JP6347986B2 - Fluid dynamic bearing device and motor including the same - Google Patents

Fluid dynamic bearing device and motor including the same Download PDF

Info

Publication number
JP6347986B2
JP6347986B2 JP2014107007A JP2014107007A JP6347986B2 JP 6347986 B2 JP6347986 B2 JP 6347986B2 JP 2014107007 A JP2014107007 A JP 2014107007A JP 2014107007 A JP2014107007 A JP 2014107007A JP 6347986 B2 JP6347986 B2 JP 6347986B2
Authority
JP
Japan
Prior art keywords
lid member
fluid dynamic
bearing device
housing
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014107007A
Other languages
Japanese (ja)
Other versions
JP2015222111A (en
Inventor
貴開 稲塚
貴開 稲塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2014107007A priority Critical patent/JP6347986B2/en
Publication of JP2015222111A publication Critical patent/JP2015222111A/en
Application granted granted Critical
Publication of JP6347986B2 publication Critical patent/JP6347986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

本発明は、流体動圧軸受装置およびこれを備えるモータに関する。   The present invention relates to a fluid dynamic bearing device and a motor including the same.

流体動圧軸受装置は、軸受隙間に形成される潤滑油の油膜で、回転側の部材(例えば軸部材)と静止側の部材(例えばハウジング)を相対回転自在に非接触支持する軸受装置である。この流体動圧軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、ディスク駆動装置(例えば、HDD等の磁気ディスク駆動装置や、CD、DVD、ブルーレイディスク等の光ディスク駆動装置)のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、電気・電子機器の冷却用ファンモータ等のモータ用軸受装置として好適に使用されている。   A fluid dynamic pressure bearing device is a bearing device that uses a lubricating oil film formed in a bearing gap and supports a rotation-side member (for example, a shaft member) and a stationary-side member (for example, a housing) in a non-contact manner so as to be relatively rotatable. . This fluid dynamic pressure bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. Recently, a disk drive device (for example, a magnetic disk drive device such as an HDD or the like, a CD) In addition, it is suitably used as a motor bearing device such as a spindle motor of an optical disc drive device such as a DVD or a Blu-ray disc, a polygon scanner motor of a laser beam printer (LBP), or a fan motor for cooling electric or electronic equipment.

例えば、下記の特許文献1の図2及び図3には、軸部材と、ラジアル軸受隙間に形成される油膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸部材およびラジアル軸受部を内周に収容したハウジングとを備えた流体動圧軸受装置が記載されている。この流体動圧軸受装置において、ハウジングは軸方向の両端が開口した円筒状に形成され、その一端開口部は樹脂製の蓋部材で閉塞される。   For example, FIG. 2 and FIG. 3 of Patent Document 1 listed below include a shaft member, a radial bearing portion that supports the shaft member in the radial direction with an oil film formed in a radial bearing gap, and the shaft member and the radial bearing portion. A fluid dynamic pressure bearing device including a housing housed in the periphery is described. In this fluid dynamic pressure bearing device, the housing is formed in a cylindrical shape with both axial ends open, and the one end opening is closed with a resin lid member.

特開2004−28165号公報JP 2004-28165 A

特許文献1中に記載されているような樹脂製の蓋部材は、成形金型を用いて射出成形されるのが一般的である。射出成形後には、成形金型の型開きを行い、蓋部材が成形金型から取り出される。成形金型からの蓋部材の取り出しは、成形金型内(実際には、成形金型のゲート内もしくはゲートの出口付近)で固化した樹脂材料を分断するようにして行われるのが一般的である。従って、蓋部材には、成形金型内で固化した樹脂材料の一部がゲート跡として残る場合が多い。   A resin lid member as described in Patent Document 1 is generally injection-molded using a molding die. After injection molding, the mold is opened and the lid member is removed from the mold. In general, the lid member is taken out from the molding die by dividing the solidified resin material in the molding die (actually in the gate of the molding die or in the vicinity of the gate outlet). is there. Accordingly, in many cases, a part of the resin material solidified in the molding die remains as a gate mark on the lid member.

ところで、蓋部材をはじめとする流体動圧軸受装置の構成部品を樹脂で射出成形する際には、成形品の機械的強度や寸法安定性を高めるために充填材(例えば、ガラス繊維等の繊維状充填材)を含む樹脂材料を使用するのが一般的である。そのため、成形品(蓋部材)に残ったゲート跡の分断面には、樹脂材料中に含まれる充填材の一部が露出し易い。この状態を放置したままの蓋部材を使用すると、ゲート跡の分断面に露出した充填材の一部又は全部が脱落等してコンタミとなり、軸受性能、ひいてはモータ性能に悪影響を及ぼすおそれがある。このような問題は、後加工でゲート跡を除去等する(ゲート処理を実行する)ことにより可及的に回避し得るが、ゲート処理を実行すると、加工工数が増加する分、蓋部材を樹脂の射出成形品とすることによるコストメリットを十分に享受することができなくなる。   By the way, when the components of the fluid dynamic bearing device including the lid member are injection-molded with resin, a filler (for example, fiber such as glass fiber) is used to increase the mechanical strength and dimensional stability of the molded product. It is common to use a resin material containing a filler. Therefore, a part of the filler contained in the resin material is likely to be exposed on the split section of the gate mark remaining on the molded product (lid member). If the lid member is left in this state, a part or all of the filler exposed on the cross section of the gate trace may fall off and become contaminated, which may adversely affect the bearing performance and, consequently, the motor performance. Such a problem can be avoided as much as possible by removing gate traces or the like in post-processing (execution of gate processing). However, when gate processing is performed, the lid is made of resin as much as the number of processing steps increases. It is impossible to fully enjoy the cost merit of using the injection molded product.

かかる実情に鑑み、本発明の目的は、ハウジングの一端開口部が蓋部材で閉塞される流体動圧軸受装置において、所望の軸受性能を安定的に維持可能としつつ、そのコスト低減を図ることにある。   In view of such a situation, an object of the present invention is to reduce the cost of a fluid dynamic bearing device in which one end opening of a housing is closed with a lid member while stably maintaining desired bearing performance. is there.

上記の目的を達成するために創案された本発明は、軸部材と、ラジアル軸受隙間に形成される潤滑油の油膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸方向の両端が開口した円筒状をなし、軸部材およびラジアル軸受部を内周に収容したハウジングと、充填材を含む樹脂材料で射出成形され、ハウジングの一端開口部を閉塞する蓋部材とを備えた流体動圧軸受装置において、蓋部材は、キャビティに対する開口径Dが0.5mmよりも小さいゲートを有する成形金型により円盤状に射出成形され、かつ成形金型内で固化した樹脂材料が蓋部材の離型に伴って分断されることで形成された状態のゲート跡を有し、ゲート跡は、蓋部材の内端面又は外端面に開口した凹状に形成されており、蓋部材のうち、ゲート跡が形成された部分において、ゲート跡が存在しない場合における両端面間の離間距離をt、充填材の平均長をLa、充填材の長手方向寸法の標準偏差をLσとしたとき、t>0.86D+La+6Lσの関係式を満たすことを特徴とする。 The present invention, which was created to achieve the above object, includes a shaft member, a radial bearing portion that supports the shaft member in the radial direction with an oil film of lubricating oil formed in the radial bearing gap, and both ends in the axial direction are open. A hydrodynamic pressure bearing comprising a housing having a cylindrical shape and containing a shaft member and a radial bearing portion on the inner periphery, and a lid member that is injection-molded with a resin material containing a filler and closes one end opening of the housing In the apparatus, the lid member is injection-molded into a disk shape by a molding die having a gate having an opening diameter D with respect to the cavity smaller than 0.5 mm, and the resin material solidified in the molding die is used to release the lid member. with and have a gate mark in a state of being formed by being divided, gate mark is formed in a concave shape opened in the inner end surface or outer end surface of the lid member, of the lid member, gate mark is formed Part Where t> 0.86D + La + 6Lσ where t is the separation distance between both end faces when there is no gate trace, La is the average length of the filler, and Lσ is the standard deviation of the longitudinal dimension of the filler. It is characterized by satisfying .

本発明に係る流体動圧軸受装置では、充填材を含む樹脂材料で円盤状に射出成形された蓋部材が、当該蓋部材の成形金型内で固化した樹脂材料が蓋部材の離型に伴って分断されることで形成された状態のゲート跡を有する。これはすなわち、樹脂の射出成形品とされる蓋部材が、離型された状態のまま使用されていることを意味する。そのため、離型後のゲート処理を省略した分、蓋部材の製造コストが低減され、その結果流体動圧軸受装置のコスト低減を図ることができる。また、蓋部材は、円盤状に射出成形されることから所定の寸法・形状精度が容易かつ安定的に確保される。さらに、蓋部材が充填材を含む樹脂材料で射出成形されることから、適当な充填材を選択使用すれば、蓋部材に必要とされる機械的強度や寸法安定性を確保することができる。以上のことから、流体動圧軸受装置に必要とされる軸受性能を確保しつつ、そのコスト低減を図ることができる。なお、ゲート跡が、ゲート処理が施されたものであるか否か(離型時の状態を維持しているか否か)は、例えば、ゲート跡が凹凸形状の分断面(分断部)を有するか否かによって判断することができる。   In the fluid dynamic pressure bearing device according to the present invention, the lid member injection-molded in a disk shape with a resin material containing a filler, the resin material solidified in the molding die of the lid member is accompanied by the release of the lid member. It has a gate mark formed by being divided. This means that the lid member, which is an injection molded product of resin, is used in a released state. Therefore, the manufacturing cost of the lid member is reduced by the amount that the gate processing after the mold release is omitted, and as a result, the cost of the fluid dynamic bearing device can be reduced. Further, since the lid member is injection-molded into a disk shape, predetermined dimensional and shape accuracy can be secured easily and stably. Furthermore, since the lid member is injection-molded with a resin material containing a filler, the mechanical strength and dimensional stability required for the lid member can be ensured by selecting and using an appropriate filler. From the above, it is possible to reduce the cost while ensuring the bearing performance required for the fluid dynamic bearing device. Whether or not the gate trace has been subjected to gate processing (whether or not the state at the time of mold release is maintained) is, for example, that the gate trace has a concavo-convex shaped section (dividing part). It can be judged by whether or not.

上記のように、離型後のゲート処理を省略可能となったのは、本願発明者が鋭意検討を重ねた結果、キャビティに対する開口径Dが0.5mmよりも小さいゲート(点状ゲート)を有する成形金型で蓋部材を円盤状に射出成形すれば良いことを見出したためである。すなわち、キャビティに対するゲートの開口径Dが0.5mmよりも小さければ、ゲート跡の分断部(分断面)からの充填材の露出を可及的に防止することができ、また、蓋部材が円盤状をなした単純形状であれば、キャビティに対する開口径Dが0.5mmより小さいゲートであっても、キャビティを隙間無く樹脂材料(溶融状態の樹脂材料)で満たし、高精度の成形品を得ることができるからである。但し、ゲートの開口径Dが小さすぎると、樹脂の射出性が低下し、所定精度の蓋部材を成形することが難しくなる。そのため、開口径Dは0.2mm以上に設定する(0.2mm≦D<0.5mm)。   As described above, the gate treatment after the mold release can be omitted because the inventors of the present application have made extensive studies, and as a result, a gate (a point-like gate) having an opening diameter D with respect to the cavity smaller than 0.5 mm. This is because it has been found that the lid member may be injection-molded into a disc shape with a molding die having the same. That is, if the opening diameter D of the gate with respect to the cavity is smaller than 0.5 mm, it is possible to prevent the filling material from being exposed as much as possible from the divided portion (divided section) of the gate trace, and the lid member is a disc. If the gate has a simple shape, even if the opening diameter D with respect to the cavity is smaller than 0.5 mm, the cavity is filled with a resin material (a molten resin material) without a gap, and a highly accurate molded product is obtained. Because it can. However, if the opening diameter D of the gate is too small, the resin injection property is lowered, and it becomes difficult to mold the lid member with a predetermined accuracy. Therefore, the opening diameter D is set to 0.2 mm or more (0.2 mm ≦ D <0.5 mm).

ゲート跡は、蓋部材の内端面又は外端面上で隆起した凸状に形成することもできるが、蓋部材の内端面又は外端面に開口した凹状に形成するのが好ましい。ゲート跡の分断部を凹状部の内周に配置することができるので、ゲート跡の分断部が軸部材等の相手部材と接触し、その結果、蓋部材に含まれる充填材が流体動圧軸受装置の内部空間、もしくは流体動圧軸受装置の周辺に脱落等する可能性を低減することができるからである。この場合、蓋部材のうちゲート跡(凹状のゲート跡)が設けられた部分において、ゲート跡が存在しない場合における両端面間の離間距離をt、充填材の平均長をLa、充填材長さの標準偏差をLσとしたとき、t>0.86D+La+6Lσの関係式を満たすのが好ましい。このようにすれば、ゲート跡が凹状に形成され、かつ蓋部材のうちゲート跡が設けられた部分から充填材が脱落等した場合でも、蓋部材の両端面が連通状態となるのを防止することができる。これにより、ハウジングの内部空間に介在する潤滑油の外部漏洩といった致命的な不具合が生じるのを防止することができる。   The gate mark may be formed in a convex shape protruding on the inner end surface or the outer end surface of the lid member, but is preferably formed in a concave shape opened on the inner end surface or the outer end surface of the lid member. Since the gate trace part can be arranged on the inner periphery of the concave part, the gate mark part comes into contact with a mating member such as a shaft member. As a result, the filler contained in the lid member is a fluid dynamic pressure bearing. This is because it is possible to reduce the possibility of dropping off in the inner space of the device or the periphery of the fluid dynamic bearing device. In this case, in the portion of the lid member where the gate trace (concave gate trace) is provided, the separation distance between both end faces when the gate trace does not exist is t, the average length of the filler is La, and the length of the filler It is preferable that the relational expression t> 0.86D + La + 6Lσ is satisfied, where Lσ is the standard deviation. In this way, even when the gate trace is formed in a concave shape and the filler is dropped from the portion of the lid member where the gate trace is provided, the both end surfaces of the lid member are prevented from being in communication. be able to. Thereby, it is possible to prevent a fatal problem such as external leakage of the lubricating oil interposed in the internal space of the housing.

ゲート跡は、円盤状をなした蓋部材の軸心上に配置(形成)されているのが好ましい。このような蓋部材は、ゲートがキャビティのうちで蓋部材の端面中央に対応する位置に開口した成形金型を用いて射出成形することで得られる。この場合、ゲートを介してキャビティ内に溶融状態の樹脂材料(溶融樹脂)が充填されると、この溶融樹脂はキャビティの中央から半径方向外側に均等に広がる。従って、ウェルドの発生を避けることができ、高強度でかつ高精度の蓋部材が得られる。   The gate mark is preferably arranged (formed) on the axis of the disc-shaped lid member. Such a lid member can be obtained by injection molding using a molding die whose gate is opened at a position corresponding to the center of the end surface of the lid member in the cavity. In this case, when the molten resin material (molten resin) is filled into the cavity through the gate, the molten resin spreads evenly outward in the radial direction from the center of the cavity. Therefore, the occurrence of welds can be avoided, and a lid member with high strength and high accuracy can be obtained.

蓋部材成形用の樹脂材料としては、繊維状充填材を含むものが好適に使用可能である。高強度の蓋部材を容易に得ることができるからである。使用可能な繊維状充填材としては、ガラス繊維(GF)や炭素繊維(CF)を挙げることができる。もちろん、樹脂材料には、蓋部材の要求特性に応じてその他の充填材(例えば、カーボンブラック)を含めることができる。   As the resin material for forming the lid member, a material containing a fibrous filler can be suitably used. This is because a high-strength lid member can be easily obtained. Examples of the fibrous filler that can be used include glass fiber (GF) and carbon fiber (CF). Of course, the resin material can include other fillers (for example, carbon black) according to the required characteristics of the lid member.

蓋部材は、ハウジングの一端内周に固定するのが好ましい。このようにすれば、蓋部材をハウジングの一端面に固定する場合に比べ、蓋部材の直径寸法を小さくすることができる分、蓋部材の成形金型としてキャビティの容積が小さいものを使用することができる。キャビティの容積が小さくなれば、その分だけ開口径の小さなゲートを使用することが可能となるので、ゲート跡を小さくすることができ、その結果、ゲート跡から充填材が脱落等する可能性を一層低減することができる。   The lid member is preferably fixed to the inner periphery of one end of the housing. In this way, as compared with the case where the lid member is fixed to one end surface of the housing, the diameter of the lid member can be reduced, so that a molding die for the lid member having a small cavity volume should be used. Can do. If the volume of the cavity is reduced, it becomes possible to use a gate with a smaller opening diameter, so that the gate trace can be reduced, and as a result, the filler may fall off from the gate trace. Further reduction can be achieved.

本発明に係る流体動圧軸受装置は、さらに、蓋部材の内端面で形成されるスラスト軸受隙間と、スラスト軸受隙間内の潤滑油に動圧作用を発生させるスラスト動圧発生部とを有するものとすることができる。この場合、蓋部材の内端面には、スラスト動圧発生部を、蓋部材を射出成形するのと同時に型成形することができる。これにより、軸部材をスラスト一方向に非接触支持するスラスト軸受部を安価に構築することができる。   The fluid dynamic pressure bearing device according to the present invention further includes a thrust bearing gap formed on the inner end face of the lid member, and a thrust dynamic pressure generating section for generating a dynamic pressure action on the lubricating oil in the thrust bearing gap. It can be. In this case, the thrust dynamic pressure generating portion can be molded on the inner end surface of the lid member simultaneously with the injection molding of the lid member. Thereby, the thrust bearing part which non-contact-supports a shaft member in one thrust direction can be constructed at low cost.

ハウジングの内周面には、軸部材の外周面との間にラジアル軸受隙間を形成するスリーブ部を固定しても良い。また、これに替えて、軸部材の外周面に、ハウジングの内周面との間にラジアル軸受隙間を形成するスリーブ部を固定しても良い。これら何れかの構成を採用すれば、流体動圧軸受装置の各部に求められる要求特性を最適化し易くなる。   A sleeve portion that forms a radial bearing gap with the outer peripheral surface of the shaft member may be fixed to the inner peripheral surface of the housing. Alternatively, a sleeve portion that forms a radial bearing gap between the outer peripheral surface of the shaft member and the inner peripheral surface of the housing may be fixed. If any one of these configurations is adopted, the required characteristics required for each part of the fluid dynamic bearing device can be easily optimized.

以上で述べた本発明に係る流体動圧軸受装置は、ステータコイルと、ロータマグネットとを備えたモータ、例えばディスク駆動装置用のスピンドルモータの他、冷却ファン用のファンモータ、レーザビームプリンタ用のポリゴンスキャナモータなどに組み込んで好適に使用可能である。   The fluid dynamic pressure bearing device according to the present invention described above includes a motor having a stator coil and a rotor magnet, for example, a spindle motor for a disk drive device, a fan motor for a cooling fan, and a laser beam printer. It can be suitably used by being incorporated in a polygon scanner motor or the like.

以上に示すように、本発明によれば、ハウジングの一端開口部が蓋部材で閉塞される流体動圧軸受装置において、所望の軸受性能を安定的に維持可能としつつ、そのコスト低減を図ることができる。   As described above, according to the present invention, in a fluid dynamic bearing device in which one end opening of a housing is closed with a lid member, the desired bearing performance can be stably maintained and the cost can be reduced. Can do.

流体動圧軸受装置が組み込まれたスピンドルモータの概略断面図である。It is a schematic sectional drawing of the spindle motor incorporating the fluid dynamic pressure bearing apparatus. 本発明の第1実施形態に係る流体動圧軸受装置の含軸断面図である。1 is a cross-sectional view including a shaft of a fluid dynamic bearing device according to a first embodiment of the present invention. (a)図はスリーブ部の断面図、(b)図はスリーブ部の下側端面を示す平面図である。(A) The figure is sectional drawing of a sleeve part, (b) The figure is a top view which shows the lower end surface of a sleeve part. (a)図は蓋部材の内底面を示す平面図、(b)図は(a)図中のX−X線矢視拡大断面図である。(A) A figure is a top view which shows the inner bottom face of a cover member, (b) A figure is an XX arrow expanded sectional view in (a) figure. 蓋部材の成形工程の要部概略断面図である。It is a principal part schematic sectional drawing of the formation process of a cover member. 蓋部材の成形工程の終了段階における要部概略断面図である。It is a principal part schematic sectional drawing in the completion | finish stage of the formation process of a cover member. 本発明の第2実施形態に係る流体動圧軸受装置の含軸断面図である。It is a shaft-containing sectional view of a fluid dynamic bearing device according to a second embodiment of the present invention. 本発明の第3実施形態に係る流体動圧軸受装置の含軸断面図である。It is a shaft-containing sectional view of a fluid dynamic bearing device according to a third embodiment of the present invention.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、流体動圧軸受装置が組み込まれた情報機器用スピンドルモータの概略断面図である。このスピンドルモータは、HDD等のディスク駆動装置に用いられるものであり、流体動圧軸受装置1と、流体動圧軸受装置1の軸部材2に固定されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、モータベース6とを備えている。ステータコイル4はモータベース6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられる。流体動圧軸受装置1のハウジング7はモータベース6の内周に固定される。ディスクハブ3にはディスクDが一又は複数枚(図示例は2枚)保持されている。以上の構成において、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3およびディスクハブ3に保持されたディスク9が軸部材2と一体に回転する。   FIG. 1 is a schematic cross-sectional view of a spindle motor for information equipment in which a fluid dynamic bearing device is incorporated. The spindle motor is used in a disk drive device such as an HDD, and includes a fluid dynamic pressure bearing device 1, a disk hub 3 fixed to a shaft member 2 of the fluid dynamic pressure bearing device 1, and a radial gap, for example. , A stator coil 4 and a rotor magnet 5, and a motor base 6. The stator coil 4 is attached to the outer periphery of the motor base 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the fluid dynamic bearing device 1 is fixed to the inner periphery of the motor base 6. The disk hub 3 holds one or a plurality of disks D (two in the illustrated example). In the above configuration, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk hub 3 and the disk 9 held by the disk hub 3 are rotated. It rotates integrally with the shaft member 2.

図2に、本発明の第1実施形態に係る流体動圧軸受装置1を示す。この流体動圧軸受装置1は、軸部材2と、軸部材2の外径側に配置されたスリーブ部8と、軸部材2およびスリーブ部8を内周に収容した円筒状のハウジング7と、ハウジング7の一端開口部を閉塞する蓋部材10とを備える。ハウジング7の内部空間は潤滑油(密な散点ハッチングで示す)で満たされている。なお、以下では、説明の便宜上、蓋部材10が設けられた側を下側、その軸方向反対側を上側というが、流体動圧軸受装置1の使用態様を限定するものではない。   FIG. 2 shows a fluid dynamic bearing device 1 according to the first embodiment of the present invention. The fluid dynamic bearing device 1 includes a shaft member 2, a sleeve portion 8 disposed on the outer diameter side of the shaft member 2, a cylindrical housing 7 in which the shaft member 2 and the sleeve portion 8 are accommodated on the inner periphery, And a lid member 10 that closes one end opening of the housing 7. The internal space of the housing 7 is filled with lubricating oil (indicated by dense dotted hatching). In the following, for convenience of explanation, the side on which the lid member 10 is provided is referred to as the lower side, and the opposite side in the axial direction is referred to as the upper side. However, the usage mode of the fluid dynamic bearing device 1 is not limited.

軸部材2は、溶製材(ステンレス鋼に代表される非多孔質の金属材料)で形成され、軸部21と、軸部21の下端に一体または別体に設けられたフランジ部22とを備える。   The shaft member 2 is formed of a melted material (non-porous metal material typified by stainless steel), and includes a shaft portion 21 and a flange portion 22 provided integrally or separately at the lower end of the shaft portion 21. .

スリーブ部8は、例えば、焼結金属の多孔質体で円筒状に形成され、ハウジング7の小径内周面7a1に固定される。スリーブ部8は、多孔質樹脂に代表されるその他の多孔質体、あるいは黄銅等の軟質金属などで形成することもできる。   For example, the sleeve portion 8 is formed of a porous body of sintered metal in a cylindrical shape, and is fixed to the small-diameter inner peripheral surface 7 a 1 of the housing 7. The sleeve portion 8 can also be formed of another porous body typified by a porous resin, or a soft metal such as brass.

スリーブ部8の内周面8aには、対向する軸部21の外周面21aとの間にラジアル軸受部R1,R2のラジアル軸受隙間を形成する円筒状のラジアル軸受面が軸方向の二箇所に離間して設けられている。2つのラジアル軸受面には、図3(a)に示すように、ラジアル軸受隙間内の潤滑油に動圧作用を発生させるためのラジアル動圧発生部A1,A2がそれぞれ形成されている。本実施形態のラジアル動圧発生部A1,A2は、それぞれ、互いに反対方向に傾斜し、かつ軸方向に離間して設けられた複数の上側動圧溝Aa1および下側動圧溝Aa2と、両動圧溝Aa1,Aa2を区画する凸状の丘部とを有し、全体としてヘリングボーン形状を呈する。丘部は、周方向で隣り合う動圧溝間に設けられた傾斜丘部Abと、上下の動圧溝Aa1,Aa2間に設けられ、傾斜丘部Abと略同径の環状丘部Acとからなる。   On the inner peripheral surface 8a of the sleeve portion 8, cylindrical radial bearing surfaces that form radial bearing gaps of the radial bearing portions R1 and R2 between the opposed outer peripheral surface 21a of the shaft portion 21 are provided at two axial positions. They are spaced apart. As shown in FIG. 3A, radial dynamic pressure generating portions A1 and A2 for generating a dynamic pressure action on the lubricating oil in the radial bearing gap are formed on the two radial bearing surfaces. The radial dynamic pressure generating parts A1 and A2 of the present embodiment are each provided with a plurality of upper dynamic pressure grooves Aa1 and lower dynamic pressure grooves Aa2 that are inclined in opposite directions and spaced apart in the axial direction. It has convex hills that define the dynamic pressure grooves Aa1 and Aa2, and has a herringbone shape as a whole. The hill part is provided between the inclined hill part Ab provided between the dynamic pressure grooves adjacent in the circumferential direction, and the annular hill part Ac provided between the upper and lower dynamic pressure grooves Aa1 and Aa2 and having substantially the same diameter as the inclined hill part Ab. Consists of.

スリーブ部8の下側端面8bには、対向するフランジ部22の上側端面22aとの間に第1スラスト軸受部T1のスラスト軸受隙間を形成する環状のスラスト軸受面が設けられる。このスラスト軸受面には、図3(b)に示すように、スラスト軸受隙間内の潤滑油に動圧作用を発生させるためのスラスト動圧発生部Bが形成されている。図示例のスラスト動圧発生部Bは、スパイラル形状の動圧溝Baと、動圧溝Baを区画形成する丘部とを円周方向に交互に配して構成される。このスラスト動圧発生部Bは、対向するフランジ部22の上側端面22aに形成しても良い。   An annular thrust bearing surface that forms a thrust bearing gap of the first thrust bearing portion T1 between the lower end surface 8b of the sleeve portion 8 and the upper end surface 22a of the opposing flange portion 22 is provided. As shown in FIG. 3B, a thrust dynamic pressure generating portion B for generating a dynamic pressure action on the lubricating oil in the thrust bearing gap is formed on the thrust bearing surface. The thrust dynamic pressure generating portion B in the illustrated example is configured by alternately arranging spiral-shaped dynamic pressure grooves Ba and hill portions defining and forming the dynamic pressure grooves Ba in the circumferential direction. The thrust dynamic pressure generating portion B may be formed on the upper end surface 22a of the opposing flange portion 22.

ハウジング7は、相対的に薄肉で円筒状をなした側部7aと、側部7aの上側に設けられ、相対的に厚肉でリング状をなしたシール部7bとを一体に有し、溶製材(黄銅やステンレス鋼等の非多孔質の金属材料)又は樹脂材料で軸方向の両端が開口した略円筒状に形成される。側部7aは小径内周面7a1と大径内周面7a2とを有し、両内周面7a1,7a2には、接着、圧入、圧入接着(圧入と接着の併用)等の適宜の手段により、スリーブ部8および蓋部材10がそれぞれ固定される。   The housing 7 integrally includes a relatively thin and cylindrical side portion 7a and a relatively thick and ring-shaped seal portion 7b provided on the upper side of the side portion 7a. It is made of a lumber (non-porous metal material such as brass or stainless steel) or a resin material and has a substantially cylindrical shape with both axial ends opened. The side portion 7a has a small-diameter inner peripheral surface 7a1 and a large-diameter inner peripheral surface 7a2, and the inner peripheral surfaces 7a1 and 7a2 are bonded to the inner peripheral surfaces 7a1 and 7a2 by appropriate means such as adhesion, press-fitting, and press-fitting (combination of press-fitting and adhesion) The sleeve portion 8 and the lid member 10 are fixed.

シール部7bの内周面7b1は、下方(ハウジング7の内部側)に向けて漸次縮径したテーパ面状に形成され、対向する軸部21の外周面21aとの間にくさび状のシール空間Sを形成する。シール部7bの下側端面7b2の内径側領域には、軸受スリーブ8の上側端面8cが当接しており、ハウジング7と軸受スリーブ8の軸方向における相対的な位置決めがなされている。シール空間Sは、ハウジング7の内部空間に充填された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内で潤滑油の油面を常にシール空間S内に保持する。そのため、ハウジング7内部空間からの潤滑油漏れが効果的に防止される。なお、シール部7bと側部7aとは別体に設けても構わない。   The inner peripheral surface 7b1 of the seal portion 7b is formed in a tapered surface shape that is gradually reduced in diameter downward (inside the housing 7), and a wedge-shaped seal space between the outer peripheral surface 21a of the opposed shaft portion 21. S is formed. The upper end surface 8c of the bearing sleeve 8 is in contact with the inner diameter side region of the lower end surface 7b2 of the seal portion 7b, and the housing 7 and the bearing sleeve 8 are relatively positioned in the axial direction. The seal space S has a buffer function that absorbs the volume change amount accompanying the temperature change of the lubricating oil filled in the internal space of the housing 7, and always seals the oil surface of the lubricating oil within the assumed temperature change range. Hold in the space S. Therefore, lubricating oil leakage from the internal space of the housing 7 is effectively prevented. The seal part 7b and the side part 7a may be provided separately.

蓋部材10は、円盤状をなし、ハウジング7の大径内周面7a2に適宜の手段で固定されてハウジング7の下端開口部を閉塞している。この蓋部材10は、例えば、液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアセタール(POM)、ポリアミド(PA)等の結晶性樹脂、あるいはポリフェニルサルフォン(PPSU)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)、ポリアミドイミド(PAI)等の非晶性樹脂をベース樹脂とした樹脂材料で射出成形される。上記のベース樹脂は、例えば、一種のみを選択使用しても良いし、二種以上混合して使用しても良く、ここではLCPをベース樹脂とした樹脂材料を用いている。ベース樹脂には、例えば、ガラス繊維(GF)や炭素繊維(CF)等の繊維状充填材、チタン酸カリウム等のウィスカ状充填材、マイカ等の鱗片状充填材、カーボンブラック、黒鉛、カーボンナノマテリアル等の粉末状充填材の群から選択される少なくとも一種が蓋部材10の要求特性に応じて配合される。本実施形態では、蓋部材10の強度および寸法安定性を高めると共に、蓋部材10に高い導電性を付与する観点から、炭素繊維およびカーボンブラックを含む樹脂材料が使用される。   The lid member 10 has a disk shape, is fixed to the large-diameter inner peripheral surface 7a2 of the housing 7 by an appropriate means, and closes the lower end opening of the housing 7. The lid member 10 is made of, for example, a crystalline resin such as liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyacetal (POM), polyamide (PA), or polyphenylsulfone (PPSU). ), Polyethersulfone (PES), polyetherimide (PEI), polyamideimide (PAI), etc., and a resin material using an amorphous resin as a base resin. For example, only one kind of the base resin may be selected and used, or two or more kinds may be mixed and used. Here, a resin material using LCP as the base resin is used. Examples of the base resin include fibrous fillers such as glass fibers (GF) and carbon fibers (CF), whisker-like fillers such as potassium titanate, scaly fillers such as mica, carbon black, graphite, carbon nano At least one selected from the group of powdery fillers such as materials is blended according to the required characteristics of the lid member 10. In the present embodiment, a resin material containing carbon fiber and carbon black is used from the viewpoint of enhancing the strength and dimensional stability of the lid member 10 and imparting high conductivity to the lid member 10.

図4(a)に示すように、蓋部材10の上側端面(内端面)10aには、対向するフランジ部22の下側端面22bとの間に第2スラスト軸受部T2のスラスト軸受隙間を形成する円環状のスラスト軸受面が設けられている。このスラスト軸受面には、第2スラスト軸受部T2のスラスト軸受隙間内の潤滑油に動圧作用を発生させるスラスト動圧発生部Cが形成されている。図示例のスラスト動圧発生部Cは、スパイラル形状の動圧溝Caを円周方向に複数配して構成されている。なお、このスラスト動圧発生部Cは、対向するフランジ部22の下側端面22bに形成しても良い。   As shown in FIG. 4A, a thrust bearing gap of the second thrust bearing portion T2 is formed between the upper end surface (inner end surface) 10a of the lid member 10 and the lower end surface 22b of the opposing flange portion 22. An annular thrust bearing surface is provided. A thrust dynamic pressure generating portion C for generating a dynamic pressure action on the lubricating oil in the thrust bearing gap of the second thrust bearing portion T2 is formed on the thrust bearing surface. The illustrated thrust dynamic pressure generating portion C is configured by arranging a plurality of spiral dynamic pressure grooves Ca in the circumferential direction. The thrust dynamic pressure generating portion C may be formed on the lower end surface 22b of the opposing flange portion 22.

蓋部材10は、その上側端面10aの軸心上に配置されたゲート跡11を有する。本実施形態のゲート跡11は、蓋部材10の上側端面10aの軸心上に開口した凹状をなし、かつ、成形金型30(図5参照。詳細は後述する)内で固化した樹脂材料が蓋部材10の離型に伴って分断されることで形成された状態を維持している。すなわち、凹状のゲート跡11は、蓋部材10の離型に伴って成形金型30内で固化した樹脂材料が分断されることにより形成された凹凸形状の分断部12を有している[図4(b)参照]。   The lid member 10 has a gate mark 11 disposed on the axis of the upper end surface 10a. The gate mark 11 of the present embodiment has a concave shape opened on the axial center of the upper end surface 10a of the lid member 10, and is made of a resin material solidified in the molding die 30 (see FIG. 5, details will be described later). The state formed by being divided along with the release of the lid member 10 is maintained. That is, the concave gate mark 11 has an uneven-shaped dividing portion 12 formed by dividing the resin material solidified in the molding die 30 as the lid member 10 is released [FIG. 4 (b)].

ここで、蓋部材10が上記態様のゲート跡11(離型後の除去加工等が省略されたゲート跡11)を有する関係上、蓋部材10を構成する樹脂材料中に含まれる充填材(特に長寸の繊維状充填材。ここでは炭素繊維)が何らかの拍子に脱落等する可能性がある。この場合、充填材が脱落した箇所に蓋部材10の両端面10a,10bに開口した孔部が形成され、この孔部を介してハウジング7の内部空間に充填された潤滑油が外部に漏れ出すといった致命的な問題が生じ得る。そこで、蓋部材10離型後のゲート処理を省略可能としつつ、上記の致命的な問題発生を可及的に防止すべく、蓋部材10のうちゲート跡11が形成された部分(蓋部材10の軸心部)において以下の関係式(1)を満たすようにした。
関係式(1):t>0.86D+La+6Lσ
但し、t:蓋部材10のうちゲート跡11が形成された部分においてゲート跡11が存在しないとした場合における両端面10a,10b間の離間距離[単位:mm]、D:キャビティ33に対するゲート34(図5参照)の開口径、La:充填材の平均長、Lσ:充填材長さの標準偏差である。ここでいう“充填材”とは、蓋部材10の成形用樹脂材料中に含めた充填材のうち平均長が最大のものをいう。
Here, since the lid member 10 has the gate trace 11 (the gate trace 11 from which the removal process after the mold release or the like is omitted) of the above aspect, the filler (particularly, the filler included in the resin material constituting the lid member 10 (particularly, There is a possibility that a long fibrous filler (here, carbon fiber) may fall off. In this case, holes are formed in both end faces 10a and 10b of the lid member 10 where the filler has fallen, and the lubricating oil filled in the internal space of the housing 7 leaks to the outside through the holes. Such a fatal problem can occur. Therefore, in order to prevent the above fatal problem from occurring as much as possible, while making it possible to omit the gate processing after the lid member 10 is released, the portion of the lid member 10 where the gate mark 11 is formed (the lid member 10). The following relational expression (1) is satisfied at the axial center).
Relational expression (1): t> 0.86D + La + 6Lσ
However, t: separation distance [unit: mm] between both end faces 10a and 10b when the gate trace 11 does not exist in the portion of the lid member 10 where the gate trace 11 is formed, D: the gate 34 with respect to the cavity 33 The opening diameter of La (see FIG. 5), La: average length of filler, and Lσ: standard deviation of filler length. Here, the “filler” refers to the filler having the maximum average length among the fillers included in the molding resin material of the lid member 10.

上記の関係式(1)における“0.86D”は、蓋部材10の上側端面(内端面)10a又は下側端面(外端面)10bに開口した凹状のゲート跡11が形成される場合、ゲート跡11の開口寸法は最大でもゲート34の開口径程度であること、また、開口径が0.5mmよりも小さいゲート34を採用した場合、ゲート跡11の断面形状はゲート跡11の底部側に向けて開口寸法が漸次縮小した三角形状を呈すると共に、ゲート跡11の底部を画成する二辺がなす角度θが60°よりも小さくなることはないこと、を本願発明者が鋭意検討の結果見出したためである。すなわち、“0.86D”は、(D/2)×√3から導き出せる。また、上式において“6Lσ”を加算することにしたのは、使用する充填材(繊維状充填材)の長さ寸法のバラツキを考慮したためである。すなわち、長さ寸法のバラツキがない充填材を使用するのは現実的に不可能であり、充填材長さの標準偏差の6倍に相当する値を加算しておけば、使用する充填材に長さのバラツキがあったとしても、上述の致命的な不具合が生じるのを確実に防止することができる。   In the above relational expression (1), “0.86D” is the gate when the concave gate mark 11 opened on the upper end surface (inner end surface) 10a or the lower end surface (outer end surface) 10b of the lid member 10 is formed. The opening dimension of the trace 11 is about the opening diameter of the gate 34 at the maximum, and when the gate 34 having an opening diameter smaller than 0.5 mm is employed, the cross-sectional shape of the gate trace 11 is on the bottom side of the gate trace 11. As a result of intensive studies by the inventor of the present application, the angle θ formed by the two sides defining the bottom of the gate trace 11 does not become smaller than 60 ° while the opening size is gradually reduced toward the opening. This is because they found it. That is, “0.86D” can be derived from (D / 2) × √3. Further, the reason why “6Lσ” is added in the above equation is because variation in the length of the filler (fibrous filler) to be used is taken into consideration. That is, it is practically impossible to use a filler having no variation in length, and if a value corresponding to 6 times the standard deviation of the filler length is added, the filler used Even if there is a variation in length, it is possible to reliably prevent the above-mentioned fatal problem from occurring.

以上の構成を有する蓋部材10は、例えば以下の成形工程を経て製造することができる。   The lid member 10 having the above configuration can be manufactured through, for example, the following molding process.

図5は、蓋部材10の成形工程の要部を概念的に示している。同図に示す成形金型30は、相対的に接近および離反移動可能に同軸配置された第1金型31および第2金型32を備えており、両型31,32を型締めした状態で、両型31,32間に蓋部材10の形状に対応したキャビティ33が画成される。第1金型31は、蓋部材10の上側端面10aを成形するための成形面31aと、キャビティ33に開口したゲートとしての点状ゲート34とを有し、成形面31aにはスラスト動圧発生部Cの形状に対応した型部が設けられている(図示せず)。点状ゲート34は、キャビティ33のうち、蓋部材10の上側底面10aの軸心部に対応する位置に開口している。点状ゲート34の開口径Dは0.5mmよりも小さく設定され(D<0.5mm)、ここではD=0.3mmに設定されている。また、ゲート跡11が上述したような凹状に形成される場合があることを考慮し、上述した関係式(1)を変形してなる“D”についての関係式、すなわち、D<{t−(La+6Lσ)}/0.86の関係式をさらに満たすように点状ゲート34の開口径Dが設定される。   FIG. 5 conceptually shows the main part of the molding process of the lid member 10. The molding die 30 shown in the figure includes a first die 31 and a second die 32 that are coaxially arranged so as to be relatively close to and away from each other, and in a state where both the die 31 and 32 are clamped. A cavity 33 corresponding to the shape of the lid member 10 is defined between the molds 31 and 32. The first mold 31 has a molding surface 31a for molding the upper end surface 10a of the lid member 10, and a dotted gate 34 as a gate opened to the cavity 33. Thrust dynamic pressure is generated on the molding surface 31a. A mold part corresponding to the shape of the part C is provided (not shown). The dotted gate 34 opens in the cavity 33 at a position corresponding to the axial center portion of the upper bottom surface 10 a of the lid member 10. The opening diameter D of the dotted gate 34 is set smaller than 0.5 mm (D <0.5 mm), and here, D = 0.3 mm. Considering that the gate trace 11 may be formed in the concave shape as described above, a relational expression for “D” obtained by modifying the relational expression (1), that is, D <{t− The opening diameter D of the dotted gate 34 is set so as to further satisfy the relational expression (La + 6Lσ)} / 0.86.

具体例を挙げると、ここでは、蓋部材10のうちゲート跡11が形成されることとなる部分において、ゲート跡11が存在しない場合における両端面10a,10b間の離間距離=1.05mmの蓋部材10を、平均長La=0.08mmで標準偏差Lσ=0.1mmの炭素繊維を含む樹脂材料で射出成形する。この場合、上記の関係式(1)を変形してなる“D”についての関係式のうち、{t−(La+6Lσ)}/0.86の値は、{1.05−(0.08+6×0.1)}/0.86=0.43となる。従って、開口径D=0.3mmの点状ゲート34は、D<0.5mmの関係式、およびD<{t−(La+6Lσ)}/0.86の関係式の双方を満たす。   As a specific example, here, in the portion where the gate trace 11 is to be formed in the lid member 10, the distance between the both end faces 10 a and 10 b when the gate trace 11 does not exist = 1.05 mm. The member 10 is injection-molded with a resin material containing carbon fibers having an average length La = 0.08 mm and a standard deviation Lσ = 0.1 mm. In this case, among the relational expressions for “D” obtained by modifying the above relational expression (1), the value of {t− (La + 6Lσ)} / 0.86 is {1.05− (0.08 + 6 × 0.1)} / 0.86 = 0.43. Therefore, the dotted gate 34 having an opening diameter D = 0.3 mm satisfies both the relational expression D <0.5 mm and the relational expression D <{t− (La + 6Lσ)} / 0.86.

以上の構成からなる成形金型において、第1金型31と第2金型32とを相対的に接近移動させて型締めを行う。型締め後、図示しない射出成形機から射出された溶融状態の樹脂材料(溶融樹脂P)は、図示しないスプルーおよびランナ、さらには点状ゲート34を介してキャビティ33内に充填される。ゲート34が上記態様で配置されていることにより、キャビティ33内に充填された溶融樹脂Pは、キャビティ33の中央から半径方向外側に均等に広がる。従って、ウェルドの発生を避けることができ、高強度かつ高精度の蓋部材10を成形することができる。そして、キャビティ33内に充填された溶融樹脂Pが固化すると、型開きを行ってから第1金型31に設けた図示しないイジェクトピンを前進移動させ、成形された蓋部材10を型外に排出(離型)する。   In the molding die having the above configuration, the first die 31 and the second die 32 are moved relatively close to perform clamping. After the mold clamping, a molten resin material (molten resin P) injected from an injection molding machine (not shown) is filled into the cavity 33 via a sprue and runner (not shown) and further a dotted gate 34. By arranging the gates 34 in the above-described manner, the molten resin P filled in the cavities 33 spreads uniformly from the center of the cavities 33 outward in the radial direction. Therefore, generation of welds can be avoided, and the lid member 10 with high strength and high accuracy can be formed. When the molten resin P filled in the cavity 33 is solidified, after the mold is opened, an eject pin (not shown) provided in the first mold 31 is moved forward, and the molded lid member 10 is discharged out of the mold. (Release).

本実施形態では、キャビティ33内で固化した樹脂材料の一部(キャビティ33のうち、ゲート34の出口付近で固化した樹脂材料)がゲート34内で固化した樹脂材料と繋がった状態で蓋部材10が離型される(図6中に示す散点ハッチングを参照)。これにより、上側端面10aの軸心上に凹状のゲート跡11を有する蓋部材10が得られる。   In this embodiment, the lid member 10 in a state where a part of the resin material solidified in the cavity 33 (resin material solidified near the exit of the gate 34 in the cavity 33) is connected to the resin material solidified in the gate 34. Is released (see the dotted hatching shown in FIG. 6). Thereby, the lid member 10 having the concave gate mark 11 on the axis of the upper end face 10a is obtained.

そして、例えば、ハウジング7の小径内周面7a1にスリーブ部8を固定してからスリーブ部8の内周に軸部材2の軸部21を挿入し、その後、ハウジング7の大径内周面7a2の軸方向所定位置(軸部材2のフランジ部22の上側および下側に所定幅のスラスト軸受隙間を形成し得る位置)に、成形金型30から離型された状態のままの蓋部材10を固定する。これにより、流体動圧軸受装置1の組立が完了する。その後、スリーブ部8の内部気孔を含めてハウジング7の内部空間を潤滑油で満たすことにより、図2に示す流体動圧軸受装置1が完成する。   For example, after fixing the sleeve portion 8 to the small-diameter inner peripheral surface 7 a 1 of the housing 7, the shaft portion 21 of the shaft member 2 is inserted into the inner periphery of the sleeve portion 8, and then the large-diameter inner peripheral surface 7 a 2 of the housing 7. The lid member 10 in a state where it is released from the molding die 30 at a predetermined position in the axial direction (position where a thrust bearing gap having a predetermined width can be formed above and below the flange portion 22 of the shaft member 2). Fix it. Thereby, the assembly of the fluid dynamic bearing device 1 is completed. Then, the fluid dynamic bearing device 1 shown in FIG. 2 is completed by filling the internal space of the housing 7 including the internal pores of the sleeve portion 8 with lubricating oil.

以上の構成からなる流体動圧軸受装置1において、スリーブ部8の内周面8aの上下二箇所に離間して設けられたラジアル軸受面と、これらに対向する軸部21の外周面21aとの間にそれぞれラジアル軸受隙間が形成される。そして軸部材2の回転に伴い、両ラジアル軸受隙間に形成される油膜の圧力が動圧発生部A1,A2の動圧作用によって高められ、その結果、軸部材2をラジアル方向に非接触支持するラジアル軸受部R1,R2が軸方向の二箇所に離間して形成される。これと同時に、スリーブ部8の下側端面8bに設けたスラスト軸受面とこれに対向するフランジ部22の上側端面22aとの間、および、蓋部材10の内底面10aに設けたスラスト軸受面とこれに対向するフランジ部22の下側端面22bとの間に、スラスト軸受隙間がそれぞれ形成される。そして、軸部材2の回転に伴い、両スラスト軸受隙間に形成される油膜の圧力が、スラスト動圧発生部B,Cの動圧作用によってそれぞれ高められ、その結果、軸部材2をスラスト一方向に非接触支持する第1スラスト軸受部T1および軸部材2をスラスト他方向に支持する第2スラスト軸受部T2が形成される。   In the fluid dynamic pressure bearing device 1 having the above-described configuration, a radial bearing surface that is provided at two positions above and below the inner peripheral surface 8a of the sleeve portion 8 and an outer peripheral surface 21a of the shaft portion 21 that faces the radial bearing surface. A radial bearing gap is formed between each of them. As the shaft member 2 rotates, the pressure of the oil film formed in both radial bearing gaps is increased by the dynamic pressure action of the dynamic pressure generating portions A1 and A2, and as a result, the shaft member 2 is supported in a non-contact manner in the radial direction. Radial bearing portions R1 and R2 are formed apart from each other in two axial directions. At the same time, a thrust bearing surface provided between the thrust bearing surface provided on the lower end surface 8b of the sleeve portion 8 and the upper end surface 22a of the flange portion 22 opposed to the thrust bearing surface and the inner bottom surface 10a of the lid member 10 Thrust bearing gaps are respectively formed between the lower end face 22b of the flange portion 22 facing this. As the shaft member 2 rotates, the pressure of the oil film formed in both thrust bearing gaps is increased by the dynamic pressure action of the thrust dynamic pressure generating portions B and C. As a result, the shaft member 2 is moved in one direction of thrust. The first thrust bearing portion T1 that is supported in a non-contact manner and the second thrust bearing portion T2 that supports the shaft member 2 in the thrust other direction are formed.

以上で説明したように、本発明に係る流体動圧軸受装置1では、充填材を含む樹脂材料で円盤状に射出成形された蓋部材10が、蓋部材10の成形金型30内で固化した樹脂材料が蓋部材10の離型に伴って分断されることで形成された状態のゲート跡11を有する。これはすなわち、樹脂の射出成形品とされる蓋部材10が、離型された状態のまま使用されていることを意味する。そのため、離型後のゲート処理を省略した分、蓋部材10の製造コストが低減され、その結果流体動圧軸受装置1のコスト低減を図ることができる。また、蓋部材10は、円盤状に射出成形されることから所定の寸法・形状精度が容易かつ安定的に確保される。さらに、蓋部材10が充填材を含む樹脂材料(本実施形態では、LCPをベース樹脂とし、これに充填材としての炭素繊維およびカーボンブラックを配合した樹脂材料)で射出成形されることから、蓋部材10に必要とされる機械的強度や寸法安定性を確保することができる。以上のことから、流体動圧軸受装置1に必要とされる軸受性能を確保しつつ、そのコスト低減を図ることができる。   As described above, in the fluid dynamic pressure bearing device 1 according to the present invention, the lid member 10 injection-molded in a disc shape with a resin material containing a filler is solidified in the molding die 30 of the lid member 10. It has the gate trace 11 in a state formed by the resin material being divided along with the release of the lid member 10. This means that the lid member 10 that is an injection-molded product of resin is used in a released state. Therefore, the manufacturing cost of the lid member 10 is reduced by the amount that the gate processing after the mold release is omitted, and as a result, the cost of the fluid dynamic bearing device 1 can be reduced. Further, since the lid member 10 is injection-molded into a disc shape, predetermined dimensional and shape accuracy is easily and stably ensured. Further, since the lid member 10 is injection-molded with a resin material containing a filler (in this embodiment, LCP is a base resin, and a resin material in which carbon fibers and carbon black are blended as fillers), the lid member 10 The mechanical strength and dimensional stability required for the member 10 can be ensured. From the above, it is possible to reduce the cost while ensuring the bearing performance required for the fluid dynamic bearing device 1.

上記のように、蓋部材10離型後のゲート処理を省略可能となったのは、本願発明者が鋭意検討を重ねた結果、キャビティ33に対する開口径Dが0.5mmよりも小さい点状ゲート34を有する成形金型30で蓋部材10を円盤状に射出成形すれば良いことを見出したためである。すなわち、キャビティ33に対する点状ゲート34の開口径Dが0.5mmよりも小さければ(D<0.5mm)、ゲート跡11の分断部12からの充填材の露出を可及的に防止することができ、また、蓋部材10が円盤状をなした単純形状であれば、キャビティ33に対する開口径Dが0.5mmより小さいゲート34であっても、キャビティ33を隙間無く樹脂材料(溶融樹脂P)で満たし、高精度の成形品を得ることができるからである。   As described above, the gate treatment after the release of the lid member 10 can be omitted because the inventor of the present application has made extensive studies, and as a result, a point-like gate having an opening diameter D with respect to the cavity 33 smaller than 0.5 mm. This is because it has been found that the lid member 10 may be injection-molded into a disk shape with the molding die 30 having 34. That is, if the opening diameter D of the dotted gate 34 with respect to the cavity 33 is smaller than 0.5 mm (D <0.5 mm), the exposure of the filler from the dividing portion 12 of the gate trace 11 is prevented as much as possible. If the lid member 10 has a simple shape having a disk shape, even if the gate 34 has an opening diameter D smaller than 0.5 mm, the cavity 33 can be formed of a resin material (melted resin P) without a gap. This is because a highly accurate molded product can be obtained.

また、本実施形態において、ゲート跡11は、蓋部材10の上側端面(内底面)10aに開口した凹状に形成される。この場合、ゲート跡11の分断部12を、凹状をなしたゲート跡11の内周に配置することができるので、ゲート跡11の分断部12が、軸部材2のフランジ部22と接触するのを可及的に防止することができる。これにより、蓋部材10に含まれる充填材が流体動圧軸受装置1の内部空間に脱落等する事態を可及的に防止することができる。さらに、蓋部材10のうち凹状のゲート跡11が設けられた部分(軸心部)において、ゲート跡11が存在しない場合における両端面10a,10b間の離間距離をt、充填材の平均長をLa、充填材長さの標準偏差をLσとしたとき、t>0.86D+La+6Lσの関係式を満たすようにしたので、蓋部材10のうち凹状のゲート跡11が設けられた部分から充填材が脱落等した場合でも、蓋部材10の両端面10a,10bが連通状態となるのを防止することができる。これにより、ハウジング7の内部空間に介在する潤滑油の外部漏洩といった致命的な不具合が生じるのを防止することができる。   In the present embodiment, the gate mark 11 is formed in a concave shape opened on the upper end surface (inner bottom surface) 10 a of the lid member 10. In this case, since the dividing portion 12 of the gate trace 11 can be disposed on the inner periphery of the gate trace 11 having a concave shape, the dividing portion 12 of the gate trace 11 comes into contact with the flange portion 22 of the shaft member 2. Can be prevented as much as possible. Thereby, the situation where the filler contained in the lid member 10 falls into the internal space of the fluid dynamic bearing device 1 can be prevented as much as possible. Further, in the portion of the lid member 10 where the concave gate trace 11 is provided (axial center portion), the separation distance between the both end faces 10a and 10b when the gate trace 11 does not exist is t, and the average length of the filler is Since the relational expression t> 0.86D + La + 6Lσ is satisfied when the standard deviation of La and the length of the filler is Lσ, the filler is dropped from the portion of the lid member 10 where the concave gate mark 11 is provided. Even if it is equal, it is possible to prevent the both end surfaces 10a and 10b of the lid member 10 from being in communication. Thereby, it is possible to prevent a fatal problem such as external leakage of the lubricating oil interposed in the internal space of the housing 7 from occurring.

さらに、蓋部材10をハウジング7の下端内周に固定したので、例えば蓋部材10をハウジング7の下端面に固定する場合に比べ、蓋部材10の直径寸法を小さくすることができる。この場合、蓋部材10の成形金型30としてキャビティ33の容積が小さいものを使用することができる。キャビティ33の容積が小さくなれば、その分だけ開口径Dの小さなゲート34を使用することが可能となるので、ゲート跡11を小さくすることができる。従って、ゲート跡11から充填材が脱落等する可能性を一層低減することができる。   Furthermore, since the lid member 10 is fixed to the inner periphery of the lower end of the housing 7, for example, the diameter dimension of the lid member 10 can be made smaller than when the lid member 10 is fixed to the lower end surface of the housing 7. In this case, the molding die 30 of the lid member 10 having a small volume of the cavity 33 can be used. If the volume of the cavity 33 is reduced, the gate 34 having a smaller opening diameter D can be used, and the gate trace 11 can be reduced. Therefore, it is possible to further reduce the possibility of the filler dropping off from the gate mark 11.

以上、本発明の一実施形態に係る流体動圧軸受装置1について説明を行ったが、本発明は、以上で説明した実施形態に係る流体動圧軸受装置1に限定適用されるものではない。以下、本発明を適用可能な他の実施形態に係る流体動圧軸受装置1について図面を参照しながら説明する。以下に示す他の実施形態においては、説明を簡略化する観点から、上述した実施形態と実質的に同一の構成には同一の参照番号を付し、重複説明を省略する。   The fluid dynamic bearing device 1 according to the embodiment of the present invention has been described above, but the present invention is not limited to the fluid dynamic bearing device 1 according to the embodiment described above. Hereinafter, a fluid dynamic bearing device 1 according to another embodiment to which the present invention is applicable will be described with reference to the drawings. In the other embodiments described below, from the viewpoint of simplifying the description, the same reference numerals are given to substantially the same configurations as those of the above-described embodiments, and the duplicate description will be omitted.

図7は、本発明の第2実施形態に係る流体動圧軸受装置1の含軸断面図である。同図に示す流体動圧軸受装置1が図2に示すものと異なる主な点は、軸部材2をスラスト他方向に支持する第2スラスト軸受部T2が、軸部材2に一体又は別体に設けられたディスクハブ3の下側端面とこれに対向するハウジング7の上側端面との間に設けられる点、およびシール空間Sが、ハウジング7の外周面とこれに対向するディスクハブ3の内周面との間に形成される点にある。この実施形態では、蓋部材10がスラスト軸受部(スラスト軸受隙間)の形成に関与しないので、蓋部材10の上側端面10aにスラスト動圧発生部Cは形成されていない。   FIG. 7 is an axial cross-sectional view of the fluid dynamic bearing device 1 according to the second embodiment of the present invention. The main difference of the fluid dynamic pressure bearing device 1 shown in FIG. 2 from that shown in FIG. 2 is that the second thrust bearing portion T2 that supports the shaft member 2 in the thrust other direction is integrated or separated from the shaft member 2. The point provided between the lower end surface of the provided disk hub 3 and the upper end surface of the housing 7 facing this, and the seal space S are the outer peripheral surface of the housing 7 and the inner periphery of the disk hub 3 facing this. It is in the point formed between the surfaces. In this embodiment, since the lid member 10 is not involved in the formation of the thrust bearing portion (thrust bearing gap), the thrust dynamic pressure generating portion C is not formed on the upper end surface 10a of the lid member 10.

図示は省略するが、図2に示す本発明の第1実施形態に係る流体動圧軸受装置1、および図7に示す第2実施形態に係る流体動圧軸受装置1においては、スリーブ部8に相当する部分をハウジング7に一体的に設けることができる。この場合、部品点数を少なくして、流体動圧軸受装置1のコスト低減を図ることができる。   Although not shown, in the fluid dynamic bearing device 1 according to the first embodiment of the present invention shown in FIG. 2 and the fluid dynamic bearing device 1 according to the second embodiment shown in FIG. Corresponding portions can be provided integrally with the housing 7. In this case, the number of parts can be reduced and the cost of the fluid dynamic bearing device 1 can be reduced.

図2および図7を参照して説明した流体動圧軸受装置1では、ラジアル軸受部R1,R2のラジアル軸受隙間内の潤滑油に動圧作用を発生させるラジアル動圧発生部A1,A2(動圧溝Aa1,Aa2)をスリーブ部8の内周面8aに形成したが、ラジアル動圧発生部A1,A2は、軸部21の外周面21aに形成しても良い。軸部21の外周面21aにラジアル動圧発生部A1,A2(動圧溝Aa1,Aa2)を設ける場合には、転造や研削等の比較的簡便な手段を組み合わせることで微小な動圧溝Aa1,Aa2を精度良く形成することができる。この場合、スリーブ部8の内周面8aを凹凸のない平滑な円筒面に形成することができるので、焼結金属製のスリーブ部8の製造工程は、焼結体に対して内周面および外周面の矯正加工(サイジング)を行うことで完了する。従って、スリーブ部8の形状の単純化を通じて軸受の精度確保が図られ、スリーブ部8、ひいては流体動圧軸受装置1全体としての特性確保が可能となる。   In the fluid dynamic pressure bearing device 1 described with reference to FIGS. 2 and 7, the radial dynamic pressure generating portions A1 and A2 (dynamics) that generate a dynamic pressure action on the lubricating oil in the radial bearing gaps of the radial bearing portions R1 and R2. Although the pressure grooves Aa1, Aa2) are formed on the inner peripheral surface 8a of the sleeve portion 8, the radial dynamic pressure generating portions A1, A2 may be formed on the outer peripheral surface 21a of the shaft portion 21. When the radial dynamic pressure generating portions A1 and A2 (dynamic pressure grooves Aa1 and Aa2) are provided on the outer peripheral surface 21a of the shaft portion 21, minute dynamic pressure grooves can be obtained by combining relatively simple means such as rolling and grinding. Aa1 and Aa2 can be formed with high accuracy. In this case, since the inner peripheral surface 8a of the sleeve portion 8 can be formed into a smooth cylindrical surface without irregularities, the manufacturing process of the sleeve portion 8 made of sintered metal is performed on the inner peripheral surface and the sintered body. It is completed by correcting the outer peripheral surface (sizing). Therefore, the accuracy of the bearing can be ensured through simplification of the shape of the sleeve portion 8, and the characteristics of the sleeve portion 8, and thus the fluid dynamic bearing device 1 as a whole can be ensured.

なお、溶製材からなる軸部21(軸素材)の外周面に転造で動圧溝Aa1,Aa2を形成する場合、熱処理後の軸素材の外周面に転造加工を施すのが望ましい。転造により生じる肉の盛り上がり量を、未熱処理の軸素材に転造加工を施す場合に比べて小さくすることができるので、その後の仕上げ加工を簡便化することが、あるいは仕上げ加工を省略することができるからである。   In addition, when forming the dynamic pressure grooves Aa1 and Aa2 by rolling on the outer peripheral surface of the shaft portion 21 (shaft material) made of melted material, it is desirable to perform a rolling process on the outer peripheral surface of the shaft material after heat treatment. The amount of swell of meat produced by rolling can be reduced compared to the case of rolling the unheat-treated shaft material, so that the subsequent finishing process can be simplified or the finishing process can be omitted. Because you can.

図8は、本発明の第3実施形態に係る流体動圧軸受装置1の含軸断面図である。同図に示す流体動圧軸受装置1が図2に示す流体動圧軸受装置1と異なる主な点は、スリーブ部8を軸部材2(軸部21)の外周に固定し、スリーブ部8の外周面8dとこれに対向するハウジング7(側部7a)の小径内周面7a1との間にラジアル軸受部R1,R2のラジアル軸受隙間を形成した点、およびフランジ部22を省略し、スリーブ部8の上側端面8cとこれに対向するシール部7bの下側端面7b2との間に第1スラスト軸受部T1のスラスト軸受隙間を形成すると共に、スリーブ部8の下側端面8bとこれに対向する蓋部材10の上側端面10aとの間に第2スラスト軸受部T2のスラスト軸受隙間を形成した点にある。   FIG. 8 is an axial cross-sectional view of the fluid dynamic bearing device 1 according to the third embodiment of the present invention. 2 is different from the fluid dynamic bearing device 1 shown in FIG. 2 in that the sleeve portion 8 is fixed to the outer periphery of the shaft member 2 (shaft portion 21). The radial bearing gaps of the radial bearing portions R1 and R2 are formed between the outer peripheral surface 8d and the small-diameter inner peripheral surface 7a1 of the housing 7 (side portion 7a) opposite thereto, and the flange portion 22 is omitted, and the sleeve portion is omitted. A thrust bearing gap of the first thrust bearing portion T1 is formed between the upper end surface 8c of the seal 8 and the lower end surface 7b2 of the seal portion 7b facing the upper end surface 8c, and the lower end surface 8b of the sleeve portion 8 faces the lower end surface 8b. A thrust bearing gap of the second thrust bearing portion T2 is formed between the upper end surface 10a of the lid member 10 and the second thrust bearing portion T2.

以上の実施形態では、蓋部材10の上側端面10aの軸心上に凹状のゲート跡11が形成されているが、凹状のゲート跡11は蓋部材10の下側端面10bの軸心上に形成されるようにしても良い。また、以上の実施形態では、凹状に形成されたゲート跡11を有する蓋部材10にてハウジング7の一端開口部(下端開口部)を閉塞するようにしたが、上側端面10a又は下側端面10bに凸状に形成されたゲート跡11を有する蓋部材10によりハウジング7の一端開口部が閉塞されるようにしても良い。なお、ゲート跡11が蓋部材10の上側端面10aに凸状に形成される場合には、軸部材2とゲート跡11との摺動接触を避ける観点から、蓋部材10は、ゲート跡11の周辺部分が他領域よりも下側(軸部材2から離反する側)に後退した窪み部を有する形態に射出成形するのが好ましい(図示省略)。   In the above embodiment, the concave gate mark 11 is formed on the axis of the upper end surface 10 a of the lid member 10. However, the concave gate mark 11 is formed on the axis of the lower end surface 10 b of the lid member 10. You may be made to do. Moreover, in the above embodiment, the one end opening (lower end opening) of the housing 7 is closed by the lid member 10 having the gate mark 11 formed in a concave shape, but the upper end face 10a or the lower end face 10b. The one end opening of the housing 7 may be closed by the lid member 10 having the gate mark 11 formed in a convex shape. In addition, when the gate mark 11 is formed in a convex shape on the upper end surface 10 a of the lid member 10, from the viewpoint of avoiding sliding contact between the shaft member 2 and the gate mark 11, the lid member 10 is It is preferable to perform injection molding in a form in which the peripheral portion has a recessed portion that recedes below the other region (side away from the shaft member 2) (not shown).

また、以上で説明した実施形態に係る流体動圧軸受装置1において、動圧軸受からなるラジアル軸受部R1,R2は、ラジアル軸受隙間を介して対向する二面の何れか一方に、軸方向溝を円周方向に複数配したステップ面、あるいは多円弧面を形成することで構成することもできる。また、ラジアル軸受部R1,R2の何れか一方又は双方は、いわゆる真円軸受で構成することもできる。また、以上で説明した実施形態に係る流体動圧軸受装置1において、動圧軸受からなるスラスト動圧発生部B,Cの何れか一方又は双方は、径方向に延びる放射状の動圧溝を円周方向に複数配列して構成することもできる。   Further, in the fluid dynamic bearing device 1 according to the embodiment described above, the radial bearing portions R1 and R2 formed of the dynamic pressure bearing are provided with axial grooves on either one of the two surfaces facing each other through the radial bearing gap. A plurality of step surfaces arranged in the circumferential direction or a multi-arc surface can be formed. Further, either one or both of the radial bearing portions R1 and R2 can be constituted by a so-called perfect circle bearing. Further, in the fluid dynamic pressure bearing device 1 according to the embodiment described above, either one or both of the thrust dynamic pressure generating portions B and C made of the dynamic pressure bearing are circular radial dynamic pressure grooves extending in the radial direction. A plurality of arrangements in the circumferential direction may be used.

また、以上では、軸部材2を回転側、ハウジング7を静止側とした流体動圧軸受装置1に本発明を適用した場合について説明を行ったが、これとは逆に、軸部材2を静止側、ハウジング7を回転側とした流体動圧軸受装置1にも本発明は好ましく適用することができる。この場合、ディスクDを保持するディスクハブ3がハウジング7と一体又は別体に設けられ、モータベース6に軸部材2が一体又は別体に設けられる。   In the above description, the case where the present invention is applied to the fluid dynamic pressure bearing device 1 in which the shaft member 2 is the rotation side and the housing 7 is the stationary side has been described. On the contrary, the shaft member 2 is stationary. The present invention can also be preferably applied to the fluid dynamic bearing device 1 with the housing 7 as the rotation side. In this case, the disk hub 3 that holds the disk D is provided integrally or separately with the housing 7, and the shaft member 2 is provided integrally or separately on the motor base 6.

また、本発明に係る流体動圧軸受装置1は、ディスク駆動装置用のスピンドルモータのみならず、冷却ファン用のファンモータやレーザビームプリンタ用のポリゴンスキャナモータなどに組み込んで使用することもできる。   The fluid dynamic pressure bearing device 1 according to the present invention can be used by being incorporated in a fan motor for a cooling fan, a polygon scanner motor for a laser beam printer, or the like as well as a spindle motor for a disk drive device.

1 流体動圧軸受装置
2 軸部材
7 ハウジング
8 スリーブ部
10 蓋部材
10a 上側端面
10b 下側端面
11 ゲート跡
12 分断部
30 成形金型
33 キャビティ
34 ゲート
t 蓋部材の両端面間の離間距離
D ゲートの開口径
La 充填材の平均長
Lσ 充填材の標準偏差
R1、R2 ラジアル軸受部
T1 第1スラスト軸受部
T2 第2スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Fluid dynamic pressure bearing apparatus 2 Shaft member 7 Housing 8 Sleeve part 10 Lid member 10a Upper end surface 10b Lower end surface 11 Gate trace 12 Dividing part 30 Molding die 33 Cavity 34 Gate t Separation distance D between both end surfaces of the lid member D Gate Opening diameter La Average length of filler Lσ Standard deviation of filler R1, R2 Radial bearing portion T1 First thrust bearing portion T2 Second thrust bearing portion

Claims (8)

軸部材と、ラジアル軸受隙間に形成される潤滑油の油膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸方向の両端が開口した円筒状をなし、軸部材およびラジアル軸受部を内周に収容したハウジングと、充填材を含む樹脂材料で射出成形され、ハウジングの一端開口部を閉塞する蓋部材とを備えた流体動圧軸受装置において、
蓋部材は、キャビティに対する開口径Dが0.5mmよりも小さいゲートを有する成形金型で円盤状に射出成形され、かつ前記成形金型内で固化した前記樹脂材料が蓋部材の離型に伴って分断されることで形成された状態のゲート跡を有し、
前記ゲート跡は、蓋部材の内端面又は外端面に開口した凹状に形成されており、
蓋部材のうち、前記ゲート跡が形成された部分において、前記ゲート跡が存在しない場合における両端面間の離間距離をt、前記充填材の平均長をLa、前記充填材の長手方向寸法の標準偏差をLσとしたとき、t>0.86D+La+6Lσの関係式を満たすことを特徴とする流体動圧軸受装置。
The shaft member, a radial bearing portion that supports the shaft member in the radial direction with an oil film of lubricating oil formed in the radial bearing gap, and a cylindrical shape with both ends in the axial direction open, the shaft member and the radial bearing portion are the inner circumference A fluid dynamic bearing device comprising: a housing housed in a housing; and a lid member that is injection-molded with a resin material containing a filler and closes one end opening of the housing.
The lid member is injection-molded in a disc shape with a molding die having a gate having an opening diameter D smaller than 0.5 mm with respect to the cavity, and the resin material solidified in the molding die is accompanied by the release of the lid member. have a gate mark in a state of being formed by being divided Te,
The gate mark is formed in a concave shape opened on the inner end surface or the outer end surface of the lid member,
Of the lid member, in the portion where the gate mark is formed, the separation distance between both end faces when the gate mark does not exist is t, the average length of the filler is La, and the longitudinal dimension of the filler is standard. A fluid dynamic bearing device characterized by satisfying a relational expression of t> 0.86D + La + 6Lσ when the deviation is Lσ .
前記ゲート跡が、蓋部材の軸心上に配置されている請求項に記載の流体動圧軸受装置。 The fluid dynamic bearing device according to claim 1 , wherein the gate mark is disposed on an axis of the lid member. 前記樹脂材料は、繊維状充填材を含むものである請求項1又は2に記載の流体動圧軸受装置。 The resin material is a fluid dynamic pressure bearing device according to claim 1 or 2 is intended to include fibrous fillers. ハウジングの一端内周に蓋部材を固定することにより、ハウジングの一端開口部が閉塞されている請求項1〜の何れか一項に記載の流体動圧軸受装置。 The fluid dynamic bearing device according to any one of claims 1 to 3 , wherein an end opening of the housing is closed by fixing a lid member to an inner periphery of the one end of the housing. さらに、蓋部材の内端面で形成されるスラスト軸受隙間と、スラスト軸受隙間内の潤滑油に動圧作用を発生させるスラスト動圧発生部とを有し、
スラスト動圧発生部が、蓋部材を射出成形するのと同時に蓋部材の内端面に型成形された請求項1〜の何れか一項に記載の流体動圧軸受装置。
Furthermore, it has a thrust bearing gap formed on the inner end surface of the lid member, and a thrust dynamic pressure generating portion that generates a dynamic pressure action on the lubricating oil in the thrust bearing gap,
The fluid dynamic pressure bearing device according to any one of claims 1 to 4 , wherein the thrust dynamic pressure generating portion is molded on the inner end surface of the lid member simultaneously with injection molding of the lid member.
ハウジングの内周面に、軸部材の外周面との間にラジアル軸受隙間を形成するスリーブ部が固定されている請求項1〜の何れか一項に記載の流体動圧軸受装置。 The inner peripheral surface of the housing, the fluid dynamic bearing device according to any one of claim 1 to 5, the sleeve portion forming a radial bearing clearance is secured between the outer peripheral surface of the shaft member. 軸部材の外周面に、ハウジングの内周面との間にラジアル軸受隙間を形成するスリーブ部が固定されている請求項1〜5の何れか一項に記載の流体動圧軸受装置。   The fluid dynamic pressure bearing device according to any one of claims 1 to 5, wherein a sleeve portion that forms a radial bearing gap between the shaft member and an inner peripheral surface of the housing is fixed to the outer peripheral surface of the shaft member. 請求項1〜の何れか一項に記載の流体動圧軸受装置と、ステータコイルと、ロータマグネットとを備えるモータ。 A motor comprising the fluid dynamic bearing device according to any one of claims 1 to 7 , a stator coil, and a rotor magnet.
JP2014107007A 2014-05-23 2014-05-23 Fluid dynamic bearing device and motor including the same Expired - Fee Related JP6347986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014107007A JP6347986B2 (en) 2014-05-23 2014-05-23 Fluid dynamic bearing device and motor including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014107007A JP6347986B2 (en) 2014-05-23 2014-05-23 Fluid dynamic bearing device and motor including the same

Publications (2)

Publication Number Publication Date
JP2015222111A JP2015222111A (en) 2015-12-10
JP6347986B2 true JP6347986B2 (en) 2018-06-27

Family

ID=54785228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014107007A Expired - Fee Related JP6347986B2 (en) 2014-05-23 2014-05-23 Fluid dynamic bearing device and motor including the same

Country Status (1)

Country Link
JP (1) JP6347986B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246019A (en) * 1985-08-22 1987-02-27 Dainippon Printing Co Ltd Injection molded bearing and its molding method
JPS62141312A (en) * 1985-12-17 1987-06-24 Dainippon Printing Co Ltd Bearing and its manufacture
JP3294886B2 (en) * 1992-12-24 2002-06-24 エヌティエヌ株式会社 Thrust washer
JP4808457B2 (en) * 2004-09-27 2011-11-02 Ntn株式会社 Hydrodynamic bearing device and manufacturing method thereof
JP2007024089A (en) * 2005-07-12 2007-02-01 Ntn Corp Dynamic pressure bearing device and motor
DE102006005604B4 (en) * 2006-02-06 2007-11-22 Minebea Co., Ltd. Fluid dynamic storage system
JP5120591B2 (en) * 2006-10-11 2013-01-16 Nok株式会社 Thrust bearing
JP5318649B2 (en) * 2009-04-27 2013-10-16 Ntn株式会社 Hydrodynamic bearing device
JP2011133023A (en) * 2009-12-24 2011-07-07 Ntn Corp Fluid dynamic bearing device
JP6158484B2 (en) * 2012-08-23 2017-07-05 旭化成株式会社 Polyoxymethylene resin composition for intermittent metal sliding parts and intermittent sliding parts using the same

Also Published As

Publication number Publication date
JP2015222111A (en) 2015-12-10

Similar Documents

Publication Publication Date Title
JP4531584B2 (en) Fluid dynamic bearing device and motor provided with the same
KR20080013863A (en) Dynamic pressure bearing device
US8107190B2 (en) Fluid bearing device, method of manufacturing the same, and disk drive device
WO2006035665A1 (en) Fluid bearing device and method of manufacturing the same
JP2006118705A (en) Fluid bearing device and its manufacturing method
US20090230593A1 (en) Method for forming dynamic pressure generating grooves
JP4302463B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4994687B2 (en) Hydrodynamic bearing device
JP2008130208A (en) Hydrodynamic bearing device and its manufacturing method
WO2008065855A1 (en) Dynamic-pressure bearing device, and bearing member manufacturing method
JP6347986B2 (en) Fluid dynamic bearing device and motor including the same
JP2009108877A (en) Fluid bearing device and its manufacturing method
JP2009103280A (en) Dynamic pressure bearing device and its manufacturing method
JP2005265119A (en) Fluid bearing device and its manufacturing method
JP5670061B2 (en) Fluid dynamic bearing device and manufacturing method thereof
JP2010060034A (en) Hydrodynamic pressure bearing device
JP5762837B2 (en) Fluid dynamic bearing device
JP2010043666A (en) Dynamic pressure bearing device
JP2010096202A (en) Fluid bearing device and method of manufacturing the same
JP5627996B2 (en) Housing for fluid dynamic pressure bearing device, method for manufacturing the same, and fluid dynamic pressure bearing device including the same
JP2009011018A (en) Fluid bearing device, and manufacturing method thereof
JP4156478B2 (en) Mold for housing for hydrodynamic bearing device
JP6625332B2 (en) Housing for fluid dynamic bearing device
JP4804894B2 (en) Bearing device and manufacturing method thereof
JP5394182B2 (en) Fluid dynamic bearing device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180530

R150 Certificate of patent or registration of utility model

Ref document number: 6347986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees