JPS6246019A - Injection molded bearing and its molding method - Google Patents

Injection molded bearing and its molding method

Info

Publication number
JPS6246019A
JPS6246019A JP18485785A JP18485785A JPS6246019A JP S6246019 A JPS6246019 A JP S6246019A JP 18485785 A JP18485785 A JP 18485785A JP 18485785 A JP18485785 A JP 18485785A JP S6246019 A JPS6246019 A JP S6246019A
Authority
JP
Japan
Prior art keywords
bearing
housing
molecular weight
high molecular
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18485785A
Other languages
Japanese (ja)
Inventor
Hideaki Fujii
英明 藤井
Nobuhisa Nishitani
西谷 信久
Tatsumi Takahashi
達見 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP18485785A priority Critical patent/JPS6246019A/en
Publication of JPS6246019A publication Critical patent/JPS6246019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

PURPOSE:To prevent deformation of a sliding surface in a bearing when it is fitted into a housing, by providing a damping part, elastically deformed when the bearing is fitted into the housing, in the peripheral surface of a bearing main unit. CONSTITUTION:A bearing 20, forming in its center a bearing height 21, provides its internal peripheral surface 21a to serve as the slide holding surface of a rotary shaft. While the bearing 20 provides in its peripheral part a large number of impact protrusions 22 extended tilting by a predetermined angle gamma with respect to a connection (a) of a bearing main unit peripheral circle C2. Elasticity of these impact protrusions 22 causes the bearing 20, when it is fitted into a housing, to absorb deformation of a bearing main unit, generated by an interference between an external shape of the bearing and a bearing fitting hole of the housing, by opening and closing only the damping protrusions 22. Accordingly, the bearing, when it is fitted, prevents unreasonable force from acting on a sliding surface, thus the bearing promotes high accuracy of its sliding surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超高分子ポリエチレンを原料を射出成形した
軽量工業成品を回転保持するq・l出成形軸受a3 J
:びその射出成形法に関でる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a q/l extrusion molded bearing A3 J for rotationally holding a lightweight industrial product made by injection molding ultra-high molecular weight polyethylene as a raw material.
:Related to Bison's injection molding method.

〔従来の技術とその問題点〕[Conventional technology and its problems]

分子量が200万〜600万の超高分子量ポリエチレン
は、耐薬品性、耐衝撃性及び耐寒性に優れると共に自己
潤滑性を右Jるため軸受、歯車等の工業用小型部品の材
F1として極めて適している。
Ultra-high molecular weight polyethylene with a molecular weight of 2 million to 6 million is extremely suitable as material F1 for small industrial parts such as bearings and gears because it has excellent chemical resistance, impact resistance, and cold resistance, as well as self-lubricating properties. ing.

超高分子量ポリエチレンによって工業用小型部品等を成
形づ゛る手段として、射出成形、圧縮成形及び押出し成
形が考えられるが超高分子量ポリエチレンは前述したよ
うに分子間が極めて高いため加熱しでも粘性が低くなら
ず流動性を示さt【い。
Injection molding, compression molding, and extrusion molding are conceivable methods for molding small industrial parts using ultra-high molecular weight polyethylene, but as mentioned above, ultra-high molecular weight polyethylene has extremely high intermolecularity, so it does not have viscosity even when heated. It shows fluidity without becoming low.

このため射出成形を行なっても、キャビティのすみずみ
まで超高分子量ポリエチレンを充用さUることができず
、精度が劣り且つ成形品の表面を平滑なものにすること
ができない。また、スクリコーで超高分子間ポリエチレ
ンを可塑化Mる場合には高シェアがかかり、加熱による
酸化及び主鎖の切断が生じ分子量が低下し普通のポリエ
チレンとなってしまうことがある。したがって、超高分
子量ポリエチレンを材料とした軸受は、従来切削加工が
行なわれていた。このため摺動向が平滑で高精度の成形
品を効率よく、しかも安価に1!Jることができない。
For this reason, even if injection molding is performed, it is not possible to fill every corner of the cavity with ultra-high molecular weight polyethylene, resulting in poor precision and inability to make the surface of the molded product smooth. Furthermore, when ultra-high molecular weight polyethylene is plasticized using a scryco, a high shear is applied, which may cause oxidation and cleavage of the main chain due to heating, resulting in a decrease in molecular weight and resulting in ordinary polyethylene. Therefore, bearings made of ultra-high molecular weight polyethylene have conventionally been processed by cutting. As a result, high-precision molded products with smooth sliding motion can be produced efficiently and inexpensively! I can't do it.

一方、従来のプラスチック軸受は保持部る回転軸を受け
るlζめの摺動面とハウジング内に嵌めこまれる外周部
とが同心円の形状からなり、外周部の外形はハウジング
の回転軸保持部の径より50μm”−15011m程度
大きく成形されハウジングの保持部内に圧入J−ること
により固定される。したがって、軸受はハウジング内に
圧縮されつつ組込まれ、この際、軸受摺動面の収縮11
1はぞの軸受の外周部の外径とハウジングの保持部どの
しめしるに依存づる。、その1Ill+受摺動而の収縮
量どしめしろどの比を収縮率λどすると、この収縮率λ
は、軸受のハウジング内への圧入速度、圧入荷重などの
圧入条件にJ:つでも大きく変化η゛る。このため、@
終曲な軸受摺動面の精度は軸受自体の精頂、ハウジング
の保持部の精度、収縮率などの影響で高精度化を図るこ
とが困勤であった。
On the other hand, in conventional plastic bearings, the lζth sliding surface that receives the rotating shaft in the holding part and the outer peripheral part that is fitted into the housing are concentric circles, and the outer diameter of the outer peripheral part is the diameter of the rotating shaft holding part in the housing. The bearing is molded approximately 50μm"-15011m larger and is fixed by press-fitting it into the holding part of the housing. Therefore, the bearing is assembled into the housing while being compressed, and at this time, the shrinkage 11 of the bearing sliding surface
1 depends on the outer diameter of the outer periphery of the bearing and the holding part of the housing. , the ratio of the contraction amount of 1Ill + receiving sliding movement to the contraction rate λ, then this contraction rate λ
varies greatly depending on the press-fitting conditions such as the speed at which the bearing is press-fitted into the housing and the press-fitting load. For this reason,@
It has been difficult to improve the accuracy of the curved bearing sliding surface due to the effects of the bearing itself, the accuracy of the holding part of the housing, the shrinkage rate, etc.

〔発明の目的〕[Purpose of the invention]

本発明は、かかる点に鑑み、ハウジング内に装着したと
きに、その摺動向が変形をしt【い高精度で安価な超高
分子量ポリ゛「ヂレン製の射出成形軸受と、この軸受を
効率、に<精密に射出成形できるような軸受の!J4出
成形法を提供することを目的どする。
In view of the above, the present invention provides an injection molded bearing made of a high-precision and inexpensive ultra-high molecular weight polyurethane resin whose sliding movement does not deform when installed in a housing, and an injection-molded bearing made of a high-precision, inexpensive ultra-high molecular weight polyurethane. The purpose of the present invention is to provide a J4 injection molding method for bearings that can be precisely injection molded.

〔発明の構成〕[Structure of the invention]

この目的は、回転軸を摺動自在に保持J−る能動内周面
を有し、軸受本体の外周面に、軸受をハウジングの軸受
保持部内に嵌入づるときに、弾性的に変形覆る緩衝部を
形成し、高分子量ポリエチレンを射出すること、および
粉体状の超高分子1ポリエチレン原料を、無酸化雰囲気
にて射出シリンダーに供給し、射出シリンダーのスクリ
ューの圧縮比1.3〜2.0とし、その長さと直径の比
を15〜20として短時間のうちに溶融uしめ、この原
料が加熱架橋を開始するまえに型のキャビティ内に注入
することによって達成される。
The purpose of this is to have an active inner circumferential surface that slidably holds the rotating shaft, and a buffer that elastically deforms and covers the outer circumferential surface of the bearing body when the bearing is inserted into the bearing holding part of the housing. and injecting high molecular weight polyethylene, and supplying powdered ultra high molecular weight 1 polyethylene raw material to an injection cylinder in a non-oxidizing atmosphere, and adjusting the compression ratio of the screw of the injection cylinder to 1.3 to 2.0. This is achieved by melting the material in a short time with a length-to-diameter ratio of 15 to 20, and injecting the material into the mold cavity before thermal crosslinking begins.

〔実施例〕〔Example〕

以下、本発明の実施例を添付図面に基いて説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明に係る射出成形機の断面図である。本発
明の射出成形機においては、内部にスクリユ−1を配設
したシリンダー2と、このシリンダー内に原料3を供給
するホッパー4と、シリンダー2の先端が臨み、内部に
成形用キャピテイ5を有する金型6と、該キャビティ5
を真空引ぎするための真空タンク7及びロータリーポン
プ8とをその主要部として構成される。
FIG. 1 is a sectional view of an injection molding machine according to the present invention. The injection molding machine of the present invention has a cylinder 2 in which a screw 1 is disposed, a hopper 4 for supplying raw material 3 into the cylinder, and a molding cavity 5 inside which the tip of the cylinder 2 faces. The mold 6 and the cavity 5
The main parts are a vacuum tank 7 and a rotary pump 8 for evacuating the air.

そして1,1−記ホツバ−4にはヂッ索ガス等の雰囲気
ガス供給バイブ9を接続し、シリンダー2内に供給した
原料3をフ1((酸化雰囲気においで溶融覆るようにし
ている。またホッパー4の下部には原113の供給M調
整用の円形J、たは長方形などのスリブ1〜10aを右
J−る調整板10を有している。
A vibrator 9 for supplying an atmospheric gas such as a gas line is connected to the hotter 4, and the raw material 3 supplied into the cylinder 2 is melted and covered in an oxidizing atmosphere. The lower part of the hopper 4 is provided with an adjustment plate 10 which has circular or rectangular shaped sleeves 1 to 10a for adjusting the supply M of the material 113.

一方、ベーンモーター11によって回転されるスクリュ
ー1の圧縮比は2.3以下、特に1.3〜2.0である
ことが適当で、L/D(+−ニスクリューの長さ、r)
ニスクリ−1−の直径)は10〜25、特に15〜20
が好ましい。J:だスクリ]−−のビッヂPはP−π 
o tanθ(θ:フライトの角庶)で決定されるが、
θの値をもって示ずならば10°〜18°、特に11.
5°〜14.5°であることが好ましい。
On the other hand, the compression ratio of the screw 1 rotated by the vane motor 11 is suitably 2.3 or less, especially 1.3 to 2.0, and L/D (+-varnish screw length, r)
Niscri-1-diameter) is 10 to 25, especially 15 to 20
is preferred. J: Dasukuri] --'s bit P is P-π
It is determined by o tan θ (θ: angle of flight),
If the value of θ is not indicated, it is 10° to 18°, especially 11.
The angle is preferably 5° to 14.5°.

圧縮比が2.31メ十eある場合には、超高分子1ポリ
エチレン原料に必要以上の圧がかかり、シリンダ内に停
留してしまい、架橋の開始とともに、流動性を示ざイ【
りなる。また、圧縮比が1.3以下である場合には、超
高分子mポリエチレンの粉体表面を溶融状態にするのに
は不十分である。
When the compression ratio is 2.31 mE, more pressure than necessary is applied to the ultra high molecular weight polyethylene raw material, which causes it to remain in the cylinder, and when crosslinking begins, it shows no fluidity.
Rinaru. Further, if the compression ratio is 1.3 or less, it is insufficient to melt the surface of the powder of ultra-high molecular polyethylene.

スクリュー1の長さI−とその直径[)の比1−/Dに
関しては、1−/Dが20以上では、シリンダ内に超高
分子Mポリエチレンを不必要に長く滞留してしまう危険
があり、1−/Dが15以下の場合は超高分子量ポリエ
チレンの加熱制御の精度が不十分になる。
Regarding the ratio 1-/D of the length I- of the screw 1 and its diameter [), if 1-/D is 20 or more, there is a risk that the ultra-high molecular weight M polyethylene will remain in the cylinder for an unnecessarily long time. , 1-/D is less than 15, the precision of heating control of ultra-high molecular weight polyethylene becomes insufficient.

スクリューピッチは、フライトの角度Oによって決めら
れるが、θは超高分子量ポリエチレンに加えられるトル
クの大小を決定するものであり、0が10°以下の場合
は、十分なトルクが得られるが不必要な滞留時間と摩擦
エネルギーを超高分子■ポリゴーブレン粉体に加えてい
る。またθが18°以上の場合は、超高分子量ボリニ「
ヂレンに−を分1.’K トルクを与えることができず
、ベーン毛−ターに負担が与かるとどもに、指定された
スクリュー回転数を得られず、シリンダー内に長期間8
11留することにより、不適切である。
The screw pitch is determined by the flight angle O, and θ determines the magnitude of the torque applied to ultra-high molecular weight polyethylene. If 0 is less than 10 degrees, sufficient torque can be obtained but it is unnecessary. Adds a long residence time and frictional energy to the ultra-high polymer polygoblen powder. In addition, if θ is 18° or more, ultra-high molecular weight Borini
- to Jiren for 1 minute. 'K If the torque cannot be applied and a load is placed on the vane motor, the specified screw rotation speed cannot be obtained, and the engine may remain in the cylinder for a long period of time.
By leaving the 11th station, it is inappropriate.

更にスクリューヘッドには逆流防止用リングを使用Uず
先端までフライト・を切り、スクリューの直径はシリン
ダー2の内径よりも0.1・〜0.2問小ざく設定りる
Furthermore, use a backflow prevention ring on the screw head, cut the flight to the tip, and set the diameter of the screw to be 0.1 to 0.2 inches smaller than the inner diameter of cylinder 2.

また、シリンダー2は後半部をフィーダ部2a。Further, the rear half of the cylinder 2 is a feeder section 2a.

Air半部を圧縮部2b、先端部をノズル部2Cとし、
フィーダ部2aにも(熱射のフィン12を形成Jる長さ
はシリンダー2の全長の1/4〜1/3が好ましい。
The Air half is a compression part 2b, the tip part is a nozzle part 2C,
The length of the heat radiation fins 12 formed in the feeder portion 2a is preferably 1/4 to 1/3 of the total length of the cylinder 2.

超高分子量ポリ1−ブンはシリンダー内で、スクリ−1
−で搬送され、圧縮比が高まるにつれ−C1該ポリ■チ
レン粉体同志が1を擦することににり発熱してくる。こ
の様<1状態になるのは、スクリューの]シブ1ノツシ
」ンゾーンに達した時であり、この部分2bで初めで外
部加熱により、粉体側々が軟化するのであり、それ以前
のゾーン2aでは、極力加熱を避()、摩擦にJ:る熱
を放熱し、架橋を防止しなくては4Tらない。
The ultra-high molecular weight poly(1-bun)
As the compression ratio increases, the polyethylene powder rubs against each other and generates heat. This state of <1 occurs when the screw reaches the [Shib 1] pressure zone, and at this point 2b, the powder is first softened by external heating, and before that, zone 2a is softened. Therefore, we must avoid heating as much as possible, dissipate the heat generated by friction, and prevent crosslinking.

放熱用フィン12を設けない場合、圧縮部2bでの加熱
制御が可1111どなり、該ポリエチレン粉体を架橋ざ
口てしにうことになる。そして圧縮部2b、ノズル部2
Cにはヒーター13を配設し、原料3を瞬時に溶融する
様にしている。
If the heat dissipation fins 12 are not provided, the heating control in the compression part 2b will be impossible, and the polyethylene powder will be crosslinked. And the compression part 2b, the nozzle part 2
A heater 13 is disposed at C to instantly melt the raw material 3.

また、第2図はキャビティの平面図、第3図は金型の縦
断面図、第4図は金型の横断面図Cdiす、これらの図
かられかるように、金型6の一ブノの型6aに湯道14
を穿CQシ、他方の型6[)の型合U面には軸受成形用
のキャビティ5を形成1ノ、このキャビティ5の周囲ど
幅が5M〜10mmPl!J、f環状真空路15とを孔
16で連通している。この孔16の長さは1〜20mm
とし、特に3へ・7 thmとでるのが適当である。ま
た、型6a、6bの接合部にはシールリング17を設け
、型合せ1hの真空度を紺持し得るようにしている。尚
、成形の際には金型6の温度は30〜130℃、特に6
0℃へ・120℃とするのが好ましい。
In addition, FIG. 2 is a plan view of the cavity, FIG. 3 is a vertical cross-sectional view of the mold, and FIG. 4 is a cross-sectional view of the mold.As can be seen from these figures, one section of the mold 6 is Runway 14 in mold 6a
A cavity 5 for bearing molding is formed on the U surface of the other mold 6 [), and the circumferential width of this cavity 5 is 5M to 10 mm Pl! J and f communicate with the annular vacuum path 15 through a hole 16. The length of this hole 16 is 1 to 20 mm.
In particular, it is appropriate to write 3 to 7 thm. Further, a seal ring 17 is provided at the joint between the molds 6a and 6b, so that the degree of vacuum during mold assembly 1h can be maintained. In addition, during molding, the temperature of the mold 6 is 30 to 130 °C, especially 6
It is preferable to set the temperature to 0°C/120°C.

前記キャビティ5は本発明の軸受形状をなし、その中心
部には回転軸を受けるための軸受摺動面に相当する円形
突部5 a h<設置プられている。キャビディ5の外
周部には仮想外周円C1の接線に対して所定角度傾斜し
て伸びる多数の溝5b、5b・・・5bが形成され、こ
の満5bの先端が前記孔16の内端に連通1ノ(−いる
The cavity 5 has the shape of a bearing according to the present invention, and a circular protrusion 5 ah is provided in the center thereof, which corresponds to a bearing sliding surface for receiving a rotating shaft. A large number of grooves 5b, 5b, . . . 5b are formed on the outer periphery of the cavity 5 and extend at a predetermined angle with respect to the tangent to the virtual outer circumferential circle C1, and the tips of these grooves 5b communicate with the inner end of the hole 16. 1ノ(-there.

以上の如き射出成形機を用いて、超高分子量ポリ1ヂレ
ンの成形品を装)告づる方法を以下に述べる。
A method for molding ultra-high molecular weight poly-1-dylene using the injection molding machine described above will be described below.

先ずホッパー4内に粒径が30μ〜100 tt稈麻の
粉体状の超高分子量ポリエチレンを原F!13として所
定量供給J゛る。ここで超高分子h1ボリエブレンは通
常のポリ1−ヂレンと異なりペレッ1−状ではなく粉体
状どなっており、粒子同士の摩擦係数が小さいので、粒
子径を調整づるだけで時間当りの原料供給量を決定でき
る。そして、フィーダ部2aへの原料供給Mを調整する
ことはスクリュ−1の圧縮比を相対的に減少さけること
となり、結果的に超高分子間ポリエチレンを可塑化づる
際に、異常に圧縮比を高め、原F3+がシリンダー2中
に811留づるのを防ぐことができる。
First, powdered ultra-high molecular weight polyethylene of culm with a particle size of 30 μ to 100 tt is placed in the hopper 4. 13, a predetermined amount is supplied. Unlike ordinary poly-1-dylene, the ultra-high molecular weight polyethylene is not in the form of pellets but in powder form, and the coefficient of friction between the particles is small. The amount of supply can be determined. Adjusting the raw material supply M to the feeder section 2a will avoid a relative decrease in the compression ratio of the screw 1, and as a result, when plasticizing the ultra-high molecular weight polyethylene, the compression ratio will be abnormally increased. This can prevent the original F3+ from staying in the cylinder 2.

イして、シリンダー2内に供給された超高分子mポリエ
チレンはフィーダ部2aから圧縮部2bにて瞬時に加熱
されノズル部2Gで溶融(表面のみ)される。ここで、
ホッパー4内にはチッ素ガスが供給されているのでシリ
ンダー2内は無酸化雰囲気に保持され酸化による分子量
低下を防ぐことができる。また超高分子jポリエチレン
は一旦溶融するとその後ただちに架橋が始まる特性があ
る。したがって本実施例のように圧縮部で瞬時に溶融し
、ノズル部から直ちにキャビティ5内に注入するように
づ゛れば、流動性を有するうちにn]入することができ
る。
Then, the ultra-high molecular polyethylene supplied into the cylinder 2 is instantaneously heated from the feeder section 2a to the compression section 2b and melted (only the surface) at the nozzle section 2G. here,
Since nitrogen gas is supplied into the hopper 4, the inside of the cylinder 2 is maintained in a non-oxidizing atmosphere, thereby preventing a decrease in molecular weight due to oxidation. Furthermore, ultra-high molecular weight polyethylene has the characteristic that once it is melted, crosslinking immediately begins. Therefore, if the material is instantaneously melted in the compression part and injected into the cavity 5 from the nozzle part as in this embodiment, it can be poured while it still has fluidity.

キャビティ5内に注入された原料については直ちに架橋
が開始し、この架橋が促進することにより、高温のキャ
ビティ内でも原料が再溶融することがない。またキャビ
ティ5の軸受の突起先端部まで溶融した超高分子量ポリ
エチレンが充填される。
Crosslinking of the raw material injected into the cavity 5 starts immediately, and by promoting this crosslinking, the raw material does not re-melt even in the high temperature cavity. Furthermore, the cavity 5 is filled with molten ultra-high molecular weight polyethylene up to the tip of the projection of the bearing.

前記キャピテイ5によって、第5図に示すj;うな軸受
20が形成され、この軸受20の中心には軸受高21が
形成され、この内周面21aは回転軸の摺動保持面をな
す。前述したように分子M1が200万〜600万の超
高分子量ポリエチレンは自己潤滑性を有するので回転軸
は摺動面内を滑らかに摺動する。
A bearing 20 shown in FIG. 5 is formed by the cavity 5, and a bearing height 21 is formed at the center of the bearing 20, and the inner circumferential surface 21a serves as a sliding holding surface for the rotating shaft. As mentioned above, ultra-high molecular weight polyethylene with molecules M1 of 2 million to 6 million has self-lubricating properties, so that the rotating shaft slides smoothly within the sliding surface.

前記軸受20の外周部には軸受本体外周円C2の接続a
に対して所定角度γだけ傾斜して伸びる多数の衝撃突起
22.22・・・22が設けられている。この緩衝突起
22が弾性を右するので軸受20をハウジング内に嵌め
込むときに緩衝突起22のみが開いたり閉じたりしτ軸
受外形とハウジングの軸受嵌め込み孔とのしめしろにJ
:る軸受本体の変形を吸収する。したがって、軸受の前
記摺動面には軸受の嵌め込み時に無理なノ〕が加わらず
軸受円動面の高精度化が可能となる。
The outer circumferential portion of the bearing 20 has a connection a of the outer circumferential circle C2 of the bearing body.
A large number of impact protrusions 22, 22, . Since this buffer protrusion 22 has elasticity, only the buffer protrusion 22 opens or closes when the bearing 20 is fitted into the housing, and the interference between the outer shape of the bearing and the bearing fitting hole of the housing is J.
: Absorbs deformation of the bearing body. Therefore, the sliding surface of the bearing is not subjected to unreasonable cracks when the bearing is fitted, and the precision of the bearing circular surface can be improved.

前記軸受外周部の緩衝突起を含む外形D2は3m1ll
〜70mm、軸受内円面の内径dは1ml11〜50I
IIIllに形成される。前記緩衝突起22の数nと前
記外形D との非n/D2は2〜50I1m に設定さ
れ、特に5〜20が好ましい。また、前記外径D2はハ
ウジングの内径より20〜250μm大きくし、軸受本
体の径D1は、ハウジングの内径より50〜2000μ
m小さく成形する。緩衝突起22の内周接線方向に対す
る傾き角度γは5°〜60°、好ましくは30°〜45
°とする。また、緩衝突起の厚さtは0.3〜2111
111に設定する。
The outer diameter D2 including the buffer protrusion on the outer periphery of the bearing is 3ml.
~70mm, the inner diameter d of the inner circular surface of the bearing is 1ml11~50I
IIIll is formed. The difference n/D2 between the number n of the buffer protrusions 22 and the outer diameter D is set to 2 to 50I1m, and particularly preferably 5 to 20. Further, the outer diameter D2 is 20 to 250 μm larger than the inner diameter of the housing, and the diameter D1 of the bearing body is 50 to 2000 μm larger than the inner diameter of the housing.
mMold into small pieces. The inclination angle γ of the buffer protrusion 22 with respect to the tangential direction of the inner circumference is 5° to 60°, preferably 30° to 45°.
°. In addition, the thickness t of the buffer protrusion is 0.3 to 2111
Set to 111.

前記緩衝突起の形状は第6図に示すにうに軸受30本体
の外周にあり溝を形成するような断面逆台形をなすよう
なものでもよい。づ−なわち、軸受30の本体外周には
多数の断面逆台形の緩衝突起31.31・・・31が成
形され、この軸受30がハウジングの軸受保持部内に嵌
め込まれるどきには、緩衝突起31の拡大外周部31a
が弾性的に変形して嵌め込み時の軸受本体の変形を吸収
する。
The shape of the buffer protrusion may be such that it is located on the outer periphery of the bearing 30 body and has an inverted trapezoidal cross section forming a groove, as shown in FIG. That is, a large number of buffer protrusions 31, 31...31 having an inverted trapezoidal cross section are formed on the outer periphery of the main body of the bearing 30. Enlarged outer peripheral portion 31a of
deforms elastically to absorb deformation of the bearing body during fitting.

今、軸受の緩衝突起31を含む外形をD2 (半径γ2
)、軸受本体の外周面の径をDl、回転軸と係合する内
部摺動面の径をd(半径γ1)おにび前記緩衝突起31
の半径方向突出長をtと彩ると、突出長tは外形りの1
〜30%の範囲に設定し、特に5〜20%が良好である
Now, the outer shape including the buffer protrusion 31 of the bearing is D2 (radius γ2
), the diameter of the outer peripheral surface of the bearing body is Dl, the diameter of the internal sliding surface that engages with the rotating shaft is d (radius γ1), and the buffer protrusion 31
The protrusion length in the radial direction is t, and the protrusion length t is 1 of the outer shape.
It is set in the range of ~30%, and 5 to 20% is particularly good.

またハウジングの軸受保持孔の軸受に接触する面積性を
S。とじ、内部層動部の表面積を81とJ”ると、3 
 =ax3.の式で表わされ、ここで、aの範囲は γ 1       γ 1 特に γ 1        γ 1 次に具体的な実施例を述べる。
Also, the area of the bearing holding hole in the housing that contacts the bearing is S. If the surface area of the internal layer moving part is 81 and J”, then 3
=ax3. Here, the range of a is γ 1 γ 1 In particular, γ 1 γ 1 Next, specific examples will be described.

先ず、分子間300万の超高分子量ポリエチレン(三菱
石油化学工業製)を本発明に係る射出成形機のホッパー
4に入れポツパー下部のINl’l供給量調整用スリッ
1〜10aを全開とした。ここでスクリューは径25m
m、圧縮比全圧縮比11111、スクリューの長さLと
その直径りの比L/Dを20とし、スクリューの回転数
はi s o rpmとした。また、シリンダーのノズ
ル部2c(オープンノズル)の温度は220℃、圧縮比
2bの温匪は170℃とし、フィーダ2aは加熱せず成
形中に測定したところ70℃〜100℃の温度になるこ
とが判明している。さらにポツパー4には1.O,fl
/分の割合でチッ素ガスを流入1しめた。
First, ultra-high molecular weight polyethylene (manufactured by Mitsubishi Petrochemical Industries) having an intermolecular molecular weight of 3,000,000 was put into the hopper 4 of the injection molding machine according to the present invention, and the INl'l supply amount adjusting slits 1 to 10a at the bottom of the popper were fully opened. Here the diameter of the screw is 25m
The total compression ratio was 11111, the ratio L/D between the length L of the screw and its diameter was 20, and the rotational speed of the screw was i s o rpm. In addition, the temperature of the nozzle part 2c (open nozzle) of the cylinder is 220°C, the temperature of the compression ratio 2b is 170°C, and the temperature of the feeder 2a is 70°C to 100°C when measured during molding without heating. It is clear that In addition, Popper 4 has 1. O,fl
Nitrogen gas was introduced at a rate of 1/min.

一方、金型6a、6bの温度は100℃に設定し、キャ
ビティは0.5気圧まで減圧した。金型し第6図の軸受
製造用に形成され、成形品軸受の外径[)  =9+a
m、本体外周径[)1=7m111.摺動内局面(7)
直径d = 411un、緩衝突起の数n−32とし、
2点ゲート(ゲート径0.4.mm)で成形した。
On the other hand, the temperature of the molds 6a and 6b was set at 100° C., and the pressure in the cavity was reduced to 0.5 atm. A mold is formed for manufacturing the bearing shown in Fig. 6, and the outer diameter of the molded product bearing [) = 9 + a
m, main body outer diameter [)1=7m111. Inner sliding phase (7)
The diameter d = 411un, the number of buffer protrusions n-32,
Molding was performed using a two-point gate (gate diameter 0.4 mm).

更に成形条件は、射出時間を1.5秒、保圧時間を5秒
、冷却時間を15秒、インターバルを3秒、全体のサイ
クルを24.5秒とした。
Further, the molding conditions were as follows: injection time: 1.5 seconds, holding pressure time: 5 seconds, cooling time: 15 seconds, interval: 3 seconds, and total cycle: 24.5 seconds.

このようにして得られた軸受の囲動内周面の内径をハウ
ジングへの装着前と装着後で比較してみたところ、はと
んど変化がみられイ【んった。
When we compared the inner diameter of the surrounding inner peripheral surface of the bearing thus obtained before and after mounting it on the housing, we found that there was almost no change.

〔効 果〕〔effect〕

以上説明したように、本発明に係る軸受の射出成形法に
よれば、超高分子量ポリエチレンを瞬時にして溶融し、
この溶融した原料を直ちにキャビティに注入するように
したので、高精度の軸受を容易に製作づ−ることができ
る。そして、得られた軸受は自己潤滑性を有するため給
油が不要であり、真空中、水中での使用も可能となる。
As explained above, according to the injection molding method for a bearing according to the present invention, ultra-high molecular weight polyethylene is instantly melted,
Since this molten raw material is immediately injected into the cavity, a high precision bearing can be manufactured easily. Since the obtained bearing has self-lubricating properties, it does not require lubrication and can be used in a vacuum or underwater.

また、本発明に係る軸受の形状によれば、軸受外周部に
緩衝突起ににリハウジングの軸受保持部と軸受外径との
しめしろにJ:る軸受内周面への影響がなくなり、最終
的用法精度が成形品自体の精度でおさまり、高粘度な軸
受を得ることができるという効果を奏する。
In addition, according to the shape of the bearing according to the present invention, there is no influence on the inner circumferential surface of the bearing caused by the buffer projection on the outer circumference of the bearing and the interference between the bearing holding part of the rehousing and the outer diameter of the bearing. This has the effect that the precision of use is reduced to the precision of the molded product itself, making it possible to obtain a bearing with high viscosity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る射出成形機の縦断面図、第2図は
金型内のキャビティの平面図、第3図は金型の縦断面図
、第4図は金型の横断面図、第5図、第6図は成形品で
ある軸受の4半分平面図および全体平面図である。 1・・・スクリュー、2・・・シリンダー、2a・・・
フィーダ部、2b・・・圧縮部、2C・・・ノズル部、
3・・・超高分子量ポリエチレン原料、4・・・ホッパ
ー、5・・・キャビティ、6・・・金型、15・・・真
空路、16・・・孔、22.31・・・緩衝突起。 第2図 第O図
Fig. 1 is a longitudinal cross-sectional view of an injection molding machine according to the present invention, Fig. 2 is a plan view of a cavity in the mold, Fig. 3 is a longitudinal cross-sectional view of the mold, and Fig. 4 is a cross-sectional view of the mold. , FIG. 5, and FIG. 6 are a quarter-half plan view and an overall plan view of the bearing, which is a molded product. 1...Screw, 2...Cylinder, 2a...
Feeder part, 2b... compression part, 2C... nozzle part,
3... Ultra-high molecular weight polyethylene raw material, 4... Hopper, 5... Cavity, 6... Mold, 15... Vacuum path, 16... Hole, 22.31... Buffer protrusion . Figure 2 Figure O

Claims (1)

【特許請求の範囲】 1、回転軸を摺動自在に保持する摺動内周面を有し、軸
受本体の外周面に、軸受をハウジングの軸受保持部内に
嵌入するときに、弾性的に変形する緩衝部を形成し、高
分子量ポリエチレンを射出することによって形成したこ
とを特徴とする射出成形軸受。 2、前記緩衝部は、軸受本体の外周面の接線に対して所
定角度傾斜した複数の緩衝突起からなることを特徴とす
る特許請求の範囲第1項記載の射出成形軸受。 3、前記緩衝部は軸受本体の外周部に形成された断面逆
台形の複数の緩衝突起からなることを特徴とする特許請
求の範囲第1項記載の射出成形軸受。 4、粉体状の超高分子量ポリエチレン原料を、無酸化雰
囲気にて射出シリンダーに供給し、射出シリンダーのス
クリューの圧縮比を1.3〜2.0とし、その長さと直
径の比を15〜20として短時間のうちに溶融せしめ、
この原料が加熱架橋を開始するまえに型のキャビティ内
に注入するようにしたことを特徴とする軸受の射出成形
法。
[Claims] 1. It has a sliding inner circumferential surface that slidably holds the rotating shaft, and the outer circumferential surface of the bearing body is elastically deformed when the bearing is inserted into the bearing holding part of the housing. 1. An injection molded bearing characterized in that the buffer portion is formed by injecting high molecular weight polyethylene. 2. The injection molded bearing according to claim 1, wherein the buffer portion comprises a plurality of buffer protrusions inclined at a predetermined angle with respect to a tangent to the outer circumferential surface of the bearing body. 3. The injection molded bearing according to claim 1, wherein the buffer portion is formed of a plurality of buffer protrusions having an inverted trapezoidal cross section formed on the outer periphery of the bearing body. 4. Powdered ultra-high molecular weight polyethylene raw material is supplied to an injection cylinder in a non-oxidizing atmosphere, the compression ratio of the screw of the injection cylinder is set to 1.3 to 2.0, and the length to diameter ratio is set to 15 to 2.0. 20 to melt it in a short time,
A bearing injection molding method characterized in that this raw material is injected into a mold cavity before heating crosslinking begins.
JP18485785A 1985-08-22 1985-08-22 Injection molded bearing and its molding method Pending JPS6246019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18485785A JPS6246019A (en) 1985-08-22 1985-08-22 Injection molded bearing and its molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18485785A JPS6246019A (en) 1985-08-22 1985-08-22 Injection molded bearing and its molding method

Publications (1)

Publication Number Publication Date
JPS6246019A true JPS6246019A (en) 1987-02-27

Family

ID=16160521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18485785A Pending JPS6246019A (en) 1985-08-22 1985-08-22 Injection molded bearing and its molding method

Country Status (1)

Country Link
JP (1) JPS6246019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270594A (en) * 2008-04-30 2009-11-19 Canon Inc Bearing device and image forming device equipped therewith
JP2015222111A (en) * 2014-05-23 2015-12-10 Ntn株式会社 Fluid dynamic pressure device and motor having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270594A (en) * 2008-04-30 2009-11-19 Canon Inc Bearing device and image forming device equipped therewith
JP2015222111A (en) * 2014-05-23 2015-12-10 Ntn株式会社 Fluid dynamic pressure device and motor having the same

Similar Documents

Publication Publication Date Title
US7790083B2 (en) Method for producing a throttle valve unit in a two-component injection molding process
US8028997B2 (en) Resin seal ring and manufacturing method
US4050701A (en) Fluid seal
US7610677B2 (en) Method for manufacturing a throttle valve unit
KR20070059012A (en) Fluid bearing device and method of manufacturing the same
US5697709A (en) Dynamic pressure type bearing device
JP4808457B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JPH0477611B2 (en)
US4065190A (en) Self adjusting elevating temperature bearing and housing
US5628519A (en) Oil seal ring of synthetic resin having angularly displaced injection point
JPS6246019A (en) Injection molded bearing and its molding method
JPH04277320A (en) Resin composition for resin-wound bearing
JPH0450167B2 (en)
US5599096A (en) Disc screw extruder with free-floating operating member
JP3984091B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP3409154B2 (en) Backflow prevention device of metal injection molding machine
JP4080014B2 (en) Resin coated bearing
WO2023188463A1 (en) Backflow-prevention-mechanism-equipped screw, injection molding device comprising same, and backflow prevention ring
JPS62215123A (en) Sliding bearing and its process
JP3131973B2 (en) Resin composition for preventing creep of bearings
CN216278964U (en) Sliding bearing device for water pump
JP2535920Y2 (en) Screw head structure of injection device
JP2003181884A (en) Injection-molded resin rotary body and method for manufacturing the same
EP1481177A1 (en) Method for making a ring-shaped friction facing whereof the friction material comprises fibers, injection mould for implementing same, and resulting friction facing
CN113547708A (en) Plasticizing screw for forming machine