JPH07111311A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH07111311A
JPH07111311A JP25461293A JP25461293A JPH07111311A JP H07111311 A JPH07111311 A JP H07111311A JP 25461293 A JP25461293 A JP 25461293A JP 25461293 A JP25461293 A JP 25461293A JP H07111311 A JPH07111311 A JP H07111311A
Authority
JP
Japan
Prior art keywords
layer
polycrystalline silicon
region
diffusion
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25461293A
Other languages
Japanese (ja)
Inventor
Keiichi Iwai
圭一 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25461293A priority Critical patent/JPH07111311A/en
Publication of JPH07111311A publication Critical patent/JPH07111311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent inversion of the surface layer adjacent to a diffusion resistance region, and also to prevent a leakage current from a diffusion resistor by a method wherein the part, excluding the part directly above the diffusion region of an insulating film, is covered by a low resistance layer, and the low resistance layer is fixed to the prescribed potential. CONSTITUTION:A thin oxide film 21 is formed on the part where the resistor of an N-type silicon substrate 1 is formed, a thick oxide film 22 is formed on the circumferential part of the oxide film 21, a polycrystalline silicon layer 7 is deposited thereon, and an aperture part 8 is provided on the polycrystalline silicon layer 7 of the part where a diffusion resistance region is formed. When boronic ions are implated from above the aperture part, a P<+> diffusion resistance region 3 is generated by heat treatment, and at the same time, the resistance of the polycrystalline silicon layer 7 becomes low. A contact hole 41 is provided on the oxide film 21 on the P<+> region, an Al wiring is brought into contact, a wiring 6 is brought into contact with the connection part 61 of the polycrystalline silicon layer 7 and fixed to power source potential which is the highest potential in this case. As a result, the surface layer of the substrate 1 is not inverted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、集積回路の回路要素と
して半導体基板内に不純物を拡散して形成される抵抗を
有する半導体装置およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a resistor formed as a circuit element of an integrated circuit by diffusing impurities in a semiconductor substrate, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】集積回路の回路要素の抵抗には、半導体
基板に不純物の拡散により形成した異なる導電形の領域
を用いるのが一般的である。抵抗値を高くするために、
この拡散抵抗の領域は、屈曲した形状にして長くする。
図2(a) 、(b) はそのような拡散抵抗を示し、同図(b)
は同図(a) のB−B線断面図である。すなわち、n形シ
リコン基板1の表面上の酸化膜2をマスクとしてのイオ
ン注入拡散によりコ字状のp+ 拡散抵抗領域3を形成
し、酸化膜2の開口部41で配線4を接触させる。しか
し、基板表面上の配線によって生ずる電界により、n基
板1の表面層にp形に反転すると、拡散抵抗領域3の対
向する部分の間の、あるいは拡散抵抗領域の外側に集積
された他素子への漏れ電流が生じ、回路要素としての抵
抗の抵抗値が変動する。そこで、図示のようにp+ 領域
3の中間に入り込み、あるいは周囲をとり囲むn+ 領域
5をイオン注入、拡散により形成し、接触孔61で接触す
る配線6により基板イオン注入法と同電位、この場合、
電源電圧に固定して表面層の反転を防ぐ。
2. Description of the Related Art As resistances of circuit elements of an integrated circuit, it is general to use regions of different conductivity type formed by diffusing impurities in a semiconductor substrate. To increase the resistance value,
The region of this diffusion resistance is bent and lengthened.
Figures 2 (a) and 2 (b) show such diffusion resistance.
FIG. 4B is a sectional view taken along line BB of FIG. That is, the U-shaped p + diffusion resistance region 3 is formed by ion implantation diffusion using the oxide film 2 on the surface of the n-type silicon substrate 1 as a mask, and the wiring 4 is brought into contact with the opening 41 of the oxide film 2. However, when the surface layer of the n-type substrate 1 is inverted to p-type by the electric field generated by the wiring on the surface of the substrate, it is transferred to another element integrated between the opposing portions of the diffusion resistance region 3 or outside the diffusion resistance region. Leakage current occurs, and the resistance value of the resistor as a circuit element fluctuates. Therefore, as shown in the figure, an n + region 5 that enters the middle of the p + region 3 or surrounds the periphery is formed by ion implantation and diffusion, and the same potential as that of the substrate ion implantation method is obtained by the wiring 6 contacting at the contact hole 61. in this case,
It is fixed to the power supply voltage to prevent the surface layer from inverting.

【0003】[0003]

【発明が解決しようとする課題】しかし、図2のような
方法で反転層の形成を防ぐには、対向する拡散抵抗領域
3の中間および周囲に異なる導電形の拡散領域5を形成
しなければならず、この領域5は両側の拡散抵抗領域3
とほぼ領域5の幅に等しい距離をそれぞれおく必要があ
るため、全体として必要な面積が非常に大きくなり、I
Cの集積度を高めるために大きな問題となっていた。
However, in order to prevent the formation of the inversion layer by the method as shown in FIG. 2, the diffusion regions 5 having different conductivity types must be formed in the middle and the periphery of the diffusion resistance regions 3 facing each other. However, this region 5 is the diffusion resistance region 3 on both sides.
Since it is necessary to keep a distance approximately equal to the width of the region 5, the area required as a whole becomes very large.
It has been a big problem to increase the degree of integration of C.

【0004】本発明の目的は、上述の問題を解決し、半
導体基体の拡散抵抗領域に隣接する表面層の反転を防
ぎ、拡散抵抗からの電流の漏れのない半導体装置および
その製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems, provide a semiconductor device in which the surface layer adjacent to the diffusion resistance region of the semiconductor substrate is prevented from being inverted, and a current does not leak from the diffusion resistance, and a manufacturing method thereof. Especially.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、半導体基板の第一導電形層の表面層に
選択的に形成された第二導電形の拡散抵抗領域を有する
半導体装置において、半導体基板の拡散抵抗領域を包含
する領域の表面が絶縁膜で覆われ、さらにその絶縁膜の
拡散抵抗領域直上を除く部分が低抵抗の層で覆われ、そ
の低抵抗層を所定の電位に固定可能であるものとする。
低抵抗層が不純物を含む多結晶シリコンよりなることが
有効である。また、そのような半導体装置の製造方法
は、半導体基板の第一導電形層の表面上を絶縁膜を介し
て多結晶シリコン層で覆い、次いでその多結晶シリコン
層の所定の形状の部分を選択的に除去したのち、全面に
不純物イオンを注入し、熱処理により前記所定の形状の
部分で露出する第一導電形層の表面層に第二導電形拡散
抵抗領域を形成すると共に、表面上の多結晶シリコン層
を低抵抗化するものとする。
To achieve the above object, the present invention has a diffusion resistance region of a second conductivity type selectively formed in a surface layer of a first conductivity type layer of a semiconductor substrate. In a semiconductor device, a surface of a region including a diffusion resistance region of a semiconductor substrate is covered with an insulating film, and a portion of the insulation film except a portion right above the diffusion resistance region is covered with a low resistance layer, and the low resistance layer is provided with a predetermined thickness. It can be fixed at the potential of.
It is effective that the low resistance layer is made of polycrystalline silicon containing impurities. Further, such a semiconductor device manufacturing method is such that a surface of a first conductivity type layer of a semiconductor substrate is covered with a polycrystalline silicon layer via an insulating film, and then a portion having a predetermined shape of the polycrystalline silicon layer is selected. Then, impurity ions are implanted into the entire surface, and a heat treatment is performed to form a second-conductivity-type diffusion resistance region in the surface layer of the first-conductivity-type layer exposed in the portion having the predetermined shape, and at the same time, to increase the amount of impurities on the surface. The resistance of the crystalline silicon layer shall be lowered.

【0006】[0006]

【作用】第二導電形の拡散抵抗領域の直上を除く第一導
電形層表面上に絶縁膜を介して低抵抗層を設け、所定の
電位、例えば第一導電形層と同電位に固定することによ
り、第一導電形層の表面層が反転することがなく、対向
抵抗領域間あるいは抵抗領域と外部素子間の電流の漏れ
を防ぐことができる。導電層間の距離は通常のMOSF
ETがオフできる最小幅で良いため、対向する抵抗領域
間の距離を狭めることができる。しかも、導電層を多結
晶シリコンで形成するならば、拡散抵抗領域形成のため
のイオン注入の際に同時に多結晶シリコンをドープして
低抵抗化することもできるため、製造コストの上昇が最
小限に抑制できる。また、そのような半導体装置の製造
方法は、半導体基板の第一導電形層の表面上を絶縁膜を
介して多結晶シリコン層で覆い、次いでその多結晶シリ
コン層の所定の形状の部分を選択的に除去したのち、全
面に不純物イオンを注入し、熱処理により前記所定の形
状の部分で露出する第一導電形層の表面層に第二導電形
拡散抵抗領域を形成すると共に、表面上の多結晶シリコ
ン層を低抵抗化するものとする。
[Function] A low resistance layer is provided on the surface of the first conductivity type layer except right above the diffusion resistance region of the second conductivity type through an insulating film and fixed to a predetermined potential, for example, the same potential as the first conductivity type layer. As a result, the surface layer of the first conductivity type layer is not inverted, and it is possible to prevent current leakage between the opposing resistance regions or between the resistance region and the external element. The distance between conductive layers is normal MOSF
Since the minimum width with which ET can be turned off is sufficient, the distance between the opposing resistance regions can be narrowed. Moreover, if the conductive layer is made of polycrystalline silicon, it is possible to dope the polycrystalline silicon at the same time as the ion implantation for forming the diffusion resistance region to reduce the resistance, and thus the increase in manufacturing cost is minimized. Can be suppressed to. Further, such a semiconductor device manufacturing method is such that a surface of a first conductivity type layer of a semiconductor substrate is covered with a polycrystalline silicon layer via an insulating film, and then a portion having a predetermined shape of the polycrystalline silicon layer is selected. Then, impurity ions are implanted into the entire surface, and a heat treatment is performed to form a second-conductivity-type diffusion resistance region in the surface layer of the first-conductivity-type layer exposed in the portion having the predetermined shape, and at the same time, to increase the amount of impurities on the surface. The resistance of the crystalline silicon layer shall be lowered.

【0007】[0007]

【実施例】図1(a) 、(b) は本発明の一実施例のICの
一部を示し、図2と共通の部分には同一の符号が付さ
れ、同図(b) は同図(a) のA−A線断面図である。この
ICは次のようにして製造した。n形シリコン基板1の
抵抗を形成する部分は薄い酸化膜21、その周囲の部分に
は厚い酸化膜22を形成しその上に多結晶シリコン層7を
堆積し、拡散抵抗領域を形成する幅w=2μmの部分に
はその多結晶シリコン層7に開口部8を明ける。この上
からほう素のイオン注入を行うと、ほう素イオンは薄い
酸化膜21を通じてn層1内に打込まれると共に、多結晶
シリコン層7が残っているところではその層に打込まれ
る。n基板1の表面層の導入されたほう素により、熱処
理によってp+ 拡散抵抗領域3が生じ、同時に多結晶シ
リコン層7は低抵抗となる。p+ 領域7の上の酸化膜21
に接触孔41を明け、AL配線4を接触させる。多結晶シリ
コン層7の接続部61にも配線6を接触させ、この場合の
最高電位である電源電圧に固定する。これにより、拡散
抵抗領域3相互間およびその周囲領域の上部には低抵抗
の多結晶シリコン層7が存在し、最高電位に固定されて
いるので、その直下のn基板1の表面層が反転すること
がない。従って拡散抵抗領域相互間あるいは拡散抵抗領
域からの他の素子に至る径路における電流の漏れが生ず
ることがない。また、表面上では酸化膜21で覆われて絶
縁されているので、多結晶シリコン層7相互間に漏れが
生ずることがない。
1 (a) and 1 (b) show a part of an IC according to an embodiment of the present invention, the same parts as those in FIG. 2 are designated by the same reference numerals, and FIG. It is the sectional view on the AA line of FIG. This IC was manufactured as follows. A thin oxide film 21 is formed in a portion of the n-type silicon substrate 1 where a resistance is formed, and a thick oxide film 22 is formed in a peripheral portion thereof, and a polycrystalline silicon layer 7 is deposited thereon to form a diffusion resistance region with a width w. = 2 μm, an opening 8 is opened in the polycrystalline silicon layer 7. When boron is ion-implanted from above, boron ions are implanted into the n layer 1 through the thin oxide film 21 and, where the polycrystalline silicon layer 7 remains, that layer. Due to the boron introduced into the surface layer of the n-type substrate 1, the p + diffusion resistance region 3 is generated by the heat treatment, and at the same time, the polycrystalline silicon layer 7 has a low resistance. Oxide film 21 on p + region 7
A contact hole 41 is opened in and the AL wiring 4 is contacted. The wiring 6 is also brought into contact with the connection portion 61 of the polycrystalline silicon layer 7 and fixed to the power supply voltage which is the highest potential in this case. As a result, since the low-resistance polycrystalline silicon layer 7 exists between the diffusion resistance regions 3 and above the peripheral region and is fixed at the highest potential, the surface layer of the n-substrate 1 immediately below it is inverted. Never. Therefore, no current leakage occurs between the diffusion resistance regions or in the path from the diffusion resistance region to another element. Further, since the surface is covered with the oxide film 21 and insulated, no leakage occurs between the polycrystalline silicon layers 7.

【0008】[0008]

【発明の効果】本発明によれば、拡散抵抗領域相互間あ
るいは周囲の他素子との間の表面層が反転するのを、抵
抗領域相互間およびその周囲領域の直上に絶縁膜を介し
て低抵抗層を設け、電源電圧など所定の電位に固定する
ことによって防止した。従って、従来のように抵抗領域
間あるいは周囲の他素子との間の表面層に異なる導電形
の領域を設け、所定の電位に固定する場合に比し、屈曲
して対向する抵抗領域相互の距離が約1/3にすること
ができる。この結果、抵抗全体の占める面積も非常に小
さくなり、ICの集積度を高めるのに適している。その
ほか、低抵抗層として抵抗領域形成と同時にドーピング
される多結晶シリコン層を用いれば、工程の増加が少な
くてすみ、また、イオン注入のマスクとして用いること
のできる多結晶シリコン層などのパターニングの形状を
変えるだけで、任意の抵抗値の拡散抵抗を容易に形成で
きる。
According to the present invention, the inversion of the surface layer between the diffusion resistance regions or between the surrounding other elements is suppressed by the insulating film between the resistance regions and immediately above the surrounding region. It was prevented by providing a resistance layer and fixing it to a predetermined potential such as a power supply voltage. Therefore, as compared with the conventional case where regions of different conductivity type are provided in the surface layer between the resistance regions or with other surrounding elements and fixed at a predetermined potential, the distance between the resistance regions bent and opposed to each other is increased. Can be about 1/3. As a result, the area occupied by the entire resistance becomes extremely small, which is suitable for increasing the degree of integration of the IC. In addition, if a polycrystalline silicon layer that is doped at the same time as the formation of the resistance region is used as the low resistance layer, the number of steps can be reduced, and the patterning shape of the polycrystalline silicon layer that can be used as an ion implantation mask can be reduced. A diffused resistor having an arbitrary resistance value can be easily formed only by changing

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のICの拡散抵抗部を示し
(a) が平面図、(b) が(a) のA−A線断面図
FIG. 1 shows a diffusion resistance portion of an IC according to an embodiment of the present invention.
(a) is a plan view, (b) is a sectional view taken along the line AA of (a).

【図2】従来のICの拡散抵抗部を示す、(a) が平面
図、(b) が(a) のB−B線断面図
FIG. 2A is a plan view and FIG. 2B is a sectional view taken along line BB of FIG. 2A showing a diffusion resistance portion of a conventional IC.

【符号の説明】[Explanation of symbols]

1 nシリコン基板 21 酸化膜 3 p+ 拡散抵抗領域 4 配線 41 接触孔 6 配線 61 接続部 7 多結晶シリコン層 8 多結晶シリコン層開口部1 n Silicon Substrate 21 Oxide Film 3 p + Diffusion Resistance Region 4 Wiring 41 Contact Hole 6 Wiring 61 Connection 7 Polycrystalline Silicon Layer 8 Polycrystalline Silicon Layer Opening

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の第一導電形層の表面層に選択
的に形成された第二導電形の拡散抵抗領域を有するもの
において、半導体基板の拡散抵抗領域を包含する領域の
表面が絶縁膜で覆われ、その絶縁膜の拡散抵抗領域直上
を除く部分が低抵抗の層で覆われ、その低抵抗層を所定
の電位に固定可能であることを特徴とする半導体装置。
1. A semiconductor substrate having a diffusion resistance region of a second conductivity type selectively formed in a surface layer of a first conductivity type layer of a semiconductor substrate, wherein a surface of a region including the diffusion resistance region of the semiconductor substrate is insulated. A semiconductor device, which is covered with a film, and a portion of the insulating film other than just above a diffusion resistance region is covered with a low resistance layer, and the low resistance layer can be fixed to a predetermined potential.
【請求項2】低抵抗層が不純物を含む多結晶シリコンよ
りなる請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the low resistance layer is made of polycrystalline silicon containing impurities.
【請求項3】半導体基板の第一導電形層の表面上を絶縁
膜を介して多結晶シリコン層で覆い、次いでその多結晶
シリコン層の所定の形状の部分を選択的に除去したの
ち、全面に不純物イオンを注入し、熱処理により前記所
定の形状の部分で露出する第一導電形層の表面層に第二
導電形拡散抵抗領域を形成すると共に、表面上の多結晶
シリコン層を低抵抗化することを特徴とする請求項2記
載の半導体装置の製造方法。
3. The surface of a first conductivity type layer of a semiconductor substrate is covered with a polycrystalline silicon layer with an insulating film interposed therebetween, and then a predetermined shaped portion of the polycrystalline silicon layer is selectively removed. Impurity ions are implanted into the surface of the first conductivity type layer by heat treatment to form a second conductivity type diffusion resistance region in the surface layer of the first conductivity type layer, and the resistance of the polycrystalline silicon layer on the surface is reduced. The method for manufacturing a semiconductor device according to claim 2, wherein
JP25461293A 1993-10-13 1993-10-13 Semiconductor device and manufacture thereof Pending JPH07111311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25461293A JPH07111311A (en) 1993-10-13 1993-10-13 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25461293A JPH07111311A (en) 1993-10-13 1993-10-13 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07111311A true JPH07111311A (en) 1995-04-25

Family

ID=17267458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25461293A Pending JPH07111311A (en) 1993-10-13 1993-10-13 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH07111311A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203748A (en) * 2005-01-24 2006-08-03 Sanyo Electric Co Ltd Drive circuit
US8129232B2 (en) 1996-07-11 2012-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
CN103515385A (en) * 2012-06-21 2014-01-15 拉碧斯半导体株式会社 Semiconductor device
JP2017123481A (en) * 2017-03-09 2017-07-13 ラピスセミコンダクタ株式会社 Semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129232B2 (en) 1996-07-11 2012-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP2006203748A (en) * 2005-01-24 2006-08-03 Sanyo Electric Co Ltd Drive circuit
CN103515385A (en) * 2012-06-21 2014-01-15 拉碧斯半导体株式会社 Semiconductor device
JP2014007185A (en) * 2012-06-21 2014-01-16 Lapis Semiconductor Co Ltd Semiconductor device
US8823137B2 (en) 2012-06-21 2014-09-02 Lapis Semiconductor Co., Ltd. Semiconductor device
CN103515385B (en) * 2012-06-21 2018-01-23 拉碧斯半导体株式会社 Semiconductor device
JP2017123481A (en) * 2017-03-09 2017-07-13 ラピスセミコンダクタ株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
US5223451A (en) Semiconductor device wherein n-channel MOSFET, p-channel MOSFET and nonvolatile memory cell are formed in one chip and method of making it
KR930010087B1 (en) Semiconductor device and producting method of the same
US6051874A (en) Diode formed in a surface silicon layer on an SOI substrate
JPH08222624A (en) Separation by common gate activated transistor
KR19990044184A (en) EEPROM - Manufacturing Method of Semiconductor Structure
US4385433A (en) Method of forming metal silicide interconnection electrodes in I2 L-semiconductor devices
KR900007048B1 (en) Vertical mos type semiconductor device
JPH07111311A (en) Semiconductor device and manufacture thereof
KR940002834B1 (en) Semiconductor integrated circuit and fabricating method thereof
US5106782A (en) Method of manufacturing a semiconductor device
JPH05183164A (en) Semiconductor device
EP0162165A2 (en) A Hall effect device and method for fabricating such a device
EP0421446B1 (en) Semiconductor device wherein n-channel MOSFET, p-channel MOSFET and nonvolatile memory cell are formed in one chip
JPS61150376A (en) Semiconductor device
JPH09321221A (en) Semiconductor device and its manufacture
JPH11135783A (en) Mos transistor and manufacture thereof
KR940008727B1 (en) Semiconductor device
JP2004296883A (en) Semiconductor device and its manufacturing method
KR100371284B1 (en) Method for fabricating a flat-cell semiconductor memory device
KR930008076B1 (en) Method of fabricating for sram
JPH05218317A (en) Semiconductor integrated circuit device
JP2656159B2 (en) Thin film transistor and method of manufacturing the same
KR0148789B1 (en) A manufacturing method for a capacitor
JPH08153803A (en) Semiconductor device and manufacture of semiconductor device
KR0165355B1 (en) Semiconductor device manufacturing method