JP6324042B2 - Mycelium fertilizer and its production method - Google Patents

Mycelium fertilizer and its production method Download PDF

Info

Publication number
JP6324042B2
JP6324042B2 JP2013249630A JP2013249630A JP6324042B2 JP 6324042 B2 JP6324042 B2 JP 6324042B2 JP 2013249630 A JP2013249630 A JP 2013249630A JP 2013249630 A JP2013249630 A JP 2013249630A JP 6324042 B2 JP6324042 B2 JP 6324042B2
Authority
JP
Japan
Prior art keywords
heat
mycelium
resistant
fertilizer
actinomycetes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013249630A
Other languages
Japanese (ja)
Other versions
JP2015105225A (en
Inventor
隆介 飯島
隆介 飯島
Original Assignee
株式会社キングコール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キングコール filed Critical 株式会社キングコール
Priority to JP2013249630A priority Critical patent/JP6324042B2/en
Publication of JP2015105225A publication Critical patent/JP2015105225A/en
Application granted granted Critical
Publication of JP6324042B2 publication Critical patent/JP6324042B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は多孔質担体中に耐熱性放線菌及び耐熱性細菌を優勢とする菌糸体を培養及び醗酵させてなる菌糸体肥料及びその製法に関し、詳しくは、野菜や果物等の農作物や植物の収量、生育、品質及び日持ち性等をより向上させることができる菌糸体肥料及びその製法に関する。   TECHNICAL FIELD The present invention relates to a mycelium fertilizer obtained by culturing and fermenting mycelium predominantly heat-resistant actinomycetes and heat-resistant bacteria in a porous carrier, and a method for producing the same. The present invention relates to a mycelium fertilizer that can further improve growth, quality, shelf life, and the like, and a method for producing the same.

従来より行なわれている農作物に対する除草剤、殺菌剤等の散布、或いは化学肥料の多用化に伴って土中微生物は減少し、この結果地力の低下や各種作物の病弱化、或いは環境汚染という問題が近年強く重要視されている。
この対策としては堆肥等の有機肥料を用いて土壌有効微生物の活性化をはかる動きが各地で行なわれている。
Microbial microorganisms in the soil have decreased due to the spread of herbicides, fungicides, etc. to agricultural crops that have been used in the past, and the use of chemical fertilizers. As a result, there is a problem of reduced geopower, weakening of various crops, or environmental pollution. However, in recent years it has been strongly emphasized.
As measures against this, movements to activate soil effective microorganisms using organic fertilizers such as compost are being carried out in various places.

しかしながらこれら従来における土中有効微生物を利用した有機肥料は予めバチルス層や放線菌等の菌株を植菌して得た培養物を担体に混合して得られるものであり、これら技術においては微生物培養液を得るため特定微生物の菌株を保存機関等からの分譲によって賄わなければならないため生産コスト性、或いは予め培養物を得るという煩雑さを伴うものであった。   However, these conventional organic fertilizers using effective microorganisms in the soil are obtained by previously mixing a culture obtained by inoculating a strain such as a Bacillus layer or actinomycetes with a carrier. In order to obtain a solution, a strain of a specific microorganism must be covered by distribution from a storage organization or the like, which has been associated with production cost or the complexity of obtaining a culture in advance.

そこで本発明者はこれら欠点を解消する優れた「菌糸体肥料」を特許文献1にて既に開示している。
特許文献1記載の技術は、耐熱放線菌からなる菌糸体であって、この菌糸体がpH7.5〜9.5の多孔質担体に担持されてなる菌糸体肥料とこの菌糸体を製造するための方法で、pH7.5〜9.5で粒度6〜30メッシュの多孔質担体を70〜80重量部用い、この担体に炭素率15%以下で含水率が25〜60%の有機物を20〜30重量部用いて混練し、この混練物を系内温度15℃以上に維持できる雰囲気中に静置して醗酵させ、この醗酵温度をエアレーションにより55〜80℃に維持しながら少なくとも5日間醗酵させることからなる菌糸体肥料の製法であった。
Thus, the present inventor has already disclosed in Patent Document 1 an excellent “mycelium fertilizer” that eliminates these drawbacks.
The technique described in Patent Document 1 is a mycelium composed of heat-resistant actinomycetes, and the mycelium is produced by supporting this mycelium on a porous carrier having a pH of 7.5 to 9.5. In this method, 70 to 80 parts by weight of a porous carrier having a pH of 7.5 to 9.5 and a particle size of 6 to 30 mesh is used, and an organic substance having a carbon content of 15% or less and a water content of 25 to 60% is added to the carrier. Kneading using 30 parts by weight, allowing this kneaded material to stand and ferment in an atmosphere where the system temperature can be maintained at 15 ° C or higher, and fermenting at least 5 days while maintaining this fermentation temperature at 55 to 80 ° C by aeration. This was a method for producing mycelium fertilizer.

さらに本発明者は、特許文献1に記載の菌糸体肥料に比してより生産性に優れる菌糸体肥料を特許文献2に開示している。
特許文献2記載の技術は、耐熱放線菌からなる菌糸体であって、この菌糸体がpHを7.5〜9.5に調製した粒度6〜30メッシュの多孔質担体50〜78重量部を用い、この担体に炭素率15%以下で含水率が25〜60%の有機物を20〜30重量部及び木材を乾留して得られる粗木酢液からタール分・樹脂成分を分離した精製木酢液2〜20重量部を用いて混練し、この混練物を系内温度15℃以上に維持できる雰囲気中に静置して耐熱性放線菌を優勢とする菌糸体を培養、醗酵させ、この培養、醗酵温度をエアレーションにより55〜80℃に維持しながら少なくとも2日間耐熱性放線菌による醗酵を行なうことを特徴とする菌糸体肥料の製法であった。
Furthermore, the present inventor discloses a mycelium fertilizer that is more excellent in productivity than the mycelium fertilizer described in Patent Document 1 in Patent Document 2.
The technique described in Patent Document 2 is a mycelium composed of heat-resistant actinomycetes, and this mycelium is prepared by adding 50 to 78 parts by weight of a porous carrier having a particle size of 6 to 30 mesh and having a pH adjusted to 7.5 to 9.5. Using this carrier, 20 to 30 parts by weight of organic matter having a carbon content of 15% or less and a water content of 25 to 60% and a purified wood vinegar solution 2 obtained by separating tar and resin components from a crude wood vinegar obtained by dry distillation of wood Kneading using ~ 20 parts by weight, this kneaded product is allowed to stand in an atmosphere where the system temperature can be maintained at 15 ° C. or higher, and the mycelium predominantly heat-resistant actinomycetes is cultured and fermented. It was a method for producing a mycelium fertilizer characterized by performing fermentation with heat-resistant actinomycetes for at least 2 days while maintaining the temperature at 55 to 80 ° C. by aeration.

発明者のこれら既開示技術は成程優れた菌糸体肥料であるが、より一層生産性に極めて優れた、且つ有害性のない土壌及び植物の成長に効果的に寄与する土壌改良剤、肥料等の改良技術の創出が望まれている。   These already disclosed techniques of the inventor are mycelium fertilizers that are excellent in process, but soil improvers, fertilizers, etc. that contribute to the growth of soil and plants that are extremely excellent in productivity and are not harmful. Creation of improved technology is desired.

特開平1−264987号公報JP-A-1-264987 特公平7−47516号公報Japanese Patent Publication No. 7-47516

本発明は、上記したような従来技術の問題点を解決すべくなされたものであって、野菜や果物等の農作物や植物の収量、生育、品質及び日持ち性を向上させることができる菌糸体肥料及びその製法を提供するものである。   The present invention has been made to solve the above-described problems of the prior art, and is capable of improving the yield, growth, quality and shelf life of crops and plants such as vegetables and fruits. And a manufacturing method thereof.

請求項1に係る発明は、pH7.5〜9.5の多孔質担体中に菌糸体を培養及び醗酵させてなる菌糸体肥料であって、該菌糸体が、該菌糸体肥料1gに対し耐熱性放線菌及び耐熱性細菌を合計1.0×10/g以上含むことを特徴とする、ネギ(Allium fistulosum)および、ニンニク(Allium sativum)を含むユリ科、ブロッコリー(Brassica oleracea var. italica)および、チンゲンサイ(Brassica rapa var. chinensis)を含むアブラナ科または、ミニトマト(Solanum lycopersicum var. cerasiforme)を含むナス科の栽培に施用する菌糸体肥料に関する。
The invention according to claim 1 is a mycelium fertilizer obtained by culturing and fermenting mycelium in a porous carrier having a pH of 7.5 to 9.5, wherein the mycelium is heat resistant to 1 g of the mycelium fertilizer. Allied actinomycetes and thermostable bacteria in total of 1.0 × 10 6 / g or more, including leeks (Allium fistulosum) and garlic (Allium sativum), broccoli (Brassica oleracea var. Italica) The present invention also relates to a mycelium fertilizer to be applied to the cultivation of Brassicaceae (Brassica rapa var. Chinensis) or Solanum lycopersicum var. Cerasiforme .

請求項2に係る発明は、pHを7.5〜9.5に調製した粒度6〜30メッシュの多孔質担体50〜78重量部を用い、この担体に炭素率15%以下で含水率が25〜60%の有機物を20〜30重量部用いて混練し、この混練物を系内温度15℃以上に維持できる雰囲気中に静置して耐熱性放線菌及び耐熱性細菌を優勢とする菌糸体を培養、醗酵させ、この培養、醗酵温度をエアレーションにより55〜80℃に維持しながら少なくとも2日間耐熱性放線菌及び耐熱性細菌による醗酵を行う菌糸体肥料の製法であって、前記有機物が抗菌性物質を含まないことを特徴とする、ネギ(Allium fistulosum)および、ニンニク(Allium sativum)を含むユリ科、ブロッコリー(Brassica oleracea var. italica)および、チンゲンサイ(Brassica rapa var. chinensis)を含むアブラナ科または、ミニトマト(Solanum lycopersicum var. cerasiforme)を含むナス科の栽培に施用する菌糸体肥料の製法に関する。


The invention according to claim 2 uses 50 to 78 parts by weight of a porous carrier having a particle size of 6 to 30 mesh adjusted to pH 7.5 to 9.5, and the carrier has a carbon content of 15% or less and a water content of 25. Mycelium that predominates heat-resistant actinomycetes and heat-resistant bacteria by kneading ˜60% organic matter using 20-30 parts by weight and leaving this kneaded product in an atmosphere that can maintain the system temperature at 15 ° C. or higher. Culturing and fermenting, and producing the mycelium fertilizer for fermentation with heat-resistant actinomycetes and heat-resistant bacteria for at least 2 days while maintaining the fermentation temperature at 55 to 80 ° C. by aeration. Liliaceae (Brassica oleracea), including leeks (Allium fistulosum) and garlic (Allium sativum) var. italica) and a cruciferous family including Chingensai (Brassica rapa var. chinensis) or a method for producing a mycelium fertilizer applied to the cultivation of Solanum lycopersicum var. cerasiforme .


請求項1に係る発明によれば、pH7.5〜9.5の多孔質担体中に菌糸体を培養及び醗酵させてなる菌糸体肥料であって、該菌糸体が、該菌糸体肥料1gに対し耐熱性放線菌及び耐熱性細菌を合計1.0×10/g以上含むことにより、土壌中のミネラルやリン酸を植物体内へ吸収し易くすることができ、これらの吸収量を向上させることができる。これにより、植物の収量、生育、品質及び日持ち性をより向上させることができる。 According to the first aspect of the present invention, the mycelium is obtained by culturing and fermenting mycelium in a porous carrier having a pH of 7.5 to 9.5, and the mycelium is added to 1 g of the mycelium fertilizer. On the other hand, by containing a total of 1.0 × 10 6 / g or more of heat-resistant actinomycetes and heat-resistant bacteria, minerals and phosphoric acid in the soil can be easily absorbed into the plant body, and the amount of these absorptions is improved. be able to. Thereby, the yield, growth, quality and shelf life of the plant can be further improved.

請求項2に係る発明によれば、pHを7.5〜9.5に調製した粒度6〜30メッシュの多孔質担体50〜78重量部を用い、この担体に炭素率15%以下で含水率が25〜60%の有機物を20〜30重量部用いて混練し、この混練物を系内温度15℃以上に維持できる雰囲気中に静置して耐熱性放線菌及び耐熱性細菌を優勢とする菌糸体を培養、醗酵させ、この培養、醗酵温度をエアレーションにより55〜80℃に維持しながら少なくとも2日間耐熱性放線菌及び耐熱性細菌による醗酵を行う製法において、有機物が抗菌性物質を含まないことにより、菌糸体肥料1gに対し耐熱性放線菌及び耐熱性細菌を合計10コロニー以上含む菌糸体肥料を製造することができる。これにより、土壌中のミネラルやリン酸を植物体内へ吸収し易くすることができ、これらの吸収量を向上させることができる。これにより、植物の収量、生育、品質及び日持ち性をより向上させることができる。   According to the second aspect of the present invention, 50 to 78 parts by weight of a porous carrier having a particle size of 6 to 30 mesh having a pH adjusted to 7.5 to 9.5 is used, and the carrier has a carbon content of 15% or less and a water content. Is kneaded using 20 to 30 parts by weight of organic matter of 25 to 60%, and this kneaded product is allowed to stand in an atmosphere in which the system temperature can be maintained at 15 ° C. or higher to make heat-resistant actinomycetes and heat-resistant bacteria dominant. In the production method in which the mycelium is cultured and fermented, and fermentation is performed with heat-resistant actinomycetes and heat-resistant bacteria for at least 2 days while maintaining the culture and fermentation temperature at 55 to 80 ° C. by aeration, the organic matter does not contain an antibacterial substance. Thus, a mycelium fertilizer containing 10 colonies or more in total of heat-resistant actinomycetes and heat-resistant bacteria can be produced per 1 g of mycelium fertilizer. Thereby, the mineral in a soil and phosphoric acid can be made easy to absorb into a plant body, and these absorption amounts can be improved. Thereby, the yield, growth, quality and shelf life of the plant can be further improved.

以下、本発明に係る菌糸体肥料及びその製法の好適な実施形態について説明する。   Hereinafter, preferred embodiments of the mycelium fertilizer and the production method thereof according to the present invention will be described.

本発明に係る菌糸体肥料は、pH7.5〜9.5の多孔質担体中に菌糸体を培養及び醗酵させてなり、菌糸体が菌糸体肥料1gに対し耐熱性放線菌及び耐熱性細菌を合計1.0×10/g以上含んでいる。 The mycelium fertilizer according to the present invention is obtained by culturing and fermenting mycelium in a porous carrier having a pH of 7.5 to 9.5. The mycelium contains heat-resistant actinomycetes and heat-resistant bacteria for 1 g of mycelium fertilizer. A total of 1.0 × 10 6 / g or more is included.

本発明における耐熱性放線菌とは、特に高温55〜80℃で生育できる耐熱性放線菌でラセン状菌等をいい、サーモアクチノミセス(Thermoactinomyces)属菌を好適に使用することができる。なかでも、例えばThermoactinomyces vulgaris、Thermoactinomyces spora actinobifida(white)等を好適に使用することができる。
本発明において、上記耐熱性放線菌を使用する理由は、この発明者が特開平1-264987号で開示した如く、耐熱性放線菌には植物に有害な作用を与える有害菌が極めて少なく、しかも耐熱性放線菌の代謝生産物中に含有される植物成長ホルモン、各種ビタミン、及び耐熱性放線菌自身の分解物が窒素供給源、あるいは栄養源として土壌中で効果を発揮して作物の生長に寄与するからである。
The heat-resistant actinomycetes in the present invention are particularly heat-resistant actinomycetes that can grow at a high temperature of 55 to 80 ° C., such as spiral fungi, and Thermoactinomyces spp. Can be preferably used. Among these, for example, Thermoactinomyces vulgaris, Thermoactinomyces spora actinobifida (white) and the like can be preferably used.
In the present invention, the reason for using the above heat-resistant actinomycetes is that, as disclosed by the inventor in Japanese Patent Application Laid-Open No. 1-264987, the heat-resistant actinomycetes have very few harmful bacteria that have harmful effects on plants, Plant growth hormone, various vitamins contained in metabolites of heat-resistant actinomycetes, and degradation products of heat-resistant actinomycetes themselves are effective in the soil as a nitrogen supply source or nutrient source for crop growth This is because it contributes.

本発明における耐熱性細菌とは、55〜80℃の高温で生育できる細菌のことをいい、枯草菌(Bacillus subtilis)等を好適に使用することができる。
本発明において、上記耐熱性細菌を使用する理由は、上記耐熱性細菌は作物の残根等の腐植物(有機物)等を分解する能力があり、さらに有害菌の生育を阻害する効果を奏するからである。
The heat-resistant bacterium in the present invention refers to a bacterium that can grow at a high temperature of 55 to 80 ° C., and Bacillus subtilis and the like can be preferably used.
In the present invention, the reason why the thermostable bacterium is used is that the thermostable bacterium has an ability of decomposing humic plants (organic matter) such as residual roots of crops and has an effect of inhibiting the growth of harmful bacteria. It is.

本発明で用いられる耐熱性放線菌と耐熱性細菌は、55〜80℃の温度域で、好ましくは60〜75℃の温度域で生育する耐熱性放線菌と耐熱性細菌であることが好ましい。生育温度が55℃未満であると糸状菌等の雑菌が増殖するため、80℃を超えると耐熱性放線菌の活動が衰え、増殖が止まるため、いずれの場合も好ましくない。   The heat-resistant actinomycetes and heat-resistant bacteria used in the present invention are preferably heat-resistant actinomycetes and heat-resistant bacteria that grow in a temperature range of 55 to 80 ° C., preferably 60 to 75 ° C. When the growth temperature is less than 55 ° C., various bacteria such as filamentous fungi grow, and when it exceeds 80 ° C., the activity of the heat-resistant actinomycetes declines and the growth stops.

菌糸体が菌糸体肥料1gに対し上記耐熱性放線菌及び耐熱性細菌を合計1.0×10/g以上含んでいることにより、土壌中に含まれるリン(P)、カリウム(K)、カルシウム(Ca)、マグネシウム(Mg)等のミネラルやリン酸の植物体内への吸収を向上させることができる。これにより、果実の甘味が増すとともに、果実の日持ち性を向上させることができる。さらに、植物の生育を向上させることができるとともに、野菜や果物の収量及び品質を向上させることができる。 When the mycelium contains a total of 1.0 × 10 6 / g or more of the above heat-resistant actinomycetes and heat-resistant bacteria with respect to 1 g of mycelium fertilizer, phosphorus (P), potassium (K) contained in the soil, Absorption of minerals such as calcium (Ca) and magnesium (Mg) and phosphoric acid into the plant can be improved. Thereby, the sweetness of a fruit increases and the shelf life of a fruit can be improved. Furthermore, the growth of plants can be improved, and the yield and quality of vegetables and fruits can be improved.

多孔質担体は、耐熱性放線菌及び耐熱性細菌の生育を有効的に行なうためそのpHを7.5〜9.5、望ましくは8〜9に調製する。
多孔質担体のpHを7.5〜9.5に調製することによって、糸状菌等の菌の生育を防止できるとともに、菌糸体肥料中の耐熱性放線菌及び耐熱性細菌を一定量に維持可能となる。
The porous carrier is adjusted to a pH of 7.5 to 9.5, preferably 8 to 9 in order to effectively grow thermotolerant actinomycetes and thermotolerant bacteria.
By adjusting the pH of the porous carrier to 7.5 to 9.5, growth of fungi such as filamentous fungi can be prevented and heat-resistant actinomycetes and heat-resistant bacteria in the mycelium fertilizer can be maintained at a certain amount. It becomes.

本発明において担体を多孔質担体に限定する理由は、菌糸体肥料の貯蔵中、或いは土壌施用時に耐熱性放線菌の生育必須成分である水と空気を保持するためである。
係る多孔質担体の具体例としては、pHが7.5〜9.5に維持できるものであれば、有機質、無機質のいずれの多孔質担体も使用できる。本発明において使用できる多孔質担体を例示すると、木炭、活性炭、石炭、コークス、活性コークス、泥炭、バームキュライト、パーライト、ベントナイト、発泡性ウレタン等の無機質、有機質、合成樹脂等の発泡体が例示できる。
The reason for limiting the carrier to a porous carrier in the present invention is to retain water and air, which are essential components for growth of heat-resistant actinomycetes, during storage of mycelium fertilizer or during soil application.
As a specific example of such a porous carrier, any organic or inorganic porous carrier can be used as long as the pH can be maintained at 7.5 to 9.5. Examples of porous carriers that can be used in the present invention include foams such as charcoal, activated carbon, coal, coke, activated coke, peat, vermiculite, perlite, bentonite, and foamable urethane, and other inorganic, organic, and synthetic resins. it can.

本発明に係る菌糸体は、耐熱性放線菌及び耐熱性細菌が菌糸体中の微生物群集として10%以上を占めるものが望ましいが、少なくとも微生物群集として50%以上が耐熱性放線菌及び耐熱性細菌である菌糸体がより望ましい。
その理由は50%未満の耐熱性放線菌及び耐熱性細菌である場合には、有害菌である細菌、或いは糸状菌の繁殖が土壌施用後に発生し悪影響を及ぼすことがあり、少なくとも菌糸体中の微生物群集中50%以上が耐熱性放線菌及び耐熱性細菌である場合に土壌施用後に耐熱性放線菌及び耐熱性細菌の優勢繁殖が確保でき、この発明の所期の目的は達成できるからである。
The mycelium according to the present invention is preferably one in which heat-resistant actinomycetes and heat-resistant bacteria occupy 10% or more of the microbial community in the mycelium, but at least 50% or more of the microbial community is heat-resistant actinomycetes and heat-resistant bacteria. Mycelium that is is more desirable.
The reason is that in the case of heat-resistant actinomycetes and heat-resistant bacteria of less than 50%, the growth of harmful bacteria or filamentous fungi may occur after soil application, and at least in the mycelium This is because when the concentration of microorganisms of 50% or more is heat-resistant actinomycetes and heat-resistant bacteria, preferential breeding of heat-resistant actinomycetes and heat-resistant bacteria can be secured after soil application, and the intended purpose of the present invention can be achieved. .

次に本発明に係る菌糸体肥料の好適な製造法について詳述する。   Next, the suitable manufacturing method of the mycelium fertilizer which concerns on this invention is explained in full detail.

まず、pH7.5〜9.5で粒度6〜30メッシュの多孔質担体に、炭素率15%以下で含水率が25〜30重量部の有機物を20〜30重量部用いて混練する。   First, a porous carrier having a pH of 7.5 to 9.5 and a particle size of 6 to 30 mesh is kneaded with 20 to 30 parts by weight of an organic substance having a carbon content of 15% or less and a water content of 25 to 30 parts by weight.

多孔質担体は、前述の如く耐熱性放線菌及び耐熱性細菌の好適な生育pH域を菌糸体肥料の製造中及び保存中に確保するため、そのpH域を7.5〜9.5と限定する。多孔質担体のpH域を限定することによってアルカリ性条件下で生育しにくい糸状菌等の有害菌の繁殖を阻むという効果をも奏する。
この多孔質担体はその粒度を6〜30メッシュとする必要がある。その理由は、後期醗酵の際に、30メッシュを超える細かい多孔質担体の場合には、醗酵温度を40℃以上に維持することが難しく耐熱性放線菌及び耐熱性細菌の充分な生育が望めず、逆に6メッシュ未満の粒度が大きい多孔質担体においては製造時の取扱いの煩雑性があり望ましくないからである。
As described above, the porous carrier has a pH range limited to 7.5 to 9.5 in order to secure a suitable growth pH range for heat-resistant actinomycetes and heat-resistant bacteria during the production and storage of mycelium fertilizer. To do. By limiting the pH range of the porous carrier, there is also an effect of inhibiting the growth of harmful bacteria such as filamentous fungi that are difficult to grow under alkaline conditions.
This porous carrier needs to have a particle size of 6 to 30 mesh. The reason is that in the case of a fine porous carrier exceeding 30 mesh during the late fermentation, it is difficult to maintain the fermentation temperature at 40 ° C. or higher, and sufficient growth of heat-resistant actinomycetes and heat-resistant bacteria cannot be expected. On the other hand, a porous carrier having a large particle size of less than 6 mesh is not desirable because of the complexity of handling during production.

本発明においては、多孔質担体に、特開平1−264987号で開示した技術に準じて炭素率15%以下で含水率が25〜60%の有機物を20〜30重量部用いて混練する。炭素率を15%以下の有機物と限定する理由は、炭素率が15%を超える有機物の場合には繊維質セルロース系の含有物が多くなり、その結果セルラーゼの所用量が多くなり放線菌中セルラーゼの生育が優勢となり、この発明の所期の目的を達成できないというこの発明者の実験的知見によるものである。また有機物の含水率を25〜60%と限定する理由は、混練物の醗酵系の水分が有機物からのみ供給されるとともに醗酵物系の水分が25〜60%好ましくは30〜40%ないと、充分な耐熱性放線菌の醗酵温度が得られないからである。逆に醗酵物系に60%を超える含水率の場合や25%未満の場合にはいずれも耐熱性放線菌を醗酵させる充分な醗酵条件が得られず好ましくないからである。
さらに有機物を20〜30重量部使用する理由は、20重量部未満の場合は有機物の量が少なすぎて各担体に対する菌糸体の生長が小さく、各多孔質担体に対して均一に分散して菌糸体が付着せず、逆に30重量部を超えて配合した場合には、菌糸体と多孔質担体との配合バランスがくずれ菌糸体が過剰になったり有機物の未分解率が多くなったり、いずれの場合も好ましくないからである。
In the present invention, the porous carrier is kneaded with 20 to 30 parts by weight of an organic substance having a carbon content of 15% or less and a water content of 25 to 60% according to the technique disclosed in JP-A-1-264987. The reason for limiting the carbon content to an organic substance with a carbon content of 15% or less is that in the case of an organic substance with a carbon content of more than 15%, the content of fibrous cellulose is increased, resulting in an increase in the amount of cellulase, and cellulase in actinomycetes. This is due to the inventor's experimental knowledge that the growth of the plant becomes dominant and the intended purpose of the present invention cannot be achieved. The reason why the moisture content of the organic substance is limited to 25 to 60% is that the moisture in the fermentation system of the kneaded product is supplied only from the organic substance and the moisture in the fermentation system is 25 to 60%, preferably 30 to 40%. This is because a sufficient fermentation temperature for heat-resistant actinomycetes cannot be obtained. On the contrary, when the water content exceeds 60% or less than 25% in the fermented product system, it is not preferable because sufficient fermentation conditions for fermenting heat-resistant actinomycetes cannot be obtained.
Furthermore, the reason for using 20 to 30 parts by weight of organic matter is that when the amount is less than 20 parts by weight, the amount of organic matter is too small and the growth of mycelium on each carrier is small, and the hyphae are uniformly dispersed on each porous carrier. If the body does not adhere and, on the contrary, it is blended in excess of 30 parts by weight, the blending balance of the mycelium and the porous carrier is lost, the mycelium becomes excessive, or the undecomposed rate of organic matter increases. This is also not preferable.

本発明において、有機物は、抗菌性物質を含まないものを使用する。有機物としては鶏糞等を用いることができるが、このとき、抗菌性物質を含まない飼料を与えた鶏の糞を用いる。一般に抗菌性物質には抗生物質や合成抗菌剤が含まれ、抗生物質としては、アミノグリコシド系、セフィム系、テトラサイクリン系、ペニシリン系、マクロライド系が挙げられ、抗菌性物質としては、キノロン系、スルフォンアミド系、チアンフェニコール系、フルオロキノロン系が挙げられるが、本発明において鶏に与える飼料はこれら抗菌性物質を含まない。
これら抗生物質や合成抗菌剤等の抗菌性物質を含まない飼料を与えた鶏の糞を用いることにより、耐熱性放線菌に加えて耐熱性細菌の生育が促進され、菌糸体が菌糸体肥料1gに対し耐熱性放線菌及び耐熱性細菌を合計1.0×10/g以上含む菌糸体肥料を製造することができる。
本発明において用いる鶏糞の鶏名としては、例えばボリスブラウン(別名 赤玉鶏、学名 Gallus gallus domesticus)を挙げることができるがこれに限定されず、家畜用鶏であれば全てよい。鶏に与える飼料(抗菌性物質を含まない飼料)としては、穀類50〜60%、植物性油かす10〜20%、動物質性飼料5〜10%、そうこう類などからなる配合飼料を挙げることができ、例えば、イーテン17(日清丸紅飼料)を挙げることができる。
In the present invention, organic substances that do not contain an antibacterial substance are used. As the organic matter, chicken droppings and the like can be used. At this time, chicken droppings fed with a feed containing no antibacterial substance is used. In general, antibacterial substances include antibiotics and synthetic antibacterial agents. Examples of antibiotics include aminoglycosides, cefims, tetracyclines, penicillins, and macrolides. Antibacterial substances include quinolones and sulfones. Amide-based, thiamphenicol-based, and fluoroquinolone-based are included, but the feed given to chickens in the present invention does not contain these antibacterial substances.
By using chicken dung fed with feed that does not contain antibacterial substances such as antibiotics and synthetic antibacterial agents, the growth of heat-resistant bacteria in addition to heat-resistant actinomycetes is promoted, and mycelium is 1 g of mycelium fertilizer. In contrast, a mycelium fertilizer containing a total of 1.0 × 10 6 / g or more of heat-resistant actinomycetes and heat-resistant bacteria can be produced.
Examples of the chicken name of chicken dung used in the present invention include Boris Brown (aka Akadama chicken, scientific name Gallus gallus domesticus), but are not limited thereto, and any chicken for livestock may be used. Examples of feeds to be fed to chickens (feeds that do not contain antibacterial substances) include 50 to 60% cereals, 10 to 20% vegetable oil meal, 5 to 10% animal feeds, and mixed feeds made from algae. For example, Eten 17 (Nisshin Marubeni Feed) can be mentioned.

次いでこの混練物を、系内温度15℃以上に維持できる雰囲気内に静置する。
その理由は、系内温度と外気温とを遮蔽し、一定の保温状態を保つことにより醗酵の均一性を保持するためである。この温度が15℃以下の場合には、醗酵温度が十分に上昇せず好ましくない。
Next, the kneaded product is allowed to stand in an atmosphere where the system temperature can be maintained at 15 ° C. or higher.
The reason for this is to maintain the uniformity of the fermentation by shielding the system internal temperature and the outside air temperature and maintaining a constant heat retention state. When this temperature is 15 degrees C or less, fermentation temperature does not fully rise and is unpreferable.

系内温度を一定にし外気温と遮断した後、醗酵物系の温度を55〜80℃、望ましくは60〜70℃に維持する。
醗酵温度が55℃以下の場合には、醗酵を促進するために系内の15℃以上に維持された空気を一定時間醗酵槽の底面部等より付設されたパイプやポンプを通して送りこみ(エアレーション)醗酵温度を55〜80℃に維持するが、セルロース含量が炭素率15%以下の有機物を使用するとして制限され、しかも多孔質担体が多量に混合されている含水率が制限されているという理由で80℃以上に醗酵温度が上昇することは実際上おこり得ない。
After keeping the system temperature constant and shutting off from the outside air temperature, the temperature of the fermented product system is maintained at 55 to 80 ° C, preferably 60 to 70 ° C.
When the fermentation temperature is 55 ° C or lower, the air maintained at 15 ° C or higher in the system is fed through a pipe or pump attached from the bottom of the fermentation tank for a certain period of time (aeration) in order to promote fermentation. Although the fermentation temperature is maintained at 55 to 80 ° C., the cellulose content is limited to using an organic substance having a carbon content of 15% or less, and the water content in which a large amount of the porous carrier is mixed is limited. It is practically impossible for the fermentation temperature to rise above 80 ° C.

この状態で少なくとも2日間醗酵することによりpH7.5〜9.5の多孔質担体中に耐熱性放線菌及び耐熱性細菌を培養、醗酵させてなることを特徴とする菌糸体肥料が製造される。
本発明において、醗酵期間は少なくとも2日間、望ましくは5日間とするのが望ましい。
尚、醗酵温度を55〜80℃に維持する理由は55℃未満では耐熱性放線菌及び耐熱性細菌が所期の目的の如く菌糸体群集中の割合で得られず、逆に80℃を超える場合においては嫌気性菌が生育するため、結局いずれの場合も望ましくないからである。
A mycelium fertilizer is produced by culturing and fermenting heat-resistant actinomycetes and heat-resistant bacteria in a porous carrier having a pH of 7.5 to 9.5 by fermentation in this state for at least 2 days. .
In the present invention, the fermentation period is at least 2 days, preferably 5 days.
The reason for maintaining the fermentation temperature at 55 to 80 ° C. is that when the temperature is less than 55 ° C., heat-resistant actinomycetes and heat-resistant bacteria cannot be obtained at a concentration rate of mycelium as the intended purpose, and conversely, the temperature exceeds 80 ° C. This is because anaerobic bacteria grow in some cases, which is undesirable in any case.

本発明においては、前述の如く炭素率15%以下の有機物を20〜30重量部用いること、この有機物の含水率を25〜60%と限定すること、更に多孔質担体を50〜78重量部用い、且つ粒度を6〜30メッシュとすることによって醗酵温度が80℃以上になることがない。
従って、通常の醗酵工程で行なわれる水を醗酵物にかけて醗酵温度を下げるいわゆる切り返し工程がなくとも80℃以上に醗酵温度が上昇することがない。
In the present invention, as described above, 20 to 30 parts by weight of an organic substance having a carbon content of 15% or less is used, the moisture content of the organic substance is limited to 25 to 60%, and a porous carrier is used in an amount of 50 to 78 parts by weight. And by making a particle size 6-30 mesh, fermentation temperature does not become 80 degreeC or more.
Therefore, the fermentation temperature does not increase to 80 ° C. or higher even without a so-called reversing step in which the fermentation temperature is lowered by applying water in the normal fermentation process to the fermentation product.

以下、実施例および比較例の試験を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although the test of an Example and a comparative example is given and this invention is demonstrated in more detail, this invention is not limited to these.

<実施例1>
(菌糸体肥料の調製)
多孔質担体として、pHが8.2、粒度25メッシュパス、内部表面積が200m/gのヤシガラ炭を60重量部用いた。
この多孔質担体にpH8.8、含水率32.9%、炭素率9.6%の鶏糞を25重量部用い、これらを混練した。尚、この鶏糞は、ボリスブラウン(学名 Gallus gallus domesticus)第1群、第2群、第3群(各100羽)の糞を用い、このボリスブラウンは、抗菌性物質を含まない飼料、具体的には、下記表1に示す配合割合の飼料を与えて育てた。
この混練物の醗酵中の温度を測定し、温度の上昇開始時及び混練物の醗酵中の温度が55℃以下になると、系内の空気をポンプにより、醗酵物中に直接供給し、立ち上げ時は一気に温度を上昇させその他は温度を一定に管理した。この醗酵を3日間行なった。これにより、実施例1(第1群、第2群、第3群)の菌糸体肥料を調製した。
尚、醗酵工程を通じて醗酵物系中の温度が80℃以上に上昇することはなかった。
<Example 1>
(Preparation of mycelium fertilizer)
As a porous carrier, 60 parts by weight of coconut husk charcoal having a pH of 8.2, a particle size of 25 mesh pass, and an internal surface area of 200 m 2 / g was used.
To this porous carrier, 25 parts by weight of chicken manure having a pH of 8.8, a water content of 32.9%, and a carbon content of 9.6% was kneaded. In addition, this chicken manure uses feces of Boris Brown (scientific name: Gallus Gallus domesticus) Group 1, Group 2 and Group 3 (100 birds each), and this Boris Brown is a feed containing no antibacterial substance, specifically Was fed with the feed shown in Table 1 below.
The temperature during fermentation of this kneaded product is measured, and when the temperature starts to rise and the temperature during fermentation of the kneaded product is 55 ° C. or less, the air in the system is directly supplied to the fermented product by a pump, and is started up. At times, the temperature was increased at once, and the temperature was kept constant at other times. This fermentation was carried out for 3 days. Thereby, the mycelium fertilizer of Example 1 (1st group, 2nd group, 3rd group) was prepared.
In addition, the temperature in a fermented product system did not rise to 80 degreeC or more through a fermentation process.

<比較例1>
上記実施例1とは、第4群鶏に与える飼料として、ビコザマイシン等の抗菌性物質を0.6g/kg含む飼料を用いたこと以外は同じ条件で菌糸体肥料の調製を行った。
<Comparative Example 1>
The mycelium fertilizer was prepared under the same conditions as in Example 1 except that a feed containing 0.6 g / kg of an antibacterial substance such as bicozamycin was used as the feed to be fed to the fourth group chickens.

(組成分析)
この醗酵停止後、菌糸体肥料を組成分析したところpH8.9、窒素全量1.65%、リン酸1.18%、カリウム1.08%であった。
(Composition analysis)
After this fermentation was stopped, mycelium fertilizer was compositionally analyzed to find pH 8.9, nitrogen total 1.65%, phosphoric acid 1.18% and potassium 1.08%.

(菌糸体肥料中の菌の特定)
菌糸体中の菌を確定するために、直径9cm、深さ1.5cmのペトリ皿1〜4を用い、寒天と蒸留水からなる培地を充填し、実施例1の第1群、第2群、第3群の菌糸体粒をそれぞれペトリ皿1〜3に対し20粒均等間隔で接種し、比較例1(第4群)の菌糸体粒をペトリ皿4に対し、20粒均等間隔で接種した。
このペトリ皿を30℃で14日間培養した後、耐熱性放線菌及び耐熱性細菌の菌数を測定した。耐熱性細菌の菌数は、標準寒天平板培養法により測定し、耐熱性放線菌の菌数は、アルブミン寒天平板培養法により測定した。尚、この培養に際し培地は予め120℃、1気圧下で20分間オートクレイブで殺菌した。
この結果、実施例1の菌糸体粒を含む第1群ペトリ皿1は、試料粒1gに対し、耐熱性放線菌は1.0×10/g、耐熱性細菌の菌数は8.8×10/gであり、第2群ペトリ皿2においては、耐熱性放線菌の菌数は2.6×10/g、耐熱性細菌の菌数は1.6×10/gであり、第3群ペトリ皿3においては、耐熱性放線菌の菌数は1.9×10/g、耐熱性細菌の菌数は3.3×10/gであった。
一方、比較例1の菌糸体粒を含む第4群ペトリ皿4は、試料粒1gに対し、耐熱性放線菌の菌数は1.0×10/g以下、耐熱性細菌の菌数は1.0×10以下であった。
実施例1の第1〜3群の菌糸体肥料のうち耐熱性放線菌としてはラセン状菌が優勢しており、耐熱性細菌としては、バチルス・サブチルス(Bacillus subtilis)属が見出された。
また、ペトリ皿1〜4(第1〜4群)には糸状菌も存在し、この糸状菌においてはCladosporium属、Penicillium属、Nigrospora属が見出された。
これらの糸状菌のうちCladosporium属のものとPenicillium属は比較例として用いたヤシガラ活性炭粒のみのペトリ皿からも見られることからこれらは空気中からの混入菌であると考えられ、実質的に実施例1の第1〜3群の菌糸体肥料の菌糸体肥料の微生物群集は耐熱性放線菌及び耐熱性細菌が優勢しているものであった。
次に実施例1の第1群の菌糸体肥料と、対照群として比較例1(第4群)の菌糸体肥料を用いた施用例について記載する。
(Identification of fungi in mycelium fertilizer)
In order to determine the bacteria in the mycelium, Petri dishes 1 to 4 having a diameter of 9 cm and a depth of 1.5 cm were used and filled with a medium composed of agar and distilled water. The first group and the second group of Example 1 The mycelium particles of the third group are inoculated at 20 equal intervals to the Petri dishes 1 to 3, respectively, and the mycelium particles of Comparative Example 1 (Group 4) are inoculated at 20 equal intervals to the Petri dishes 4 did.
After this petri dish was cultured at 30 ° C. for 14 days, the numbers of heat-resistant actinomycetes and heat-resistant bacteria were measured. The number of thermostable bacteria was measured by the standard agar plate culture method, and the number of thermostable actinomycetes was measured by the albumin agar plate culture method. In this cultivation, the medium was sterilized in advance by autoclaving at 120 ° C. and 1 atm for 20 minutes.
As a result, in the first group Petri dish 1 containing the mycelium particles of Example 1, the heat-resistant actinomycetes are 1.0 × 10 8 / g and the number of heat-resistant bacteria is 8.8 with respect to 1 g of the sample particles. × a 10 8 / g, in the second group petri dish 2, the number of bacteria thermostable actinomycetes 2.6 × 10 6 / g, the number of bacteria resistant bacteria in 1.6 × 10 5 / g Yes, in the third group Petri dish 3, the number of heat-resistant actinomycetes was 1.9 × 10 7 / g, and the number of heat-resistant bacteria was 3.3 × 10 6 / g.
On the other hand, the 4th group Petri dish 4 containing the mycelium grain of the comparative example 1 has 1.0 × 10 4 / g or less of heat-resistant actinomycetes per 1 g of the sample grain, and the number of heat-resistant bacteria is It was 1.0 × 10 1 or less.
Of the mycelium fertilizers of groups 1 to 3 of Example 1, as a heat-resistant actinomycete, a spiral fungus is dominant, and a genus Bacillus subtilis was found as a heat-resistant bacterium.
In addition, filamentous fungi also existed in the Petri dishes 1 to 4 (groups 1 to 4), and the genus Cladosporium, Penicillium, and Nigrospora were found in these filamentous fungi.
Among these filamentous fungi, those of the genus Cladosporium and the genus Penicillium are also seen from the Petri dish made only of coconut husk activated carbon particles used as a comparative example. The microbial community of the mycelium fertilizer of the first to third group mycelium fertilizer of Example 1 was dominated by heat-resistant actinomycetes and heat-resistant bacteria.
Next, an application example using the mycelium fertilizer of the first group of Example 1 and the mycelium fertilizer of Comparative Example 1 (Group 4) as a control group will be described.

<施用例1:ミニトマトに対する効果確認試験>
(1.目的)
実施例1(第1群)の菌糸体肥料が、ミニトマトの生育、収量、品質に及ぼす効果を評価した。
<Application Example 1: Effect confirmation test for cherry tomato>
(1. Purpose)
The effect of the mycelium fertilizer of Example 1 (Group 1) on the growth, yield and quality of cherry tomatoes was evaluated.

(2.試験方法)
1.試験場所:野菜花き試験場内パイプハウス(EC1.047mS/cm、pH6.23)
2.供試品目:ミニトマト「千果」(タキイ種苗)
3.試験区の構成:10.5cm(450ml)及び12cm(650ml)ポットへの鉢上げ時、培地容量に対して(1)実施例1の第1群の菌糸体肥料を3%混和、(2)実施例1の第1群の菌糸体肥料を5%混和、(3)比較例1(第4群)の菌糸体肥料を3%混和、1区5株、4往復
4.調査項目および調査方法
・収量調査:平成24年7月20日〜8月24日まで収穫し、長野県青果物等標準出荷規格により規格別に果数と重量を調べた。8g以下の小果および裂果、尻腐れ果などの不良果を規格外とした。
・生育調査:収穫終了時の平成24年8月27〜28日に株ごとに草丈、株元茎径、地上部重を、地下部重は平成24年9月6日に調べた。
・品質調査:1果重は収穫日ごとに調べ、糖度は可販果のうち中庸な良果を選び、デジタル糖度計(アタゴ)で測定した(n=20)。
・日持ち性:平成24年7月27日〜8月17日に可販果のうち中庸な良果を選び、常温保存(最高温度28℃、最低温度13℃)で行い、腐敗までの平均日数を調べた(n=108〜111)。
(2. Test method)
1. Test place: Pipe house in vegetable flower test place (EC 1.047mS / cm, pH 6.23)
2. Test items: cherry tomato “Chika” (Takii seedling)
3. Composition of test group: (1) 3% of the first group mycelium fertilizer of Example 1 was mixed with the culture medium volume at the time of potting to 10.5 cm (450 ml) and 12 cm (650 ml) pots, (2) 3. 5% of the first group mycelium fertilizer of Example 1 was mixed, (3) 3% of the mycelium fertilizer of Comparative Example 1 (Group 4) was mixed, 1 strain, 5 strains, 4 round trips. Survey item and survey method-Yield survey: Harvested from July 20th to August 24th, 2012, and the number and weight of fruits were examined according to the standard according to standard shipping standards such as Nagano Prefecture fruits and vegetables. Species of 8 g or less, and bad fruits such as ripe fruits and buttocks rot were excluded from the standard.
Growth investigation: Plant height, stem diameter, and ground weight were examined for each strain from August 27 to 28, 2012 at the end of harvest, and underground weight was examined on September 6, 2012.
-Quality survey: Fruit weight was examined every harvest day, and sugar content was selected from among the good-selling fruits, and measured with a digital sugar content meter (Atago) (n = 20).
・ Survivability: Average good days until spoilage, select moderate good fruits from July 27 to August 17, 2012 and store at room temperature (maximum temperature 28 ° C, minimum temperature 13 ° C) (N = 108 to 111).

(3.耕種概要)
平成24年4月12日播種、4月26日10.5cm鉢ポット移植(クラスマン培地)、5月31日定植とした。ハウス雨よけ支柱栽培とし、畝幅150cm、株間40cm(1667株/10a)とした。ムシコン黒マルチを用い、定植時のみ灌水した。施肥量は、a当たり基肥で窒素1.5kg、燐酸1.5kg、カリウム1.2kgとし、土壌のECが高かったため、生育中の追肥および灌水は行わなかった。着果ホルモン処理は行わず、第8段花房開花時に直上3葉を残して摘心した。その他栽培管理については当場の慣行によった。
(3. Overview of cultivation)
April 12, 2012 sowing, April 26 10.5 cm pot pot transplantation (Krasmann's medium), May 31 fixed planting. The house was made of rainproof props, with a ridge width of 150 cm and an inter-strain of 40 cm (1667 strain / 10a). Mushikon black mulch was used and watered only at the time of planting. The amount of fertilizer applied was 1.5 kg of nitrogen, 1.5 kg of phosphoric acid, and 1.2 kg of potassium as basic fertilizer per a. Since the EC of the soil was high, no additional fertilization and irrigation were performed during growth. No fruiting hormone treatment was performed, and the top three leaves were left at the time of flowering of the eighth stage inflorescence. Other cultivation management was based on local practices.

(4.結果)
実施例1(第1群)処理区の収量は、比較例1(第4群)処理区対比で植穴処理3%および5%の順に、可販量が107%および111%、可販果数が108%および107%であり、比較例1(第4群)処理区と比べて優れていた。よって、実施例1(第1群)の菌糸体肥料を用いることにより、ミニトマトの収量を向上させることができることがわかる。
実施例1(第1群)処理区の生育は、比較例1(第4群)処理区対比で植穴処理3%および5%の順に、草丈が105%および100%、株元茎径が104%および102%、地上部重が99%および105%、地下部重が109%および108%であり、比較例1(第4群)処理区と比べて優れていた。よって、実施例1(第1群)の菌糸体肥料を用いることにより、ミニトマトの生育を向上させることができることがわかる。特に地下部重の値が大きいと養分を植物体内に吸収し易いため特に好ましいといえる。これは、植物体内へのミネラルの吸収量が増加したことによるものと考えられる。
実施例1(第1群)処理区の日持ち性は、比較例1(第4群)処理区20.7日に対し、植穴処理3%が21.7日、植穴処理5%が22.5日であり、実施例1(第1群)の植穴処理3%および5%は比較例1(第4群)処理区と比べて優れていた。よって、実施例1(第1群)の菌糸体肥料を用いることにより、ミニトマトの日持ち性を向上させることができることがわかる。これは、植物体内へのミネラルの吸収量の増加に加えて、過剰窒素のたんぱく化の向上によるものと考えられる。
(4. Results)
The yield of the Example 1 (first group) treatment group was 107% and 111% of the sales amount in the order of the 3% and 5% planting treatment in comparison with the Comparative Example 1 (fourth group) treatment group. The numbers were 108% and 107%, which was superior to the treatment group of Comparative Example 1 (Group 4). Therefore, it turns out that the yield of cherry tomato can be improved by using the mycelium fertilizer of Example 1 (1st group).
The growth of Example 1 (Group 1) treated plots was compared with Comparative Example 1 (Group 4) treated plots in the order of 3% and 5% planting holes, plant heights of 105% and 100%, and the stem diameter of the stem 104% and 102%, the above-ground weight was 99% and 105%, and the underground weight was 109% and 108%, which was superior to the treatment example of Comparative Example 1 (Group 4). Therefore, it turns out that the growth of cherry tomato can be improved by using the mycelium fertilizer of Example 1 (1st group). In particular, it is particularly preferable that the value of the underground weight is large because nutrients are easily absorbed into the plant body. This is thought to be due to an increase in the amount of mineral absorption into the plant body.
The shelf life of the treatment group in Example 1 (first group) is 21.7 days for the planting treatment 32.7% and 22% for the planting treatment 5% compared to 20.7 days for the comparison example 1 (fourth group) treatment group. It was 5 days, and 3% and 5% of the hole-planting treatment of Example 1 (first group) was superior to the treatment group of Comparative Example 1 (fourth group). Therefore, it turns out that the shelf life of cherry tomatoes can be improved by using the mycelium fertilizer of Example 1 (1st group). This is thought to be due to an increase in excess nitrogen proteinization in addition to an increase in the amount of mineral absorption into the plant body.

<施用例2:ネギの生育試験>
(1.目的)
実施例1(第1群)の菌糸体肥料が、ネギの生育、収量、品質に及ぼす効果を評価した。
<Application Example 2: Leek growth test>
(1. Purpose)
The effect of the mycelium fertilizer of Example 1 (Group 1) on the growth, yield and quality of leeks was evaluated.

(2.試験方法)
1.試験場所:北陸地方 N生産者
2.供試品目:夏扇パワー
3.土質:砂状土
4.日時:平成23年6月14日定植、平成24年11月19日収穫及び調査
5.使用量:
(1)実施例1(第1群)処理区:250L/10a植え溝施用(定植前)
(2)比較例1(第4群)処理区:250L/10a植え溝施用(定植前)
6.調査:各区とも畝頭より7m地点から連続して20本を抜き取り軟白径及び重量について計測した。
(2. Test method)
1. Test place: Hokuriku region N producers 2. Test item: Summer fan power Soil quality: sandy soil Date: June 14, 2011, planting, November 19, 2012 harvest and survey amount to use:
(1) Example 1 (first group) treatment section: 250 L / 10a planting groove application (before planting)
(2) Comparative example 1 (fourth group) treatment section: 250L / 10a planting groove application (before planting)
6). Investigation: In each ward, 20 samples were continuously extracted from a point 7 m from the wharf and measured for soft white diameter and weight.

及び表に示すように、比較例1区に比べて実施例1区の方が、軟白径及び重量ともに顕著に優れた値を示した。これは、重量の増加については植物体内へのリン酸の吸収量の向上、軟白径の増加については植物体内へのK、Ca、Mg等のミネラルの吸収量の向上によるものと考えられる。
As shown in Table 4 and Table 5 , both the soft white diameter and the weight were significantly superior in Example 1 as compared with Comparative Example 1. This is thought to be due to an increase in the amount of phosphoric acid absorbed into the plant for an increase in weight, and an increase in the amount of minerals such as K, Ca, and Mg in the plant for an increase in soft white diameter.

上記施用例2以外にも下記表に示す場所及び方法にてネギの生育試験を行った。上記結果と同様に、比較例1区に比べて実施例1区の方が、軟白径及び重量ともに顕著に優れた値を示した。
In addition to Application Example 2, a leek growth test was conducted at the locations and methods shown in Table 6 below. Similar to the above results, both the soft white diameter and the weight were significantly superior in Example 1 as compared to Comparative Example 1.

<施用例3:ニンニクの生育試験>
(1.目的)
実施例1(第1群)の菌糸体肥料が、ニンニクの生育、収量、品質に及ぼす効果を評価した。
<Application example 3: Growth test of garlic>
(1. Purpose)
The effect of the mycelium fertilizer of Example 1 (Group 1) on the growth, yield and quality of garlic was evaluated.

(2.試験方法)
1.試験場所:中部地方 T生産者
2.品種:ホワイト六片
3.日時:平成23年10月上旬播種(M種使用) 平成24年6月12日収穫及び調査
4.使用量:
(1)実施例1(第1群)処理区:250L/10a/畝施用
(2)比較例1(第4群)処理区:250L/10a/畝施用
5.調査:各区とも畝頭より5m地点から連続して10株を取り直径(最大径)及び重量について計測した。また、表に示すとおり、出荷規格での分類を行った。
(2. Test method)
1. Test place: Chubu region T producer Variety: White six pieces Date and time: Seeding in early October 2011 (use of M species) June 12, 2012 Harvest and survey amount to use:
(1) Example 1 (first group) treatment section: 250 L / 10a / salted application (2) Comparative example 1 (fourth group) process group: 250 L / 10a / salted application Investigation: In each ward, 10 strains were continuously taken from a point 5 m from the wharf, and the diameter (maximum diameter) and weight were measured. In addition, as shown in Table 9 , classification was performed according to shipping standards.

7−9に示すように、比較例1区と比べて実施例1区の方が、ニンニクの直径(最大径)及び重量ともに優れた値を示した。
As shown in Table 7-9 , the Example 1 section showed superior values for both the diameter (maximum diameter) and weight of the garlic compared to the Comparative Example 1 section.

<施用例4:ブロッコリーの根こぶ病に対する防除効果試験>
(1.目的)
実施例1(第1群)の菌糸体肥料の、ブロッコリーの根こぶ病に対する防除効果を評価した。
<Application example 4: Control effect test against root-knot disease of broccoli>
(1. Purpose)
The mycelial fertilizer of Example 1 (Group 1) was evaluated for its control effect against root-knot disease of broccoli.

(2.試験方法)
1.試験場所
中国地方
2.対象病害虫発生状況
甚発生
3.耕種概要
・品種:ピクセル
・播種:2007年7月30日、育苗トレイ(200穴)で育苗した。
・定植:2007年9月10日、株間33cm、条間0.7mで半自動定植機を用いて植え付けた。施肥、一般管理は、当地慣行秋冬どりブロッコリー栽培基準に従って行った。土寄せは9月20日、および10月16日の合計2回実施した。
4.区制・面積
1区100m(10.0m×10m)、420株/区、3連制
5.処理方法
定植前日の2007年9月9日、所定量の薬剤はトラクターのアタッチにグランドソアーを装着して均一に散布した。供試資材は手散布した。散布後に深さ15cmでトラクターによる混和処理した。尚、散布時の降雨の影響はなかった。2008年は同一圃場区で定植当日、9月10日に所定量の薬剤を処理した。資材は散布しなかった。
6.調査月日・方法
2007年9月28日、および10月16日に各区中央の100株について萎凋株の有無を調査した。12月7日の収穫期には、各区中央の50〜200株について根部のこぶの着生を程度別に調査し、発病度を算出した。薬害調査は、萎凋株の調査時に茎葉の薬害の有無を肉眼によって観察した。2008年は9月24日、10月16日、および収穫期の12月29日に調査した。
(2. Test method)
1. Test location Chugoku region 2. Target pest occurrence 甚 outbreak 3. Overview of Cultivation-Variety: Pixel-Sowing: On July 30, 2007, seedlings were raised in a seedling tray (200 holes).
-Planting: Planted on September 10, 2007, using a semi-automatic planting machine at 33 cm between stocks and 0.7 m between streaks. Fertilization and general management were conducted in accordance with the local practices of autumn and winter broccoli cultivation standards. Soil gathering was carried out twice on September 20th and October 16th.
4). 4. Ward system / Area 100m 2 (10.0m × 10m), 420 shares / ward, 3 consecutive systems Treatment Method On September 9, 2007, the day before planting, a predetermined amount of drug was evenly sprayed by attaching a ground soar to the tractor attachment. The test materials were sprayed by hand. After spraying, the mixture was mixed with a tractor at a depth of 15 cm. In addition, there was no influence of rainfall when spraying. In 2008, a predetermined amount of drug was processed on the day of planting and on September 10 in the same field. The material was not sprayed.
6). Survey date and method On September 28 and October 16, 2007, 100 strains in the center of each ward were examined for the presence of wilt strains. During the harvest period on December 7, 50-200 strains in the center of each ward were examined for root nodule growth according to degree, and the disease severity was calculated. In the phytotoxicity survey, the presence or absence of phytotoxicity of the foliage was observed with the naked eye when investigating the wilting strain. The survey was conducted on September 24th, October 16th, and December 29th in the harvest season.

実施例1(第1群)の菌糸体肥料による全面土壌混和処理は、施用当年、対照薬剤ランマンフロアブル+フロンサイド粉剤およびネビジン粉剤と同等の防除効果が認められた。また、根部生育も無処理区に比べて旺盛であり実用性が高いと考えられる。2年目にも根部発病は見られず、発病抑制の持続効果が認められた。   The entire soil admixing treatment with the mycelium fertilizer of Example 1 (Group 1) was found to have the same control effect as the control drug Ranman flowable + front side powder and nevidin powder during the year of application. In addition, the root growth is vigorous compared to the untreated area and is considered to be highly practical. In the second year, no root disease was observed and a sustained effect of disease suppression was observed.

<施用例5:チンゲンサイの栄養吸収量評価試験>
深さ25cmポットにおいてチンゲンサイの栄養吸収量を、比較例1(第4群)処理区、ヤシガラ炭区、実施例1(第1群)処理区について測定した。各区とも表層10cmに化学肥料を施用した。ヤシガラ炭及び実施例1(第1群)の菌糸体肥料は表層3cmに3%混合した。
結果を下記表11に示す。表11に示す通り、実施例1区は各栄養素の吸収量が、比較例1区及びヤシガラ炭区に比べて優れていた。この栄養素の吸収量の増加が、農作物の収量、生育、品質及び日持ち性等の向上に大きな影響を与えていると考えられる。

<Application Example 5: Nutrient absorption evaluation test of Chingensai>
In a 25 cm deep pot, nutrient absorption of Ching Xinsai was measured for the Comparative Example 1 (Group 4) treated zone, Coconut Charcoal Zone, and Example 1 (Group 1) treated zone. In each section, chemical fertilizer was applied to the surface layer of 10 cm. Coconut husk charcoal and mycelium fertilizer of Example 1 (first group) were mixed 3% in a surface layer of 3 cm.
The results are shown in Table 11 below. As shown in Table 11 , the absorption amount of each nutrient in Example 1 was superior to that in Comparative 1 and Coconut Charcoal. This increase in the amount of absorbed nutrients is considered to have a great influence on the yield, growth, quality, shelf life and the like of crops.

本発明は、野菜や果物等の農作物や植物の収量、生育、品質及び日持ち性等を向上させることができる菌糸体肥料として好適に使用することができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used as a mycelium fertilizer that can improve the yield, growth, quality, shelf life and the like of crops and plants such as vegetables and fruits.

Claims (2)

pH7.5〜9.5の多孔質担体中に菌糸体を培養及び醗酵させてなる菌糸体肥料であって、該菌糸体が、該菌糸体肥料1gに対し耐熱性放線菌及び耐熱性細菌を合計1.0×10/g以上含むことを特徴とする、ネギ(Allium fistulosum)および、ニンニク(Allium sativum)を含むユリ科、ブロッコリー(Brassica oleracea var. italica)および、チンゲンサイ(Brassica rapa var. chinensis)を含むアブラナ科または、ミニトマト(Solanum lycopersicum var. cerasiforme)を含むナス科の栽培に施用する菌糸体肥料。 A mycelium fertilizer obtained by culturing and fermenting mycelium in a porous carrier having a pH of 7.5 to 9.5, wherein the mycelium contains heat-resistant actinomycetes and heat-resistant bacteria with respect to 1 g of the mycelium fertilizer. Allium fistulosum and lily family including garlic (Allium sativum), broccoli (Brassica oleracea var. Italica) and Chingensai (Brassica rapa var.) Characterized by containing 1.0 × 10 6 / g or more in total . A mycelium fertilizer applied to the cultivation of Brassicaceae containing chinensis or Solanum lycopersicum var. cerasiforme . pHを7.5〜9.5に調製した粒度6〜30メッシュの多孔質担体50〜78重量部を用い、この担体に炭素率15%以下で含水率が25〜60%の有機物を20〜30重量部用いて混練し、この混練物を系内温度15℃以上に維持できる雰囲気中に静置して耐熱性放線菌及び耐熱性細菌を優勢とする菌糸体を培養、醗酵させ、この培養、醗酵温度をエアレーションにより55〜80℃に維持しながら少なくとも2日間耐熱性放線菌及び耐熱性細菌による醗酵を行う菌糸体肥料の製法であって、前記有機物が抗菌性物質を含まないことを特徴とする、ネギ(Allium fistulosum)および、ニンニク(Allium sativum)を含むユリ科、ブロッコリー(Brassica oleracea var. italica)および、チンゲンサイ(Brassica rapa var. chinensis)を含むアブラナ科または、ミニトマト(Solanum lycopersicum var. cerasiforme)を含むナス科の栽培に施用する菌糸体肥料の製法。 Using 50 to 78 parts by weight of a porous carrier having a particle size of 6 to 30 mesh adjusted to a pH of 7.5 to 9.5, an organic substance having a carbon content of 15% or less and a water content of 25 to 60% is added to the carrier. 30 parts by weight are kneaded, and the kneaded product is allowed to stand in an atmosphere where the system temperature can be maintained at 15 ° C. or higher to culture and ferment mycelium that is predominantly heat-resistant actinomycetes and heat-resistant bacteria. The mycelium fertilizer is prepared by heat fermentation with heat-resistant actinomycetes and heat-resistant bacteria for at least 2 days while maintaining the fermentation temperature at 55-80 ° C. by aeration, wherein the organic matter does not contain an antibacterial substance. that, leek (Allium fistulosum) and, Liliaceae comprising garlic (Allium sativum), broccoli (Brassica oleracea var. italic ) And, bok choy (Brassica rapa var. Chinensis) cruciferous or a, mini-tomato (Solanum lycopersicum var. Cerasiforme) preparation of mycelium fertilizer to be applied to the cultivation of the Solanaceae family, including.
JP2013249630A 2013-12-02 2013-12-02 Mycelium fertilizer and its production method Active JP6324042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013249630A JP6324042B2 (en) 2013-12-02 2013-12-02 Mycelium fertilizer and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013249630A JP6324042B2 (en) 2013-12-02 2013-12-02 Mycelium fertilizer and its production method

Publications (2)

Publication Number Publication Date
JP2015105225A JP2015105225A (en) 2015-06-08
JP6324042B2 true JP6324042B2 (en) 2018-05-16

Family

ID=53435574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013249630A Active JP6324042B2 (en) 2013-12-02 2013-12-02 Mycelium fertilizer and its production method

Country Status (1)

Country Link
JP (1) JP6324042B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6949319B2 (en) * 2016-11-04 2021-10-13 株式会社サラダコスモ Cruciferous sprout with high phytochemical content and its production method
JP7274792B1 (en) 2022-04-22 2023-05-17 株式会社キングコール Control agent having antagonistic action against Panama disease pathogen of Cavendish banana and control method using said control agent

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264987A (en) * 1988-04-15 1989-10-23 Ryusuke Iijima Mycelium fertilizer and production thereof
JPH0747516B2 (en) * 1990-10-31 1995-05-24 隆介 飯島 Mycelium fertilizer and its manufacturing method
WO1997019902A1 (en) * 1995-11-29 1997-06-05 Kabushiki Kaisha Kingcoal Mycelial fertilizer and process for producing the same
WO1999007226A1 (en) * 1997-08-11 1999-02-18 Yugenkaisha Japan Social Medical Laboratory Vegetable-base soil fungicides, mycelial plant regulators, and method for regulating soil
JP2002001260A (en) * 2000-06-19 2002-01-08 Nisshin Seifun Group Inc Method for fermenting plant material
JP2002249389A (en) * 2001-02-19 2002-09-06 Shigehisa Ishihara Material for fertilization, molded body for fertilization, and method for fertilization
JP2006169043A (en) * 2004-12-16 2006-06-29 Tadamasa Okasaka Soil fungi soil aspergillus, soil fungi rice aspergillus, organic soil fungi fertilizer and soil fungi fertilizer by microorganism and method of cultivation by organic soil fungi fertilizer and the like
JP5487508B2 (en) * 2010-09-17 2014-05-07 株式会社日本総合研究所 Liquid fertilizer for improving sugar content of tomato, method for producing the same and method for using the same

Also Published As

Publication number Publication date
JP2015105225A (en) 2015-06-08

Similar Documents

Publication Publication Date Title
RU2628411C2 (en) Microbial inoculants and fertilisers composition containing them
KR101010762B1 (en) Biologically Controlled Strains and Their Microbial Organic Fertilizers for Withering Disease of Cucumber and Watermelon
KR101669599B1 (en) Composition for eliminating odor and heavy metal comprising effective microorganism culture broth as effective component
JP5690401B2 (en) Organic fermentation composition and method for producing the same
JP2010208893A (en) Organic fertilizer and method of manufacturing organic fertilizer
US10080333B2 (en) Hydroponic method utilizing beneficial micro-organisms
US9386774B2 (en) Application of mixotrophic chlorella for the improved yield and quality of solanaceae plants
CN112481159B (en) Microbial agent and application thereof
CN103858737A (en) Plant cultivation medium and preparation method and applications thereof
KR101670651B1 (en) Method for producing fermented liquid fertilizer of manure with reduced odor and heavy metal content using effective microorganism
CN104892055A (en) Bio-organic fertilizer produced by recycling straws and preparation method thereof
CN104130068A (en) Compound multifunctional biological foliage fertilizer
KR100298785B1 (en) Organic mixed fertilizer and its manufacturing method
KR20100072623A (en) A natural farming system
JP5044261B2 (en) Animal feed
EP3485733B1 (en) Method for promoting growth of plants by using bacillus amyloliquefaciens
JP6324042B2 (en) Mycelium fertilizer and its production method
CN104988094A (en) Method for manufacturing quinclorac solid degrading inoculant
KR100865032B1 (en) Eco-friendly function organized fertilizer production composite using livestock excretions
JP2006280255A (en) Culture media for cultivating lyophyllum decastes and method for cultivating the lyophyllum decastes
JPH0569801B2 (en)
KR20090095149A (en) Fertilizer composition containing natural plant vinegar
EP0479402A2 (en) Fertiliser
JP4398663B2 (en) Plant growth promotion and disease control materials
CN113149791A (en) Preparation method of bio-organic fertilizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180410

R150 Certificate of patent or registration of utility model

Ref document number: 6324042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250