JP6343052B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP6343052B2
JP6343052B2 JP2017044669A JP2017044669A JP6343052B2 JP 6343052 B2 JP6343052 B2 JP 6343052B2 JP 2017044669 A JP2017044669 A JP 2017044669A JP 2017044669 A JP2017044669 A JP 2017044669A JP 6343052 B2 JP6343052 B2 JP 6343052B2
Authority
JP
Japan
Prior art keywords
insulating film
layer
resistance layer
well
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017044669A
Other languages
Japanese (ja)
Other versions
JP2017123481A (en
Inventor
菊池 秀和
秀和 菊池
久雄 大竹
久雄 大竹
男也 菅井
男也 菅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2017044669A priority Critical patent/JP6343052B2/en
Publication of JP2017123481A publication Critical patent/JP2017123481A/en
Application granted granted Critical
Publication of JP6343052B2 publication Critical patent/JP6343052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

本発明は、半導体集積回路の構成要素である抵抗素子を含む半導体装置に関する。   The present invention relates to a semiconductor device including a resistance element that is a component of a semiconductor integrated circuit.

一般に、半導体集積回路では、抵抗素子は、電源電圧あるいは信号電圧の分圧や降圧などの電圧制御などのために広く使用されている。このような抵抗素子は、たとえば、特開平7−111311号公報(特許文献1)に開示されている。   In general, in a semiconductor integrated circuit, a resistance element is widely used for voltage control such as voltage division or step-down of a power supply voltage or a signal voltage. Such a resistance element is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-111311 (Patent Document 1).

図1は、特許文献1に開示されている抵抗素子を含む半導体装置の概略断面図である。図1に示される半導体装置は、n型のシリコン基板101と、このシリコン基板101の表面層に形成された複数のp型の拡散抵抗領域103と、シリコン基板101上に形成された薄い酸化膜121と、この酸化膜121の上面のうち拡散抵抗領域103の直上を除く部分を被覆する多結晶シリコン層(低抵抗層)107とを有する。抵抗素子は、複数の拡散抵抗領域103によって構成される。また、拡散抵抗領域103は、ホウ素イオンなどの不純物イオンを薄い酸化膜121を通じてシリコン基板101に打ち込むことで形成される。多結晶シリコン層107は、所定の電源電圧に固定されているので、たとえシリコン基板101よりも上方の配線(図示せず)によって多結晶シリコン層107の直下に電界が形成されても、拡散抵抗領域103,103の相互間にp型反転層の形成によるリーク電流が発生することを防止することができる。 FIG. 1 is a schematic cross-sectional view of a semiconductor device including a resistance element disclosed in Patent Document 1. The semiconductor device shown in FIG. 1 includes an n-type silicon substrate 101, a plurality of p + -type diffusion resistance regions 103 formed on the surface layer of the silicon substrate 101, and a thin oxide film formed on the silicon substrate 101. A film 121 and a polycrystalline silicon layer (low resistance layer) 107 covering the portion of the upper surface of the oxide film 121 excluding the portion directly above the diffusion resistance region 103 are provided. The resistance element is constituted by a plurality of diffusion resistance regions 103. The diffusion resistance region 103 is formed by implanting impurity ions such as boron ions into the silicon substrate 101 through the thin oxide film 121. Since the polycrystalline silicon layer 107 is fixed to a predetermined power supply voltage, even if an electric field is formed directly below the polycrystalline silicon layer 107 by wiring (not shown) above the silicon substrate 101, the diffusion resistance Leakage current due to the formation of the p-type inversion layer between the regions 103 and 103 can be prevented.

特開平7−111311号公報(段落0002〜0003及び図1など)Japanese Patent Laid-Open No. 7-111111 (paragraphs 0002 to 0003 and FIG. 1 etc.)

近年、アナログ集積回路では、電圧制御の高精度化が求められており、これに伴い、抵抗素子の特性の安定化(回路内の抵抗素子間の抵抗値のばらつき低減)が強く求められている。特許文献1の複数の拡散抵抗領域103からなる抵抗素子では、酸化膜121が薄いため、当該抵抗素子の特性が、多結晶シリコン層107に印加される電源電圧の変動の影響を受けて変動しやすいという問題がある。   In recent years, analog integrated circuits have been required to have high precision in voltage control, and accordingly, stabilization of the characteristics of resistance elements (reduction in variation in resistance values between resistance elements in the circuit) has been strongly demanded. . In the resistance element composed of the plurality of diffusion resistance regions 103 of Patent Document 1, since the oxide film 121 is thin, the characteristics of the resistance element fluctuate due to the fluctuation of the power supply voltage applied to the polycrystalline silicon layer 107. There is a problem that it is easy.

上記に鑑みて本発明の目的は、抵抗特性の安定化を実現することができる半導体装置を提供することである。   In view of the above, an object of the present invention is to provide a semiconductor device capable of realizing stabilization of resistance characteristics.

本発明の一態様による半導体装置は、半導体基板に形成された複数のウェル領域と、前記半導体基板上に形成された第1の絶縁膜と、前記第1の絶縁膜上に形成された第1の抵抗層と、前記第1の抵抗層と離間して前記第1の絶縁膜上に形成された第2の抵抗層と、前記第1の抵抗層と前記第2の抵抗層の間の前記半導体基板の上方に形成された導電層と、前記複数のウェル領域のいずれかに形成され、前記第1の抵抗層と電気的に接続された第1のウェルコンタクトと、前記第1のウェルコンタクトと離間して前記複数のウェル領域のいずれかに形成され、前記第2の抵抗層と電気的に接続された第2のウェルコンタクトとを有し、前記複数のウェル領域は、前記半導体基板内に形成された第1導電型の不純物拡散領域であり、前記導電層は、前記複数のウェル領域間の前記半導体基板内の半導体領域に前記第1導電型の反転層を形成させない電位に固定されていることを特徴とする。
本発明の他の態様による半導体装置は、半導体基板に形成された複数のウェル領域と、前記半導体基板上に形成された第1の絶縁膜と、前記第1の絶縁膜上に形成された第1の抵抗層と、前記第1の抵抗層と離間して前記第1の絶縁膜上に形成された第2の抵抗層と、前記第1の抵抗層と前記第2の抵抗層の間の前記半導体基板の上方に形成された導電層と、前記複数のウェル領域のいずれかに形成され、前記第1の抵抗層と電気的に接続された第1のウェルコンタクトと、前記第1のウェルコンタクトと離間して前記複数のウェル領域のいずれかに形成され、前記第2の抵抗層と電気的に接続された第2のウェルコンタクトと、前記第1の絶縁膜と前記導電層との間に介在する層間絶縁膜とを有することを特徴とする。
A semiconductor device according to an aspect of the present invention includes a plurality of well regions formed in a semiconductor substrate, a first insulating film formed over the semiconductor substrate, and a first insulating film formed over the first insulating film. A resistive layer, a second resistive layer formed on the first insulating film and spaced apart from the first resistive layer, and the first resistive layer between the first resistive layer and the second resistive layer A conductive layer formed above a semiconductor substrate; a first well contact formed in one of the plurality of well regions and electrically connected to the first resistance layer; and the first well contact And a second well contact electrically connected to the second resistance layer , wherein the plurality of well regions are formed in the semiconductor substrate. An impurity diffusion region of the first conductivity type formed in the conductive layer , Characterized in that it is fixed to the not form an inversion layer of the first conductivity type semiconductor region of the semiconductor substrate potential between the plurality of well regions.
A semiconductor device according to another aspect of the present invention includes a plurality of well regions formed on a semiconductor substrate, a first insulating film formed on the semiconductor substrate, and a first insulating film formed on the first insulating film. 1 resistive layer, a second resistive layer formed on the first insulating film and spaced apart from the first resistive layer, and between the first resistive layer and the second resistive layer A conductive layer formed above the semiconductor substrate; a first well contact formed in any of the plurality of well regions and electrically connected to the first resistance layer; and the first well. A second well contact formed in one of the plurality of well regions and spaced apart from the contact and electrically connected to the second resistance layer, and between the first insulating film and the conductive layer And an interlayer insulating film interposed therebetween.

本発明によれば、第1のウェル領域と第2のウェル領域との間の半導体領域の直上に導電層が形成されており、この導電層と半導体領域との間に中間絶縁膜が形成されている。導電層は、当該半導体領域において反転層を生じさせない電位に固定されているので、第1のウェル領域と第2のウェル領域との間が導通してリーク電流が発生することを抑制することができる。また、中間絶縁膜の存在により、リーク電流の発生を防止しつつ第1及び第2の抵抗素子の特性を安定化させることができる。   According to the present invention, the conductive layer is formed immediately above the semiconductor region between the first well region and the second well region, and the intermediate insulating film is formed between the conductive layer and the semiconductor region. ing. Since the conductive layer is fixed at a potential that does not cause an inversion layer in the semiconductor region, it is possible to suppress the occurrence of leakage current due to conduction between the first well region and the second well region. it can. In addition, the presence of the intermediate insulating film can stabilize the characteristics of the first and second resistance elements while preventing the occurrence of leakage current.

図1は、特許文献1に開示されている抵抗素子を含む半導体装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of a semiconductor device including a resistance element disclosed in Patent Document 1. 本発明に係る実施の形態の半導体装置のレイアウトの一部を上面視で概略的に示す図である。It is a figure which shows schematically a part of layout of the semiconductor device of embodiment concerning this invention by upper surface view. 図2の半導体装置のIII−III線における概略断面図である。It is a schematic sectional drawing in the III-III line of the semiconductor device of FIG. 図2の半導体装置のIV−IV線における概略断面図である。It is a schematic sectional drawing in the IV-IV line of the semiconductor device of FIG. 図2の半導体装置のV−V線における概略断面図である。FIG. 5 is a schematic cross-sectional view taken along line VV of the semiconductor device of FIG. 2. 図2の半導体装置のVI−VI線における概略断面図である。FIG. 3 is a schematic cross-sectional view taken along line VI-VI of the semiconductor device of FIG. 2. 本実施の形態の半導体装置の抵抗素子を含む等価回路を示す図である。It is a figure which shows the equivalent circuit containing the resistive element of the semiconductor device of this Embodiment.

以下、本発明に係る実施の形態について図面を参照しつつ説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

図2は、本実施の形態の半導体装置1のレイアウトの一部を上面視で概略的に示す図である。この半導体装置1は、半導体集積回路を構成する抵抗素子やMOSトランジスタや容量素子などの複数の半導体素子を備えている。図2は、これら複数の半導体素子のうち抵抗素子5A,5B,5C,5Dのレイアウトを示す図である。また、図3は、図2の半導体装置1のIII−III線における概略断面図であり、図4は、図2の半導体装置1のIV−IV線における概略断面図であり、図5は、図2の半導体装置1のV−V線における概略断面図であり、図6は、図2の半導体装置1のVI−VI線における概略断面図である。なお、図3〜図6には、絶縁膜20,21,22,23が示されているが、図2では、それら絶縁膜20,21,22,23の図示は省略されている。   FIG. 2 is a diagram schematically showing a part of the layout of the semiconductor device 1 of the present embodiment in a top view. The semiconductor device 1 includes a plurality of semiconductor elements such as a resistance element, a MOS transistor, and a capacitor element constituting a semiconductor integrated circuit. FIG. 2 is a diagram showing a layout of resistance elements 5A, 5B, 5C, and 5D among the plurality of semiconductor elements. 3 is a schematic cross-sectional view taken along line III-III of the semiconductor device 1 of FIG. 2, FIG. 4 is a schematic cross-sectional view taken along line IV-IV of the semiconductor device 1 of FIG. 2, and FIG. FIG. 6 is a schematic cross-sectional view taken along line VV of the semiconductor device 1 of FIG. 2, and FIG. 6 is a schematic cross-sectional view taken along line VI-VI of the semiconductor device 1 of FIG. 3 to 6 show the insulating films 20, 21, 22, and 23. In FIG. 2, the insulating films 20, 21, 22, and 23 are not shown.

図2に示されるように、半導体装置1は、並列に配列されたp型不純物拡散領域からなるウェル領域11A,11B,11C,11Dと、これらウェル領域11A,11B,11C,11Dの直上にそれぞれ形成された抵抗層32A,32B,32C,32Dと、ウェル領域11A,11B,11C,11Dの各々を上面視で取り囲むように形成された導電性配線層33とを有する。導電性配線層33は、所定の電源電圧Vccに固定されている。抵抗層32A,32C間は、第1接続配線層38を介して互いに電気的に接続されており、抵抗層32B,32D間は、第2接続配線層39を介して互いに電気的に接続されている。これら抵抗層32A,32B,32C,32Dは、たとえば多結晶シリコン材料で構成することができる。また、導電性配線層33、第1接続配線層38及び第2接続配線層39はそれぞれ、たとえばアルミニウムや銅などの金属材料で構成することが可能である。   As shown in FIG. 2, the semiconductor device 1 includes well regions 11A, 11B, 11C, and 11D that are p-type impurity diffusion regions arranged in parallel, and directly above the well regions 11A, 11B, 11C, and 11D, respectively. The resistor layers 32A, 32B, 32C, and 32D are formed, and the conductive wiring layer 33 is formed so as to surround each of the well regions 11A, 11B, 11C, and 11D in a top view. The conductive wiring layer 33 is fixed to a predetermined power supply voltage Vcc. The resistance layers 32A and 32C are electrically connected to each other via the first connection wiring layer 38, and the resistance layers 32B and 32D are electrically connected to each other via the second connection wiring layer 39. Yes. These resistance layers 32A, 32B, 32C, and 32D can be made of, for example, a polycrystalline silicon material. Further, each of the conductive wiring layer 33, the first connection wiring layer 38, and the second connection wiring layer 39 can be made of a metal material such as aluminum or copper.

図3〜図6に示されるように、半導体装置1は、n型単結晶シリコン基板である半導体基板10を有しており、この半導体基板10の表層部に半導体基板10の上面(主面)に平行な所定方向に延在するウェル領域11A,11B,11C,11Dが配置されている。これらウェル領域11A〜11Dは、たとえば、半導体基板10の上面にレジストパターン(図示せず)を形成し、このレジストパターンをマスクとしてボロンイオンやフッ化ボロンイオンなどのp型不純物を選択的に注入し熱処理で活性化させることで形成され得る。   As shown in FIG. 3 to FIG. 6, the semiconductor device 1 has a semiconductor substrate 10 that is an n-type single crystal silicon substrate. Well regions 11A, 11B, 11C, and 11D extending in a predetermined direction parallel to are arranged. In these well regions 11A to 11D, for example, a resist pattern (not shown) is formed on the upper surface of the semiconductor substrate 10, and p-type impurities such as boron ions and boron fluoride ions are selectively implanted using this resist pattern as a mask. And can be formed by activation by heat treatment.

なお、本実施の形態では、半導体基板10としてn型単結晶シリコン基板が使用されるが、これに限定されるものではない。n型単結晶シリコン基板に代えて、たとえば、n型エピタキシャル成長層を有する半導体基板や、SOI(Semiconductor−On−InsulatorまたはSilicon−On−Insulator)基板を使用してもよい。SOI基板は、支持基板と、表層部をなす半導体層と、これら支持基板と半導体層との間に介在する埋め込み絶縁膜とを含むものである。埋め込み絶縁膜は、半導体層を支持基板から電気的に分離する機能を有する。   In this embodiment, an n-type single crystal silicon substrate is used as the semiconductor substrate 10, but the present invention is not limited to this. Instead of the n-type single crystal silicon substrate, for example, a semiconductor substrate having an n-type epitaxial growth layer or an SOI (Semiconductor-On-Insulator or Silicon-On-Insulator) substrate may be used. The SOI substrate includes a support substrate, a semiconductor layer forming a surface layer portion, and a buried insulating film interposed between the support substrate and the semiconductor layer. The buried insulating film has a function of electrically separating the semiconductor layer from the supporting substrate.

半導体基板10の上面は、素子分離絶縁膜20で被覆されている。この素子分離絶縁膜20は、複数の半導体素子を横方向に電気的に分離する機能を有する。素子分離絶縁膜20は、たとえば、LOCOS法により0.1μm〜数μmの厚みで形成されるフィールド絶縁膜とすることができる。なお、LOCOS法に代えて、公知のSTI(Shallow Trench Isolation)などのトレンチ分離技術を用いて素子分離絶縁膜20が形成されてもよい。本実施の形態の素子分離絶縁膜20の厚みは、半導体基板の上面に形成される一般的なゲート酸化膜などの表面酸化膜の厚みと比べると大きい。このような素子分離絶縁膜20の上方に、抵抗素子5A〜5Dを構成する抵抗層32A〜32Dが形成されるので、比抵抗が高い抵抗層32A〜32Dに対して半導体基板10の電位が及ぼす影響を低減させることができる。   The upper surface of the semiconductor substrate 10 is covered with an element isolation insulating film 20. The element isolation insulating film 20 has a function of electrically isolating a plurality of semiconductor elements in the lateral direction. The element isolation insulating film 20 can be, for example, a field insulating film formed with a thickness of 0.1 μm to several μm by the LOCOS method. Instead of the LOCOS method, the element isolation insulating film 20 may be formed using a trench isolation technique such as a known STI (Shallow Trench Isolation). The thickness of the element isolation insulating film 20 of the present embodiment is larger than the thickness of a surface oxide film such as a general gate oxide film formed on the upper surface of the semiconductor substrate. Since the resistance layers 32A to 32D constituting the resistance elements 5A to 5D are formed above the element isolation insulating film 20, the potential of the semiconductor substrate 10 exerts on the resistance layers 32A to 32D having a high specific resistance. The influence can be reduced.

素子分離絶縁膜20上には、シリコン酸化膜などの下層絶縁膜21が形成されている。これら素子分離絶縁膜20及び下層絶縁膜21によって本発明の中間絶縁膜を構成することが可能である。また、下層絶縁膜21上には、ウェル領域11A,11B,11C,11Dの延在方向に延在する抵抗層32A,32B,32C,32Dが形成されている。これら抵抗層32A〜32Dは、下層絶縁膜21の堆積後、たとえば、減圧CVD法によりこの下層絶縁膜21上にリンなどの不純物がドープされた多結晶シリコン層を成膜し、フォトリソグラフィ技術と異方性エッチングとでこの多結晶シリコン層をパターニングすることで形成される。   A lower insulating film 21 such as a silicon oxide film is formed on the element isolation insulating film 20. The element isolation insulating film 20 and the lower insulating film 21 can constitute the intermediate insulating film of the present invention. On the lower insulating film 21, resistance layers 32A, 32B, 32C, and 32D extending in the extending direction of the well regions 11A, 11B, 11C, and 11D are formed. The resistance layers 32A to 32D are formed by depositing a polycrystalline silicon layer doped with impurities such as phosphorus on the lower insulating film 21 by, for example, a low pressure CVD method after the lower insulating film 21 is deposited. It is formed by patterning this polycrystalline silicon layer by anisotropic etching.

図6に示されるように、抵抗層32Aの直下のウェル領域11A内には、このウェル領域11Aよりも高濃度のp型不純物拡散領域であるp型のウェルコンタクト領域12Aが形成されており、抵抗層32Aは、下層絶縁膜21に埋設されたコンタクトプラグ31Aとウェルコンタクト領域12Aとを通じてウェル領域11Aと電気的に接続される。同様に、抵抗層32Bの直下のウェル領域11B内には、このウェル領域11Bよりも高濃度のp型のウェルコンタクト領域12Bが形成されており、抵抗層32Bは、下層絶縁膜21に埋設されたコンタクトプラグ31Bとウェルコンタクト領域12Bとを通じてウェル領域11Bと電気的に接続される。 As shown in FIG. 6, in the well region 11A immediately below the resistance layer 32A, a p + type well contact region 12A which is a p-type impurity diffusion region having a higher concentration than the well region 11A is formed. The resistance layer 32A is electrically connected to the well region 11A through the contact plug 31A embedded in the lower insulating film 21 and the well contact region 12A. Similarly, a p + -type well contact region 12B having a higher concentration than the well region 11B is formed in the well region 11B immediately below the resistance layer 32B. The resistance layer 32B is embedded in the lower insulating film 21. The well region 11B is electrically connected through the contact plug 31B and the well contact region 12B.

一方、図4に示されるように、抵抗層32Cの直下のウェル領域11C内には、このウェル領域11Cよりも高濃度のp型不純物拡散領域であるp型のウェルコンタクト領域12Cが形成されており、抵抗層32Cは、下層絶縁膜21に埋設されたコンタクトプラグ31Cとウェルコンタクト領域12Cとを通じてウェル領域11Cと電気的に接続される。同様に、抵抗層32Dの直下のウェル領域11D内には、このウェル領域11Dよりも高濃度のp型のウェルコンタクト領域12Dが形成されており、抵抗層32Dは、下層絶縁膜21に埋設されたコンタクトプラグ31Dとウェルコンタクト領域12Dとを通じてウェル領域11Dと電気的に接続される。 On the other hand, as shown in FIG. 4, a p + -type well contact region 12C, which is a p-type impurity diffusion region having a concentration higher than that of the well region 11C, is formed in the well region 11C immediately below the resistance layer 32C. The resistance layer 32C is electrically connected to the well region 11C through the contact plug 31C embedded in the lower insulating film 21 and the well contact region 12C. Similarly, a p + type well contact region 12D having a concentration higher than that of the well region 11D is formed in the well region 11D immediately below the resistance layer 32D. The resistance layer 32D is embedded in the lower insulating film 21. The well region 11D is electrically connected through the contact plug 31D and the well contact region 12D.

なお、コンタクトプラグ31A,31B,31C,31Dは、たとえば、フォトリソグラフィ技術とエッチング技術とを用いて半導体基板10の上面を露出させるコンタクトホールを下層絶縁膜21に形成し、CVD法によりこれらコンタクトホール内に導電性材料を埋め込むことで形成され得る。   For the contact plugs 31A, 31B, 31C, 31D, for example, contact holes that expose the upper surface of the semiconductor substrate 10 are formed in the lower insulating film 21 by using a photolithography technique and an etching technique, and these contact holes are formed by a CVD method. It can be formed by embedding a conductive material inside.

また、図3〜図6に示されるように、下層絶縁膜21上には上記抵抗層32A〜32Dを被覆する第1層間絶縁膜22が形成されている。この第1層間絶縁膜22上にはさらに第2層間絶縁膜23が形成されている。これら第1層間絶縁膜22及び第2層間絶縁膜23も、下層絶縁膜21と同様にCVD法により絶縁材料を0.1μm〜数十μm程度の厚みで堆積させることで形成することができる。   As shown in FIGS. 3 to 6, a first interlayer insulating film 22 covering the resistance layers 32 </ b> A to 32 </ b> D is formed on the lower insulating film 21. A second interlayer insulating film 23 is further formed on the first interlayer insulating film 22. The first interlayer insulating film 22 and the second interlayer insulating film 23 can also be formed by depositing an insulating material with a thickness of about 0.1 μm to several tens of μm by the CVD method similarly to the lower layer insulating film 21.

また、図4〜図6に示されるように、第1層間絶縁膜22上では、導電性配線層33を構成する導電層33A,33B,33C,33D,33Eがウェル領域11A〜11Dの延在方向に沿って延在している。導電層33Bは、互いに隣り合うウェル領域11A,11B間のn型領域の直上に配置される。この構造は、導電層33Bをゲート電極とし、導電層33Bの直下の絶縁膜をゲート絶縁膜とし、互いに対向するp型ウェル領域11A,11Bをソース及びドレインとするpチャネル型の寄生トランジスタを含む構造であるが、導電層33Bに印加される電源電圧Vccは、ウェル領域11A,11B間の領域の導電型(n型)をp型に反転させない電圧値(すなわち、寄生トランジスタをオン状態にしない電圧値)に調整される。これにより、半導体装置1の駆動時にウェル領域11A,11B間の領域にリーク電流が発生することを防止することができる。同様に、導電層33Cは、互いに対向するウェル領域11B,11C間のn型領域の直上に配置され、導電層33Dは、互いに対向するウェル領域11C,11D間のn型領域の直上に配置されている。   As shown in FIGS. 4 to 6, on the first interlayer insulating film 22, the conductive layers 33A, 33B, 33C, 33D, and 33E constituting the conductive wiring layer 33 are extended from the well regions 11A to 11D. Extends along the direction. Conductive layer 33B is disposed immediately above the n-type region between well regions 11A and 11B adjacent to each other. This structure includes a p-channel parasitic transistor having the conductive layer 33B as a gate electrode, the insulating film immediately below the conductive layer 33B as a gate insulating film, and the p-type well regions 11A and 11B facing each other as sources and drains. Although it has a structure, the power supply voltage Vcc applied to the conductive layer 33B is a voltage value that does not invert the conductivity type (n-type) of the region between the well regions 11A and 11B to the p-type (ie, does not turn on the parasitic transistor). Voltage value). Thereby, it is possible to prevent a leak current from being generated in the region between the well regions 11A and 11B when the semiconductor device 1 is driven. Similarly, the conductive layer 33C is disposed immediately above the n-type region between the well regions 11B and 11C facing each other, and the conductive layer 33D is disposed immediately above the n-type region between the well regions 11C and 11D facing each other. ing.

ウェル領域11A,11B,11C,11Dは、抵抗層32A,32B,32C,32Dを基板電位の変動から保護する機能を有する。ウェル領域11A,11B,11C,11Dの電位を安定化させる観点からは、ウェル領域11A,11B,11C,11D各々の横方向の寸法は、抵抗層32A,32B,32C,32D各々の横方向の寸法よりも大きいことが望ましい。ただし、ウェル領域11A,11B,11C,11D各々の寸法を大きくすると、ウェル領域11A,11B,11C,11D相互間の間隔L(図5)が短くなる。本実施の形態では、半導体基板10と導電層33B,33C,33Dとの間に素子分離絶縁膜20、下層絶縁膜21及び第1層間絶縁膜22からなる厚膜の絶縁層が介在するため、その間隔L(図5)が短くても、寄生トランジスタがオン状態に遷移せず、リーク電流の発生を確実に防止することができる。   The well regions 11A, 11B, 11C, and 11D have a function of protecting the resistance layers 32A, 32B, 32C, and 32D from fluctuations in the substrate potential. From the viewpoint of stabilizing the potentials of the well regions 11A, 11B, 11C, and 11D, the lateral dimensions of the well regions 11A, 11B, 11C, and 11D are set in the lateral direction of the resistance layers 32A, 32B, 32C, and 32D, respectively. Desirably larger than the dimensions. However, if the dimensions of each of the well regions 11A, 11B, 11C, and 11D are increased, the interval L (FIG. 5) between the well regions 11A, 11B, 11C, and 11D is shortened. In the present embodiment, since a thick insulating layer including the element isolation insulating film 20, the lower insulating film 21, and the first interlayer insulating film 22 is interposed between the semiconductor substrate 10 and the conductive layers 33B, 33C, and 33D. Even if the interval L (FIG. 5) is short, the parasitic transistor does not transition to the ON state, and leakage current can be reliably prevented.

図2及び図3に示されるように、第2層間絶縁膜23上には、抵抗層32A,32Cを互いに電気的に接続する第1接続配線層38が形成されている。また、第1層間絶縁膜22及び第2層間絶縁膜23には、抵抗層32A,32Cの上端と電気的に接続された上層コンタクトプラグ36A,36Cが埋設されている。第1接続配線層38は、上層コンタクトプラグ36A,36Cを介して抵抗層32A,32Cを互いに電気的に接続する。一方、図2及び図4に示されるように、第2層間絶縁膜23上には、抵抗層32B,32Dを互いに電気的に接続する第2接続配線層39が形成されている。また、第1層間絶縁膜22及び第2層間絶縁膜23には、抵抗層32B,32Dの上端と電気的に接続された上層コンタクトプラグ36B,36Dが埋設されている。第2接続配線層39は、上層コンタクトプラグ36B,36Dを介して抵抗層32B,32Dを互いに電気的に接続する。   As shown in FIGS. 2 and 3, a first connection wiring layer 38 that electrically connects the resistance layers 32 </ b> A and 32 </ b> C to each other is formed on the second interlayer insulating film 23. Also, upper contact plugs 36A and 36C electrically connected to the upper ends of the resistance layers 32A and 32C are embedded in the first interlayer insulating film 22 and the second interlayer insulating film 23. The first connection wiring layer 38 electrically connects the resistance layers 32A and 32C to each other through the upper layer contact plugs 36A and 36C. On the other hand, as shown in FIGS. 2 and 4, a second connection wiring layer 39 that electrically connects the resistance layers 32 </ b> B and 32 </ b> D to each other is formed on the second interlayer insulating film 23. Further, upper contact plugs 36B and 36D electrically connected to the upper ends of the resistance layers 32B and 32D are embedded in the first interlayer insulating film 22 and the second interlayer insulating film 23. The second connection wiring layer 39 electrically connects the resistance layers 32B and 32D to each other through the upper contact plugs 36B and 36D.

なお、上層コンタクトプラグ36A,36B,36C,36Dは、たとえば、フォトリソグラフィ技術とエッチング技術とを用いて抵抗層32A〜32Dの上面を露出させるコンタクトホールを第1層間絶縁膜22及び第2層間絶縁膜23に形成し、CVD法によりこれらコンタクトホール内に導電性材料を埋め込むことで形成され得る。   The upper contact plugs 36A, 36B, 36C, and 36D are contact holes that expose the upper surfaces of the resistance layers 32A to 32D using, for example, a photolithography technique and an etching technique, and the first interlayer insulating film 22 and the second interlayer insulating film. It can be formed by forming the film 23 and embedding a conductive material in these contact holes by the CVD method.

図6に示されるように、抵抗層32A,32B,32C,32Dは、上層コンタクトプラグ34A,34B,34C,34Dを通じて上層配線層35A,35B,35C,35Dとそれぞれ電気的に接続されている。上層コンタクトプラグ34A〜34Dは、上層コンタクトプラグ36A,36B,36C,36Dと同一工程で同時に形成される。なお、図2では、上層配線層35A,35B,35C,35Dの図示は省略されている。   As shown in FIG. 6, the resistance layers 32A, 32B, 32C, and 32D are electrically connected to the upper wiring layers 35A, 35B, 35C, and 35D through the upper contact plugs 34A, 34B, 34C, and 34D, respectively. The upper layer contact plugs 34A to 34D are simultaneously formed in the same process as the upper layer contact plugs 36A, 36B, 36C, 36D. In FIG. 2, the upper wiring layers 35A, 35B, 35C, and 35D are not shown.

上記半導体装置1は、半導体集積回路の構成要素として4個の抵抗素子5A,5B,5C,5Dを有している。図7は、これら4個の抵抗素子5A,5B,5C,5Dを含む等価回路を示す図である。第1の抵抗素子5Aは、抵抗層32Aとウェル領域11Aとコンタクトプラグ31Aとで構成される。また、第2の抵抗素子5Bは、抵抗層32Bとウェル領域11Bとコンタクトプラグ31Bとで構成され、第3の抵抗素子5Cは、抵抗層32Cとウェル領域11Cとコンタクトプラグ31Cとで構成され、第4の抵抗素子5Dは、抵抗層32Dとウェル領域11Dとコンタクトプラグ31Dとで構成される。   The semiconductor device 1 has four resistance elements 5A, 5B, 5C, and 5D as components of a semiconductor integrated circuit. FIG. 7 is a diagram showing an equivalent circuit including these four resistance elements 5A, 5B, 5C, and 5D. The first resistance element 5A includes a resistance layer 32A, a well region 11A, and a contact plug 31A. The second resistance element 5B includes a resistance layer 32B, a well region 11B, and a contact plug 31B. The third resistance element 5C includes a resistance layer 32C, a well region 11C, and a contact plug 31C. The fourth resistance element 5D includes a resistance layer 32D, a well region 11D, and a contact plug 31D.

抵抗素子5A,5Cは、第1接続配線層38を介して相互に直列接続されて一つの抵抗器を構成し、抵抗素子5B,5Dは、第2接続配線層39を介して相互に直列接続されて他の一つの抵抗器を構成する。このように抵抗器間の幾何学的重心が近くなるように抵抗素子同士を直列接続することで、製造時のプロセス条件の面内ばらつきなどに起因して抵抗器間で特性がばらつくことを抑制することができる。   The resistance elements 5A and 5C are connected in series with each other via the first connection wiring layer 38 to constitute one resistor, and the resistance elements 5B and 5D are connected in series with each other via the second connection wiring layer 39. To constitute another resistor. In this way, by connecting the resistor elements in series so that the geometric center of gravity between the resistors is close, it is possible to suppress variations in characteristics between resistors due to in-plane variations in process conditions during manufacturing. can do.

以上に説明したように本実施の形態1の半導体装置1では、互いに対向するウェル領域11A,11B間の領域の直上に導電層33Bが、互いに対向するウェル領域11B,11C間の領域の直上に導電層33Cが、互いに対向するウェル領域11C,11D間の領域の直上に導電層33Dがそれぞれ形成されており、これら導電層33B,33C,33Dには、寄生トランジスタをオン状態にしない電源電圧Vccが印加されている。このため、半導体装置1の動作時にウェル領域11A,11B,11C,11D相互間の領域に電界が形成されても、寄生トランジスタのオン状態への遷移によりリーク電流が発生することを抑制することができる。   As described above, in the semiconductor device 1 according to the first embodiment, the conductive layer 33B is located immediately above the region between the well regions 11A and 11B facing each other, and directly above the region between the well regions 11B and 11C facing each other. The conductive layer 33C is formed immediately above the region between the well regions 11C and 11D facing each other. The power supply voltage Vcc that does not turn on the parasitic transistor is provided in the conductive layers 33B, 33C, and 33D. Is applied. For this reason, even if an electric field is formed in the region between the well regions 11A, 11B, 11C, and 11D during the operation of the semiconductor device 1, it is possible to suppress generation of a leakage current due to the transition to the on state of the parasitic transistor. it can.

しかも、導電層33B,33C,33Dと半導体基板10との間には、素子分離絶縁膜20、下層絶縁膜21及び第1層間絶縁膜22からなる厚膜の絶縁層が介在するため、寄生トランジスタのオン状態への遷移を確実に防止することができる。よって、ウェル領域11A,11B,11C,11D各々の横方向寸法を拡げてウェル領域11A,11B,11C,11Dの電位を安定化させることが可能である。このため、電源電圧Vccが変動しても、リーク電流の発生を防止しつつ抵抗素子5A〜5Cの特性変動を抑制することができる。   In addition, since a thick insulating layer composed of the element isolation insulating film 20, the lower insulating film 21, and the first interlayer insulating film 22 is interposed between the conductive layers 33B, 33C, and 33D and the semiconductor substrate 10, the parasitic transistor Can be reliably prevented from transitioning to the ON state. Accordingly, it is possible to stabilize the potentials of the well regions 11A, 11B, 11C, and 11D by expanding the lateral dimensions of the well regions 11A, 11B, 11C, and 11D. For this reason, even if the power supply voltage Vcc fluctuates, it is possible to suppress the characteristic fluctuation of the resistance elements 5A to 5C while preventing the generation of a leakage current.

したがって、本実施の形態の半導体装置1は、リーク電流の発生の抑制と抵抗特性の安定化とを実現することができる。たとえば、抵抗素子5A〜5Dが数十ボルト程度の高電圧の制御(分圧や降圧など)に使用される場合でも、リーク電流の発生の抑制と抵抗特性の安定化とを両立させることが可能である。   Therefore, the semiconductor device 1 according to the present embodiment can realize the suppression of the leakage current and the stabilization of the resistance characteristics. For example, even when the resistance elements 5A to 5D are used for high voltage control (such as voltage division or step-down) of about several tens of volts, it is possible to achieve both suppression of leakage current and stabilization of resistance characteristics. It is.

また、図2及び図7に示したように、並列に配列された複数の抵抗素子5A〜5Dのうち一つ置きに配置された抵抗素子5A,5Cが第1の抵抗器を構成し、一つ置きに配置された抵抗素子5B,5Dが第2の抵抗器を構成しているので、第1及び第2の抵抗器間で特性がばらつくことを抑制することができる。また、図4に示される第2接続配線層39に電圧が印加されたとき、この第2接続配線層39の下方におけるウェル領域11C,11D間の領域並びにウェル領域11C,11B間の領域にそれぞれ当該印加電圧に起因する電界が形成される。このような状況でも、電源電圧Vccに固定された導電層33C,33Dが存在するため、ウェル領域11C,11D間及びウェル領域11C,11B間にそれぞれ反転層が形成されることを回避することができる。したがって、第1及び第2の抵抗器間にリーク電流が発生することを抑制することができる。   Further, as shown in FIGS. 2 and 7, the resistance elements 5A and 5C arranged every other one among the plurality of resistance elements 5A to 5D arranged in parallel constitute a first resistor. Since the resistive elements 5B and 5D arranged every other time constitute the second resistor, it is possible to suppress the variation in characteristics between the first and second resistors. Further, when a voltage is applied to the second connection wiring layer 39 shown in FIG. 4, a region between the well regions 11C and 11D and a region between the well regions 11C and 11B below the second connection wiring layer 39 are respectively provided. An electric field resulting from the applied voltage is formed. Even in such a situation, since there are conductive layers 33C and 33D fixed to the power supply voltage Vcc, it is possible to avoid the formation of inversion layers between the well regions 11C and 11D and between the well regions 11C and 11B. it can. Therefore, generation of a leak current between the first and second resistors can be suppressed.

以上、図面を参照して本発明に係る実施の形態について述べたが、これらは本発明の例示であり、上記以外の様々な形態を採用することもできる。たとえば、上述の通り、素子分離絶縁膜20は、公知のLOCOS法やトレンチ分離技術を用いて形成されるが、これに限定されるものではない。   As mentioned above, although embodiment concerning this invention was described with reference to drawings, these are the illustrations of this invention and various forms other than the above are also employable. For example, as described above, the element isolation insulating film 20 is formed using a known LOCOS method or trench isolation technique, but is not limited thereto.

また、上記実施の形態の変形例として、上記半導体装置1に形成されたウェル領域11A〜11Dなどの不純物拡散領域の導電型を逆にした半導体装置の構造もあり得る。   As a modification of the above embodiment, there may be a semiconductor device structure in which the conductivity type of impurity diffusion regions such as well regions 11A to 11D formed in the semiconductor device 1 is reversed.

1 半導体装置、 5A〜5D 抵抗素子、 10 半導体基板、 11A〜11D ウェル領域、 12A〜12D ウェルコンタクト領域、 20 素子分離絶縁膜、 21 下層絶縁膜、 22 第1層間絶縁膜、 23 第2層間絶縁膜、 31A〜31D コンタクトプラグ、 32A〜32D 抵抗層、 33 導電性配線層、 33A〜33E 導電層、 34A〜34D,36A〜36D 上層コンタクトプラグ、 35A〜35D 上層配線層、 38 第1接続配線層、 39 第2接続配線層。   DESCRIPTION OF SYMBOLS 1 Semiconductor device, 5A-5D resistive element, 10 Semiconductor substrate, 11A-11D well area | region, 12A-12D well contact area | region, 20 Element isolation insulation film, 21 Lower-layer insulation film, 22 1st interlayer insulation film, 23 2nd interlayer insulation Film, 31A to 31D contact plug, 32A to 32D resistance layer, 33 conductive wiring layer, 33A to 33E conductive layer, 34A to 34D, 36A to 36D upper layer contact plug, 35A to 35D upper layer wiring layer, 38 first connection wiring layer 39 Second connection wiring layer.

Claims (5)

半導体基板に形成された複数のウェル領域と、
前記半導体基板上に形成された第1の絶縁膜と、
前記第1の絶縁膜上に形成された第1の抵抗層と、
前記第1の抵抗層と離間して前記第1の絶縁膜上に形成された第2の抵抗層と、
前記第1の抵抗層と前記第2の抵抗層の間の前記半導体基板の上方に形成された導電層と、
前記複数のウェル領域のいずれかに形成され、前記第1の抵抗層と電気的に接続された第1のウェルコンタクトと、
前記第1のウェルコンタクトと離間して前記複数のウェル領域のいずれかに形成され、前記第2の抵抗層と電気的に接続された第2のウェルコンタクトと、
を有し、
前記複数のウェル領域は、前記半導体基板内に形成された第1導電型の不純物拡散領域であり、
前記導電層は、前記複数のウェル領域間の前記半導体基板内の半導体領域に前記第1導電型の反転層を形成させない電位に固定されている
ことを特徴とする半導体装置。
A plurality of well regions formed in a semiconductor substrate;
A first insulating film formed on the semiconductor substrate;
A first resistance layer formed on the first insulating film;
A second resistance layer formed on the first insulating film and spaced apart from the first resistance layer;
A conductive layer formed above the semiconductor substrate between the first resistance layer and the second resistance layer;
A first well contact formed in any of the plurality of well regions and electrically connected to the first resistance layer;
A second well contact formed in any of the plurality of well regions spaced apart from the first well contact and electrically connected to the second resistance layer;
Have
The plurality of well regions are impurity diffusion regions of a first conductivity type formed in the semiconductor substrate,
The conductive layer, the plurality of the semi-conductor device you characterized in that it is fixed to the potential which does not form an inversion layer of the first conductivity type semiconductor region of the semiconductor substrate between the well region.
半導体基板に形成された複数のウェル領域と、
前記半導体基板上に形成された第1の絶縁膜と、
前記第1の絶縁膜上に形成された第1の抵抗層と、
前記第1の抵抗層と離間して前記第1の絶縁膜上に形成された第2の抵抗層と、
前記第1の抵抗層と前記第2の抵抗層の間の前記半導体基板の上方に形成された導電層と、
前記複数のウェル領域のいずれかに形成され、前記第1の抵抗層と電気的に接続された第1のウェルコンタクトと、
前記第1のウェルコンタクトと離間して前記複数のウェル領域のいずれかに形成され、前記第2の抵抗層と電気的に接続された第2のウェルコンタクトと、
前記第1の絶縁膜と前記導電層との間に介在する層間絶縁膜と、
を有することを特徴とする半導体装置。
A plurality of well regions formed in a semiconductor substrate;
A first insulating film formed on the semiconductor substrate;
A first resistance layer formed on the first insulating film;
A second resistance layer formed on the first insulating film and spaced apart from the first resistance layer;
A conductive layer formed above the semiconductor substrate between the first resistance layer and the second resistance layer;
A first well contact formed in any of the plurality of well regions and electrically connected to the first resistance layer;
A second well contact formed in any of the plurality of well regions spaced apart from the first well contact and electrically connected to the second resistance layer;
An interlayer insulating film interposed between the first insulating film and the conductive layer ;
Semi conductor arrangement you, comprising a.
前記複数のウェル領域間の前記半導体基板の主面に平行な横方向における間隔は、前記第1の抵抗層と前記第2の抵抗層との間の前記横方向における間隔よりも短いことを特徴とする請求項1又は2に記載の半導体装置。 An interval in the lateral direction between the plurality of well regions parallel to the main surface of the semiconductor substrate is shorter than an interval in the lateral direction between the first resistance layer and the second resistance layer. The semiconductor device according to claim 1 or 2 . 前記第1の絶縁膜上に形成された第3の抵抗層と、
前記第1のウェルコンタクト及び前記第2のウェルコンタクトと離間して前記複数のウェル領域のいずれかに形成され、前記第3の抵抗層と電気的に接続された第3のウェルコンタクトと、
前記第1の抵抗層と前記第3の抵抗層とを電気的に接続する第1の上層配線層と
をさらに備えたことを特徴とする請求項1からのいずれか1項に記載の半導体装置。
A third resistance layer formed on the first insulating film;
A third well contact formed in any one of the plurality of well regions spaced apart from the first well contact and the second well contact and electrically connected to the third resistance layer;
The semiconductor according to any one of claims 1 to 3, wherein a first further comprising a and the upper wiring layer electrically connecting the third resistor layer and the first resistive layer apparatus.
前記第1の絶縁膜上に形成された第4の抵抗層と、
前記第1のウェルコンタクト、前記第2のウェルコンタクト、及び前記第3のウェルコンタクトと離間して前記複数のウェル領域のいずれかに形成され、前記第4の抵抗層と電気的に接続された第4のウェルコンタクトと、
前記第2の抵抗層と前記第4の抵抗層とを電気的に接続する第2の上層配線層と
をさらに備えたことを特徴とする請求項に記載の半導体装置。
A fourth resistance layer formed on the first insulating film;
The first well contact, the second well contact, and the third well contact are spaced apart from the plurality of well regions, and are electrically connected to the fourth resistance layer. A fourth well contact;
The semiconductor device according to claim 4 , further comprising: a second upper wiring layer that electrically connects the second resistance layer and the fourth resistance layer.
JP2017044669A 2017-03-09 2017-03-09 Semiconductor device Active JP6343052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017044669A JP6343052B2 (en) 2017-03-09 2017-03-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017044669A JP6343052B2 (en) 2017-03-09 2017-03-09 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012139748A Division JP6110081B2 (en) 2012-06-21 2012-06-21 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2017123481A JP2017123481A (en) 2017-07-13
JP6343052B2 true JP6343052B2 (en) 2018-06-13

Family

ID=59305979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017044669A Active JP6343052B2 (en) 2017-03-09 2017-03-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JP6343052B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63253649A (en) * 1987-04-10 1988-10-20 Nec Corp Semiconductor device
JPH02118937U (en) * 1989-03-09 1990-09-25
JPH07111311A (en) * 1993-10-13 1995-04-25 Fuji Electric Co Ltd Semiconductor device and manufacture thereof
JP3526701B2 (en) * 1995-08-24 2004-05-17 セイコーインスツルメンツ株式会社 Semiconductor device
CA2179246C (en) * 1995-09-20 2000-10-24 Kris Iniewski Polysilicon defined diffused resistor
JP3150109B2 (en) * 1998-11-06 2001-03-26 日本電気アイシーマイコンシステム株式会社 Polysilicon resistance element
JP2000269425A (en) * 1999-03-17 2000-09-29 Matsushita Electronics Industry Corp Semiconductor device
JP2003234405A (en) * 2002-02-06 2003-08-22 Seiko Instruments Inc Layout pattern of high precision resistivity
JP2010109233A (en) * 2008-10-31 2010-05-13 Renesas Technology Corp Semiconductor device

Also Published As

Publication number Publication date
JP2017123481A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
JP5172654B2 (en) Semiconductor device
US7906813B2 (en) Semiconductor device having a first circuit block isolating a plurality of circuit blocks
KR100780967B1 (en) Structure of schottky diode for high voltage
KR101195720B1 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP5436241B2 (en) Semiconductor device and manufacturing method thereof
US10763250B2 (en) Silicon controlled rectifier (SCR) based ESD protection device
US10128242B2 (en) Substrate contact land for an MOS transistor in an SOI substrate, in particular an FDSOI substrate
US7791139B2 (en) Integrated circuit including a semiconductor assembly in thin-SOI technology
JP6110081B2 (en) Semiconductor device
US10256340B2 (en) High-voltage semiconductor device and method for manufacturing the same
JP5331497B2 (en) Semiconductor device and manufacturing method thereof
JP2013074288A (en) Semiconductor device
JP6343052B2 (en) Semiconductor device
JP6123516B2 (en) Semiconductor device
CN107845682B (en) Biasing a substrate region of a MOS transistor
JP6707917B2 (en) Semiconductor device and manufacturing method thereof
JP6797771B2 (en) Semiconductor device
JP2002222918A (en) Semiconductor device
TWI764029B (en) semiconductor device
US20160351710A1 (en) Three Dimensional Monolithic LDMOS Transistor
JP5266955B2 (en) Semiconductor device
CN107316870A (en) Use the MOS transistor arrangements for being used in particular for high pressure of silicon on insulator type technology
JP2010232361A (en) Semiconductor memory device
JP2008258648A (en) Semiconductor integrated circuit device
JP2008108799A (en) Semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180517

R150 Certificate of patent or registration of utility model

Ref document number: 6343052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150