of the main heating unit 19 is then slowly increased to control the temperature of the main heating unit 19. As a result, crystal growth is completed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は単結晶製造方法およびそ
の装置に係り、特に垂直に配置したるつぼ内で融液をそ
のまま固化させる垂直ブリッジマン法を用いて融解した
原料と種結晶とを接触させる操作を確実に行い、かつ成
長界面位置の変化を精密に制御することを可能とする単
結晶製造方法およびその装置に関する。
[Industrial Application Field] The present invention relates to a method and apparatus for producing a single crystal, and in particular to a vertical Bridgman method in which a melt is solidified as it is in a vertically arranged crucible, a molten raw material and a seed crystal are brought into contact with each other. The present invention relates to a method for manufacturing a single crystal and an apparatus therefor, which make it possible to reliably perform a single crystal manufacturing operation and precisely control changes in the position of a growth interface.

【0002】0002

【従来の技術】周期律表III b族およびVb族元素
からなる無機化合物半導体(以下「III −V族化合
物半導体」という)の単結晶、特にひ化ガリウム(Ga
As)、りん化ガリウム(GaP)の単結晶は電界効果
トランジスタ(FET)、ショットキーバリアダイオー
ド、集積回路(IC)等の各種半導体素子の製造に広く
用いられている。
[Prior Art] Single crystals of inorganic compound semiconductors (hereinafter referred to as "III-V compound semiconductors") consisting of elements of group IIIb and group Vb of the periodic table, especially gallium arsenide (Ga
Single crystals of gallium phosphide (GaP) are widely used in the manufacture of various semiconductor devices such as field effect transistors (FETs), Schottky barrier diodes, and integrated circuits (ICs).

【0003】これらの半導体素子の基板に用いるIII
 −V族化合物半導体、特にGaAsの単結晶の製造法
としては、融液からの結晶成長法が主に用いられている
III used for the substrate of these semiconductor devices
A crystal growth method from a melt is mainly used as a method for producing a single crystal of a -V group compound semiconductor, particularly GaAs.

【0004】融液からの結晶成長法の一つである引上法
は結晶の大口径化に適しており、円形の(100)ウエ
ハが得られるという長所を有する。反面、大きな温度勾
配の下で結晶成長が行われるため、製造された結晶の転
位密度が高くなるという問題があった。
The pulling method, which is one of the methods for growing crystals from melt, is suitable for increasing the diameter of crystals and has the advantage that circular (100) wafers can be obtained. On the other hand, since crystal growth is performed under a large temperature gradient, there is a problem in that the dislocation density of the produced crystal becomes high.

【0005】融液からの他の結晶成長法としては、るつ
ぼ内で融液をそのまま固化させ単結晶を得る垂直ボート
法が有力である。垂直ボート成長法には垂直ブリッジマ
ン法(VB法)及び垂直温度勾配凝固法(VGF法)が
ある。このVB法あるいはVGF法によれば、低温度勾
配下で結晶成長を行うことができるので、結晶性の良い
単結晶を得ることができる。しかもこれらの方法は、円
形の(100)ウエハの製造に適しているという利点も
ある。
Another promising method for growing crystals from a melt is the vertical boat method, in which a single crystal is obtained by directly solidifying the melt in a crucible. The vertical boat growth method includes the vertical Bridgman method (VB method) and the vertical temperature gradient solidification method (VGF method). According to the VB method or VGF method, crystal growth can be performed under a low temperature gradient, so a single crystal with good crystallinity can be obtained. Furthermore, these methods have the advantage of being suitable for manufacturing circular (100) wafers.

【0006】ところで、製品となる単結晶は所望の結晶
学的方位を持つことが必要であり、そのためには、結晶
成長の開始時に原料融液を種結晶と接触させ(以下「種
付け」という)所定の結晶方位を決定させなければなら
ない。しかしながら、これら垂直ボート法のように、垂
直にるつぼを配置し、その上方に原料を充填する方法で
は、種結晶が可動でなく種付け位置や結晶成長速度等の
精密制御が不可能であった。
By the way, it is necessary for the single crystal that becomes the product to have a desired crystallographic orientation, and for this purpose, the raw material melt is brought into contact with a seed crystal at the beginning of crystal growth (hereinafter referred to as "seeding"). A predetermined crystal orientation must be determined. However, in these vertical boat methods, in which a crucible is arranged vertically and raw materials are filled above it, the seed crystal is not movable, making it impossible to precisely control the seeding position, crystal growth rate, etc.

【0007】図6は従来の液体封止垂直ブリッジマン法
によるGaAs単結晶成長を説明するための模式断面図
である。
FIG. 6 is a schematic cross-sectional view for explaining GaAs single crystal growth by the conventional liquid-sealed vertical Bridgman method.

【0008】図6において、1は種結晶、2は成長した
GaAs結晶、3はGaAs融液、4は液体封止剤、5
は円形の断面形状を有するるつぼ、6はるつぼホルダー
、7はこのホルダー6を支持するるつぼ軸、8はこの軸
7を介してるつぼ5を回転・移動させるためのるつぼ駆
動機構、9は発熱体、10は保温材、11は気密容器、
21は発熱体9の発熱パワーおよびるつぼ5の回転・位
置などを変化させるための制御装置である。(21は図
示せず)
In FIG. 6, 1 is a seed crystal, 2 is a grown GaAs crystal, 3 is a GaAs melt, 4 is a liquid sealant, and 5 is a grown GaAs crystal.
6 is a crucible holder, 7 is a crucible shaft that supports this holder 6, 8 is a crucible drive mechanism for rotating and moving the crucible 5 via this shaft 7, and 9 is a heating element. , 10 is a heat insulating material, 11 is an airtight container,
Reference numeral 21 denotes a control device for changing the heating power of the heating element 9 and the rotation and position of the crucible 5. (21 is not shown)

【0009】このような装置構成において、従
来の技術は、まずるつぼ5内に種結晶1、原料のGaA
s多結晶、個体状の液体封止剤4を充填し、発熱体9に
より炉内を高温に加熱して液体封止剤4およびGaAs
多結晶を融解させた後、近傍に設置した熱電対により温
度状況を把握しながら種付けを行って結晶成長を開始し
、図6に示す如く結晶成長を行っていた。
In such an apparatus configuration, the conventional technology first places a seed crystal 1 and a raw material GaA in a crucible 5.
s A polycrystalline, solid liquid sealant 4 is filled, and the inside of the furnace is heated to a high temperature by a heating element 9 to melt the liquid sealant 4 and GaAs.
After melting the polycrystal, seeding was performed while monitoring the temperature using a thermocouple installed nearby to start crystal growth, and crystal growth was performed as shown in FIG.

【0010】しかしながら、上記従来の方法では種結晶
が可動でなく、且つ外部からの観察が困難なため、「種
付け」操作が非常に困難であった。さらに、従来の方法
では、結晶の成長速度すなわち成長界面12の移動速度
の検出ができないため、正確な成長速度の制御や界面形
状の制御は行われていなかった。
However, in the conventional method described above, the seed crystal is not movable and observation from the outside is difficult, so the "seeding" operation is extremely difficult. Furthermore, in the conventional method, the growth rate of the crystal, that is, the movement speed of the growth interface 12 cannot be detected, and therefore the growth rate and the interface shape cannot be accurately controlled.

【0011】[0011]

【発明が解決しようとする課題】現在、GaAs単結晶
をはじめとする化合物半導体結晶の製造法として実用化
されている液体封止引上法(LEC法)、あるいは水平
ブリッジマン(HB法)などの結晶育成の場合、気密容
器あるいは炉体に覗き窓を設け、成長状況を観測し、炉
内の結晶成長条件を制御している。
[Problems to be Solved by the Invention] Currently, the liquid encapsulation drawing method (LEC method) or the horizontal Bridgman method (HB method) is in practical use as a manufacturing method for compound semiconductor crystals such as GaAs single crystals. In the case of crystal growth, a viewing window is installed in the airtight container or furnace body to observe the growth situation and control the crystal growth conditions inside the furnace.

【0012】これに対して、本発明に係る垂直ブリッジ
マン法のような結晶成長法の場合、成長界面位置や成長
速度さらには界面形状といった結晶成長条件の制御は行
われていなかった。
On the other hand, in the case of a crystal growth method such as the vertical Bridgman method according to the present invention, the crystal growth conditions such as the growth interface position, growth rate, and interface shape are not controlled.

【0013】ところで、結晶の成長速度は、製品となる
結晶の品質に重大な影響を与えるため、これを精密に制
御することは結晶成長の基本的な技術の一つである。ま
た、融液からの結晶成長においては、結晶の成長面を種
付け時より成長する結晶全長にわたって精密に制御する
ことが、均一で高品質な結晶を得るために不可欠である
By the way, since the crystal growth rate has a significant effect on the quality of the crystal that becomes a product, precisely controlling this is one of the basic techniques for crystal growth. Furthermore, in crystal growth from a melt, it is essential to precisely control the crystal growth surface over the entire length of the growing crystal from the time of seeding in order to obtain uniform, high-quality crystals.

【0014】しかしながら従来の方法では上記問題点を
解決するのは困難であった。本発明は均一で高品質な単
結晶を製造するための単結晶製造方法およびその装置を
提供することを目的とする。
However, it has been difficult to solve the above problems with conventional methods. An object of the present invention is to provide a single crystal manufacturing method and apparatus for manufacturing a uniform and high quality single crystal.

【0015】[0015]

【課題を解決するための手段】上記課題は本発明によれ
ば垂直に配置されたるつぼの底部に種結晶を収容し、該
種結晶の上方に原料を充填し、該原料を加熱・融解して
融液を形成し、該融液を固化させ単結晶を得る垂直ブリ
ッジマン法を用いる結晶製造方法において、前記原料の
加熱・融解を主発熱体と補助発熱体を用いて行い、且つ
該主発熱体の発熱パワーと該補助発熱体の発熱パワーと
の比を一定に保持し、該主発熱体の温度を制御し、種結
晶と融液を接触させて種付け操作を行うことを特徴とす
る結晶製造方法によって解決される。
[Means for Solving the Problems] According to the present invention, the above problem is achieved by storing a seed crystal at the bottom of a vertically arranged crucible, filling a raw material above the seed crystal, and heating and melting the raw material. In a crystal manufacturing method using the vertical Bridgman method, in which a melt is formed by heating and the melt is solidified to obtain a single crystal, the raw material is heated and melted using a main heating element and an auxiliary heating element, and the main heating element is The seeding operation is performed by keeping the ratio of the heating power of the heating element and the heating power of the auxiliary heating element constant, controlling the temperature of the main heating element, and bringing the seed crystal into contact with the melt. The problem is solved by a crystal manufacturing method.

【0016】なお本発明では、種付け操作を確実に行な
えるように温度勾配を確保するため、前記主発熱体の発
熱パワーと前記補助発熱体の発熱パワーとの比の値が0
.5〜0.7であることが好ましい。
Furthermore, in the present invention, in order to ensure a temperature gradient so that the seeding operation can be performed reliably, the value of the ratio of the heating power of the main heating element to the heating power of the auxiliary heating element is 0.
.. It is preferable that it is 5-0.7.

【0017】更に上記課題は本発明によれば垂直に配置
されたるつぼの底部に種結晶を収容し、その上方に原料
を充填し、該原料を加熱・融解して融液を形成し、この
融液を固化させ単結晶を得る垂直ブリッジマン法を用い
る結晶製造方法において、前記原料の加熱・融解を主発
熱体と補助発熱体を用いて行い、且つ該主発熱体の発熱
パワーと該補助発熱体の発熱パワーとの比を種結晶と融
液を接触させる種付け操作後に徐々に増大させ、該主発
熱体の温度を制御し、結晶成長を終了させることを特徴
とする結晶製造方法によって解決される。
Furthermore, according to the present invention, the above-mentioned problem is solved by accommodating a seed crystal at the bottom of a vertically arranged crucible, filling a raw material above it, heating and melting the raw material to form a melt, and In a crystal manufacturing method using the vertical Bridgman method to solidify a melt and obtain a single crystal, the raw material is heated and melted using a main heating element and an auxiliary heating element, and the heating power of the main heating element and the auxiliary heating element are The problem is solved by a crystal manufacturing method characterized in that the ratio of the heating power of the heating element to the heating power is gradually increased after a seeding operation in which the seed crystal and the melt are brought into contact, and the temperature of the main heating element is controlled to terminate crystal growth. be done.

【0018】本発明によれば温度勾配を確保し、種付け
操作を確実に行なうため、及び温度勾配を小さくし、転
位密度を減少させるために、前記主発熱体の発熱パワー
と前記補助発熱体の発熱パワーとの比の値が、前記種付
け操作時には0.5〜0.7であり、前記結晶成長終了
時には1.0〜1.2であることが好ましい。
According to the present invention, in order to ensure a temperature gradient and perform the seeding operation reliably, and to reduce the temperature gradient and the dislocation density, the heating power of the main heating element and the heating power of the auxiliary heating element are adjusted. It is preferable that the value of the ratio to the exothermic power is 0.5 to 0.7 at the time of the seeding operation, and 1.0 to 1.2 at the end of the crystal growth.

【0019】更に上記課題は本発明によれば垂直に配置
されたるつぼの底部に種結晶を収容し、該種結晶の上方
に原料を充填し、該原料を、前記るつぼ周囲に配設され
た発熱体で加熱・融解して融液を形成し、該融液を固化
させ単結晶を得る垂直ブリッジマン法を用いた結晶製造
装置において、前記発熱体が主発熱体と補助発熱体とか
らなり、且つ該主発熱体と該補助発熱体のパワー比を所
定条件に変更し得ることを特徴とする結晶製造装置によ
って解決される。
According to the present invention, the above-mentioned problem is further solved by accommodating a seed crystal at the bottom of a vertically arranged crucible, filling a raw material above the seed crystal, and distributing the raw material into a crucible arranged around the crucible. In a crystal manufacturing apparatus using a vertical Bridgman method in which a heating element is used to heat and melt a melt to form a melt, and the melt is solidified to obtain a single crystal, the heating element is composed of a main heating element and an auxiliary heating element. The problem is solved by a crystal manufacturing apparatus characterized in that the power ratio of the main heating element and the auxiliary heating element can be changed to a predetermined condition.

【0020】[0020]

【作用】本発明によれば、原料を融解させる主発熱体の
他に、少なくとも一つ以上の補助発熱体を有し、主発熱
体と補助発熱体の発熱パワーを一定比に保ちつつ主発熱
体の温度を変化させることにより、炉内の温度勾配を正
確に制御することができる。そのため種付け操作を容易
にし、結晶の成長面形状と結晶の成長速度を成長する結
晶全長にわたって精密に制御することができる。
[Function] According to the present invention, in addition to the main heating element that melts the raw material, at least one auxiliary heating element is provided, and the main heating element and the auxiliary heating element are kept at a constant ratio of heating power. By varying the body temperature, the temperature gradient within the furnace can be precisely controlled. Therefore, the seeding operation is facilitated, and the crystal growth surface shape and crystal growth rate can be precisely controlled over the entire length of the growing crystal.

【0021】[0021]

【実施例】以下本発明の実施例を図面に基づいて詳細に
説明する。図1は本発明に係る単結晶製造装置の模式断
面図である。同図において、19は主発熱体、20a及
び20bは本発明に係わる補助発熱体を示している。1
3はるつぼ下端の温度を測定するための熱電対である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a single crystal manufacturing apparatus according to the present invention. In the figure, 19 indicates a main heating element, and 20a and 20b indicate auxiliary heating elements according to the present invention. 1
3 is a thermocouple for measuring the temperature at the lower end of the crucible.

【0022】図1に示すように、本発明の単結晶製造装
置はグラファイトフェルト等の保温材10を有する気密
容器11内に設けられた、等方性グラファイト製のサセ
プター6内に、外形80mm、高さ 150mmのрB
N製のるつぼ5を設置し、支持軸7によりサセプター6
とるつぼ5を保持する。発熱体は等方性グラファイト製
で主発熱体(メインヒータ)19の高さは20cm、補
助発熱体(サブヒータ)20a,20bの高さは10c
mのものを使用した。
As shown in FIG. 1, the single crystal production apparatus of the present invention has a susceptor 6 made of isotropic graphite provided in an airtight container 11 having a heat insulating material 10 such as graphite felt. Height 150mm рB
A crucible 5 made of N is installed, and a susceptor 6 is attached by a support shaft 7.
Hold crucible 5. The heating element is made of isotropic graphite, and the height of the main heating element (main heater) 19 is 20 cm, and the height of auxiliary heating elements (sub heaters) 20a and 20b is 10 cm.
m was used.

【0023】上記ホットゾーン中心軸上の温度分布の代
表例を図2に示す。気密容器上部より熱電対を挿入し、
ヒータを加熱し、気密容器内が定常状態になったところ
で熱電対の位置を変化させることで測定を行った。なお
、気密容器内は7気圧に制御されたアルゴン雰囲気で満
たされている。
A typical example of the temperature distribution on the central axis of the hot zone is shown in FIG. Insert the thermocouple from the top of the airtight container,
Measurement was performed by heating the heater and changing the position of the thermocouple when the inside of the airtight container reached a steady state. Note that the inside of the airtight container was filled with an argon atmosphere controlled at 7 atmospheres.

【0024】図3は炉内中央の温度勾配が主発熱体と補
助発熱体の発熱パワーの比(補助発熱体の発熱パワー/
主発熱体の発熱パワー)によってどの様に変化するのか
を示したグラフである。図3から上記ホットゾーンの温
度勾配は主発熱体と補助発熱体の発熱パワーの比で決定
されることがわかる。
FIG. 3 shows that the temperature gradient at the center of the furnace is determined by the ratio of the heating power of the main heating element and the auxiliary heating element (heating power of the auxiliary heating element/
This is a graph showing how it changes depending on the heating power of the main heating element. It can be seen from FIG. 3 that the temperature gradient in the hot zone is determined by the ratio of the heating power of the main heating element and the auxiliary heating element.

【0025】炉内中央の温度勾配は次式から導くことが
できる。 (炉内中央の温度勾配)=−17×(補助発熱体の発熱
量/主発熱体の発熱量)+24.5 また、るつぼ下端(=種結晶端)には熱電対が設置され
ており、るつぼ下端の温度の測定ができるので、この温
度と、上記主発熱体と補助発熱体の発熱パワーの比で決
定される炉内の温度勾配から炉内の温度分布を正確に把
握することができる。その結果、成長速度および界面形
状を精密に制御することができる。
The temperature gradient at the center of the furnace can be derived from the following equation. (Temperature gradient in the center of the furnace) = -17 x (calorific value of auxiliary heating element / calorific value of main heating element) + 24.5 Also, a thermocouple is installed at the lower end of the crucible (= seed crystal end). Since the temperature at the lower end of the crucible can be measured, the temperature distribution inside the furnace can be accurately determined from this temperature and the temperature gradient inside the furnace, which is determined by the ratio of the heating power of the main heating element and the auxiliary heating element. . As a result, growth rate and interface shape can be precisely controlled.

【0026】上記ホットゾーンを使用して結晶成長を行
った。原料は高純度のGaAs多結晶1.5kg、B2
O3 300gを用いた。
Crystal growth was performed using the hot zone described above. The raw material is 1.5 kg of high-purity GaAs polycrystal, B2
300g of O3 was used.

【0027】種結晶は、成長方向に垂直な断面が一辺5
mmの正方形で、長さが5cmのものを使用した。
The seed crystal has a cross section perpendicular to the growth direction with a side of 5
A piece with a square size of mm and a length of 5 cm was used.

【0028】原料融解後7気圧のアルゴン雰囲気で成長
速度3mm/hで3インチ径の結晶を成長させることが
できた。
After melting the raw materials, a crystal with a diameter of 3 inches could be grown at a growth rate of 3 mm/h in an argon atmosphere of 7 atm.

【0029】結晶成長開始時には種付け操作を行なわな
ければならないが、種付けが行えるためには、種結晶が
設置された領域の一点が融点になればよい。
At the start of crystal growth, a seeding operation must be performed, but in order to perform seeding, it is sufficient that one point in the region where the seed crystal is placed reaches the melting point.

【0030】図4に種付けを可能にするるつぼ下端の温
度と、主発熱体と補助発熱体の発熱量の比のグラフを示
す。図中の斜線で示した領域が種付けを可能にする条件
である。図4中に示した点(×印)の条件で種付けを行
った後、るつぼ内部の温度分布、成長界面の位置を制御
し、結果として結晶成長速度および結晶形状を制御した
FIG. 4 shows a graph of the temperature at the lower end of the crucible that enables seeding and the ratio of the calorific value of the main heating element to the auxiliary heating element. The shaded area in the figure is the condition that allows seeding. After seeding was performed under the conditions indicated by the points (x marks) shown in FIG. 4, the temperature distribution inside the crucible and the position of the growth interface were controlled, and as a result, the crystal growth rate and crystal shape were controlled.

【0031】比較例 以下本発明の上記実施例において補助発熱体が無い場合
を比較例として上記実施例との比較データを示す。
COMPARATIVE EXAMPLE Hereinafter, data for comparison with the above-mentioned example will be shown, using as a comparative example a case in which there is no auxiliary heating element in the above-mentioned example of the present invention.

【0032】(1)シーディング(種付け)の再現性比
較例:10ラン行なって再現性がなかった。すなわちシ
ーディング位置が±5mm変化した。10ラン中3ラン
はシーディング失敗した。 本実施例:10ラン行なって再現性があった。すなわち
シーディング位置が±1.5mmだけの変化であった。 10ラン中シーディングの失敗がなかった。
(1) Comparative example of reproducibility of seeding: 10 runs were performed and there was no reproducibility. That is, the seeding position changed by ±5 mm. Three of the 10 runs failed in seeding. This example: 10 runs were performed and there was good reproducibility. That is, the seeding position changed by only ±1.5 mm. There was no seeding failure in the 10 runs.

【表1】[Table 1]

【0033】(2)結晶の転位密度(EPD、単位は個
/cm2 ) 次に比較例として補助発熱体/主発熱体のパワー比(消
費電力比)が本発明からはずれる(パワー比)場合であ
る。
(2) Crystal dislocation density (EPD, unit: pieces/cm2) Next, as a comparative example, in the case where the power ratio (power consumption ratio) of the auxiliary heating element/main heating element deviates from the present invention (power ratio) be.

【表2】[Table 2]

【0034】上記本発明の場合の方が転位密度が小さい
ことがわかる。図5はシーディング(種付け)から結晶
成長(育成)終了迄の補助発熱体/主発熱体のパワー比
の変化を示す1例であり、シーディング時は0.6でそ
の後徐々にパワー比を上げ1.2とした例である。その
結果は転位密度が全長にわたって1×104 個/cm
2 以下であって良好であった。
It can be seen that the dislocation density is smaller in the case of the present invention. Figure 5 shows an example of the change in the power ratio of the auxiliary heating element/main heating element from seeding to the end of crystal growth. This is an example where the increase is 1.2. The result is that the dislocation density is 1 x 104 pieces/cm over the entire length.
2 or less, which was good.

【0035】[0035]

【発明の効果】以上説明したように本発明によれば、従
来では困難であった種付け操作や成長界面位置の制御を
正確に行うことができる。これにより、成長速度や成長
界面形状を制御することができ、単結晶化率を大幅に向
上させることができる。また、結晶成長中および成長後
の結晶内部の温度分布の制御が可能になり、結晶に発生
する転位・欠陥の低減も可能となる。
As described above, according to the present invention, it is possible to accurately control the seeding operation and the position of the growth interface, which were difficult in the past. Thereby, the growth rate and growth interface shape can be controlled, and the single crystallization rate can be significantly improved. Furthermore, it becomes possible to control the temperature distribution inside the crystal during and after crystal growth, and it is also possible to reduce dislocations and defects generated in the crystal.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の単結晶製造装置の縦断面模式図である
FIG. 1 is a schematic longitudinal cross-sectional view of a single crystal manufacturing apparatus of the present invention.

【図2】本発明の単結晶製造装置内部の温度分布図であ
る。
FIG. 2 is a temperature distribution diagram inside the single crystal manufacturing apparatus of the present invention.

【図3】本発明の単結晶製造装置内部の温度勾配が主発
熱体と補助発熱体の発熱量の比によってどの様に変化す
るのかを示した図である。
FIG. 3 is a diagram showing how the temperature gradient inside the single crystal manufacturing apparatus of the present invention changes depending on the ratio of the calorific value of the main heating element and the auxiliary heating element.

【図4】種付けを可能にするるつぼ下端の温度と、主発
熱体と補助発熱体の発熱パワーの比を示した図である。
FIG. 4 is a diagram showing the temperature at the lower end of the crucible that enables seeding and the ratio of heat generation power between the main heating element and the auxiliary heating element.

【図5】種付け(シーディング)から結晶成長(育成)
終了迄の主発熱体と補助発熱体とのパワー比変化を示す
図である。
[Figure 5] From seeding to crystal growth (nurturing)
It is a figure which shows the power ratio change of the main heating element and an auxiliary heating element until the end.

【図6】従来の単結晶製造装置の縦断面模式図である。FIG. 6 is a schematic vertical cross-sectional view of a conventional single crystal manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1…種結晶 2…成長したGaAs結晶 3…GaAs融液 4…液体封止剤 5…るつぼ 6…るつぼホルダー 9…発熱体 10…保温材 19…主発熱体 20a,20b…補助発熱体 1... Seed crystal 2...Growed GaAs crystal 3...GaAs melt 4...Liquid sealant 5... Crucible 6... Crucible holder 9...Heating element 10...Heat insulation material 19...Main heating element 20a, 20b...Auxiliary heating element

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  垂直に配置されたるつぼの底部に種結
晶を収容し、該種結晶の上方に原料を充填し、該原料を
加熱・融解して融液を形成し、該融液を固化させ単結晶
を得る垂直ブリッジマン法を用いる結晶製造方法におい
て、前記原料の加熱・融解を主発熱体と補助発熱体を用
いて行い、且つ該主発熱体の発熱パワーと該補助発熱体
の発熱パワーとの比を一定に保持し、該主発熱体の温度
を制御し、種結晶と融液を接触させて種付け操作を行う
ことを特徴とする結晶製造方法。
Claim 1: A seed crystal is housed in the bottom of a vertically arranged crucible, a raw material is filled above the seed crystal, the raw material is heated and melted to form a melt, and the melt is solidified. In a crystal manufacturing method using the vertical Bridgman method to obtain a single crystal, the raw material is heated and melted using a main heating element and an auxiliary heating element, and the heating power of the main heating element and the heating power of the auxiliary heating element are 1. A method for producing a crystal, characterized in that a seeding operation is carried out by maintaining a constant ratio to power, controlling the temperature of the main heating element, and bringing the seed crystal into contact with the melt.
【請求項2】  前記主発熱体の発熱パワーと前記補助
発熱体の発熱パワーとの比の値が0.5〜0.7である
ことを特徴とする請求項1記載の方法。
2. The method according to claim 1, wherein the ratio of the heating power of the main heating element to the heating power of the auxiliary heating element is 0.5 to 0.7.
【請求項3】  垂直に配置されたるつぼの底部に種結
晶を収容し、その上方に原料を充填し、該原料を加熱・
融解して融液を形成し、この融液を固化させ単結晶を得
る垂直ブリッジマン法を用いる結晶製造方法において、
前記原料の加熱・融解を主発熱体と補助発熱体を用いて
行い、且つ該主発熱体の発熱パワーと該補助発熱体の発
熱パワーとの比を、種結晶と融液を接触させる種付け操
作後に徐々に増大させ、該主発熱体の温度を制御し、結
晶成長を終了させることを特徴とする結晶製造方法。
3. A seed crystal is housed at the bottom of a vertically arranged crucible, a raw material is filled above it, and the raw material is heated and heated.
In a crystal manufacturing method using the vertical Bridgman method, which melts to form a melt and solidifies the melt to obtain a single crystal,
A seeding operation in which the raw material is heated and melted using a main heating element and an auxiliary heating element, and the ratio of the heating power of the main heating element and the heating power of the auxiliary heating element is adjusted by bringing the seed crystal into contact with the melt. A crystal manufacturing method characterized in that the temperature of the main heating element is then gradually increased and the temperature of the main heating element is controlled to terminate crystal growth.
【請求項4】  前記主発熱体の発熱パワーと前記補助
発熱体の発熱パワーとの比の値が前記種付け操作時0.
5〜0.7であり、前記結晶成長終了時1.0〜1.2
であることを特徴とする請求項3記載の方法。
4. The value of the ratio of the heating power of the main heating element to the heating power of the auxiliary heating element is 0 during the seeding operation.
5 to 0.7, and 1.0 to 1.2 at the end of the crystal growth.
The method according to claim 3, characterized in that:
【請求項5】  垂直に配置されたるつぼの底部に種結
晶を収容し、該種結晶の上方に原料を充填し、該原料を
、前記るつぼ周囲に配設された発熱体で加熱・融解して
融液を形成し、該融液を固化させ単結晶を得る垂直ブリ
ッジマン法を用いた結晶製造装置において、前記発熱体
が主発熱体と補助発熱体とからなり、且つ該主発熱体と
該補助発熱体のパワー比を所定条件に変更し得ることを
特徴とする結晶製造装置。
5. A seed crystal is housed in the bottom of a vertically arranged crucible, a raw material is filled above the seed crystal, and the raw material is heated and melted by a heating element disposed around the crucible. In a crystal manufacturing apparatus using the vertical Bridgman method in which a melt is formed by heating and the melt is solidified to obtain a single crystal, the heating element is composed of a main heating element and an auxiliary heating element, and the heating element and the main heating element are A crystal manufacturing apparatus characterized in that the power ratio of the auxiliary heating element can be changed to predetermined conditions.
JP3028817A 1991-02-22 1991-02-22 Crystal manufacturing method Expired - Fee Related JP2977297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3028817A JP2977297B2 (en) 1991-02-22 1991-02-22 Crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3028817A JP2977297B2 (en) 1991-02-22 1991-02-22 Crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPH04300278A true JPH04300278A (en) 1992-10-23
JP2977297B2 JP2977297B2 (en) 1999-11-15

Family

ID=12258959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3028817A Expired - Fee Related JP2977297B2 (en) 1991-02-22 1991-02-22 Crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP2977297B2 (en)

Also Published As

Publication number Publication date
JP2977297B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
JPH06239691A (en) Method for growing single crystal
JP2977297B2 (en) Crystal manufacturing method
JP3018738B2 (en) Single crystal manufacturing equipment
JP2758038B2 (en) Single crystal manufacturing equipment
JP2690419B2 (en) Single crystal growing method and apparatus
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JP3624295B2 (en) Single crystal manufacturing method and manufacturing apparatus thereof
JPH0380180A (en) Device for producing single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP3042168B2 (en) Single crystal manufacturing equipment
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JPH0341432B2 (en)
JP2677859B2 (en) Crystal growth method of mixed crystal type compound semiconductor
JPH03193689A (en) Production of compound semiconductor crystal
JPH0559873B2 (en)
JP3557690B2 (en) Crystal growth method
JPH11130578A (en) Growth of single crystal and apparatus therefor
JP3125313B2 (en) Single crystal growth method
JPS63185885A (en) Crystal growing device of horizontal type
JPH02233588A (en) Growth of single crystal
JPH0867593A (en) Method for growing single crystal
JPH0725533B2 (en) Method for producing silicon polycrystalline ingot
JPH02221193A (en) Production of compound semiconductor single crystal
JPH08133897A (en) Production of single crystal of znse

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees