JP6381101B2 - Silicon carbide semiconductor device - Google Patents

Silicon carbide semiconductor device Download PDF

Info

Publication number
JP6381101B2
JP6381101B2 JP2013254569A JP2013254569A JP6381101B2 JP 6381101 B2 JP6381101 B2 JP 6381101B2 JP 2013254569 A JP2013254569 A JP 2013254569A JP 2013254569 A JP2013254569 A JP 2013254569A JP 6381101 B2 JP6381101 B2 JP 6381101B2
Authority
JP
Japan
Prior art keywords
silicon carbide
region
conductivity type
type
carbide substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013254569A
Other languages
Japanese (ja)
Other versions
JP2015115375A (en
Inventor
明将 木下
明将 木下
保幸 星
保幸 星
原田 祐一
祐一 原田
大西 泰彦
泰彦 大西
原田 信介
信介 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fuji Electric Co Ltd
Priority to JP2013254569A priority Critical patent/JP6381101B2/en
Publication of JP2015115375A publication Critical patent/JP2015115375A/en
Application granted granted Critical
Publication of JP6381101B2 publication Critical patent/JP6381101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

この発明は、炭化珪素半導体装置に関する。   The present invention relates to a silicon carbide semiconductor device.

従来、半導体材料として炭化珪素(SiC)を用いたスイッチングデバイスとなる半導体装置(以下、炭化珪素半導体装置とする)として、絶縁ゲート型電界効果トランジスタ(MOSFET)が公知である。従来の炭化珪素MOSFETの構造について、nチャネル型MOSFETを例に説明する。図7は、従来の炭化珪素MOSFETの構造を示す断面図である。図8は、従来の炭化珪素MOSFETの構造の別の一例を示す断面図である。図7に示すように、炭化珪素からなるn型半導体基板(以下、n型SiC基板とする)101のおもて面には、炭化珪素からなるn-型半導体層(以下、n-型SiC層とする)102が設けられている。 2. Description of the Related Art Conventionally, an insulated gate field effect transistor (MOSFET) is known as a semiconductor device (hereinafter referred to as a silicon carbide semiconductor device) serving as a switching device using silicon carbide (SiC) as a semiconductor material. The structure of a conventional silicon carbide MOSFET will be described by taking an n-channel MOSFET as an example. FIG. 7 is a cross-sectional view showing the structure of a conventional silicon carbide MOSFET. FIG. 8 is a cross-sectional view showing another example of the structure of a conventional silicon carbide MOSFET. As shown in FIG. 7, n-type semiconductor substrate comprised of silicon carbide (hereinafter referred to as n-type SiC substrate) on the front surface of 101, n of silicon carbide - type semiconductor layer (hereinafter, n - -type SiC 102).

-型SiC層102の、n型SiC基板101側に対して反対側の表面層には、複数のp型領域103が選択的に設けられている。p型領域103の内部には、n+型ソース領域104およびp+型コンタクト領域105がそれぞれ選択的に設けられている。p型領域103の、n+型ソース領域104とn-型SiC層102とに挟まれた部分の表面上から、n-型SiC層102の表面上にわたってゲート絶縁膜106が設けられている。ゲート絶縁膜106の表面には、ゲート電極107が設けられている。ソース電極108は、n+型ソース領域104およびp+型コンタクト領域105に接する。n型SiC基板101の裏面には、ドレイン電極109が形成されている。 A plurality of p-type regions 103 are selectively provided on the surface layer of the n -type SiC layer 102 opposite to the n-type SiC substrate 101 side. Inside the p-type region 103, an n + -type source region 104 and a p + -type contact region 105 are selectively provided. Gate insulating film 106 is provided from the surface of the portion of p type region 103 sandwiched between n + type source region 104 and n type SiC layer 102 to the surface of n type SiC layer 102. A gate electrode 107 is provided on the surface of the gate insulating film 106. Source electrode 108 is in contact with n + type source region 104 and p + type contact region 105. A drain electrode 109 is formed on the back surface of n-type SiC substrate 101.

また、別の一例として、図8に示すように、n-型SiC層102の、n型SiC基板101側に対して反対側の表面に、炭化珪素からなるp型半導体層(以下、p型SiC層とする)111を設けた構造のMOSFETも提案されている。具体的には、n-型SiC層102の表面層には、複数のp型領域110が選択的に設けられている。p型SiC層111は、p型領域110およびn-型SiC層102の表面に設けられている。p型領域110が設けられていない部分におけるn-型SiC層102上のp型SiC層111には、深さ方向にp型SiC層111を貫通してn-型SiC層102に達するn型領域112が設けられている。 As another example, as shown in FIG. 8, a p-type semiconductor layer (hereinafter, p-type) made of silicon carbide is formed on the surface of the n -type SiC layer 102 opposite to the n-type SiC substrate 101 side. A MOSFET having a structure in which a SiC layer 111 is provided has also been proposed. Specifically, a plurality of p-type regions 110 are selectively provided on the surface layer of the n -type SiC layer 102. The p-type SiC layer 111 is provided on the surfaces of the p-type region 110 and the n -type SiC layer 102. The p-type SiC layer 111 on the n -type SiC layer 102 in the portion where the p-type region 110 is not provided has an n - type that penetrates the p-type SiC layer 111 in the depth direction and reaches the n -type SiC layer 102. Region 112 is provided.

また、p型領域110上のp型SiC層111の内部には、n型領域112と離れて、n+型ソース領域104およびp+型コンタクト領域105がそれぞれ選択的に設けられている。p型SiC層111の、n+型ソース領域104とn型領域112とに挟まれた部分の表面上から、n型領域112の表面上にわたってゲート絶縁膜106が設けられている。ゲート絶縁膜106の表面には、ゲート電極107が設けられている。ソース電極108は、n+型ソース領域104およびp+型コンタクト領域105に接する。n型SiC基板101の裏面には、ドレイン電極109が形成されている。 Further, inside the p-type SiC layer 111 on the p-type region 110, an n + -type source region 104 and a p + -type contact region 105 are selectively provided apart from the n-type region 112. Gate insulating film 106 is provided from the surface of the portion of p-type SiC layer 111 sandwiched between n + -type source region 104 and n-type region 112 to the surface of n-type region 112. A gate electrode 107 is provided on the surface of the gate insulating film 106. Source electrode 108 is in contact with n + type source region 104 and p + type contact region 105. A drain electrode 109 is formed on the back surface of n-type SiC substrate 101.

ドレイン電極109にソース電極108に対して正の電圧が印加された状態で、ゲート電極107に印加する電圧をゲート閾値以下とした場合、図7に示すMOSFETでは、p型領域103とn-型SiC層102との間のpn接合が逆バイアスされた状態であるため、電流は流れない。図8に示すMOSFETでは、p型SiC層111とn型領域112との間のpn接合が逆バイアスされた状態であるため、電流は流れない。すなわち、MOSFETのソース・ドレイン間がオフ状態となっている。 In a state where a positive voltage relative to the source electrode 108 to the drain electrode 109 is applied, if the voltage applied to the gate electrode 107 was set to less gate threshold, the MOSFET shown in FIG. 7, p-type region 103 and n - -type Since the pn junction with the SiC layer 102 is in a reverse-biased state, no current flows. In the MOSFET shown in FIG. 8, no current flows because the pn junction between the p-type SiC layer 111 and the n-type region 112 is reverse-biased. That is, between the source and drain of the MOSFET is in an off state.

一方、ゲート電極107に印加する電圧をゲート閾値以上とした場合、図7に示すMOSFETでは、ゲート電極107直下のp型領域103に、ゲート電極107に沿ってn型の反転層が形成される。また、図8に示すMOSFETでは、ゲート電極107直下のp型SiC層111に、ゲート電極107に沿ってn型の反転層(チャネル)が形成される。このn型の反転層が電流路となり、MOSFETのソース・ドレイン間がオン状態となる。このように、ゲート電極107に印加する電圧によってMOSFETのスイッチング動作を制御することができる。   On the other hand, when the voltage applied to the gate electrode 107 is equal to or higher than the gate threshold value, an n-type inversion layer is formed along the gate electrode 107 in the p-type region 103 immediately below the gate electrode 107 in the MOSFET shown in FIG. . In the MOSFET shown in FIG. 8, an n-type inversion layer (channel) is formed along the gate electrode 107 in the p-type SiC layer 111 immediately below the gate electrode 107. This n-type inversion layer becomes a current path, and the source and drain of the MOSFET are turned on. Thus, the switching operation of the MOSFET can be controlled by the voltage applied to the gate electrode 107.

しかしながら、ゲート電極の直下のp型ベース領域間(図7のp型領域103間や、図8のp型SiC層111間)の間隔が広い場合、ゲート絶縁膜にかかる電界が強くなり耐圧が低下するという問題がある。また、耐圧を低下させないように、ゲート電極の直下のp型ベース領域間の間隔を狭くした場合、オン抵抗Ronが増加するという問題がある。この問題を解決するために、ゲート電極直下のp型ベース領域間に挟まれた領域のn型不純物濃度を高くすることで、耐圧の低下を抑制し、かつオン抵抗Ronを低減する方法が提案されている。   However, when the distance between the p-type base regions (between the p-type regions 103 in FIG. 7 and between the p-type SiC layers 111 in FIG. 8) just below the gate electrode is wide, the electric field applied to the gate insulating film becomes strong and the withstand voltage is increased. There is a problem of lowering. Further, when the interval between the p-type base regions immediately below the gate electrode is narrowed so as not to reduce the breakdown voltage, there is a problem that the on-resistance Ron increases. In order to solve this problem, a method has been proposed in which the n-type impurity concentration in the region sandwiched between the p-type base regions immediately below the gate electrode is increased, thereby suppressing a decrease in breakdown voltage and reducing the on-resistance Ron. Has been.

このような従来の電力用半導体装置として、次の装置が提案されている。n型半導体層の一対のpウェルに挟まれる領域であるJFET領域の長さ、すなわち一対のpウェル間の間隔を3μm以下、好ましくは0.8μm以上3μm以下とする。また、JFET領域の不純物密度を、ドリフト層の不純物密度以上であって1×1016/cm3以上とする。好ましくは、JFET領域の不純物密度とJFET領域の長さとは、(JFET領域の不純物密度)≧6.5×1016×(JFET領域の長さ)-1.7の関係を満たす(例えば、下記特許文献1参照。)。 The following devices have been proposed as such conventional power semiconductor devices. The length of the JFET region that is the region sandwiched between the pair of p wells of the n-type semiconductor layer, that is, the distance between the pair of p wells is 3 μm or less, preferably 0.8 μm or more and 3 μm or less. Further, the impurity density of the JFET region is set to be not less than the impurity density of the drift layer and not less than 1 × 10 16 / cm 3 . Preferably, the impurity density of the JFET region and the length of the JFET region satisfy the relationship of (impurity density of the JFET region) ≧ 6.5 × 10 16 × (length of the JFET region) −1.7 (for example, the following patent document) 1).

特開2011−159797号公報JP 2011-159797 A

しかしながら、上記特許文献1では、低オン抵抗Ronとするために、ゲート電極直下のp型ベース領域間に挟まれた領域(JFET領域)のn型不純物濃度を高くする場合、ある程度までは耐圧の低下を抑制することができるが、n型不純物濃度の増加に伴って耐圧が低下するという問題がある。   However, in Patent Document 1, when the n-type impurity concentration in the region (JFET region) sandwiched between the p-type base regions immediately below the gate electrode is increased in order to achieve the low on-resistance Ron, the breakdown voltage is reduced to some extent. Although the decrease can be suppressed, there is a problem that the breakdown voltage decreases as the n-type impurity concentration increases.

この発明は、上述した従来技術による問題点を解消するため、耐圧が低下することを抑制することができ、かつオン抵抗が増加することを抑制することができる炭化珪素半導体装置を提供することを目的とする。   The present invention provides a silicon carbide semiconductor device capable of suppressing a decrease in breakdown voltage and suppressing an increase in on-resistance in order to eliminate the above-described problems caused by the prior art. Objective.

上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置は、次の特徴を有する。第1導電型の炭化珪素基板のおもて面に、前記炭化珪素基板よりも不純物濃度が低い第1導電型炭化珪素層が設けられている。前記第1導電型炭化珪素層の、前記炭化珪素基板側に対して反対側の表面層に、第2導電型のベース領域が選択的に設けられている。前記ベース領域の内部に、第1導電型のソース領域および第2導電型のコンタクト領域がそれぞれ選択的に設けられている。前記ベース領域の、前記ソース領域と前記第1導電型炭化珪素層とに挟まれた部分の表面上から前記第1導電型炭化珪素層の表面上にわたってゲート絶縁膜が設けられている。前記ゲート絶縁膜上には、ゲート電極が設けられている。前記ソース領域および前記コンタクト領域に接するソース電極が設けられている。前記炭化珪素基板の裏面にドレイン電極が設けられている。そして前記第1導電型炭化珪素層のうち、隣り合う前記ベース領域間に挟まれた第1部分と、前記ベース領域の前記炭化珪素基板側の面に沿った第2部分と、のみ前記第1部分から前記第2部分にわたって、前記第1導電型炭化珪素層よりも不純物濃度が高い第1導電型半導体領域が設けられている。炭化珪素の誘電率をε s とし、電気素量をqとし、前記ベース領域と前記第1導電型半導体領域との間のpn接合のビルトイン電圧をV bi とし、前記ベース領域の多数キャリア濃度をN A とし、前記第1導電型半導体領域の、前記炭化珪素基板側の部分の多数キャリア濃度をN D とした場合に、隣り合う前記ベース領域間の間隔Lは、2×(2ε s /q・V bi ・N A /N D /(N A +N D )) 1/2 [μm]≦L≦3[μm]を満たす。前記第1導電型半導体領域は、前記ゲート電極側から前記炭化珪素基板側へ、第1導電型高濃度領域と、前記第1導電型高濃度領域よりも不純物濃度の低い第1導電型低濃度領域と、を交互に繰り返して2組配置してなる。最も前記炭化珪素基板側の前記第1導電型低濃度領域は、前記ベース領域の、前記炭化珪素基板側の全体および前記炭化珪素基板側の角部を覆う。 In order to solve the above-described problems and achieve the object of the present invention, a silicon carbide semiconductor device according to the present invention has the following characteristics. A first conductivity type silicon carbide layer having an impurity concentration lower than that of the silicon carbide substrate is provided on the front surface of the first conductivity type silicon carbide substrate. A base region of the second conductivity type is selectively provided on the surface layer of the first conductivity type silicon carbide layer opposite to the silicon carbide substrate side. A source region of a first conductivity type and a contact region of a second conductivity type are selectively provided inside the base region. A gate insulating film is provided from the surface of the base region between the source region and the first conductivity type silicon carbide layer to the surface of the first conductivity type silicon carbide layer. A gate electrode is provided on the gate insulating film. A source electrode in contact with the source region and the contact region is provided. A drain electrode is provided on the back surface of the silicon carbide substrate. Then, one of the first conductivity type silicon carbide layer, a first portion sandwiched between the adjacent base region, and a second portion along the surface of the silicon carbide substrate side of the base region, only, A first conductivity type semiconductor region having an impurity concentration higher than that of the first conductivity type silicon carbide layer is provided from the first portion to the second portion . The dielectric constant of silicon carbide is ε s , the elementary charge is q, the built-in voltage of the pn junction between the base region and the first conductivity type semiconductor region is V bi, and the majority carrier concentration of the base region is When N A and the majority carrier concentration of the portion of the first conductivity type semiconductor region on the silicon carbide substrate side are N D , the distance L between adjacent base regions is 2 × (2ε s / q · V bi · N a / N D / (N a + N D)) 1/2 satisfies the [μm] ≦ L ≦ 3 [ μm]. The first conductivity type semiconductor region includes a first conductivity type high concentration region and a first conductivity type low concentration having a lower impurity concentration than the first conductivity type high concentration region from the gate electrode side to the silicon carbide substrate side. Two sets of regions are alternately arranged. The first conductivity type low concentration region closest to the silicon carbide substrate covers the entire surface of the base region on the silicon carbide substrate side and corners on the silicon carbide substrate side .

また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記ベース領域は、前記炭化珪素基板側よりも前記ゲート電極側の不純物濃度が低いことを特徴とする。   In the silicon carbide semiconductor device according to the present invention as set forth in the invention described above, the base region has a lower impurity concentration on the gate electrode side than on the silicon carbide substrate side.

また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第1導電型半導体領域は、前記第1導電型炭化珪素層に第1導電型不純物がイオン注入されてなる領域であることを特徴とする。   In the silicon carbide semiconductor device according to the present invention, in the above-described invention, the first conductivity type semiconductor region is a region formed by ion implantation of a first conductivity type impurity into the first conductivity type silicon carbide layer. It is characterized by.

また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置は、次の特徴を有する。第1導電型の炭化珪素基板のおもて面に、前記炭化珪素基板よりも不純物濃度が低い第1導電型炭化珪素層が設けられている。前記第1導電型炭化珪素層の、前記炭化珪素基板側に対して反対側の表面層に、第2導電型の第1ベース領域が選択的に設けられている。前記第1導電型炭化珪素層の、前記炭化珪素基板側に対して反対側の表面に、第2導電型炭化珪素層が設けられている。前記第2導電型炭化珪素層に、前記第2導電型炭化珪素層を深さ方向に貫通して前記第1導電型炭化珪素層に達する第1導電型ウェル領域が設けられている。前記第2導電型炭化珪素層の、前記第1導電型ウェル領域を除いた領域が第2導電型の第2ベース領域となる。前記第2ベース領域の内部に、第1導電型のソース領域および第2導電型のコンタクト領域がそれぞれ選択的に設けられている。前記第2ベース領域の、前記ソース領域と前記第1導電型ウェル領域とに挟まれた部分の表面上から前記第2導電型炭化珪素層の表面上にわたってゲート絶縁膜が設けられている。前記ゲート絶縁膜上にゲート電極が設けられている。前記ソース領域および前記コンタクト領域に接するソース電極が設けられている。前記炭化珪素基板の裏面にドレイン電極が設けられている。そして、前記第1導電型ウェル領域と、前記第1導電型炭化珪素層のうち、隣り合う前記第1ベース領域間に挟まれた第1部分と、前記第1ベース領域の前記炭化珪素基板側の面に沿った第2部分と、のみ前記第1導電型ウェル領域から前記第1部分および前記第2部分にわたって、前記第1導電型炭化珪素層よりも不純物濃度が高い第1導電型半導体領域が設けられている。炭化珪素の誘電率をε s とし、電気素量をqとし、前記第1ベース領域と前記第1導電型半導体領域との間のpn接合のビルトイン電圧をV bi とし、前記第1ベース領域の多数キャリア濃度をN A とし、前記第1導電型半導体領域の、前記炭化珪素基板側の部分の多数キャリア濃度をN D とした場合に、隣り合う前記第1ベース領域間の間隔は、2×(2ε s /q・V bi ・N A /N D /(N A +N D )) 1/2 [μm]≦L≦3[μm]を満たす。前記第1導電型半導体領域は、前記ゲート電極側から前記炭化珪素基板側へ、第1導電型高濃度領域と、前記第1導電型高濃度領域よりも不純物濃度の低い第1導電型低濃度領域と、を交互に繰り返して2組配置してなる。最も前記炭化珪素基板側の前記第1導電型低濃度領域は、前記第1ベース領域の、前記炭化珪素基板側の全体および前記炭化珪素基板側の角部を覆う。 In order to solve the above-described problems and achieve the object of the present invention, a silicon carbide semiconductor device according to the present invention has the following characteristics. A first conductivity type silicon carbide layer having an impurity concentration lower than that of the silicon carbide substrate is provided on the front surface of the first conductivity type silicon carbide substrate. A first base region of the second conductivity type is selectively provided on the surface layer of the first conductivity type silicon carbide layer opposite to the silicon carbide substrate side. A second conductivity type silicon carbide layer is provided on the surface of the first conductivity type silicon carbide layer opposite to the silicon carbide substrate side. A first conductivity type well region that penetrates the second conductivity type silicon carbide layer in the depth direction and reaches the first conductivity type silicon carbide layer is provided in the second conductivity type silicon carbide layer. A region of the second conductivity type silicon carbide layer excluding the first conductivity type well region becomes a second conductivity type second base region. A source region of a first conductivity type and a contact region of a second conductivity type are selectively provided inside the second base region. A gate insulating film is provided from the surface of the portion of the second base region sandwiched between the source region and the first conductivity type well region to the surface of the second conductivity type silicon carbide layer. A gate electrode is provided on the gate insulating film. A source electrode in contact with the source region and the contact region is provided. A drain electrode is provided on the back surface of the silicon carbide substrate. Then, a first conductivity type well region, said one of the first conductivity type silicon carbide layer, a first portion sandwiched between the adjacent first base region, the silicon carbide substrate side of the first base region A first conductivity type having an impurity concentration higher than that of the first conductivity type silicon carbide layer from the first conductivity type well region to the first portion and the second portion only in the second portion along the surface of the first conductivity type. A semiconductor region is provided. The dielectric constant of silicon carbide is ε s , the elementary charge is q, the built-in voltage of the pn junction between the first base region and the first conductivity type semiconductor region is V bi, and the first base region When the majority carrier concentration is N A and the majority carrier concentration of the first conductivity type semiconductor region on the silicon carbide substrate side is N D , the distance L between the adjacent first base regions is 2 × meet (2ε s / q · V bi · N a / N D / (N a + N D)) 1/2 [μm] ≦ L ≦ 3 [μm]. The first conductivity type semiconductor region includes a first conductivity type high concentration region and a first conductivity type low concentration having a lower impurity concentration than the first conductivity type high concentration region from the gate electrode side to the silicon carbide substrate side. Two sets of regions are alternately arranged. The first conductivity type low concentration region closest to the silicon carbide substrate covers the entire surface of the first base region on the silicon carbide substrate side and corners on the silicon carbide substrate side .

また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第1導電型ウェル領域は、前記炭化珪素基板側よりも前記ゲート電極側の不純物濃度が高いことを特徴とする。   In the silicon carbide semiconductor device according to the present invention as set forth in the invention described above, the first conductivity type well region has a higher impurity concentration on the gate electrode side than on the silicon carbide substrate side.

また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第2ベース領域の不純物濃度は、前記第1ベース領域の不純物濃度よりも低いことを特徴とする。   In the silicon carbide semiconductor device according to the present invention as set forth in the invention described above, the impurity concentration of the second base region is lower than the impurity concentration of the first base region.

また、この発明にかかる炭化珪素半導体装置は、上述した発明において、最も前記炭化珪素基板側の前記第1導電型高濃度領域および前記第1導電型低濃度領域は、前記第1導電型炭化珪素層に第1導電型不純物がイオン注入されてなる領域であることを特徴とする。 The silicon carbide semiconductor device according to the present invention is the above-described invention, wherein the first conductivity type high concentration region and the first conductivity type low concentration region closest to the silicon carbide substrate are the first conductivity type silicon carbide. It is a region formed by ion-implanting a first conductivity type impurity into a layer.

上述した発明によれば、隣り合うベース領域間に、第1導電型炭化珪素層よりも不純物濃度が高い第1導電型半導体領域を設け、この第1導電型半導体領域の、ゲート電極側の不純物濃度を炭化珪素基板側の不純物濃度よりも高くすることで、オン抵抗Ronを低減することができるとともに、耐圧が低下することを抑制することができる。これにより、ベース領域間の間隔を3μm以下に狭くしてゲート絶縁膜への電界緩和を行い、所定耐圧を確保することでゲート絶縁膜の信頼性を向上させるとともに、オン抵抗が増加することを抑制することができる。   According to the above-described invention, the first conductivity type semiconductor region having an impurity concentration higher than that of the first conductivity type silicon carbide layer is provided between the adjacent base regions, and the impurity on the gate electrode side of the first conductivity type semiconductor region is provided. By making the concentration higher than the impurity concentration on the silicon carbide substrate side, the on-resistance Ron can be reduced and the breakdown voltage can be prevented from lowering. This reduces the distance between the base regions to 3 μm or less, relaxes the electric field to the gate insulating film, secures a predetermined breakdown voltage, improves the reliability of the gate insulating film, and increases the on-resistance. Can be suppressed.

本発明にかかる炭化珪素半導体装置によれば、耐圧が低下することを抑制することができ、かつオン抵抗が増加することを抑制することができるという効果を奏する。   According to the silicon carbide semiconductor device of the present invention, it is possible to suppress a decrease in breakdown voltage and to suppress an increase in on-resistance.

実施の形態1にかかる炭化珪素半導体装置の構造を示す断面図である。1 is a cross sectional view showing a structure of a silicon carbide semiconductor device according to a first embodiment. 実施例1にかかるMOSFETの耐圧とオン抵抗との関係を示す特性図である。FIG. 6 is a characteristic diagram showing a relationship between the breakdown voltage and the on-resistance of the MOSFET according to Example 1. 実施の形態2にかかる炭化珪素半導体装置の構造を示す断面図である。FIG. 4 is a cross sectional view showing a structure of a silicon carbide semiconductor device according to a second embodiment. 実施の形態3にかかる炭化珪素半導体装置の構造を示す断面図である。FIG. 6 is a cross sectional view showing a structure of a silicon carbide semiconductor device according to a third embodiment. 実施例3にかかるMOSFETの耐圧とオン抵抗との関係を示す特性図である。FIG. 10 is a characteristic diagram showing the relationship between the breakdown voltage and on-resistance of a MOSFET according to Example 3; 実施の形態4にかかる炭化珪素半導体装置の構造を示す断面図である。FIG. 6 is a cross sectional view showing a structure of a silicon carbide semiconductor device according to a fourth embodiment. 従来の炭化珪素MOSFETの構造を示す断面図である。It is sectional drawing which shows the structure of the conventional silicon carbide MOSFET. 従来の炭化珪素MOSFETの構造の別の一例を示す断面図である。It is sectional drawing which shows another example of the structure of the conventional silicon carbide MOSFET.

以下に添付図面を参照して、この発明にかかる炭化珪素半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。   Hereinafter, preferred embodiments of a silicon carbide semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings. In the present specification and the accompanying drawings, it means that electrons or holes are majority carriers in layers and regions with n or p, respectively. Further, + and − attached to n and p mean that the impurity concentration is higher and lower than that of the layer or region where it is not attached. Note that, in the following description of the embodiments and the accompanying drawings, the same reference numerals are given to the same components, and duplicate descriptions are omitted.

(実施の形態1)
実施の形態1にかかる炭化珪素半導体装置の構造について、nチャネル型の縦型MOSFETを例に説明する。図1は、実施の形態1にかかる炭化珪素半導体装置の構造を示す断面図である。図1に示すように、実施の形態1にかかる炭化珪素半導体装置において、炭化珪素からなるn型半導体基板(n型SiC基板:炭化珪素基板)1のおもて面には、n-型ドリフト領域となる炭化珪素からなるn-型半導体層(n-型SiC層:第1導電型炭化珪素層)2が例えば10μmの厚さで積層されている。n型SiC基板1は、例えば1.0×1019/cm3程度の不純物濃度で窒素(N)がドーピングされてなる。n-型SiC層2は、例えば1.0×1016/cm3程度の不純物濃度で窒素がドーピングされてなるエピタキシャル層である。
(Embodiment 1)
The structure of the silicon carbide semiconductor device according to the first embodiment will be described by taking an n-channel vertical MOSFET as an example. FIG. 1 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the first embodiment. As shown in FIG. 1, in the silicon carbide semiconductor device according to the first embodiment, an n type drift is formed on the front surface of an n-type semiconductor substrate (n-type SiC substrate: silicon carbide substrate) 1 made of silicon carbide. An n type semiconductor layer (n type SiC layer: first conductivity type silicon carbide layer) 2 made of silicon carbide serving as a region is laminated with a thickness of, for example, 10 μm. The n-type SiC substrate 1 is doped with nitrogen (N) with an impurity concentration of about 1.0 × 10 19 / cm 3 , for example. The n type SiC layer 2 is an epitaxial layer formed by doping nitrogen with an impurity concentration of, for example, about 1.0 × 10 16 / cm 3 .

-型SiC層2の、n型SiC基板1側に対して反対側の表面層には、p型ベース領域となる複数のp型領域(ベース領域)3が選択的に設けられている。p型領域3は、例えばイオン注入により3.0×1017/cm3程度の不純物濃度でアルミニウム(Al)がドーピングされてなる。隣り合うp型領域3間の間隔Lは、下記(1)式を満たすのが好ましい。下記(1)式において、εsは炭化珪素(SiC)の誘電率であり、qは電気素量であり、Vbiはp型領域3と後述するn型領域21との間のpn接合のビルトイン電圧(例えば2.5V程度)である。また、NAはp型領域3の多数キャリア濃度であり、NDは後述する第2n型領域21bの多数キャリア濃度である。 A plurality of p-type regions (base regions) 3 serving as p-type base regions are selectively provided on the surface layer of the n -type SiC layer 2 opposite to the n-type SiC substrate 1 side. The p-type region 3 is doped with aluminum (Al) with an impurity concentration of about 3.0 × 10 17 / cm 3 by ion implantation, for example. The interval L between adjacent p-type regions 3 preferably satisfies the following formula (1). In the following equation (1), ε s is the dielectric constant of silicon carbide (SiC), q is the elementary charge, and V bi is the pn junction between the p-type region 3 and an n-type region 21 described later. It is a built-in voltage (for example, about 2.5V). N A is the majority carrier concentration in the p-type region 3, and N D is the majority carrier concentration in the second n-type region 21b described later.

2×(2εs/q・Vbi・NA/ND/(NA+ND))1/2[μm]≦L≦3[μm] ・・・(1) 2 × (2ε s / q · V bi · N A / N D / (N A + N D)) 1/2 [μm] ≦ L ≦ 3 [μm] ··· (1)

隣り合うp型領域3間の間隔Lを上記(1)式の範囲内に設定する理由は、次の通りである。上記(1)式の左辺は、印加電圧が0Vであるときに第2n型領域21bが完全に空乏化する幅の上限値である。p型領域3、n+型ソース領域4、ゲート絶縁膜6およびゲート電極7からなるMOSゲート(金属−酸化膜−半導体からなる絶縁ゲート)を動作させるためには、隣り合うp型領域3間の間隔Lを上記(1)式の左辺の値以上に設定する必要がある。実施の形態1に示す各領域の諸条件においては、隣り合うp型領域3間の間隔Lの下限値(すなわち上記(1)式の左辺の値)は例えば0.7μm程度となる。また、1200V以上の耐圧を得るためには、隣り合うp型領域3間の間隔Lを3μm以下にする必要がある。 The reason why the interval L between the adjacent p-type regions 3 is set within the range of the above expression (1) is as follows. The left side of the above equation (1) is the upper limit value of the width at which the second n-type region 21b is completely depleted when the applied voltage is 0V. In order to operate the MOS gate (insulated gate made of metal-oxide film-semiconductor) composed of the p-type region 3, the n + -type source region 4, the gate insulating film 6 and the gate electrode 7, between the adjacent p-type regions 3 Needs to be set to be equal to or larger than the value on the left side of the equation (1). Under the conditions of each region shown in the first embodiment, the lower limit value of the distance L between adjacent p-type regions 3 (that is, the value on the left side of the above equation (1)) is about 0.7 μm, for example. Further, in order to obtain a breakdown voltage of 1200 V or more, it is necessary to set the interval L between adjacent p-type regions 3 to 3 μm or less.

-型SiC層2の、隣り合うp型領域3間に挟まれた領域には、n-型SiC層2よりも不純物濃度が高いn型領域(第1導電型半導体領域)21が設けられている。n型領域21を設けることにより、隣り合うp型領域3間に挟まれた領域のn型不純物濃度がn-型SiC層2よりも高くなるため、隣り合うp型領域3間の間隔Lが上記(1)式を満たす程度に狭い場合であっても、オン抵抗Ronが増加することを抑制することができる。n型領域21は、p型領域3の、電界が集中しやすいn型SiC基板1側の角部(コーナー部)3aを覆わないように設けられている。これにより、十分に高い耐圧を保持することができる。 n - type SiC layer 2, in a region sandwiched between p-type region 3 adjacent, n - high n-type region impurity concentration (a first conductive type semiconductor region) 21 is also provided -type SiC layer 2 ing. By providing the n-type region 21, the n-type impurity concentration in the region sandwiched between the adjacent p-type regions 3 is higher than that of the n -type SiC layer 2. Even if it is narrow enough to satisfy the above equation (1), it is possible to suppress an increase in the on-resistance Ron. The n-type region 21 is provided so as not to cover the corner (corner portion) 3a of the p-type region 3 on the n-type SiC substrate 1 side on which the electric field tends to concentrate. Thereby, a sufficiently high breakdown voltage can be maintained.

また、n型領域21は、n型SiC基板1側の部分(以下、第2n型領域とする)21bよりも後述するゲート電極7側の部分(以下、第1n型領域とする)21aの不純物濃度が高くなっている。これにより、オン抵抗Ronを低減することができるとともに、耐圧が低下することを抑制することができる。具体的には、第1n型領域21aは、例えばイオン注入により4.0×1016/cm3程度の不純物濃度で窒素がドーピングされてなる。第2n型領域21bは、例えばイオン注入により2.5×1016/cm3程度の不純物濃度で窒素がドーピングされてなる。 The n-type region 21 is an impurity of a portion (hereinafter referred to as a first n-type region) 21a on the gate electrode 7 side to be described later than a portion (hereinafter referred to as a second n-type region) 21b on the n-type SiC substrate 1 side. The concentration is high. As a result, the on-resistance Ron can be reduced and the breakdown voltage can be suppressed from decreasing. Specifically, the first n-type region 21a is doped with nitrogen at an impurity concentration of about 4.0 × 10 16 / cm 3 by ion implantation, for example. The second n-type region 21b is doped with nitrogen with an impurity concentration of about 2.5 × 10 16 / cm 3 by ion implantation, for example.

また、第1n型領域21aの不純物濃度は、例えば、第2n型領域21bの不純物濃度の1.5倍以上5倍以下程度であるのが望ましい。また、第1n型領域21aと第2n型領域21bとの平均不純物濃度は、例えば、n-型SiC層2の不純物濃度の1.5倍以上7.5倍以下程度であるのが望ましい。その理由は、オン抵抗Ronを低減することができ、かつ耐圧の低下を抑制することができるという効果をより高めることができるからである。 Further, the impurity concentration of the first n-type region 21a is preferably about 1.5 to 5 times the impurity concentration of the second n-type region 21b, for example. The average impurity concentration of the first n-type region 21a and the second n-type region 21b is preferably about 1.5 to 7.5 times the impurity concentration of the n -type SiC layer 2, for example. The reason is that the on-resistance Ron can be reduced and the effect of suppressing the decrease in breakdown voltage can be further enhanced.

p型領域3の内部には、n+型ソース領域4およびp+型コンタクト領域5がそれぞれ選択的に設けられている。n+型ソース領域4は、例えばイオン注入により2.0×1020/cm3程度の不純物濃度でリン(P)がドーピングされてなる。p+型コンタクト領域5は、n+型ソース領域4の、n型領域21側に対して反対側に配置されている。p+型コンタクト領域5は、例えばイオン注入により3.0×1020/cm3程度の不純物濃度でアルミニウムがドーピングされてなる。 Inside the p-type region 3, an n + -type source region 4 and a p + -type contact region 5 are selectively provided. The n + type source region 4 is doped with phosphorus (P) with an impurity concentration of about 2.0 × 10 20 / cm 3 by ion implantation, for example. The p + type contact region 5 is arranged on the opposite side of the n + type source region 4 to the n type region 21 side. The p + -type contact region 5 is doped with aluminum with an impurity concentration of about 3.0 × 10 20 / cm 3 by ion implantation, for example.

p型領域3の、n+型ソース領域4とn-型SiC層2とに挟まれた領域の表面上から、n型領域21の表面上にわたってゲート絶縁膜6が設けられ、ゲート絶縁膜6の表面にゲート電極7が設けられている。ソース電極8は、n+型ソース領域4およびp+型コンタクト領域5に接するとともに、層間絶縁膜(不図示)によってゲート電極7と電気的に絶縁されている。n型ドレイン領域となるn型SiC基板1の裏面には、ドレイン電極9が形成されている。 A gate insulating film 6 is provided from the surface of the p-type region 3 between the n + -type source region 4 and the n -type SiC layer 2 to the surface of the n-type region 21. A gate electrode 7 is provided on the surface. Source electrode 8 is in contact with n + type source region 4 and p + type contact region 5 and is electrically insulated from gate electrode 7 by an interlayer insulating film (not shown). A drain electrode 9 is formed on the back surface of the n-type SiC substrate 1 serving as an n-type drain region.

次に、実施の形態1にかかる炭化珪素半導体装置の動作について説明する。実施の形態1にかかる炭化珪素半導体装置の動作は、従来の炭化珪素半導体装置(図7参照)と同様である。すなわち、ゲート電極7に閾値電圧以上の電圧を印加し、ゲート電極7直下のp型領域3にゲート電極7に沿ってn型の反転層を形成することにより、縦型MOSFETのソース・ドレイン間がオン状態となる。一方、ゲート電極7に印加する電圧を閾値以下とすることにより、p型領域3のn型の反転層がなくなり、縦型MOSFETのソース・ドレイン間がオフ状態となる。   Next, the operation of the silicon carbide semiconductor device according to the first embodiment will be described. The operation of the silicon carbide semiconductor device according to the first embodiment is the same as that of the conventional silicon carbide semiconductor device (see FIG. 7). That is, by applying a voltage equal to or higher than the threshold voltage to the gate electrode 7 and forming an n-type inversion layer along the gate electrode 7 in the p-type region 3 immediately below the gate electrode 7, Is turned on. On the other hand, by setting the voltage applied to the gate electrode 7 to be equal to or lower than the threshold value, the n-type inversion layer of the p-type region 3 is eliminated, and the source and drain of the vertical MOSFET are turned off.

実施の形態1にかかる炭化珪素半導体装置の耐圧およびオン抵抗Ronについて検証したシミュレーション結果を図2に示す。ここで、オン抵抗Ronの計算のために活性部の面積を0.121cm2として計算した。図2は、実施例1にかかるMOSFETの耐圧とオン抵抗との関係を示す特性図である。図2には、実施の形態1にかかる炭化珪素半導体装置の構造を備えたMOSFET(以下、実施例1とする)の耐圧およびオン抵抗Ronを右側に示す。実施例1においては、第1n型領域21aの不純物濃度を4.0×1016/cm3とし、第2n型領域21bの不純物濃度を2.5×1016/cm3としている。また、比較例1として、第1n型領域21aおよび第2n型領域21bの不純物濃度をともに2.5×1016/cm3にしたときの耐圧およびオン抵抗Ronを左側に示す。比較例2として、第1n型領域21aおよび第2n型領域21bの不純物濃度をともに3.5×1016/cm3にしたときの耐圧およびオン抵抗Ronを中央に示す。比較例1,2の第1,2n型領域21a,21bの不純物濃度以外の構成は実施例1と同様である。 FIG. 2 shows a simulation result for verifying the breakdown voltage and on-resistance Ron of the silicon carbide semiconductor device according to the first embodiment. Here, for the calculation of the on-resistance Ron, the area of the active part was calculated as 0.121 cm 2 . FIG. 2 is a characteristic diagram illustrating the relationship between the breakdown voltage and the on-resistance of the MOSFET according to the first embodiment. FIG. 2 shows the breakdown voltage and on-resistance Ron of a MOSFET (hereinafter, referred to as Example 1) having the structure of the silicon carbide semiconductor device according to the first embodiment on the right side. In Example 1, the impurity concentration of the first n-type region 21a is 4.0 × 10 16 / cm 3, and the impurity concentration of the second n-type region 21b is 2.5 × 10 16 / cm 3 . Further, as Comparative Example 1, the breakdown voltage and the on-resistance Ron when the impurity concentrations of the first n-type region 21a and the second n-type region 21b are both 2.5 × 10 16 / cm 3 are shown on the left side. As Comparative Example 2, the breakdown voltage and the on-resistance Ron are shown in the center when the impurity concentrations of the first n-type region 21a and the second n-type region 21b are both 3.5 × 10 16 / cm 3 . The configuration other than the impurity concentration of the first and second n-type regions 21a and 21b in Comparative Examples 1 and 2 is the same as that in Example 1.

図2に示す結果より、第1,2n型領域21a,21bの不純物濃度をともに比較例1よりも高くした比較例2では、比較例1よりも、オン抵抗Ronは1割程度低減されるが、耐圧は30V程度低下してしまうことが確認された。すなわち、オン抵抗Ronを低減させるために、第1,2n型領域21a,21bの不純物濃度をともに同程度高くした場合、耐圧が低下することが確認された。それに対して、第1n型領域21a(n型領域21のゲート電極7側の部分)の不純物濃度のみを比較例1よりも高くした実施例1においては、耐圧を比較例1と同程度に維持しつつ、オン抵抗Ronを比較例1よりも1割程度低減させることができることが確認された。   From the results shown in FIG. 2, in Comparative Example 2 in which the impurity concentrations of the first and second n-type regions 21a and 21b are both higher than those in Comparative Example 1, the on-resistance Ron is reduced by about 10% compared to Comparative Example 1. It has been confirmed that the breakdown voltage is reduced by about 30V. That is, it was confirmed that the breakdown voltage decreases when the impurity concentrations of the first and second n-type regions 21a and 21b are both increased in order to reduce the on-resistance Ron. On the other hand, in Example 1 in which only the impurity concentration of the first n-type region 21a (portion on the gate electrode 7 side of the n-type region 21) is higher than that in Comparative Example 1, the breakdown voltage is maintained at the same level as in Comparative Example 1. However, it was confirmed that the on-resistance Ron can be reduced by about 10% compared to the comparative example 1.

以上、説明したように、実施の形態1によれば、p型ベース領域間に設けられたn型領域の、ゲート電極側の部分(第1n型領域)の不純物濃度をn型SiC基板側の部分(第2n型領域)の不純物濃度よりも高くすることで、オン抵抗Ronを低減することができるとともに、耐圧が低下することを抑制することができる。これにより、p型ベース領域間の間隔を上記(1)式を満たす所定間隔に狭くしてゲート絶縁膜への電界緩和を行い、所定耐圧を確保することでゲート絶縁膜の信頼性を向上させるとともに、オン抵抗が増加することを抑制することができる。したがって、ドレイン電極に高電圧が印加されるスイッチング動作時においても、耐圧を十分に確保することができ、かつオン抵抗が増加することを抑制することができる。   As described above, according to the first embodiment, the impurity concentration of the portion on the gate electrode side (first n-type region) of the n-type region provided between the p-type base regions is set on the n-type SiC substrate side. By making it higher than the impurity concentration of the portion (second n-type region), it is possible to reduce the on-resistance Ron and to suppress the breakdown voltage from decreasing. As a result, the interval between the p-type base regions is narrowed to a predetermined interval satisfying the above expression (1), the electric field is relaxed to the gate insulating film, and the reliability of the gate insulating film is improved by ensuring a predetermined breakdown voltage. In addition, an increase in on-resistance can be suppressed. Accordingly, even during a switching operation in which a high voltage is applied to the drain electrode, a sufficient breakdown voltage can be secured and an increase in on-resistance can be suppressed.

(実施の形態2)
次に、実施の形態2にかかる炭化珪素半導体装置の構造について説明する。図3は、実施の形態2にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態2にかかる炭化珪素半導体装置が実施の形態1にかかる炭化珪素半導体装置と異なる点は、p型ベース領域の、ソース電極8側の不純物濃度がn型SiC基板1側の不純物濃度よりも低い点である。
(Embodiment 2)
Next, the structure of the silicon carbide semiconductor device according to the second embodiment will be described. FIG. 3 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the second embodiment. The silicon carbide semiconductor device according to the second embodiment differs from the silicon carbide semiconductor device according to the first embodiment in that the impurity concentration on the source electrode 8 side in the p-type base region is higher than the impurity concentration on the n-type SiC substrate 1 side. Is also a low point.

具体的には、図3に示すように、n-型SiC層2の、n型SiC基板1側に対して反対側の表面層には、複数のp型領域(第1ベース領域)10が選択的に設けられている。p型領域10は、p型ベース領域として機能する。p型領域10は、例えばイオン注入により3.0×1018/cm3程度の不純物濃度でアルミニウムがドーピングされてなる。隣り合うp型領域10間の間隔(ゲート電極7直下のp型領域10間に挟まれた領域の幅)Lは、上記(1)式を満たすのが好ましい。その理由は、実施の形態1と同様である。 Specifically, as shown in FIG. 3, a plurality of p-type regions (first base regions) 10 are formed on the surface layer of the n -type SiC layer 2 opposite to the n-type SiC substrate 1 side. It is provided selectively. The p-type region 10 functions as a p-type base region. The p-type region 10 is doped with aluminum at an impurity concentration of about 3.0 × 10 18 / cm 3 by ion implantation, for example. An interval L between adjacent p-type regions 10 (a width of a region sandwiched between the p-type regions 10 immediately below the gate electrode 7) L preferably satisfies the above formula (1). The reason is the same as in the first embodiment.

-型SiC層2の、隣り合うp型領域10間に挟まれた領域には、n-型SiC層2よりも不純物濃度の高いn型領域(第1導電型半導体領域)22が設けられている。n型領域22は、p型領域10の、電界が集中しやすいn型SiC基板1側の角部10aを覆わないように設けられている。これにより、実施の形態1と同様に、十分に高い耐圧を保持することができる。 n - type SiC layer 2, in a region sandwiched between p-type region 10 adjacent, n - a high impurity concentration n-type region (the first conductivity type semiconductor region) 22 is provided than type SiC layer 2 ing. The n-type region 22 is provided so as not to cover the corner 10a of the p-type region 10 on the n-type SiC substrate 1 side where the electric field tends to concentrate. As a result, a sufficiently high breakdown voltage can be maintained as in the first embodiment.

p型領域10およびn型領域22(すなわちn-型SiC層2の、p型領域10が設けられていない部分)の表面には、炭化珪素からなるp型半導体層(p型SiC層:第2導電型炭化珪素層)11が例えば0.5μmの厚さで積層されている。p型SiC層11の不純物濃度は、p型領域10の不純物濃度よりも低い。具体的には、p型SiC層11は、例えば5.0×1015/cm3の不純物濃度でアルミニウムがドーピングされてなるエピタキシャル層である。 On the surface of p-type region 10 and n-type region 22 (that is, the portion of n -type SiC layer 2 where p-type region 10 is not provided), a p-type semiconductor layer (p-type SiC layer: first) made of silicon carbide is formed. 2 conductivity type silicon carbide layer) 11 is laminated with a thickness of 0.5 μm, for example. The impurity concentration of p-type SiC layer 11 is lower than the impurity concentration of p-type region 10. Specifically, the p-type SiC layer 11 is an epitaxial layer formed by doping aluminum with an impurity concentration of, for example, 5.0 × 10 15 / cm 3 .

p型SiC層11のn型領域22上の部分には、深さ方向にp型SiC層11を貫通してn型領域22に達するn型領域(第1導電型ウェル領域)12が設けられている。n型領域12は、n-型SiC層2側の部分(以下、第4n型領域とする)12bよりもゲート電極7側の部分(以下、第3n型領域とする)12aの不純物濃度が高くてもよい。n型領域22は、n型SiC基板1側の部分(第2n型領域)22bよりもゲート電極7側の部分(第1n型領域)22aの不純物濃度が高くてもよい。上記条件を満たせば、接する第4n型領域12bと第1n型領域22aの不純物濃度の関係は同等でも大小を問わず異なっていてもよい。 An n-type region (first conductivity type well region) 12 that penetrates the p-type SiC layer 11 in the depth direction and reaches the n-type region 22 is provided in a portion on the n-type region 22 of the p-type SiC layer 11. ing. The n-type region 12 has a higher impurity concentration in the gate electrode 7 side portion (hereinafter referred to as the third n-type region) 12a than in the n type SiC layer 2 side portion (hereinafter referred to as the fourth n-type region) 12b. May be. In the n-type region 22, the impurity concentration of the portion (first n-type region) 22 a on the gate electrode 7 side may be higher than the portion (second n-type region) 22 b on the n-type SiC substrate 1 side. If the above conditions are satisfied, the relationship between the impurity concentrations of the fourth n-type region 12b and the first n-type region 22a in contact with each other may be equal or different.

具体的には、第3n型領域12aは、例えばイオン注入により4.0×1016/cm3程度の不純物濃度で窒素がドーピングされており、第4n型領域12bは、例えばイオン注入により1.5×1016/cm3程度の不純物濃度で窒素がドーピングされており、第1n型領域22aは、例えばイオン注入により2.5×1016/cm3程度の不純物濃度で窒素がドーピングされており、第2n型領域22bは、例えばイオン注入により2.0×1016/cm3程度の不純物濃度で窒素がドーピングされてなる。 Specifically, the third n-type region 12a is doped with nitrogen at an impurity concentration of about 4.0 × 10 16 / cm 3 by, for example, ion implantation, and the fourth n-type region 12b has a 1.. Nitrogen is doped with an impurity concentration of about 5 × 10 16 / cm 3 , and the first n-type region 22a is doped with nitrogen with an impurity concentration of about 2.5 × 10 16 / cm 3 by ion implantation, for example. The second n-type region 22b is doped with nitrogen with an impurity concentration of about 2.0 × 10 16 / cm 3 by ion implantation, for example.

また、第1〜4n型領域22a,22b,12a,12bは、上記条件を満たせば種々変更可能であり、例えばそれぞれ異なる不純物濃度であってもよいし、深さ方向に隣り合うn型領域と同じ不純物濃度であってもよい。具体的には、第1〜4n型領域22a,22b,12a,12bの不純物濃度は、設計条件(所望する耐圧とオン抵抗Ronとの兼ね合いなど)に合わせて種々変更可能である。例えば、第1,3,4n型領域22a,12a,12bはともに同じ不純物濃度で、かつ第2n型領域22bよりも高不純物濃度となる条件も可能である。また、第1,2n型領域22a,22bはともに同じ不純物濃度で、かつ第4n型領域12bよりも高不純物濃度となり、第3n型領域12aは第4n型領域12bよりも高不純物濃度となる条件も可能である。   The first to fourth n-type regions 22a, 22b, 12a, and 12b can be variously changed as long as the above conditions are satisfied. For example, the first to fourth n-type regions 22a, 22b, 12a, and 12b may have different impurity concentrations. The same impurity concentration may be used. Specifically, the impurity concentrations of the first to fourth n-type regions 22a, 22b, 12a, and 12b can be variously changed in accordance with design conditions (such as a balance between a desired breakdown voltage and on-resistance Ron). For example, the first, third, and fourth n-type regions 22a, 12a, and 12b may have the same impurity concentration and a higher impurity concentration than the second n-type region 22b. The first and second n-type regions 22a and 22b have the same impurity concentration and a higher impurity concentration than the fourth n-type region 12b, and the third n-type region 12a has a higher impurity concentration than the fourth n-type region 12b. Is also possible.

また、第1,3,4n型領域22a,12a,12bのうち、任意の一つの領域または複数の領域の不純物濃度は、第2n型領域22bの不純物濃度の1.5倍以上5倍以下程度であるのが望ましい。また、第1〜4n型領域22a,22b,12a,12bの平均不純物濃度は、n-型SiC層2の不純物濃度の1.5倍以上7.5倍以下程度であるのが望ましい。その理由は、オン抵抗Ronを低減することができ、かつ耐圧の低下を抑制することができるという効果をより高めることができるからである。 In addition, the impurity concentration of any one region or a plurality of regions among the first, third, and fourth n-type regions 22a, 12a, and 12b is about 1.5 to 5 times the impurity concentration of the second n-type region 22b. It is desirable that In addition, the average impurity concentration of the first to fourth n-type regions 22a, 22b, 12a, and 12b is preferably about 1.5 to 7.5 times the impurity concentration of the n -type SiC layer 2. The reason is that the on-resistance Ron can be reduced and the effect of suppressing the decrease in breakdown voltage can be further enhanced.

p型SiC層11のn型領域12以外の部分(p型SiC層11のp型領域10上の部分:第2ベース領域)は、p型領域10とともにp型ベース領域として機能する。p型SiC層11の内部には、n型領域12と離れて、n+型ソース領域4およびp+型コンタクト領域5がそれぞれ選択的に設けられている。p型SiC層11の、n+型ソース領域4とn型領域12とに挟まれた部分の表面上から、n型領域12の表面上にわたってゲート絶縁膜6が設けられ、ゲート絶縁膜6の表面にゲート電極7が設けられている。n+型ソース領域4、p+型コンタクト領域5、ソース電極8およびドレイン電極9の構成は、実施の形態1と同様である。 A portion of the p-type SiC layer 11 other than the n-type region 12 (a portion on the p-type region 10 of the p-type SiC layer 11: a second base region) functions as a p-type base region together with the p-type region 10. An n + type source region 4 and a p + type contact region 5 are selectively provided in the p type SiC layer 11 apart from the n type region 12. A gate insulating film 6 is provided from the surface of the portion of the p-type SiC layer 11 sandwiched between the n + -type source region 4 and the n-type region 12 to the surface of the n-type region 12. A gate electrode 7 is provided on the surface. The configuration of n + type source region 4, p + type contact region 5, source electrode 8 and drain electrode 9 is the same as that in the first embodiment.

次に、実施の形態2にかかる炭化珪素半導体装置の動作について説明する。実施の形態2にかかる炭化珪素半導体装置の動作は、従来の炭化珪素半導体装置(図8参照)と同様である。すなわち、ゲート電極7に閾値電圧以上の電圧を印加し、ゲート電極7直下のp型SiC層11にゲート電極7に沿ってn型の反転層を形成することにより、縦型MOSFETのソース・ドレイン間がオン状態となる。一方、ゲート電極7に印加する電圧を閾値以下とすることにより、p型SiC層11のn型の反転層がなくなり、縦型MOSFETのソース・ドレイン間がオフ状態となる。   Next, the operation of the silicon carbide semiconductor device according to the second embodiment will be described. The operation of the silicon carbide semiconductor device according to the second embodiment is the same as that of the conventional silicon carbide semiconductor device (see FIG. 8). That is, by applying a voltage equal to or higher than the threshold voltage to the gate electrode 7 and forming an n-type inversion layer along the gate electrode 7 in the p-type SiC layer 11 immediately below the gate electrode 7, the source / drain of the vertical MOSFET The interval is turned on. On the other hand, by setting the voltage applied to the gate electrode 7 to be equal to or lower than the threshold value, the n-type inversion layer of the p-type SiC layer 11 is eliminated, and the source and drain of the vertical MOSFET are turned off.

上述した実施の形態2にかかる炭化珪素半導体装置の構造を備えたMOSFET(以下、実施例2とする)の耐圧およびオン抵抗Ronについて検証した。その結果、実施例2においても実施例1と同様の特性を示すことが確認された。   The breakdown voltage and on-resistance Ron of the MOSFET (hereinafter, referred to as Example 2) having the structure of the silicon carbide semiconductor device according to the second embodiment described above were verified. As a result, it was confirmed that Example 2 also showed the same characteristics as Example 1.

以上、説明したように、実施の形態2によれば、実施の形態1と同様の効果を得ることができる。また、実施の形態2によれば、p型ベース領域となるp型領域上に、当該p型領域よりも不純物濃度が低いp型SiC層をp型ベース領域として設けることにより、p型ベース領域の不純物濃度が深さ方向に一様である場合よりもp型ベース領域の不純物濃度の許容範囲を広くすることができる。具体的には、p型ベース領域の不純物濃度が深さ方向に一様である場合、p型ベース領域の電気特性に対応した所望の不純物濃度が低いときには、高電圧印加時にp型ベース領域全体が空乏化してしまい耐圧が低下してしまう。また、p型ベース領域の電気特性に対応した所望の不純物濃度が高いときには、ゲート電圧を印加してもソース・ドレイン間に電流が流れずMOSゲートとして動作しなくなってしまう。すなわち、耐圧を維持しつつMOSゲートを動作させるにあたって、p型ベース領域の不純物濃度の許容範囲が狭くなる。それに対して、実施の形態2によれば、p型ベース領域の、n型SiC基板側の部分の不純物濃度を、ゲート電極側の部分の不純物濃度よりも高くすることにより、p型ベース領域の電気特性に対応した所望の不純物濃度が低い場合であっても、p型ベース領域全体が空乏化することを抑制することができる。また、p型ベース領域の、ゲート電極側の部分の不純物濃度を、n型SiC基板側の部分の不純物濃度よりも低くすることにより、p型ベース領域の電気特性に対応した所望の不純物濃度が高い場合であってもMOSゲートを動作させることができる。したがって、p型ベース領域の不純物濃度の許容範囲を広くすることができ、設計の自由度を向上させることができる。   As described above, according to the second embodiment, the same effect as in the first embodiment can be obtained. Further, according to the second embodiment, the p-type base region is provided by providing the p-type SiC layer having a lower impurity concentration than the p-type region on the p-type region serving as the p-type base region. Therefore, the allowable range of the impurity concentration of the p-type base region can be made wider than when the impurity concentration is uniform in the depth direction. Specifically, when the impurity concentration of the p-type base region is uniform in the depth direction, when the desired impurity concentration corresponding to the electrical characteristics of the p-type base region is low, the entire p-type base region is applied when a high voltage is applied. Will be depleted and the breakdown voltage will be reduced. Also, when the desired impurity concentration corresponding to the electrical characteristics of the p-type base region is high, no current flows between the source and drain even when a gate voltage is applied, and the MOS gate does not operate. That is, when operating the MOS gate while maintaining the breakdown voltage, the allowable range of the impurity concentration of the p-type base region is narrowed. On the other hand, according to the second embodiment, the impurity concentration of the p-type base region on the n-type SiC substrate side is made higher than the impurity concentration on the gate electrode-side portion. Even when the desired impurity concentration corresponding to the electrical characteristics is low, depletion of the entire p-type base region can be suppressed. In addition, by making the impurity concentration of the p-type base region on the gate electrode side lower than the impurity concentration on the n-type SiC substrate side, the desired impurity concentration corresponding to the electrical characteristics of the p-type base region can be obtained. Even in a high case, the MOS gate can be operated. Therefore, the allowable range of the impurity concentration of the p-type base region can be widened, and the degree of freedom in design can be improved.

(実施の形態3)
次に、実施の形態3にかかる炭化珪素半導体装置の構造について説明する。図4は、実施の形態3にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態3にかかる炭化珪素半導体装置が実施の形態1にかかる炭化珪素半導体装置と異なる点は、隣り合うp型領域3間に設けられたn型領域23を、p型領域3のn型SiC基板1側の角部3aを覆うように設けている点である。
(Embodiment 3)
Next, the structure of the silicon carbide semiconductor device according to the third embodiment will be described. FIG. 4 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the third embodiment. The silicon carbide semiconductor device according to the third embodiment is different from the silicon carbide semiconductor device according to the first embodiment in that the n-type region 23 provided between the adjacent p-type regions 3 is changed to the n-type of the p-type region 3. It is the point provided so that the corner | angular part 3a by the side of the SiC substrate 1 may be covered.

具体的には、図4に示すように、隣り合うp型領域3間に設けられたn型領域23の深さ(p型領域3とゲート絶縁膜6との界面からの深さ、以下、単に深さとする)は、p型領域3の深さよりも深い。そして、p型領域3のn型SiC基板1側の角部3aを含む例えばp型領域3のn型SiC基板1側全体は、n型領域23によって覆われている。図4において、符号23aはn型領域23の、ゲート電極7側の部分(第1n型領域)であり、符号23bはn型領域23の、n型SiC基板1側の部分(第2n型領域)である。n型領域23の深さ以外の構成は、実施の形態1における同領域(p型ベース領域となるp型領域間に設けられたn型領域)と同様である。   Specifically, as shown in FIG. 4, the depth of the n-type region 23 provided between the adjacent p-type regions 3 (the depth from the interface between the p-type region 3 and the gate insulating film 6, hereinafter, Is simply deeper than the depth of the p-type region 3. For example, the entire p-type region 3 on the n-type SiC substrate 1 side including the corner 3 a on the n-type SiC substrate 1 side of the p-type region 3 is covered with the n-type region 23. In FIG. 4, reference numeral 23 a is a portion of the n-type region 23 on the gate electrode 7 side (first n-type region), and reference symbol 23 b is a portion of the n-type region 23 on the n-type SiC substrate 1 side (second n-type region). ). The configuration other than the depth of n-type region 23 is the same as that of the first embodiment (the n-type region provided between the p-type regions serving as the p-type base region).

実施の形態3にかかる炭化珪素半導体装置の耐圧およびオン抵抗Ronについて検証したシミュレーション結果を図5に示す。ここで、オン抵抗Ronの計算のために活性部の面積を0.121cm2として計算した。図5は、実施例3にかかるMOSFETの耐圧とオン抵抗との関係を示す特性図である。図5には、実施の形態3にかかる炭化珪素半導体装置の構造を備えたMOSFET(以下、実施例3とする)の耐圧およびオン抵抗Ronを右側に示す。実施例3においては、第1n型領域23aの不純物濃度を4.0×1016/cm3とし、第2n型領域23bの不純物濃度を2.5×1016/cm3としている。また、比較例3として、第1n型領域23aおよび第2n型領域23bの不純物濃度をともに2.5×1016/cm3にしたときの耐圧およびオン抵抗Ronを左側に示す。比較例4として、第1n型領域23aおよび第2n型領域23bの不純物濃度をともに3.5×1016/cm3にしたときの耐圧およびオン抵抗Ronを中央に示す。比較例3,4の第1,2n型領域23a,23bの不純物濃度以外の構成は実施例3と同様である。 FIG. 5 shows a simulation result for verifying the breakdown voltage and on-resistance Ron of the silicon carbide semiconductor device according to the third embodiment. Here, for the calculation of the on-resistance Ron, the area of the active part was calculated as 0.121 cm 2 . FIG. 5 is a characteristic diagram illustrating the relationship between the breakdown voltage and the on-resistance of the MOSFET according to the third embodiment. FIG. 5 shows the breakdown voltage and on-resistance Ron of a MOSFET (hereinafter referred to as Example 3) having the structure of the silicon carbide semiconductor device according to the third embodiment on the right side. In Example 3, the impurity concentration of the first n-type region 23a is 4.0 × 10 16 / cm 3, and the impurity concentration of the second n-type region 23b is 2.5 × 10 16 / cm 3 . As Comparative Example 3, the breakdown voltage and the on-resistance Ron when the impurity concentrations of the first n-type region 23a and the second n-type region 23b are both 2.5 × 10 16 / cm 3 are shown on the left side. As Comparative Example 4, the breakdown voltage and the on-resistance Ron are shown in the center when the impurity concentrations of the first n-type region 23a and the second n-type region 23b are both 3.5 × 10 16 / cm 3 . The configuration other than the impurity concentration of the first and second n-type regions 23a and 23b in Comparative Examples 3 and 4 is the same as that in Example 3.

図5に示すように、第1,2n型領域23a,23bの不純物濃度をともに比較例3よりも高くした比較例4では、比較例3よりも、オン抵抗Ronは1割程度低減されるが、耐圧は50V程度低下してしまうことが確認された。それに対して、第1n型領域23a(n型領域23のゲート電極7側の部分)の不純物濃度のみを比較例3よりも高くした実施例3においては、耐圧を比較例3と同程度に維持しつつ、オン抵抗Ronを比較例3よりも1割程度低減させることができることが確認された。したがって、実施例3においても実施例1と同様の特性を示すことが確認された。また、実施例3においては、実施例1(図2)よりも耐圧が若干低下するものの、オン抵抗Ronを低減することができることが確認された。   As shown in FIG. 5, in Comparative Example 4 in which the impurity concentrations of the first and second n-type regions 23a and 23b are both higher than those in Comparative Example 3, the on-resistance Ron is reduced by about 10% compared to Comparative Example 3. It has been confirmed that the breakdown voltage is reduced by about 50V. On the other hand, in Example 3 in which only the impurity concentration of the first n-type region 23a (portion on the gate electrode 7 side of the n-type region 23) is higher than that in Comparative Example 3, the breakdown voltage is maintained at the same level as in Comparative Example 3. However, it was confirmed that the on-resistance Ron can be reduced by about 10% compared to the comparative example 3. Therefore, it was confirmed that Example 3 showed the same characteristics as Example 1. In Example 3, it was confirmed that the on-resistance Ron can be reduced, although the breakdown voltage is slightly lower than that in Example 1 (FIG. 2).

以上、説明したように、実施の形態3によれば、実施の形態1と同様の効果を得ることができる。また、実施の形態3によれば、隣り合うp型ベース領域間に設けられたn型領域によって、p型ベース領域のn型SiC基板側の角部を覆う構成とすることにより、耐圧を維持しつつ、オン抵抗をさらに低減することができる。   As described above, according to the third embodiment, the same effect as in the first embodiment can be obtained. Further, according to the third embodiment, the n-type region provided between the adjacent p-type base regions covers the corner of the p-type base region on the n-type SiC substrate side, thereby maintaining the breakdown voltage. However, the on-resistance can be further reduced.

(実施の形態4)
次に、実施の形態4にかかる炭化珪素半導体装置の構造について説明する。図6は、実施の形態4にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態4にかかる炭化珪素半導体装置が実施の形態2にかかる炭化珪素半導体装置と異なる点は、隣り合うp型領域10間に設けられたn型領域24を、p型領域10のn型SiC基板1側の角部10aを覆うように設けている点である。すなわち、実施の形態4にかかる炭化珪素半導体装置は、実施の形態2にかかる炭化珪素半導体装置に実施の形態3を適用した構成となっている。
(Embodiment 4)
Next, the structure of the silicon carbide semiconductor device according to the fourth embodiment will be described. FIG. 6 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the fourth embodiment. The silicon carbide semiconductor device according to the fourth embodiment is different from the silicon carbide semiconductor device according to the second embodiment in that the n-type region 24 provided between adjacent p-type regions 10 is replaced with the n-type of the p-type region 10. It is the point provided so that the corner | angular part 10a by the side of the SiC substrate 1 may be covered. That is, the silicon carbide semiconductor device according to the fourth embodiment has a configuration in which the third embodiment is applied to the silicon carbide semiconductor device according to the second embodiment.

具体的には、図6に示すように、隣り合うp型領域10間に設けられたn型領域24の深さ(p型領域10とp型SiC層11との界面からの深さ、以下、単に深さとする)は、p型領域10の深さよりも深い。そして、p型領域10のn型SiC基板1側の角部10aを含む例えばp型領域10のn型SiC基板1側全体は、n型領域24によって覆われている。図6において、符号24aはn型領域24の、ゲート電極7側の部分(第1n型領域)であり、符号24bはn型領域24の、n型SiC基板1側の部分(第2n型領域)である。n型領域24の深さ以外の構成は、実施の形態2における同領域(p型ベース領域となるp型領域間に設けられたn型領域)と同様である。   Specifically, as shown in FIG. 6, the depth of the n-type region 24 provided between the adjacent p-type regions 10 (the depth from the interface between the p-type region 10 and the p-type SiC layer 11, below). Is simply deeper than the depth of the p-type region 10. For example, the entire p-type region 10 side including the corner 10 a of the p-type region 10 on the n-type SiC substrate 1 side is covered with the n-type region 24. In FIG. 6, reference numeral 24 a is a portion of the n-type region 24 on the gate electrode 7 side (first n-type region), and reference symbol 24 b is a portion of the n-type region 24 on the n-type SiC substrate 1 side (second n-type region). ). The configuration other than the depth of n-type region 24 is the same as that of the second embodiment (the n-type region provided between the p-type regions serving as the p-type base region).

上述した実施の形態4にかかる炭化珪素半導体装置の構造を備えたMOSFET(以下、実施例4とする)の耐圧およびオン抵抗Ronについて検証した。その結果、実施例4においても実施例3と同様の特性を示すことが確認された。   The breakdown voltage and on-resistance Ron of the MOSFET (hereinafter referred to as Example 4) having the structure of the silicon carbide semiconductor device according to the fourth embodiment described above were verified. As a result, it was confirmed that Example 4 also showed the same characteristics as Example 3.

以上、説明したように、実施の形態4によれば、実施の形態2と同様にp型ベース領域の不純物濃度の許容範囲を広げることができる。また、実施の形態4によれば、ゲート絶縁膜の絶縁破壊耐量および信頼性ついて実施の形態3と同様の効果を得ることができる。   As described above, according to the fourth embodiment, the allowable range of the impurity concentration of the p-type base region can be expanded as in the second embodiment. Further, according to the fourth embodiment, the same effects as those of the third embodiment can be obtained with respect to the dielectric breakdown resistance and reliability of the gate insulating film.

以上において本発明は種々変更可能であり、上述した各実施の形態において、例えば各部の寸法や表面濃度等は要求される仕様等に応じて種々設定される。また、上述した実施の形態1,3において、p型ベース領域の、ゲート電極側の不純物濃度をn型SiC基板側の不純物濃度よりも低くした構成とすることで、実施の形態2と同様の効果が得られる。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。   As described above, the present invention can be variously changed. In each of the above-described embodiments, for example, the dimensions and surface concentration of each part are variously set according to required specifications. Further, in the first and third embodiments described above, the p-type base region is configured such that the impurity concentration on the gate electrode side is lower than the impurity concentration on the n-type SiC substrate side. An effect is obtained. In each embodiment, the first conductivity type is n-type and the second conductivity type is p-type. However, in the present invention, the first conductivity type is p-type and the second conductivity type is n-type. It holds.

以上のように、本発明にかかる炭化珪素半導体装置は、炭化珪素基板上に形成されスイッチングデバイスとして用いられる縦型MOSFETなどの半導体装置に有用である。   As described above, the silicon carbide semiconductor device according to the present invention is useful for a semiconductor device such as a vertical MOSFET formed on a silicon carbide substrate and used as a switching device.

1 n型SiC基板
2 n-型SiC層
3 p型領域
3a,10a p型領域のn型SiC基板側の角部
4 n+型ソース領域
5 p+型コンタクト領域
6 ゲート絶縁膜
7 ゲート電極
8 ソース電極
9 ドレイン電極
10 p型領域
11 p型SiC層
12a 第3n型領域
12b 第4n型領域
21,22,23,24 n型領域
21a,22a,23a,24a 第1n型領域
21b,22b,23b,24b 第2n型領域
L 隣り合うp型領域間の間隔
DESCRIPTION OF SYMBOLS 1 n-type SiC substrate 2 n - type SiC layer 3 p-type area | region 3a, 10a The corner | angular part by the side of the n-type SiC substrate of a p-type area | region 4 n + type source region 5 p + type contact area 6 Gate insulating film 7 Gate electrode 8 Source electrode 9 Drain electrode 10 P-type region 11 P-type SiC layer 12a Third n-type region 12b Fourth n-type region 21, 22, 23, 24 n-type region 21a, 22a, 23a, 24a First n-type region 21b, 22b, 23b 24b Second n-type region L. Spacing between adjacent p-type regions

Claims (7)

第1導電型の炭化珪素基板と、
前記炭化珪素基板のおもて面に設けられた、前記炭化珪素基板よりも不純物濃度が低い第1導電型炭化珪素層と、
前記第1導電型炭化珪素層の、前記炭化珪素基板側に対して反対側の表面層に選択的に設けられた第2導電型のベース領域と、
前記ベース領域の内部に選択的に設けられた第1導電型のソース領域と、
前記ベース領域の内部に選択的に設けられた第2導電型のコンタクト領域と、
前記ベース領域の、前記ソース領域と前記第1導電型炭化珪素層とに挟まれた部分の表面上から前記第1導電型炭化珪素層の表面上にわたって設けられたゲート絶縁膜と、
前記ゲート絶縁膜上に設けられたゲート電極と、
前記ソース領域および前記コンタクト領域に接するソース電極と、
前記炭化珪素基板の裏面に設けられたドレイン電極と、
を備え
記第1導電型炭化珪素層のうち、隣り合う前記ベース領域間に挟まれた第1部分と、前記ベース領域の前記炭化珪素基板側の面に沿った第2部分と、のみ前記第1部分から前記第2部分にわたって、前記第1導電型炭化珪素層よりも不純物濃度が高い第1導電型半導体領域が設けられており、
炭化珪素の誘電率をε s とし、電気素量をqとし、前記ベース領域と前記第1導電型半導体領域との間のpn接合のビルトイン電圧をV bi とし、前記ベース領域の多数キャリア濃度をN A とし、前記第1導電型半導体領域の、前記炭化珪素基板側の部分の多数キャリア濃度をN D とした場合に、
隣り合う前記ベース領域間の間隔Lは、
2×(2ε s /q・V bi ・N A /N D /(N A +N D )) 1/2 [μm]≦L≦3[μm]
を満たし、
前記第1導電型半導体領域は、前記ゲート電極側から前記炭化珪素基板側へ、第1導電型高濃度領域と、前記第1導電型高濃度領域よりも不純物濃度の低い第1導電型低濃度領域と、を交互に繰り返して2組配置してなり
最も前記炭化珪素基板側の前記第1導電型低濃度領域は、前記ベース領域の、前記炭化珪素基板側の全体および前記炭化珪素基板側の角部を覆うことを特徴とする炭化珪素半導体装置。
A first conductivity type silicon carbide substrate;
A first conductivity type silicon carbide layer having an impurity concentration lower than that of the silicon carbide substrate, provided on the front surface of the silicon carbide substrate;
A second conductivity type base region selectively provided on a surface layer of the first conductivity type silicon carbide layer opposite to the silicon carbide substrate side;
A first conductivity type source region selectively provided in the base region;
A contact region of a second conductivity type selectively provided inside the base region;
A gate insulating film provided from the surface of the portion of the base region sandwiched between the source region and the first conductivity type silicon carbide layer to the surface of the first conductivity type silicon carbide layer;
A gate electrode provided on the gate insulating film;
A source electrode in contact with the source region and the contact region;
A drain electrode provided on the back surface of the silicon carbide substrate;
Equipped with a,
Among pre Symbol first conductivity type silicon carbide layer, a first portion sandwiched between the adjacent base region, and a second portion along the surface of the silicon carbide substrate side of the base region, only the A first conductivity type semiconductor region having an impurity concentration higher than that of the first conductivity type silicon carbide layer is provided from the first portion to the second portion ,
The dielectric constant of silicon carbide is ε s , the elementary charge is q, the built-in voltage of the pn junction between the base region and the first conductivity type semiconductor region is V bi, and the majority carrier concentration of the base region is N A, and when the majority carrier concentration of the portion of the first conductivity type semiconductor region on the silicon carbide substrate side is N D ,
An interval L between adjacent base regions is:
2 × (2ε s / q · V bi · N A / N D / (N A + N D)) 1/2 [μm] ≦ L ≦ 3 [μm]
The filling,
The first conductivity type semiconductor region includes a first conductivity type high concentration region and a first conductivity type low concentration having a lower impurity concentration than the first conductivity type high concentration region from the gate electrode side to the silicon carbide substrate side. Two sets of areas are alternately repeated ,
The first conductivity type low concentration region closest to the silicon carbide substrate covers the entire surface of the base region on the silicon carbide substrate side and a corner portion on the silicon carbide substrate side. .
前記ベース領域は、前記炭化珪素基板側よりも前記ゲート電極側の不純物濃度が低いことを特徴とする請求項1に記載の炭化珪素半導体装置。   2. The silicon carbide semiconductor device according to claim 1, wherein the base region has a lower impurity concentration on the gate electrode side than on the silicon carbide substrate side. 前記第1導電型半導体領域は、前記第1導電型炭化珪素層に第1導電型不純物がイオン注入されてなる領域であることを特徴とする請求項1または2に記載の炭化珪素半導体装置。 The first conductive type semiconductor region, the silicon carbide semiconductor device according to claim 1 or 2, a first conductivity type impurity, characterized in that an area formed by ion implantation on the first conductive type silicon carbide layer. 第1導電型の炭化珪素基板と、
前記炭化珪素基板のおもて面に設けられた、前記炭化珪素基板よりも不純物濃度が低い第1導電型炭化珪素層と、
前記第1導電型炭化珪素層の、前記炭化珪素基板側に対して反対側の表面層に選択的に設けられた第2導電型の第1ベース領域と、
前記第1導電型炭化珪素層の、前記炭化珪素基板側に対して反対側の表面に設けられた第2導電型炭化珪素層と、
前記第2導電型炭化珪素層を深さ方向に貫通して前記第1導電型炭化珪素層に達する第1導電型ウェル領域と、
前記第2導電型炭化珪素層の、前記第1導電型ウェル領域を除いた領域である第2導電型の第2ベース領域と、
前記第2ベース領域の内部に選択的に設けられた第1導電型のソース領域と、
前記第2ベース領域の内部に選択的に設けられた第2導電型のコンタクト領域と、
前記第2ベース領域の、前記ソース領域と前記第1導電型ウェル領域とに挟まれた部分の表面上から前記第2導電型炭化珪素層の表面上にわたって設けられたゲート絶縁膜と、
前記ゲート絶縁膜上に設けられたゲート電極と、
前記ソース領域および前記コンタクト領域に接するソース電極と、
前記炭化珪素基板の裏面に設けられたドレイン電極と、
を備え
前記第1導電型ウェル領域と、前記第1導電型炭化珪素層のうち、隣り合う前記第1ベース領域間に挟まれた第1部分と、前記第1ベース領域の前記炭化珪素基板側の面に沿った第2部分と、のみ前記第1導電型ウェル領域から前記第1部分および前記第2部分にわたって、前記第1導電型炭化珪素層よりも不純物濃度が高い第1導電型半導体領域が設けられており、
炭化珪素の誘電率をε s とし、電気素量をqとし、前記第1ベース領域と前記第1導電型半導体領域との間のpn接合のビルトイン電圧をV bi とし、前記第1ベース領域の多数キャリア濃度をN A とし、前記第1導電型半導体領域の、前記炭化珪素基板側の部分の多数キャリア濃度をN D とした場合に、
隣り合う前記第1ベース領域間の間隔Lは、
2×(2ε s /q・V bi ・N A /N D /(N A +N D )) 1/2 [μm]≦L≦3[μm]
を満たし、
前記第1導電型半導体領域は、前記ゲート電極側から前記炭化珪素基板側へ、第1導電型高濃度領域と、前記第1導電型高濃度領域よりも不純物濃度の低い第1導電型低濃度領域と、を交互に繰り返して2組配置してなり
最も前記炭化珪素基板側の前記第1導電型低濃度領域は、前記第1ベース領域の、前記炭化珪素基板側の全体および前記炭化珪素基板側の角部を覆うことを特徴とする炭化珪素半導体装置。
A first conductivity type silicon carbide substrate;
A first conductivity type silicon carbide layer having an impurity concentration lower than that of the silicon carbide substrate, provided on the front surface of the silicon carbide substrate;
A first base region of a second conductivity type selectively provided on a surface layer of the first conductivity type silicon carbide layer opposite to the silicon carbide substrate side;
A second conductivity type silicon carbide layer provided on a surface of the first conductivity type silicon carbide layer opposite to the silicon carbide substrate side;
A first conductivity type well region that penetrates the second conductivity type silicon carbide layer in a depth direction and reaches the first conductivity type silicon carbide layer;
A second base region of a second conductivity type that is a region of the second conductivity type silicon carbide layer excluding the first conductivity type well region;
A first conductivity type source region selectively provided in the second base region;
A contact region of a second conductivity type selectively provided in the second base region;
A gate insulating film provided over a surface of a portion of the second base region sandwiched between the source region and the first conductivity type well region and a surface of the second conductivity type silicon carbide layer;
A gate electrode provided on the gate insulating film;
A source electrode in contact with the source region and the contact region;
A drain electrode provided on the back surface of the silicon carbide substrate;
Equipped with a,
Wherein the first conductivity type well region, said one of the first conductivity type silicon carbide layer, a first portion sandwiched between the adjacent first base region, a surface of said silicon carbide substrate side of the first base region A first conductive type semiconductor region having an impurity concentration higher than that of the first conductive type silicon carbide layer from the first conductive type well region to the first portion and the second portion only in the second portion along Is provided,
The dielectric constant of silicon carbide is ε s , the elementary charge is q, the built-in voltage of the pn junction between the first base region and the first conductivity type semiconductor region is V bi, and the first base region When the majority carrier concentration is N A and the majority carrier concentration of the portion on the silicon carbide substrate side of the first conductivity type semiconductor region is N D ,
An interval L between the adjacent first base regions is:
2 × (2ε s / q · V bi · N A / N D / (N A + N D)) 1/2 [μm] ≦ L ≦ 3 [μm]
The filling,
The first conductivity type semiconductor region includes a first conductivity type high concentration region and a first conductivity type low concentration having a lower impurity concentration than the first conductivity type high concentration region from the gate electrode side to the silicon carbide substrate side. Two sets of areas are alternately repeated ,
The first conductivity type low concentration region closest to the silicon carbide substrate covers the entire surface of the first base region on the silicon carbide substrate side and the corners on the silicon carbide substrate side. Semiconductor device.
前記第1導電型ウェル領域は、前記炭化珪素基板側よりも前記ゲート電極側の不純物濃度が高いことを特徴とする請求項に記載の炭化珪素半導体装置。 The silicon carbide semiconductor device according to claim 4 , wherein the first conductivity type well region has a higher impurity concentration on the gate electrode side than on the silicon carbide substrate side. 前記第2ベース領域の不純物濃度は、前記第1ベース領域の不純物濃度よりも低いことを特徴とする請求項4または5に記載の炭化珪素半導体装置。 6. The silicon carbide semiconductor device according to claim 4 , wherein an impurity concentration of the second base region is lower than an impurity concentration of the first base region. 最も前記炭化珪素基板側の前記第1導電型高濃度領域および前記第1導電型低濃度領域は、前記第1導電型炭化珪素層に第1導電型不純物がイオン注入されてなる領域であることを特徴とする請求項4〜6のいずれか一つに記載の炭化珪素半導体装置。 The first conductivity type high concentration region and the first conductivity type low concentration region closest to the silicon carbide substrate are regions formed by ion implantation of a first conductivity type impurity into the first conductivity type silicon carbide layer. The silicon carbide semiconductor device according to claim 4 , wherein the silicon carbide semiconductor device is a silicon carbide semiconductor device.
JP2013254569A 2013-12-09 2013-12-09 Silicon carbide semiconductor device Active JP6381101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013254569A JP6381101B2 (en) 2013-12-09 2013-12-09 Silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013254569A JP6381101B2 (en) 2013-12-09 2013-12-09 Silicon carbide semiconductor device

Publications (2)

Publication Number Publication Date
JP2015115375A JP2015115375A (en) 2015-06-22
JP6381101B2 true JP6381101B2 (en) 2018-08-29

Family

ID=53528936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013254569A Active JP6381101B2 (en) 2013-12-09 2013-12-09 Silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP6381101B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6786824B2 (en) * 2016-03-14 2020-11-18 富士電機株式会社 Semiconductor devices and their manufacturing methods
JP2019125621A (en) * 2018-01-12 2019-07-25 トヨタ自動車株式会社 Semiconductor device
JP6992021B2 (en) * 2019-03-18 2022-01-13 株式会社東芝 Semiconductor devices, inverter circuits, drives, vehicles, and elevators
JP7476485B2 (en) * 2019-05-17 2024-05-01 富士電機株式会社 Nitride Semiconductor Device
IT202100027842A1 (en) * 2021-10-29 2023-04-29 St Microelectronics Srl SEMICONDUCTOR POWER DEVICE WITH SHORT CIRCUIT PROTECTION AND METHOD FOR MANUFACTUREING A SEMICONDUCTOR POWER DEVICE

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742164A (en) * 1980-08-27 1982-03-09 Hitachi Ltd Semiconductor device
JP3738127B2 (en) * 1998-02-26 2006-01-25 新電元工業株式会社 High voltage semiconductor device
US7221010B2 (en) * 2002-12-20 2007-05-22 Cree, Inc. Vertical JFET limited silicon carbide power metal-oxide semiconductor field effect transistors
JP2006332401A (en) * 2005-05-27 2006-12-07 National Institute Of Advanced Industrial & Technology Silicon carbide semiconductor device
JP4786621B2 (en) * 2007-09-20 2011-10-05 株式会社東芝 Semiconductor device and manufacturing method thereof
US8933466B2 (en) * 2012-03-23 2015-01-13 Panasonic Corporation Semiconductor element
JP2013232561A (en) * 2012-04-27 2013-11-14 National Institute Of Advanced Industrial & Technology Semiconductor device

Also Published As

Publication number Publication date
JP2015115375A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
JP2016181618A (en) Semiconductor device
JP2010258386A (en) Silicon carbide semiconductor device, and method of manufacturing the same
JP6381101B2 (en) Silicon carbide semiconductor device
JP6453188B2 (en) Silicon carbide semiconductor device
JP6199755B2 (en) Semiconductor device
JP2012069797A (en) Insulated gate transistor
WO2015141212A1 (en) Semiconductor device
CN108292680B (en) Silicon carbide semiconductor device
CN107180862A (en) Switch element
JP2016115847A (en) Semiconductor device
US10068972B2 (en) Semiconductor device with opposite conductivity-type impurity regions between source and trench gate for reducing leakage
JP6400548B2 (en) Semiconductor device
JP2010258385A (en) Silicon carbide semiconductor device, and method of manufacturing the same
JP2018067650A (en) Switching element
JP5630552B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP6169985B2 (en) Semiconductor device
JP6299658B2 (en) Insulated gate type switching element
JP6573107B2 (en) Semiconductor device
JP5148852B2 (en) Semiconductor device
JP2016213421A (en) Semiconductor device
US9356100B2 (en) Semiconductor device
JP7326991B2 (en) switching element
JP2017098371A (en) Semiconductor device and manufacturing method of the same
JP6458994B2 (en) Semiconductor device
WO2016039069A1 (en) Semiconductor device and production method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180409

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180730

R150 Certificate of patent or registration of utility model

Ref document number: 6381101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250