JP4032137B2 - Plant soil fungicide, mycelium plant regulator, and soil conditioning method - Google Patents

Plant soil fungicide, mycelium plant regulator, and soil conditioning method Download PDF

Info

Publication number
JP4032137B2
JP4032137B2 JP51195299A JP51195299A JP4032137B2 JP 4032137 B2 JP4032137 B2 JP 4032137B2 JP 51195299 A JP51195299 A JP 51195299A JP 51195299 A JP51195299 A JP 51195299A JP 4032137 B2 JP4032137 B2 JP 4032137B2
Authority
JP
Japan
Prior art keywords
plant
soil
mycelium
fungicide
fertilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP51195299A
Other languages
Japanese (ja)
Inventor
忠彦 渡辺
Original Assignee
有限会社日本社会医療研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社日本社会医療研究所 filed Critical 有限会社日本社会医療研究所
Application granted granted Critical
Publication of JP4032137B2 publication Critical patent/JP4032137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/30Microbial fungi; Substances produced thereby or obtained therefrom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/22Lamiaceae or Labiatae [Mint family], e.g. thyme, rosemary, skullcap, selfheal, lavender, perilla, pennyroyal, peppermint or spearmint
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/36Rutaceae [Rue family], e.g. lime, orange, lemon, corktree or pricklyash
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/38Solanaceae [Potato family], e.g. nightshade, tomato, tobacco or chilli pepper
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • C05F11/08Organic fertilisers containing added bacterial cultures, mycelia or the like
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/60Biocides or preservatives, e.g. disinfectants, pesticides or herbicides; Pest repellants or attractants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Description

技術分野
この発明は植物性土壌殺菌剤及び菌糸体系植物調整剤並びに土壌調整方法に係り、その目的は連作を行っても土壌病害が発生せず、且つ収量を増やすことができ、環境汚染の原因とならない植物性土壌殺菌剤、及び土壌病原菌を駆除することができる菌糸体系植物調整剤及び土壌調整方法に関する。
技術背景
同じ畑に連続して同じ農作物を作付けすることにより、又は近年においては化学農薬の散布過多や化学肥料の多用により土壌病原菌が発生しやすくなり、これにより収量が次第に少なくなっていくことが土壌病害障害として知られている。
この土壌病害障害を無くすには、連作を行わず輪作を行う方法、更にはより多くの農薬を使用する方法が一般に採用されている。しかしながら、輪作を行うと生産計画が立てにくく、農作業が煩雑になってしまい、また農薬の多用は地力を弱くしてしまう。
畑に薬剤を投入する方法について言えば、現在使用されている農薬のそのほとんどが化学合成により製造されたものであり、短期的には一応の効果を奏するものの、長期的には土壌や植物にさらなる悪影響を及ぼすという欠点があった。しかも、これら従来より行われている農作物に対する薬剤の散布に伴って有用土中微生物も減少し、この結果地力は低下し、各種作物も病弱化し、土壌病害が却って発生しやすくなる。さらに、散布される薬剤が環境汚染の原因となるため、これら薬剤の投入は近年に至って問題視されている。
土壌病原菌を駆除し、植物自体にも悪影響を及ぼさず、環境汚染の原因にもならない薬剤として、有用微生物の活性化をはかることにより上記の問題を緩和しようとする試みが各地で行われている。
このような方法として、例えば、耐熱性放線菌が多孔質担体に担持された菌糸体肥料を使用することにより、土壌中に耐熱性放線菌を導入することがなされている。この方法によれば、多孔質担体中に耐熱放線菌が入り込み、さらに耐熱放線菌の生育に必要な空気が多孔質担体中に蓄えられるため、耐熱放線菌は土壌中に長くとどまり、土壌病原菌の繁殖を抑制するため、連作障害は発生しにくく、化学農薬を使用する必要が少なくなる。しかも菌糸体肥料は優れた有機肥料であるため、化学肥料を使用する必要もなくなる。
しかしながら上記の方法によれば、既に土壌病原菌が繁殖している場合、或いは耐熱放線菌と拮抗する菌が土壌中で繁殖している場合、耐熱放線菌は多孔質担体中にとどまってしまい、土壌病原菌の駆除はできない。
この発明の解決課題は、土壌病害防除作用を有し、植物自体に悪影響を与えず、環境汚染の原因にもならない植物調整剤及び土壌調整方法を提供することにある。
発明の開示
請求項1に記載の発明は、植物性土壌殺菌剤と菌糸体肥料とが混合されてなる菌糸体系植物調整剤であって、前記植物性土壌殺菌剤は、アカネ科(Rubiaceae)のコリンクチナシ(Gardenia jasmimoides Ellis)クチナシ(G.jasmimoides Ellis forma grandiflora)、コクチナシ(G.jasmimoides Ellis var. radicans)からなる群から選択されるいずれか1種の果実を乾燥させたもの、シソ科(Labiatae)ハッカ(Mentha arvensis L.var.piperascens Malinv)またはその変種の葉を乾燥させたもの、ヤマモモ科(Myricaceae)のヤマモモ(Myrica rubra Sieb.et Zucc)の樹皮を乾燥させたものを含む植物体群又はこれら植物体群からの抽出物を含み、前記菌糸肥料は多孔質担体に菌類が担持される様に調整されており且つこの菌類は55〜80℃の温度域で好気的に生育する放線菌等の菌類であることを特徴とする菌糸体系植物調整剤である。
請求項2に記載の発明は、前記植物体群としてさらにナス科(Solanaceae)のトウガラシ(Capsicum annuum L.)又はその変種の成熟果実を乾燥させたもの、ミカン科(Rutaceae)のキハダ(Phellodendron amurense Ruprecht)、この変種もしくはナシキハダ(Phellodendron chinense Schneid)の樹皮、又はコルク層を除いた樹皮を乾燥させたものが含まれることを特徴とする請求項1に記載の菌糸体系植物調整剤である。
請求項3に記載の発明は、前記植物体群は粉砕され粉末状とされていることを特徴とする請求項1又は請求項2のいずれかに記載の菌糸体系植物調整剤である。
請求項4に記載の発明は、前記植物体群から抽出された抽出液であることを特徴とする請求項1又は請求項2に記載の菌糸体系植物調整剤である。
請求項5に記載の発明は、前記植物体群からの抽出物は水、メタノール、エタノール等の極性溶媒により抽出され、得られた抽出液からフリーズドライ、或いは他の方法により溶媒成分を除去して得られ、粉末状とされていることを特徴とする請求項1又は請求項2に記載の菌糸体系植物調整剤である。
請求項6に記載の発明は、前記植物性土壌殺菌剤は前記菌糸体肥料の醗酵工程中に添加されていることを特徴とする請求項1乃至請求項5のいずれかに記載の菌糸体系植物調整剤である。
請求項7に記載の発明は、前記植物性土壌殺菌剤は前記菌糸体肥料の醗酵工程前の多孔質担体に吸着されていることを特徴とする請求項6に記載の菌糸体系植物調整剤である。
請求項8に記載の発明は、アカネ科(Rubiaceae)のコリンクチナシ(Gardenia jasmimoides Ellis)、クチナシ(G.jasmimoides Ellis forma grandiflora)、コクチナシ(G.jasmimoides Ellis var. radicans)からなる群から選択されるいずれか1種の果実を乾燥させたもの、シソ科(Labiatae)のハッカ(Mentha arvensis L.var.piperascens Malinv)またはその変種の葉を乾燥させたもの、ヤマモモ科(Myricaceae)のヤマモモ(Myrica rubra Sieb.et Zucc)の樹皮を乾燥させたものを含む植物体群又はこれら植物体群からの抽出物が含まれる植物性土壌殺菌剤と、多孔質担体に菌が担持される様に調製されており且つこの菌は55℃〜80℃の温度域で好気的に生育する放線菌等の菌類である菌糸体肥料とを別個に又は同時に土壌に施用することを特徴とする土壌調整方法である。
請求項9に記載の発明は、前記植物体群としてさらにナス科(Solanaceae)のトウガラシ(Capsicum annuum L.)又はその変種の成熟果実を乾燥させたもの、ミカン科(Rutaceae)のキハダ(Phellodendron amurense Ruprecht)、この変種もしくはナシキハダ(Phellodendron chinense Schneid)の樹皮、又はコルク層を除いた樹皮を乾燥させたものが含まれることを特徴とする請求項8に記載の土壌調整方法である。
請求項10に記載の発明は、液体状の前記植物性土壌殺菌剤が土壌に散布され、その後に前記菌糸体肥料が土壌に施されることを特徴とする請求項8又は9に記載の土壌調整方法である。
請求項1乃至請求項10に記載の発明は、土壌に植物性土壌殺菌剤と菌糸体肥料を同時に作用させ、その相乗作用により土壌病原菌を駆除する事を目的とする。即ち、これらの発明は全て、植物性土壌殺菌剤と菌糸体肥料とが相乗作用を引き起こし易いように構成されている。
即ちこれらの発明において、植物性土壌殺菌剤は、土壌病原菌、土壌中の所謂有益菌及び農作物のそれぞれに作用し、具体的には土壌病原菌の増殖を抑制し、有益菌の増殖を促進し、且つ農作物の耐病原性を向上させる。これら植物性土壌殺菌剤は土壌病原菌、土壌中の所謂有益菌及び農作物のそれぞれに作用し、具体的には土壌病原菌の増殖を抑制し、有益菌の増殖を促進し、且つ農作物の耐病原性を向上させる。
また、菌糸体肥料は土壌に所謂有益菌を導入することにより、土壌中の有益菌を増加させ、この有益菌と土壌病害菌とを競争させることにより土壌病害菌を減少させる作用を有する。一方、前述した通り、植物性土壌殺菌剤は土壌病原菌及び土壌中の所謂有益菌のそれぞれに作用し、具体的には土壌病原菌の増殖を抑制すると同時に有益菌の増殖を促進するので、これら菌糸体肥料と植物性土壌殺菌剤を土壌に同時に作用させると土壌中は土壌病原菌の増殖に非常に不利な状況となり、このため土壌病原菌を駆除できる。
なお、上記の菌糸体肥料は単独で土壌病害の予防効果を奏することが知られていたが、この菌糸体肥料を単独で用いるのみでは土壌病原菌の駆除を行うことは出来なかった。一方この発明者はこの発明で用いる植物体群又はその抽出物が優れた土壌病害防止効果を奏することを発見したが、これら植物体群又はその抽出物を使用した植物性土壌殺菌剤を使用しても、単独で用いるのみでは土壌病原菌の駆除を行うことは出来なかった。
そこで、この発明者は研究を一歩進め、これら植物性土壌殺菌剤と菌糸体肥料を併用することにより土壌病害菌の駆除を行うことが可能であることを見出した。
また、これらを併用することにより、菌糸体肥料による農作物の成長促進効果が飛躍的に増大されることも見出した。
以下この発明で使用する植物性土壌殺菌剤及び菌糸体肥料についてそれぞれ詳細に説明する。
まず、植物性土壌殺菌剤について説明する。なお、ここで説明する植物性土壌殺菌剤は請求項1乃至請求項5に記載の発明であると同時に、請求項6乃至請求項10に記載の発明における重要な構成でもある。
この発明における植物性土壌殺菌剤は、アカネ科(Rubiaceae)のコリンクチナシ(Gardenia jasmimoides Ellis)またはその近縁種の果実を乾燥させたもの、シソ科(Labiatae)のハッカ(Mentha arvensis L.var.piperascens Malinv)またはその変種の葉を乾燥させたもの、ヤマモモ科(Myricaceae)のヤマモモ(Myrica rubra Sieb.et Zucc)の樹皮を乾燥させたもの、ナス科(Solanaceae)のトウガラシ(Capsicum annuum L.)又はその変種の成熟果実を乾燥させたもの、ミカン科(Rutaceae)のキハダ(Phellodendron amurense Ruprecht)またはこの近縁種、変種の樹皮、或いはコルク層を除いた樹皮を乾燥させたもの等の植物体群又はこれら植物体群からの抽出物を含むことを特徴とする。
以下、この発明で用いる植物体について詳細に説明する。
請求項1に記載の発明において、植物性土壌殺菌剤はアカネ科のコリンクチナシまたはその近縁種の果実を乾燥させたもの、シソ科のハッカまたはその変種の葉を乾燥させたもの、ヤマモモ科のヤマモモの樹皮を乾燥させたもの等の植物体群またはこれら植物体群からの抽出物を含むこととされている。
アカネ科(Rubiaceae)のコリンクチナシ(Gardenia jasmimoides Ellis)の近縁種としては、クチナシ(G.jasmimoides Ellis forma grandiflora)、コクチナシ(G.jasmimoides Ellis var. radicans)を例示できる。なお、これらの植物の果実を乾燥させたものは、山梔子(GARDENIAE FRUCTUS)、本丹、越桃とも呼ばれる。
シソ科(Labiatae)のハッカ(Mentha arvensis L.var.piperascens Malinv)またはその変種の葉を乾燥させたものは、薄荷葉(MENTHAE HERBA)とも呼ばれる。
ヤマモモ科(Myricaceae)のヤマモモ(Myrica rubra Sieb.et Zucc)の樹皮を乾燥させたものは、楊梅皮(MYRICAE CORTEX)とも呼ばれる。
請求項2に記載の発明において、植物性土壌殺菌剤は請求項1で使用されるものに加え、ナス科のトウガラシ又はその変種の成熟果実を乾燥させたもの、ミカン科のキハダまたはこの近縁種、変種の樹皮、或いはコルク層を除いた樹皮を乾燥させたもの等の植物体群またはこれら植物体群からの抽出物を含むこととされている。
ナス科(Solanaceae)のトウガラシ(Capsicumannuum L.)又はその変種の成熟果実を乾燥させたものは、番椒(CAPSICI FRUCTUS)とも呼ばれる。
ミカン科(Rutaceae)のキハダ(Phellodendron amurense Ruprecht)の近縁種としてはナシキハダ(Phellodendron chinense Schneid)を挙げることができる。これら植物体の変種の樹皮、或いはコルク層を除いた樹皮を乾燥させたものは、黄柏(PHELLODENDRI CORTEX)とも呼ばれる。
この発明は、上記の植物体又はその一部とは別に、サトイモ科(Araceae)のカラスビシャク(Pinellia ternata Breitenbach)の茎根の外皮を除去して乾燥したもの、ショウガ科(Zingiberaceae)のショウガ(Zingiber officinale Roscoe)の根茎をそのまま或いはコルク層を除き、蒸して乾燥したもの、ミカン科(Rutaceae)のイヌザンショウ(Zanthoxylum Sieb.et Zucc)及び(Zanthoxylum bungeanum Maxim)、カホクサンショウ(Zanthoxylum simulans Hance)、フユザンショウ(Zanthoxylum planispinum Sieb.et Zucc)などの成熟した果皮を乾燥させたもの等又はこれら植物体から得られる抽出物を含んでもよい。
なお、サトイモ科(Araceae)のカラスビシャク(Pinellia ternata Breitenbach)の茎根の外皮を除去して乾燥したものは、半夏(PINELLIAE TUBER)とも呼ばれる。
ショウガ科(Zingiberaceae)のショウガ(Zingiber officinale Roscoe)の根茎をそのまま或いはコルク層を除き、蒸して乾燥したものは、乾姜(ZINGIBERIS SICCATUM RHIZOMA)とも呼ばれる。
ミカン科(Rutaceae)のイヌザンショウ(Zanthoxylum Sieb,et Zucc)及び(Zanthoxylum bungeanum Maxim)、カホクサンショウ(Zanthoxylum simulans Hance)、フユザンショウ(Zanthoxylum planispinum Sieb.et Zucc)などの成熟した果皮を乾燥させたものは、山椒(ZANTHOXYLI FRUCTUS)とも呼ばれる。
この発明に上記植物体群又はその抽出物を使用する理由は、これら植物体群またはその抽出物は所謂土壌病原菌の増殖を阻害してある程度殺菌する作用、及び後述する菌糸体肥料中で生育する菌類に吸収されてその増殖を助ける作用、さらには農作物に吸収されて農作物自身に耐病原性を付与する作用を共に有するからである。具体的には上記植物体群またはこれら植物体群からの抽出液を含む植物性土壌殺菌剤はカイヨウ病、モザイク病、緑斑モザイク病、イチョウ病、アオガレ病、シリグサレ病、ハンテン細菌病、テンブ病、ネグサレ病、クログサレ病、イオウ病、ハクハン病、ネコブ病、タチガレ病、シンクサレ病、紫モンパ病、オウカ病等の極めて広範囲の土壌病害の発生を防ぐことができる。
使用する植物体の量は特に限定されず、これらはそれぞれ土壌病原菌を殺菌することができ、且つ農作物や土壌内に存在する耐熱放線菌等の有益菌に吸収されて農作物の生長や有益菌の増殖を促進させる。
ナス科のトウガラシ又はその変種の成熟果実を乾燥させたものやミカン科のキハダまたはこの近縁種、変種の樹皮、或いはコルク層を除いた樹皮を乾燥させたものはそれぞれ、土壌病原菌に対する殺菌作用及び除菌作用を有し、このためこれら植物体を有する土壌殺菌剤は優れた土壌病害防除効果を奏する。
この発明には、サトイモ科のカラスビシャクの茎根の外皮を除去して乾燥したもの、ショウガ科のショウガの根茎をそのまま或いはコルク層を除き、蒸して乾燥したもの、ミカン科のイヌザンショウ及び、カホクサンショウ、フユザンショウなどの成熟した果皮を乾燥させたものを使用することもできる。これらの植物体はそれぞれ抗キトサン効果による防虫作用を有し、このためこれら植物体を有する土壌殺菌剤は害虫に対する忌避効果を奏する。
次にこの発明の植物性土壌殺菌剤の剤形について説明する。
この発明において植物体群は植物体自身又は植物体からの抽出物が植物性土壌殺菌剤となる。
植物体自身を土壌殺菌剤とする場合、この植物体は破砕するか、或いは粉末状とするほうが好ましい。破砕又は粉末化した場合、植物体の表面積が大きくなるため、この植物体から土壌病原菌の増殖抑制成分や有益菌の増殖促進成分等の有効成分が放出されやすくなり、即効性が優れた植物性土壌殺菌剤となる。なお、破砕或いは粉末化の方法は特に限定されず、通常の破砕及び粉末化方法がいずれも好適に使用できる。
また、これら植物体は予め煮沸するか或いは蒸熱した後に揉むことにより有効成分が放出されやすくしておいてもよい。
この発明では植物体から溶媒により抽出された成分も土壌殺菌剤として使用できる。
この場合、溶媒としては特に限定されないが、水、メタノール、エタノール、イソプロピルアルコール、n−プロピルアルコール等の極性溶媒を使用すると好ましい。
抽出温度や抽出時間は、使用する溶媒、使用する植物体の種類や量によっても異なり、特に限定されない。
上記の抽出によって得られた抽出液は粉末状にして用いてもよい。
植物抽出液を粉末状にする方法としては特に限定されないが、例えば得られた植物抽出液をフリーズドライするか、又は他の方法により結晶化させて乾燥させ、必要に応じて結晶を潰して粉末にする方法が例示できる。フリーズドライや結晶化の具体的な方法は特に限定されず、常法に従えばよい。
その他粉末化の方法としては、植物抽出液をこの植物抽出液に溶解されない粉末状の物質に染み込ませた後にこの粉末を乾燥させる方法が例示できる。
この場合の粉末状の物質としては特に限定されないが、例えばフスマ、米ぬか、乾燥酵母など放線菌の養分となり得る物質や、鶏糞、魚カスなど通常肥料として土壌中に施される物質を粉末化したものでもよく、活性炭等の多孔質物質等も好適に使用できる。
なお、活性炭等の多孔質物質を使用して植物性土壌殺菌剤を製造した場合、抽出液中の有効成分は孔内に含浸しているため、これを土壌に散布した場合この有効成分は土壌中に徐々に放出される。そのため土壌病原菌の増殖抑制作用や有益菌の増殖促進作用が長持ちするという効果がある。
次に、この発明で使用する菌糸体肥料について説明する。なお、ここで説明する菌糸体肥料は請求項6乃至請求項10の発明において上記した植物性土壌殺菌剤と共に使用される。また、この菌糸体肥料は農作物の成長促進作用に優れた肥料として、従来より使用されている。
この発明で使用する菌糸体肥料は主に55〜80℃の温度域で好気的に生育する放線菌等の菌類が多孔質担体に担持されたものである。具体的にはThermoactinomyces vulgaris等のThermoactinomyces属、Thermonospora chromogena等のThermonospora属、Actinobifida dichotomica等のActinobifida属、Thermopolyspora flexuosa等のThermopolyspora属、等が例示できる。
この発明において55〜80℃の温度域で好気的に生育する放線菌等の菌類を使用する理由は、これらの菌類には植物に対し有害な影響を与える所謂有害菌が極めて少なく、代謝生産物には植物生長ホルモン、各種ビタミンが含有され、さらにこれらの菌類自体が分解して窒素源となることにより植物の生長に寄与するからである。さらにこれらの菌類には抗菌作用を有する物質を生産するものが多いため土壌病害防除作用も期待できる。
また、土壌病害防除作用を有する菌類を選択して多孔質担体に担持させてもよい。なお、土壌病害防除作用を有する菌類としてはThermoactinomyces属、Thermonospora属、Actinobifida属、Thermopolyspora属等の放線菌が例示できる。
この発明においては上記の菌類は多孔質担体に担持され、菌糸体肥料とされている。菌類を多孔質担体に担持させる理由は、菌糸体肥料の貯蔵中及び土壌施用時において担持された菌類が生育するための水分及び空気を保持するためである。
この発明に使用できる多孔質担体としては、木炭、活性炭、石炭、コークス、活性コークス、泥炭、バームキュライト、パーライト、ベントナイト、発泡性ウレタン等が例示できるが、これらに限定されない。
この発明で使用する多孔質担体の量は特に限定されず、担持された菌類が好適に生存できる程度の量であればよい。
上記した菌類を上記多孔質担体に担持させる方法は特に限定されないが、例えば菌類の養分となり得る有機物と多孔質担体とを混合した後、これに耐熱放線菌等の所謂有益菌を接種し、エアレーションを行いながらこの混練物を55〜80℃で数日間醗酵させる方法が例示できる。また、放線菌が好適に育成できる様に調整された液体培地に所謂有益菌を投入し、エアレーションを行いながら55〜80℃で数日間培養し、培養された菌類と多孔質担体を接触させる方法も例示できる。その他、多孔質担体に55〜80℃の温度域で好気的に育成する菌類が担持された菌糸体肥料であればどのようなものでも好適に使用できる。
上記した通り、請求項6乃至請求項10に記載された発明は、土壌に植物性土壌殺菌剤と菌糸体肥料を同時に作用させる様に構成されているが、このうち請求項6に記載の発明では植物性土壌殺菌剤と菌糸体肥料を混合することにより植物性土壌殺菌剤と菌糸体肥料が土壌に同時に作用する様にされている。なお、これら植物性土壌殺菌剤と菌糸体肥料を土壌に同時に作用させることによりカイヨウ病、モザイク病、緑斑モザイク病、イチョウ病、アオガレ病、シリグサレ病、ハンテン細菌病、テンブ病、ネグサレ病、クログサレ病、イオウ病、ハクハン病、ネコブ病、タチガレ病、シンクサレ病、紫モンパ病、オウカ病等を引き起こす土壌病原菌を駆除することができる。
また、これら植物性土壌殺菌剤と菌糸体肥料を土壌に同時に作用させることにより、菌糸体肥料のみを単独で使用する場合と比較して、農作物の成長促進効果が飛躍的に向上される。この効果はこの発明者が実験的に見出したものであり、その作用機構は不明である。
混合する際の植物性土壌殺菌剤の剤形は特に限定されず、植物体群をそのまま使用してもよいし、この植物体群を破砕又は粉砕したものでもよく、さらに植物体群から任意の溶媒で抽出した抽出液でも、さらにこの抽出液から溶媒を蒸発させて得られた物質、或いはその粉砕物でもよい。
植物性土壌殺菌剤を植物体群の破砕又は粉砕物のような粉粒体とした場合、その粒径は植物性土壌殺菌剤が菌糸体肥料粒の表面に付着しやすい程度の大きさであると好ましい。
なお、植物性土壌殺菌剤を菌糸体肥料粒の表面に付着させると菌糸体肥料に含まれる菌類が土壌中において繁殖しやすくなる。この理由についてさらに詳細に説明すると、この菌糸体系植物調整剤を土壌病原菌に侵された土壌に施した際、この菌糸体系植物調整剤中の菌類と土壌病原菌との競争は先ず菌糸体系植物調整剤と土壌の境目、即ち菌糸体肥料の表面付近で起こることになる。ここで、植物性土壌殺菌剤が菌糸体肥料の表面に付着していると、菌糸体系植物調整剤中の菌類と土壌病原菌とが競争している箇所に植物調整剤が作用することになる。つまり、土壌病原菌の増殖を抑える作用と菌糸体系植物調整剤中の菌類の増殖を促進する作用が、これら菌類の競争箇所で奏されることとなるので土壌中で菌糸体系植物調整剤中の菌類が極めて速やかに優勢になる。即ち、土壌病原菌を速やかに駆除することができる。
植物性土壌殺菌剤を植物体群から抽出により得られた抽出液のような液体とした場合は、菌糸体肥料中の多孔質担体に含まれる空気が水により置換されることがない程度に濃縮してから混合すると好ましい。
液体を濃縮する理由は、菌糸体肥料と植物性土壌殺菌剤を混合する際にも多孔質担体の内部に空気を確保するためである。つまり、菌糸体肥料に含まれる耐熱放線菌等の有益菌は好気的条件下において好適に生育するが、多孔質担体に含まれる空気が水により置換されると、これら有益菌の生育に不利となる場合があるからである。
以下、請求項7又は請求項8に記載の発明について説明する。この発明の菌糸体系植物調製剤は菌糸体肥料の製造過程のいずれかにおいて植物性土壌殺菌剤を添加して、培養中の有益菌に植物性土壌殺菌剤を吸収させたものであってもよい。
たとえば菌糸体肥料の製造方法として、耐熱放線菌等の有益菌の養分となり得る有機物と多孔質担体とを混合した後、これに耐熱放線菌等の所謂有益菌を接種し、エアレーションを行いながらこの混練物を55〜80℃で数日間醗酵させる方法を採用した場合、予め有益菌の養分となり得る有機物に植物性土壌殺菌剤を添加しておいてもよいし、醗酵途中の菌糸体肥料と植物性土壌殺菌剤を混合させてもよい。さらに予め多孔質担体に植物性土壌殺菌剤を吸着させておいてもよいが、この場合、この植物性土壌殺菌剤を吸着した多孔質担体と同量程度の、植物性土壌殺菌剤を吸着しない多孔質担体を混合しておくとより好ましい。
また菌糸体肥料の製造方法として有益菌を液体培地で培養する方法を採用する場合は、液体培地中に植物性土壌殺菌剤を投入してもよい。
培地中の有益菌に植物性土壌殺菌剤を吸収させる理由は、上記した通り、この発明の植物性土壌殺菌剤には有益菌の増殖を促進する作用があるため、菌糸体肥料中の有益菌の数が増加し、より有効な菌糸体系植物調製剤となるからである。
次に請求項9又は請求項10に記載の発明について説明する。この発明は植物性土壌殺菌剤と菌糸体肥料を共に土壌に施すことにより、植物性土壌殺菌剤と菌糸体肥料が土壌に同時に作用する様にされている。
この発明において、植物性土壌殺菌剤は粉体状にして施しても、或いは水に溶解又は分散させたような液体状で施してもよい。粉末状にして施した場合、この植物性土壌殺菌剤は土壌中の水分に徐々に溶解して土壌に作用するため、長時間にわたって作用が持続する利点がある。これに対し植物性土壌殺菌剤を液体状にして施した場合は、施用量が比較的少量ですみ且つ土壌に速やかに作用するため、短時間で効果が現れる利点がある。
なお、植物性土壌殺菌剤を水に溶解又は分散して施す場合、菌糸体肥料は植物性土壌殺菌剤を施用した後に施用すると好ましい。菌糸体肥料を施した後に液体状の植物性土壌殺菌剤を施すと菌糸体肥料中の多孔質担体から空気が追い出されてしまい、このため菌糸体肥料に含まれる菌類の増殖に不利になる場合があるからである。
また、植物性土壌殺菌剤を特に大量の水に溶解又は分散させた場合は、一旦植物性土壌殺菌剤を施用した後、土壌の含水量が植物性土壌殺菌剤の施用前の程度にまで戻ってから菌糸体肥料を施用したほうが好ましい。土壌の含水量が特に多い状態で菌糸体肥料を施用すると、菌糸体肥料中の多孔質担体が水分を過剰に吸収してしまい、その結果多孔質担体中の空気が減少してしまい、このため菌糸体肥料に含まれる菌類の増殖に不利になる場合があるからである。
なお、植物性土壌殺菌剤を粉末状にして土壌に施す場合はより多くの植物体を使用すると好ましいが、この発明において植物体の使用量は特に限定されないことは言うまでもない。
土壌に施す菌糸体肥料の量は、土壌の状態や栽培している農作物によって異なり、適宜勘案して定めればよい。
発明を実施するための最良の形態
以下この発明を実施するための最良の形態を実施例に基づいて説明する。
まず、この発明の植物性土壌殺菌剤を得るための殺菌剤製造例1乃至4について説明する。
(殺菌剤製造例1)
アカネ科(Rubiaceae)のコリンクチナシ(Gardenia jasmimoides Ellis)の果実の乾燥物40kg、シソ科(Labiatae)のハッカ(Mentha arvensis L.var.piperascens Malinv)の葉の乾燥物1kg、ヤマモモ科(Myricaceae)のヤマモモ(Myrica rubra Sieb.et Zucc)の樹皮の乾燥物6kgをそれぞれ磨り潰して粉末状にし、均一に混合して植物性土壌殺菌剤とした。
(殺菌剤製造例2)
殺菌剤製造例1で得られた植物性土壌殺菌剤1000gを10lの水中に入れ、90℃で2時間煮沸し、これを濾過して濾液を得た。この濾液を4lになるまで濃縮し、これを3000gの米ぬかと共に混練し、さらにこの混練物を乾燥させほぐして粉末状とし、3010gの植物性土壌殺菌剤を得た。
(殺菌剤製造例3)
アカネ科(Rubiaceae)のコリンクチナシ(Gardenia jasmimoides Ellis)の果実の乾燥物200kg、シソ科(Labiatae)のハッカ(Mentha arvensis L.var.piperascens Malinv)の葉の乾燥物5kg、ヤマモモ科(Myricaceae)のヤマモモ(Myrica rubra Sieb.et Zucc)の樹皮の乾燥物30kg、ナス科(Solanaceae)のトウガラシ(Capsicum annuum L.)の成熟果実の乾燥物111kg、ミカン科(Rutaceae)のキハダ(Phellodendron amurense Ruprecht)の樹皮の乾燥物200kgを磨り潰して粉末状とし1000lの水中に入れ、90℃で3時間煮沸し、これを濾過して濾液を得た。この濾液を300lになるまで濃縮し、これをフリーズドライにより乾燥させ粉末状とした。得られた粉末は4kgであった。
(殺菌剤製造例4)
殺菌剤製造例2により得られた粉末0.5kgを20lの水に分散して植物性土壌殺菌剤とした。
次に、この発明の菌糸体系土壌調整剤に使用する菌糸体肥料を得るための肥料製造例1及び2について説明する。
(肥料製造例1)
多孔質担体としてpHが8.2で粒度が25メッシュ、内部表面積が200m2/gのヤシガラ炭を73kgと、pH8.8、含水率32.9、炭素率9.6%の鶏糞を17kgとを混練し、この混練物を醗酵槽内に静置し、醗酵槽内を25℃に維持した。この混練物の醗酵中の温度を測定し、温度の上昇開始時及び混練物の醗酵中の温度が55℃以下になった時、系内の空気をポンプにより醗酵物中に直接供給し、立ち上げ時は一気に温度を上昇させ、その他は温度を一定に管理した。このようにして得られた醗酵物を菌糸体肥料とした。
−菌糸体肥料中の菌の特定−
菌糸体肥料中の菌を特定するために、直径9cm、深さ1.5cmのペトリ皿4枚を用い、寒天と蒸留水からなる培地を充填し、前記菌糸体肥料をペトリ皿1〜3のそれぞれのペトリ皿1枚に対し20粒均等間隔で接種した。
尚、比較例としてペトリ皿4を25メッシュで未処理のヤシガラ炭粒をそのまま用いて他のペトリ皿と同様に処理した。
このペトリ皿1〜4を25℃で4日間培養した後、放線菌、糸状菌を発生したコロニー数で分類分析した。
尚、この培養に際し培地は予め120℃、1気圧下で20分間オートクレーブで滅菌している。
この結果、ペトリ皿1は、試料粒1に対し、耐熱性放線菌は平均7.4コロニー存在したのに対し、糸状菌は平均5.0コロニーであり、ペトリ皿2においては、試料粒1に対し、耐熱性放線菌は平均4.2コロニー、糸状菌は平均1.8コロニーであり、ペトリ皿3においては、試料粒1に対し耐熱性放線菌は平均2.0コロニー、糸状菌は平均0.04コロニーであった。
このうち耐熱性放線菌としてはラセン状菌が優勢であり、糸状菌についてはCladosporium属、Penicillium属、Nigrospora属が見出された。これら糸状菌のうちCladosporium属のものとPenicillium属のものは比較例として用いられたヤシガラ活性炭のみのペトリ皿からも見られることからこれらは空中からの混入菌であると考えられ、実質的に菌糸体肥料の微生物群集は耐熱性放線菌が優勢であるものであった。
(肥料製造例2)
グルコース2%、可溶性デンプン1%、肉エキス0.1%、乾燥酵母0.4%、大豆粉2.5%、食塩0.2%、燐酸第2カリウム0.005%の培地からなる液温65℃の液体培地700lに前記肥料製造例1で得た菌糸体肥料を100g投入した後、エアレーションを行いながら72時間培養した。
これとは別に直径40cm、長さ300cmのパイプに市販ヤシ殻50kgを詰めて、このパイプの液体出入口を濾紙で封じた濾過機を成形した。
上記液体培地を前記濾過機で濾過して前記市販ヤシ殻に菌体を吸着させた後、濾過機から濾紙を取り除いて菌糸体肥料約82kgを得た。
以下、実施例及び比較例を挙げ、植物性土壌殺菌剤及び菌糸体系土壌調整剤或いは土壌調整方法の効果を試験することによりこの発明の効果を明確にする。
[試験例1]
植物性土壌殺菌剤の効果に関する試験について説明する。
なお、試験例1においては、殺菌剤製造例1乃至4で製造された植物性土壌殺菌剤を実施例1乃至4として試験した。
まず、土壌病原菌に侵されていない畑を5区に区分けし、そのうち4区を実施例1乃至4用試験区とし、残る1区を対照区とした。
試験区1乃至4にはそれぞれ実施例1乃至4の植物性土壌殺菌剤を施用した。施用量は実施例1では40g、実施例2では50g、実施例3では60g、実施例4では80mlであった。施用3日後土をすき起こし、さらに同量の植物性土壌殺菌剤を施用し、それぞれの試験区にトマトの苗を10本づつ移植した。なお、移植後は1週間毎に同量の植物性土壌殺菌剤を施用した。移植2日後、土壌にシュードモナス菌(アオガレ病の病原菌)を接種して植物の病状を観察した。
なお、対照区については植物性土壌殺菌剤を施用しなかった以外は、試験区と全く同様に処理をした。
移植4週間後、試験区に移植したトマトの苗についてはなんら病状は現れず、発病は完全に防がれたが、対照区に移植した苗は全滅した。
[試験例2]
菌糸体系土壌調整剤の効果に関する試験について説明する。
まず、この試験で使用する実施例及び比較例について説明する。
(実施例5)
殺菌剤製造例1により得られた植物性土壌殺菌剤40gと、肥料製造例1により得られた菌糸体肥料960gを2l入りの容器にいれて混合することにより、実施例5の菌糸体系植物調整剤を得た。
(実施例6)
殺菌剤製造例1により得られた植物性土壌殺菌剤40gと、肥料製造例2により得られた菌糸体肥料960gを2l入りの容器にいれて混合することにより、実施例6の菌糸体系植物調整剤を得た。
(実施例7)
殺菌剤製造例2により得られた植物性土壌殺菌剤100gと、肥料製造例1により得られた菌糸体肥料1920gを5l入りの容器にいれて混合することにより、実施例7の菌糸体系植物調整剤を得た。
(実施例8)
殺菌剤製造例2により得られた植物性土壌殺菌剤150gと、肥料製造例2により得られた菌糸体肥料2850gを5l入りの容器にいれて混合することにより、実施例8の菌糸体系植物調整剤を得た。
(実施例9)
殺菌剤製造例3により得られた植物性土壌殺菌剤150gと、肥料製造例1により得られた菌糸体肥料2850gを5l入りの容器にいれて混合することにより、実施例9の菌糸体系植物調整剤を得た。
(実施例10)
殺菌剤製造例3により得られた植物性土壌殺菌剤250gと、肥料製造例2により得られた菌糸体肥料4750gを10l入りの容器にいれて混合することにより、実施例10の菌糸体系植物調整剤を得た。
(比較例)
殺菌剤製造例1乃至4で得られた植物調整剤をそれぞれ比較例1乃至4とし、肥料製造例1及び2で得られた菌糸体肥料をそれぞれ比較例5及び6とした。
上記実施例5乃至10の菌糸体系土壌調整剤、比較例1乃至4の植物性土壌殺菌剤、及び比較例5及び6の菌糸体肥料を用い、次の試験を行った。
まず、土壌病原菌に侵されていない畑にシュードモナス菌(アオガレ病の病原菌)を接種した後、約38℃に加温された水をこの畑に水たまりができる程度に散布し、畑の上からビニールシートを被せて3日間放置した。その後、ビニールシートを除去し畑を16区に区分けしてそれぞれを試験区とた。試験区のうち6区を菌糸体系植物調整剤の実施例用とし、6区を比較例用とし、2区を対照用とした。なお、残る2区は土壌調製方法のための試験区であり、これについては後で説明する。
6区の実施例用試験区にはそれぞれ実施例5乃至10で得られた菌糸体系植物調整剤を施用した。菌糸体計植物調整剤の施用量は実施例5では100g、実施例6では200g、実施例7では300g、実施例8では400g、実施例9では500g、実施例10では1000gであった。
6区の比較例用試験区には比較例1乃至4の植物性土壌殺菌剤、比較例5及び6の菌糸体肥料を施用した。植物性土壌殺菌剤及び菌糸体肥料の施用量は比較例1では150g、比較例2では250g、比較例3では350g、比較例4では450ml、比較例5では550g、比較例6では1050gであった。
それぞれの試験区に菌糸体系植物調製剤、植物性土壌殺菌剤、菌糸体肥料をそれぞれ施用して3日後、土壌をすき起こして再度、初回施用量と同量の菌糸体系植物調製剤、植物性土壌殺菌剤、菌糸体肥料をそれぞれ施用した。
その後、それぞれの試験区にトマトの苗を10本づつ移植した。なお、移植後は1週間毎に初回施用量と同量の菌糸体系植物調製剤、植物性土壌殺菌剤、菌糸体肥料をそれぞれ施用した。
なお、対照区については植物性土壌殺菌剤を施用しなかった以外は、実施例用試験区と全く同様に処理をした。
移植4週間後、実施例用試験区に移植したトマトの苗についてはなんら病状は現れず、発病は完全に防がれたが、対照区に移植した苗は3週間目には全滅しており、比較例用試験区に移植した苗はそれぞれ4週間後に全滅した。
[試験例3]
土壌調整方法の効果に関する試験について説明する。
この試験例には、上記試験例2で説明した試験区のうち、残る2区を使用した。この試験区にはまず殺菌剤製造例4により得られた植物性土壌殺菌剤をそれぞれ50mlづつ施用し、次に肥料製造例1及び2で得られた菌糸体肥料をそれぞれ施用した。なお、肥料製造例1を施用した試験区を実施例11とし、肥料製造例2を施用した試験区を実施例12とした。施用量は実施例11では40g、実施例12では50gであった。
それぞれの試験区に植物性土壌殺菌剤、菌糸体肥料をそれぞれ施用して3日後、土壌をすき起こして再度、初回施用量と同量の植物性土壌殺菌剤、菌糸体肥料をそれぞれ施用した。
その後、それぞれの試験区にトマトの苗を10本づつ移植した。なお、移植後は1週間毎に初回施用量と同量の植物性土壌殺菌剤及び菌糸体肥料をそれぞれ施用した。
移植4週間後、試験区に移植したトマトの苗についてはなんら病状は現れず、発病は完全に防がれた。
なお、上記試験例1乃至3において、トマトの苗はそれぞれ同日に移植されている。
[試験例4]
植物性土壌殺菌剤と菌糸体肥料を同時に施用した場合の成長促進効果について試験する。
1m2の試験畑を3面用意し、それぞれを実施例用、比較例用、対照用とし、これらの試験用畑にペレニアルグラスの種子をそれぞれ100g蒔き、その後実施例用及び比較例用試験畑には1500gの菌糸体肥料を施用し、実施例用試験畑には、さらに殺菌剤製造例4により得られた植物性土壌殺菌剤を1l施用した。
実施例用、比較例用試験畑には1週間毎に初回と同量の菌糸体肥料と植物性土壌殺菌剤を施用し、13週間育成させた。
13週間後、育成したペレニアルグラスを根ごと引き抜いて洗浄し、種子から育成した地上部と地下部を採集してその重さを測定したところ、実施例用試験畑のものは地上部1g、地下部45gであり、比較例用試験畑のものは地上部1.5g、地下部10gであり、対照用試験畑のものは地上部1.5g、地下部3gであった。
上記の試験結果より、この発明の植物性土壌殺菌剤は土壌病害予防効果を奏し、この発明の菌糸体系植物調製剤及び土壌調製方法には土壌病原菌駆除効果及び成長促進効果を奏することが判る。
産業上の利用可能性
以上の様に植物性土壌殺菌剤は土壌病害の発生を予防する目的に使用でき、具体的にはカイヨウ病、モザイク病、緑斑モザイク病、イチョウ病、アオガレ病、シリグサレ病、ハンテン細菌病、テンブ病、ネグサレ病、クログサレ病、イオウ病、ハクハン病、ネコブ病、タチガレ病、シンクサレ病、紫モンパ病、オウカ病等の極めて広範囲の土壌病害の発生を防ぐことができる。
この発明にかかる菌糸体系土壌調整剤及び土壌調整方法は、植物性土壌殺菌剤が有する土壌病原菌の増殖抑制作用及び有益菌の増殖促進作用と、菌糸体肥料が有する土壌病害菌を減少させる作用の相乗作用により、土壌病原菌を駆除することができ、即ち土壌病害菌に侵された土壌の地力回復させる目的に使用でき、具体的にはカイヨウ病、モザイク病、緑斑モザイク病、イチョウ病、アオガレ病、シリグサレ病、ハンテン細菌病、テンブ病、ネグサレ病、クログサレ病、イオウ病、ハクハン病、ネコブ病、タチガレ病、シンクサレ病、紫モンパ病、オウカ病等に侵された土壌の地力を回復できる。
さらにこの発明で使用する植物性土壌殺菌剤及び菌糸体肥料はいずれも農作物自身を傷付けず且つ環境汚染の原因にもならないので、通常使用する土壌病害予防剤としても、肥料としても好適に使用できる。
Technical field
The present invention relates to a plant soil fungicide, a mycelium plant regulator, and a soil preparation method, the purpose of which is that soil cropping does not occur even when continuous cropping is performed, and the yield can be increased, which does not cause environmental pollution. The present invention relates to a plant soil fungicide, a mycelium plant regulator that can control soil pathogens, and a soil conditioning method.
Technical background
Soil diseases can be caused by planting the same crops continuously in the same field, or in recent years due to excessive application of chemical pesticides and heavy use of chemical fertilizers. Known as an obstacle.
In order to eliminate this soil disease disorder, a method of rotating crops without continuous cropping, and a method of using more pesticides are generally employed. However, rotating crops makes it difficult to make production plans, complicating farming work, and heavy use of agricultural chemicals weakens geopower.
Speaking of the method of introducing chemicals to the field, most of the agricultural chemicals currently used are manufactured by chemical synthesis, and although they have a temporary effect in the short term, they are applied to soil and plants in the long term. There was a drawback of further adverse effects. In addition, the useful soil microorganisms are reduced with the spraying of the chemicals to these crops that have been conventionally performed. As a result, the ground strength is lowered, various crops are also weakened, and soil diseases are more likely to occur. Furthermore, since the sprayed chemicals cause environmental pollution, the introduction of these chemicals has been regarded as a problem in recent years.
Attempts to alleviate the above problems by activating useful microorganisms as a drug that eliminates soil pathogens, does not adversely affect plants themselves, and does not cause environmental pollution. .
As such a method, for example, heat-resistant actinomycetes are introduced into soil by using a mycelium fertilizer in which heat-resistant actinomycetes are supported on a porous carrier. According to this method, heat-resistant actinomycetes enter the porous carrier, and air necessary for the growth of the heat-resistant actinomycetes is stored in the porous carrier, so that the heat-resistant actinomycetes stay in the soil for a long time, In order to suppress breeding, continuous cropping failures are unlikely to occur and the need to use chemical pesticides is reduced. Moreover, since mycelium fertilizer is an excellent organic fertilizer, it is not necessary to use chemical fertilizer.
However, according to the above method, when the soil pathogenic bacteria have already propagated, or when bacteria that antagonize the heat-resistant actinomycetes are propagated in the soil, the heat-resistant actinomycetes remain in the porous carrier, and the soil We cannot get rid of pathogenic bacteria.
The problem to be solved by the present invention is to provide a plant conditioning agent and a soil conditioning method that have a soil disease control action, do not adversely affect the plant itself, and do not cause environmental pollution.
Disclosure of the invention
The invention according to claim 1 is a mycelium-type plant conditioner comprising a mixture of a plant soil fungicide and a mycelium fertilizer, wherein the plant soil fungicide is a colchicinous plant (Rubiaceae) Gardenia jasmoides Ellis, gardenia (G. jasimoides Elis forgrandiflora), any one of the family of L Mentha arvensis L. var. Piperascens Malinv or a dried leaf thereof, Myricaceae's bayberry (Myrica rubra Sieb) .Et Zucc) bark of dried plants and extracts from these plants, the mycelium fertilizer being adjusted so that the fungus is supported on a porous carrier and the fungus Is a mycelium-type plant regulator characterized by being fungi such as actinomycetes that grow aerobically in a temperature range of 55 to 80 ° C.
The invention according to claim 2 further includes a dried fruit of a Capsicum annuum L. or a variety thereof, as the plant group, and a Phelliendron amurense of Rutaceae. The mycelium plant regulator according to claim 1, comprising a dried bark excluding Ruprecht, a bark of this variant, or Pyrodendron chinense Schneid, or a bark excluding a cork layer.
The invention according to claim 3 is the mycelium plant regulator according to claim 1 or 2, wherein the plant group is pulverized into a powder form.
Invention of Claim 4 is an extract extracted from the said plant body group, The mycelium system plant regulator of Claim 1 or Claim 2 characterized by the above-mentioned.
According to a fifth aspect of the present invention, the extract from the plant group is extracted with a polar solvent such as water, methanol, ethanol, etc., and the solvent component is removed from the obtained extract by freeze drying or other methods. The mycelium plant regulator according to claim 1 or 2, wherein the agent is prepared in a powder form.
The invention according to claim 6 is the mycelium plant according to any one of claims 1 to 5, wherein the plant soil fungicide is added during the fermentation process of the mycelium fertilizer. It is a regulator.
The invention according to claim 7 is the mycelium plant conditioner according to claim 6, wherein the plant soil fungicide is adsorbed on a porous carrier before the fermentation process of the mycelium fertilizer. is there.
The invention described in claim 8 is from the group of Rubiaceae, from the group of Gardenia jasmoides Ellis, from the group of G. jasmoidoids Elis forma grandiflora (G. sid. Any one fruit dried, Labiatae mint (Mentha arvensis L. var. Piperascens Malinv) or its variant dried leaves, Myricaceae bayberry (Myricarubae) Sieb.et Zucc) bark of plants containing dried bark or extracts from these plants A mycelium fertilizer that is prepared so that the fungus is supported on a physical soil fungicide and a porous carrier, and the fungus grows aerobically in a temperature range of 55 ° C to 80 ° C. Is applied to the soil separately or simultaneously.
The invention according to claim 9 is a plant obtained by further drying the mature fruit of Capsicum annuum L. or a variety thereof as the plant body group, and the Phelliendron amurense of Rutaceae. The soil conditioning method according to claim 8, comprising a dry bark excluding Ruprecht, a bark of this variant, or a Pendendron chinense Schneid, or a bark excluding a cork layer.
The invention according to claim 10 is the soil according to claim 8 or 9, wherein the liquid plant soil fungicide is sprayed on the soil, and then the mycelium fertilizer is applied to the soil. It is an adjustment method.
An object of the invention described in claims 1 to 10 is to allow a plant soil fungicide and a mycelium fertilizer to act simultaneously on soil and to control soil pathogens by synergism. That is, all of these inventions are configured so that the plant soil fungicide and the mycelium fertilizer easily cause a synergistic effect.
That is, in these inventions, the plant soil fungicide acts on soil pathogens, so-called beneficial bacteria in the soil and crops, specifically, suppresses the growth of soil pathogens, promotes the growth of beneficial bacteria, And improve the pathogenicity of crops. These plant soil fungicides act on soil pathogenic bacteria, so-called beneficial bacteria in the soil, and crops, specifically, suppress the growth of soil pathogenic bacteria, promote the growth of beneficial bacteria, and pathogenic resistance of crops. To improve.
In addition, the mycelium fertilizer has an effect of increasing the beneficial bacteria in the soil by introducing so-called beneficial bacteria into the soil and reducing the soil harmful bacteria by competing the beneficial bacteria with the soil harmful fungus. On the other hand, as described above, the plant soil fungicide acts on each of the soil pathogenic bacteria and so-called beneficial bacteria in the soil, and specifically suppresses the growth of the soil pathogenic bacteria and simultaneously promotes the growth of the beneficial bacteria. When the body fertilizer and the plant soil fungicide are applied to the soil at the same time, the soil is in a very disadvantageous state for the growth of the soil pathogen, and thus the soil pathogen can be controlled.
In addition, although it was known that said mycelium fertilizer had the effect of preventing soil disease alone, it was not possible to control soil pathogens only by using this mycelium fertilizer alone. On the other hand, the inventor has found that the plant group used in the present invention or an extract thereof has an excellent soil disease prevention effect. However, the plant soil fungicide using the plant group or the extract thereof is used. However, it was not possible to control soil pathogens by using alone.
Therefore, the inventor has advanced the research one step further and found that it is possible to control soil-borne fungi by using these plant soil fungicides and mycelium fertilizer in combination.
Moreover, it discovered that the growth promotion effect of the crop by a mycelium fertilizer was increased greatly by using these together.
The plant soil fungicide and mycelium fertilizer used in the present invention will be described in detail below.
First, the vegetable soil fungicide will be described. The plant soil fungicide described here is an invention according to claims 1 to 5, and at the same time, is an important configuration in the inventions according to claims 6 to 10.
The plant soil fungicide in this invention is a dried fruit of Gardenia jasmoidides Ellis of Rubiaceae or its relatives, Mentha arvensis L. var. Piperascens Malinv) or dried leaves thereof, dried bark of Myricaceae's bayberry (Myrica rubra Sieb. et Zucc), Solanaceae's Capsicum anemone Or dried mature berries of the varieties, Rutaceae yellowfin (Phellendron amurense Ruprecht), The related species, characterized in that it comprises bark variants, or an extract of the bark excluding the cork layer from a plant group or their plant groups such as those dried.
Hereinafter, the plant used in the present invention will be described in detail.
In the invention according to claim 1, the plant soil fungicide is obtained by drying a fruit of a corinaceae corinchoensis or a related species thereof, a dried fruit of a mint family mint or a variant thereof, Plant bodies such as those obtained by drying the bark of Japanese bayberry or extracts from these plant bodies.
As a related species of Gardenia jasmoidoids Elis of Rubiaceae, G. jasmoidoids Elis forma grandiflora, G. jasmid Era. In addition, what dried the fruit of these plants is also called Yamakiko (GARDENIAE FRUCTUS), Hondan, and Koshimo.
Labiatae mint (Mentha arvensis L. var. Piperascens Malinv) or a dried leaf thereof is also referred to as thin leaf (Menthae HERBA).
A product obtained by drying the bark of Myricaceae (Myrica rubra Sieb. Et Zucc) is also called MYRICAE CORTEX.
In the invention according to claim 2, in addition to the plant soil fungicide used in claim 1, the plant soil fungus or dried mature fruit of the solanaceae pepper or a variant thereof, the citrus yellowfin or its close relatives It is supposed to contain plant bodies such as seeds, bark of varieties, or dried bark excluding the cork layer, or extracts from these plant bodies.
A dried fruit of a solanaceae capsicum (Capsicumnunum L.) or its varieties is also called CAPSICI FRUCTUS.
Examples of closely related species of the Rutaceae yellowfin (Phellendron amurense Ruprecht) include the yellowwood (Phelloendron chinense Schneid). The bark of these plant varieties or those obtained by drying the bark excluding the cork layer is also called PELLODENDRI CORTEX.
The present invention, apart from the above plant body or a part thereof, is obtained by removing the rind of the stem root of Pinacea terata Breitenbach of the Araceae family, Zingiberaceae ginger (Zingiberaceae) officinale Roscoe, as it is or after removing the cork layer and steamed and dried; (Zanthoxylum planetispin Sieb. Et Zucc) A dried fruit skin or the like or an extract obtained from these plants may be included.
In addition, the thing which removed the outer skin of the stem root of the arabisae (Araceae) crow (Pinella ternata Breitenbach) and dried is also called a half summer (PINELLIAE TUBER).
Zingiberaceae ginger (Zingiber officinale Rosco) rhizome as it is or excluding the cork layer and steamed and dried is also called ZINGIBERIS SICCATUM RHIZOMA.
Zanthoxylum sieb, et Zucc and Zanthoxylum sympatricum (Zanthoxylum simuans Hance, etc.) , Also called ZANTHOXYLI FRUCTUS.
The reason why the above plant group or the extract thereof is used in the present invention is that these plant group or the extract inhibits the growth of so-called soil pathogenic bacteria and kills to some extent, and grows in the mycelium fertilizer described later. This is because it has an action of helping its growth by being absorbed by fungi, and an action of giving pathogenic resistance to the crop itself by being absorbed by the crop. Specifically, plant soil fungicides containing the above-mentioned plant bodies or extracts from these plant bodies are Kaiyou disease, Mosaic disease, Green spot mosaic disease, Ginkgo biloba, Aogare disease, Sirigusale disease, Hanten bacterial disease, It is possible to prevent the occurrence of an extremely wide range of soil diseases such as illness, negrass disease, croxsale disease, sulfur disease, hakuhan disease, feline disease, tachigal disease, synch sale disease, purple mompa disease and oka disease.
The amount of the plant to be used is not particularly limited, and each of them can sterilize soil pathogens and is absorbed by beneficial fungi such as heat-resistant actinomycetes existing in the crops and soil to grow crops and beneficial fungi. Promotes growth.
Bactericidal action against soil pathogens, such as dried dried peppers of solanaceae or its varieties, dried yellowfins of citrus or related species, bark of varieties, or bark excluding cork layers, respectively Therefore, the soil disinfectant having these plants exhibits an excellent soil disease control effect.
The present invention includes a dried potato root of the arabiaceae, which has been removed by drying, a dried ginger of the ginger family, or a dried cork layer, steamed and dried, a citrus Inzansho, and a kahokusan It is also possible to use a dried fruit skin such as a show or a fuyuzan show. Each of these plants has an insect repellent effect due to an anti-chitosan effect, and therefore, a soil fungicide having these plants has a repellent effect against pests.
Next, the dosage form of the vegetable soil fungicide of this invention is demonstrated.
In this invention, the plant body group is the plant body itself or an extract from the plant body becomes a plant soil fungicide.
When the plant body itself is used as a soil fungicide, it is preferable that the plant body is crushed or powdered. When crushed or pulverized, the surface area of the plant body becomes large, so that active ingredients such as growth-inhibiting components of soil pathogenic bacteria and growth-promoting components of beneficial bacteria are easily released from this plant body, and plant properties with excellent immediate effect It becomes a soil disinfectant. In addition, the method of crushing or pulverizing is not specifically limited, Any normal crushing and pulverizing methods can be used conveniently.
These plants may be boiled in advance or steamed and then masticated to release the active ingredient.
In this invention, the component extracted from the plant body with the solvent can also be used as a soil fungicide.
In this case, the solvent is not particularly limited, but it is preferable to use a polar solvent such as water, methanol, ethanol, isopropyl alcohol, or n-propyl alcohol.
The extraction temperature and extraction time vary depending on the solvent used and the type and amount of the plant used, and are not particularly limited.
The extract obtained by the above extraction may be used in powder form.
The method of making the plant extract into powder is not particularly limited. For example, the obtained plant extract is freeze-dried, or crystallized by other methods and dried, and the crystals are crushed and powdered as necessary. The method of making can be illustrated. The specific method of freeze-drying or crystallization is not particularly limited, and may be performed according to a conventional method.
Examples of other powdering methods include a method in which a plant extract is soaked in a powdery substance that is not dissolved in the plant extract and then dried.
The powdery substance in this case is not particularly limited. For example, substances that can be nutrients for actinomycetes such as bran, rice bran, and dry yeast, and substances that are usually applied to the soil as fertilizer such as chicken manure and fish residue are pulverized. A porous material such as activated carbon can be suitably used.
In addition, when a plant soil fungicide is produced using a porous substance such as activated carbon, the active ingredient in the extract is impregnated in the pores. It is released gradually. Therefore, there is an effect that the action of suppressing the growth of soil pathogenic bacteria and the action of promoting the growth of beneficial bacteria last for a long time.
Next, the mycelium fertilizer used in the present invention will be described. In addition, the mycelium fertilizer demonstrated here is used with the above-mentioned vegetable soil disinfectant in the invention of Claim 6 thru | or 10. Moreover, this mycelium fertilizer is conventionally used as a fertilizer excellent in the growth promotion effect | action of agricultural products.
The mycelium fertilizer used in the present invention is one in which fungi such as actinomycetes that grow aerobically in a temperature range of 55 to 80 ° C. are supported on a porous carrier. Specifically, Thermoactinomyces genus such as Thermoactinomyces vulgaris, Thermonospora genus such as Thermonospora chromogena, Actinotropido genus Actinobisida dichotomica etc.
The reason for using fungi such as actinomycetes that grow aerobically in the temperature range of 55 to 80 ° C. in this invention is that these fungi have very few so-called harmful bacteria that have a harmful effect on plants, and metabolic production. This is because the product contains plant growth hormones and various vitamins, and these fungi themselves decompose and contribute to the growth of plants by becoming a nitrogen source. Furthermore, since many of these fungi produce substances having an antibacterial action, a soil disease control action can also be expected.
Alternatively, fungi having a soil disease control action may be selected and supported on a porous carrier. Examples of fungi having a soil disease control action include actinomycetes such as Thermoactinomyces, Thermonospora, Actinobifida, and Thermopolyspora.
In the present invention, the above fungi are supported on a porous carrier and used as mycelium fertilizer. The reason for supporting the fungi on the porous carrier is to retain moisture and air for growing the supported fungi during storage of the mycelium fertilizer and soil application.
Examples of the porous carrier that can be used in the present invention include, but are not limited to, charcoal, activated carbon, coal, coke, activated coke, peat, balm curite, pearlite, bentonite, and foamable urethane.
The amount of the porous carrier used in the present invention is not particularly limited as long as the supported fungi can suitably survive.
The method for supporting the above-mentioned fungi on the porous carrier is not particularly limited. For example, an organic substance that can be a nutrient for fungi and a porous carrier are mixed and then inoculated with so-called beneficial bacteria such as heat-resistant actinomycetes, and aeration A method of fermenting this kneaded material at 55 to 80 ° C. for several days while carrying out the process can be exemplified. Also, a method in which so-called beneficial bacteria are put into a liquid medium adjusted so that actinomycetes can be suitably grown, cultured for several days at 55-80 ° C. while aeration is performed, and the cultured fungi are brought into contact with the porous carrier Can also be illustrated. In addition, any mycelium fertilizer in which fungi that grow aerobically in a temperature range of 55 to 80 ° C. are supported on a porous carrier can be suitably used.
As described above, the inventions described in claims 6 to 10 are configured so that the plant soil fungicide and the mycelium fertilizer simultaneously act on the soil. In the plant soil fungicide and mycelium fertilizer are mixed so that the plant soil fungicide and mycelium fertilizer simultaneously act on the soil. In addition, by making these plant soil fungicides and mycelium fertilizer act on soil simultaneously, Kaiyou disease, Mosaic disease, Green spot mosaic disease, Ginkgo biloba disease, Aogare disease, Shirigale disease, Hanten bacterial disease, Tenb disease, Negusare disease, Soil pathogens that cause crocodile disease, sulfur disease, hakuhan disease, feline disease, tachigare disease, synch sale disease, purple mompa disease, oka disease, etc. can be controlled.
Moreover, by making these plant soil fungicides and mycelium fertilizer act on soil simultaneously, compared with the case where only mycelium fertilizer is used independently, the growth promotion effect of a crop is improved dramatically. This effect has been experimentally found by the inventor, and its mechanism of action is unknown.
The dosage form of the plant soil fungicide at the time of mixing is not particularly limited, and the plant group may be used as it is, or the plant group may be crushed or pulverized. It may be an extract extracted with a solvent, a substance obtained by further evaporating the solvent from the extract, or a pulverized product thereof.
When the plant soil fungicide is made into a granular material such as a crushed or pulverized plant group, the particle size is such that the plant soil fungicide tends to adhere to the surface of mycelium fertilizer granules. And preferred.
In addition, when a plant soil fungicide is attached to the surface of the mycelium fertilizer granules, the fungi contained in the mycelium fertilizer are easily propagated in the soil. The reason for this will be explained in more detail. When this mycelium plant regulator is applied to soil affected by soil pathogens, the competition between the fungi in this mycelium plant regulator and the soil pathogens is first the mycelium plant regulator. It occurs at the boundary between the soil and the surface of the mycelium fertilizer. Here, when the plant soil fungicide adheres to the surface of the mycelium fertilizer, the plant conditioner acts on the place where the fungi in the mycelium-based plant conditioner compete with the soil pathogen. In other words, the action of suppressing the growth of soil pathogens and the action of promoting the growth of fungi in the mycelium plant regulator are played at the competition place of these fungi, so the fungi in the mycelium plant regulator in the soil Becomes dominant very quickly. That is, soil pathogens can be quickly eliminated.
When the plant soil fungicide is a liquid such as an extract obtained by extraction from a group of plants, it is concentrated to the extent that the air contained in the porous carrier in the mycelium fertilizer is not replaced by water. And then mixing is preferred.
The reason for concentrating the liquid is to secure air inside the porous carrier even when the mycelium fertilizer and the plant soil fungicide are mixed. In other words, beneficial bacteria such as heat-resistant actinomycetes contained in the mycelium fertilizer grow favorably under aerobic conditions, but if the air contained in the porous carrier is replaced by water, it is disadvantageous for the growth of these beneficial bacteria. It is because it may become.
The invention according to claim 7 or claim 8 will be described below. The mycelium plant preparation of the present invention may be one obtained by adding a plant soil fungicide in any of the production processes of mycelium fertilizer and causing the beneficial bacteria in culture to absorb the plant soil fungicide. .
For example, as a method for producing mycelium fertilizer, organic substances that can be beneficial nutrients such as heat-resistant actinomycetes and a porous carrier are mixed, then this is inoculated with so-called beneficial bacteria such as heat-resistant actinomycetes and aerated while performing this aeration. When the method of fermenting the kneaded material at 55 to 80 ° C. for several days is adopted, a plant soil fungicide may be added in advance to organic matter that can serve as nutrients for beneficial bacteria, and mycelium fertilizer and plant during fermentation A natural soil fungicide may be mixed. Further, the plant soil fungicide may be adsorbed on the porous carrier in advance, but in this case, the plant soil fungicide is not adsorbed in the same amount as the porous carrier adsorbed with the plant soil fungicide. It is more preferable to mix a porous carrier.
Moreover, when employ | adopting the method of culture | cultivating a beneficial microbe in a liquid medium as a manufacturing method of a mycelium fertilizer, you may throw in a plant soil fungicide in a liquid medium.
The reason why the plant soil fungicide is absorbed by the beneficial bacteria in the culture medium is that, as described above, the plant soil fungicide of the present invention has an action of promoting the growth of beneficial bacteria, and therefore the beneficial bacteria in the mycelium fertilizer. This is because this increases the number of the mycelium plant preparations.
Next, the invention according to claim 9 or claim 10 will be described. In this invention, the plant soil fungicide and the mycelium fertilizer are applied to the soil so that the plant soil fungicide and the mycelium fertilizer simultaneously act on the soil.
In this invention, the vegetable soil fungicide may be applied in the form of powder, or may be applied in the form of a liquid dissolved or dispersed in water. When applied in powder form, this plant soil fungicide dissolves gradually in the water in the soil and acts on the soil, so that there is an advantage that the action continues for a long time. On the other hand, when the vegetable soil disinfectant is applied in a liquid state, the application amount is relatively small and it acts on the soil quickly, so that there is an advantage that the effect appears in a short time.
In addition, when a plant soil fungicide is dissolved or dispersed in water, the mycelium fertilizer is preferably applied after the plant soil fungicide is applied. When liquid plant soil fungicide is applied after applying mycelium fertilizer, air is expelled from the porous carrier in mycelium fertilizer, which is disadvantageous for the growth of fungi contained in mycelium fertilizer Because there is.
If the plant soil fungicide is dissolved or dispersed in a large amount of water, after applying the plant soil fungicide, the water content of the soil returns to the level before the application of the plant soil fungicide. It is preferable to apply the mycelium fertilizer. If mycelium fertilizer is applied with a particularly high moisture content in the soil, the porous carrier in the mycelium fertilizer will absorb excessive moisture, resulting in a decrease in air in the porous carrier. This is because it may be disadvantageous for the growth of fungi contained in the mycelium fertilizer.
In addition, when using a plant soil disinfectant in powder form and applying it to soil, it is preferable to use more plants, but it goes without saying that the amount of plants used is not particularly limited in this invention.
The amount of mycelium fertilizer to be applied to the soil varies depending on the state of the soil and the cultivated crop, and may be determined in consideration of the situation.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the best mode for carrying out the present invention will be described based on examples.
First, fungicide production examples 1 to 4 for obtaining the plant soil fungicide of the present invention will be described.
(Fungicide production example 1)
40 kg of dried fruits of Gardenia jasmoidides Ellis from Rubiaceae, 1 mint of Labiatae, dried from leaves of Mentha arvensis L. var. 6 kg of dried bark of bayberry (Myrica rubra Sieb. Et Zucc) was ground and powdered, and mixed uniformly to obtain a plant soil fungicide.
(Fungicide production example 2)
1000 g of plant soil fungicide obtained in the fungicide production example 1 was put in 10 l of water, boiled at 90 ° C. for 2 hours, and filtered to obtain a filtrate. The filtrate was concentrated to 4 liters, kneaded with 3000 g of rice bran, and further dried and loosened to obtain a powdery form, thereby obtaining 3010 g of plant soil fungicide.
(Fungicide production example 3)
200 kg dried fruit of Rubiaceae gardenia jasmoidoids Elis, Labiatae mint (Mentha arvensis L. var. Piperascens Malikg) 30 kg of dried bark of bayberry (Myrica rubra Sieb. Et Zucc), 111 kg of dried fruit of Capsicum annuum L., 111 kg of dried fruit of Capsicum annuum L., Phrodouren of Rutaceen 200 kg of dried bark is ground to a powder and placed in 1000 liters of water. And while it is boiling, to obtain a filtrate which was filtered. The filtrate was concentrated to 300 l and dried by freeze drying to obtain a powder. The obtained powder was 4 kg.
(Fungicide production example 4)
0.5 kg of the powder obtained in the fungicide production example 2 was dispersed in 20 l of water to obtain a vegetable soil fungicide.
Next, fertilizer production examples 1 and 2 for obtaining the mycelium fertilizer used in the mycelium system soil conditioner of the present invention will be described.
(Fertilizer production example 1)
As a porous carrier, pH is 8.2, particle size is 25 mesh, internal surface area is 200m 2 / Kg coconut husk charcoal 73kg, pH 8.8, water content 32.9, carbon content 9.6% chicken manure 17kg, kneaded and left in the fermenter, the fermenter Maintained at 25 ° C. The temperature during fermentation of this kneaded product is measured, and when the temperature rise starts and when the temperature during fermentation of the kneaded product becomes 55 ° C. or less, the air in the system is directly fed into the fermented product by a pump, When raising the temperature, the temperature was increased at once, and the temperature was kept constant for the others. The fermented product thus obtained was used as mycelium fertilizer.
-Identification of fungi in mycelium fertilizer-
In order to specify the fungus in the mycelium fertilizer, four Petri dishes having a diameter of 9 cm and a depth of 1.5 cm were used, filled with a medium composed of agar and distilled water, and the mycelium fertilizer was added to the Petri dishes 1-3. Each petri dish was inoculated at an even interval of 20 tablets.
As a comparative example, the Petri dish 4 was treated in the same manner as other Petri dishes using 25 mesh and untreated coconut charcoal particles as they were.
The Petri dishes 1 to 4 were cultured at 25 ° C. for 4 days, and then classified and analyzed by the number of colonies in which actinomycetes and filamentous fungi were generated.
In this cultivation, the medium is sterilized in advance by autoclaving at 120 ° C. and 1 atm for 20 minutes.
As a result, the Petri dish 1 had an average of 7.4 colonies of heat-resistant actinomycetes relative to the sample grain 1, whereas the average number of filamentous fungi was 5.0 colonies. On the other hand, the average number of heat-resistant actinomycetes is 4.2 colonies and the average number of filamentous fungi is 1.8 colonies. The average was 0.04 colonies.
Among these, as the heat-resistant actinomycetes, spiral fungi are dominant, and as for filamentous fungi, the genus Cladosporium, the genus Penicillium, and the genus Nigrospora were found. Of these filamentous fungi, those of the genus Cladosporium and those of the genus Penicillium are also seen from the Petri dish made only of coconut husk activated carbon used as a comparative example. The microbial community of body fertilizer was dominated by heat-resistant actinomycetes.
(Fertilizer production example 2)
Liquid temperature consisting of a medium of 2% glucose, 1% soluble starch, 0.1% meat extract, 0.4% dry yeast, 2.5% soy flour, 0.2% salt, 0.005% dibasic potassium phosphate 100 g of the mycelium fertilizer obtained in Fertilizer Production Example 1 was added to 700 l of a liquid medium at 65 ° C., and then cultured for 72 hours while performing aeration.
Separately, a pipe having a diameter of 40 cm and a length of 300 cm was filled with 50 kg of commercially available coconut shell, and a filter in which the liquid inlet / outlet of the pipe was sealed with filter paper was formed.
The liquid medium was filtered with the filter to adsorb the mycelium on the commercially available coconut shell, and then the filter paper was removed from the filter to obtain about 82 kg of mycelium fertilizer.
Hereinafter, an Example and a comparative example are given and the effect of this invention is clarified by testing the effect of a vegetable soil disinfectant and a mycelium system soil conditioner or a soil condition adjustment method.
[Test Example 1]
The test regarding the effect of the plant soil fungicide will be described.
In Test Example 1, plant soil fungicides produced in fungicide production examples 1 to 4 were tested as Examples 1 to 4.
First, fields not affected by soil pathogens were divided into 5 sections, 4 sections of which were used as test sections for Examples 1 to 4, and the remaining 1 section was used as a control section.
The plant soil fungicides of Examples 1 to 4 were applied to the test sections 1 to 4, respectively. The application rate was 40 g in Example 1, 50 g in Example 2, 60 g in Example 3, and 80 ml in Example 4. Three days after application, the soil was struck, the same amount of plant soil fungicide was applied, and 10 tomato seedlings were transplanted into each test area. In addition, after transplanting, the same amount of plant soil fungicide was applied every week. Two days after transplantation, the soil was inoculated with Pseudomonas fungus (Aogal's disease pathogen) and the state of the plant was observed.
The control group was treated in the same manner as the test group except that the plant soil fungicide was not applied.
Four weeks after transplantation, no disease state appeared in the tomato seedlings transplanted in the test plot, and the disease was completely prevented, but the seedling transplanted in the control plot was completely destroyed.
[Test Example 2]
The test about the effect of a mycelium system soil conditioner is explained.
First, examples and comparative examples used in this test will be described.
(Example 5)
The mycelial plant preparation of Example 5 was prepared by mixing 40 g of the plant soil fungicide obtained in the fungicide production example 1 and 960 g of the mycelium fertilizer obtained in the fertilizer production example 1 in a container containing 2 l. An agent was obtained.
(Example 6)
The mycelial plant preparation of Example 6 was prepared by mixing 40 g of the plant soil fungicide obtained in the fungicide production example 1 and 960 g of the mycelium fertilizer obtained in the fertilizer production example 2 in a container containing 2 l. An agent was obtained.
(Example 7)
The mycelial plant preparation of Example 7 was prepared by mixing 100 g of the plant soil fungicide obtained in the fungicide production example 2 and 1920 g of the mycelium fertilizer obtained in the fertilizer production example 1 in a container containing 5 l. An agent was obtained.
(Example 8)
The mycelial plant preparation of Example 8 was prepared by mixing 150 g of the plant soil fungicide obtained in the fungicide production example 2 and 2850 g of the mycelium fertilizer obtained in the fertilizer production example 2 in a container containing 5 l. The agent was obtained.
Example 9
The mycelial plant preparation of Example 9 was prepared by mixing 150 g of the plant soil fungicide obtained in the fungicide production example 3 and 2850 g of the mycelium fertilizer obtained in the fertilizer production example 1 in a 5 liter container. The agent was obtained.
(Example 10)
The mycelial plant preparation of Example 10 was prepared by mixing 250 g of the plant soil fungicide obtained in the fungicide production example 3 and 4750 g of the mycelium fertilizer obtained in the fertilizer production example 2 in a container containing 10 l. The agent was obtained.
(Comparative example)
The plant regulators obtained in the fungicide production examples 1 to 4 were designated as comparative examples 1 to 4, respectively, and the mycelium fertilizers obtained in the fertilizer production examples 1 and 2 were designated as comparative examples 5 and 6, respectively.
The following tests were conducted using the mycelial soil conditioner of Examples 5 to 10, the vegetable soil fungicide of Comparative Examples 1 to 4, and the mycelium fertilizer of Comparative Examples 5 and 6.
First, after inoculating Pseudomonas fungus (Aogalae disease pathogen) in a field that is not affected by soil pathogens, spray water that has been heated to about 38 ° C to the extent that a puddle is formed. The sheet was covered and left for 3 days. Thereafter, the vinyl sheet was removed and the field was divided into 16 districts, and each was designated as a test zone. Of the test plots, 6 plots were used for the examples of the mycelium-based plant regulator, 6 plots were used for comparative examples, and 2 plots were used for controls. The remaining two sections are test sections for the soil preparation method, which will be described later.
The mycelium-type plant regulator obtained in Examples 5 to 10 was applied to each of the 6 test areas. The application amount of the mycelia meter plant preparation was 100 g in Example 5, 200 g in Example 6, 300 g in Example 7, 400 g in Example 8, 500 g in Example 9, and 1000 g in Example 10.
The plant soil fungicides of Comparative Examples 1 to 4 and the mycelium fertilizers of Comparative Examples 5 and 6 were applied to the 6th comparative example test group. The application rates of the plant soil fungicide and mycelium fertilizer were 150 g in Comparative Example 1, 250 g in Comparative Example 2, 350 g in Comparative Example 3, 450 ml in Comparative Example 4, 550 g in Comparative Example 5, and 1050 g in Comparative Example 6. It was.
Three days after applying mycelium plant preparation, plant soil fungicide, and mycelium fertilizer to each test area, scouring the soil again, the same amount of mycelium plant preparation, plant Soil disinfectant and mycelium fertilizer were applied respectively.
Thereafter, 10 tomato seedlings were transplanted into each test area. In addition, after transplantation, the same amount of the mycelium plant preparation, the plant soil fungicide, and the mycelium fertilizer of the same amount as the initial application rate were applied every week.
The control group was treated in exactly the same manner as in the experimental group except that the plant soil fungicide was not applied.
After 4 weeks of transplantation, no disease state appeared in the tomato seedlings transplanted to the experimental test plots, and the disease was completely prevented, but the seedlings transplanted to the control plots were annihilated by the third week. The seedlings transplanted to the test group for comparative example were annihilated after 4 weeks.
[Test Example 3]
The test regarding the effect of the soil adjustment method will be described.
In this test example, the remaining 2 sections among the test sections described in Test Example 2 were used. First, 50 ml each of the plant soil fungicide obtained in the fungicide production example 4 was applied to this test group, and then the mycelium fertilizer obtained in the fertilizer production examples 1 and 2 was applied. In addition, the test plot which applied the fertilizer manufacture example 1 was made into Example 11, and the test plot which applied the fertilizer manufacture example 2 was set as Example 12. FIG. The application rate was 40 g in Example 11 and 50 g in Example 12.
Three days after each application of the plant soil fungicide and mycelium fertilizer to each test area, the soil was awakened and the same amount of the plant soil fungicide and mycelium fertilizer as the initial application amount were applied again.
Thereafter, 10 tomato seedlings were transplanted into each test area. In addition, the plant soil fungicide and mycelium fertilizer of the same amount as the initial application amount were applied every week after transplantation.
Four weeks after transplantation, no disease was observed in the tomato seedlings transplanted to the test plot, and the disease was completely prevented.
In Test Examples 1 to 3, tomato seedlings were transplanted on the same day.
[Test Example 4]
Test the growth promotion effect when plant soil fungicide and mycelium fertilizer are applied simultaneously.
1m 2 3 test fields are prepared for each of the examples, comparative examples, and controls. Each test field is seeded with 100 g of perennial grass seeds, and then the test fields for the examples and comparative examples are used. 1500 g of mycelium fertilizer was applied, and 1 liter of the plant soil fungicide obtained in the fungicide production example 4 was further applied to the test field for the examples.
In the test fields for Examples and Comparative Examples, the same amount of mycelium fertilizer and plant soil fungicide were applied every week for 13 weeks and grown for 13 weeks.
After 13 weeks, the grown perennial grass was pulled out and washed, and the above-ground part and underground part grown from the seeds were collected and weighed. 45 g, 1.5 g above the ground and 10 g underground from the comparative test field, 1.5 g above the ground and 3 g underground from the control field.
From the above test results, it can be seen that the plant soil fungicide of the present invention has a soil disease prevention effect, and the mycelium plant preparation and the soil preparation method of the present invention have a soil pathogen control effect and a growth promoting effect.
Industrial applicability
As described above, the plant soil fungicide can be used for the purpose of preventing the occurrence of soil diseases, specifically, caiyou disease, mosaic disease, green spot mosaic disease, ginkgo disease, aogare disease, shirigare disease, hunten bacterial disease, It is possible to prevent the occurrence of a very wide range of soil diseases such as Tenb disease, Negusale disease, Crogsale disease, Sulfur disease, Hakuhan disease, Nekob disease, Tachigal disease, Shinksare disease, Purple Mompa disease, Ouka disease and the like.
The mycelium system soil conditioner and the soil condition adjustment method according to the present invention have the effect of suppressing the growth of soil pathogenic bacteria and the promotion of beneficial bacteria that the plant soil fungicide has, and the action of reducing the soil diseases and fungi that the mycelium fertilizer has. Synergistic action can be used to control soil pathogens, that is, it can be used for the purpose of restoring the soil strength of soils affected by soil pathogens, specifically Kaiyou disease, Mosaic disease, Green spot mosaic disease, Ginkgo biloba, Aogalae Can restore the soil strength affected by illness, Sirigusale disease, Hanten bacterial disease, Tenb disease, Negusare disease, Kurogusare disease, Sulfur disease, Hakhan disease, Nekob disease, Tachigare disease, Shinksare disease, Purple Mompa disease, Ouka disease, etc. .
Furthermore, since the plant soil fungicides and mycelium fertilizers used in the present invention do not damage the crops themselves and cause environmental pollution, they can be suitably used as soil disease preventive agents or fertilizers that are usually used. .

Claims (10)

植物性土壌殺菌剤と菌糸体肥料とが混合されてなる菌糸体系植物調整剤であって、
前記植物性土壌殺菌剤は、アカネ科(Rubiaceae)のコリンクチナシ(Gardenia jasmimoides Ellis)、クチナシ(G.jasmimoides Ellis forma grandiflora)、コクチナシ(G.jasmimoides Ellis var. radicans)からなる群から選択されるいずれか1種の果実を乾燥させたもの、シソ科(Labiatae)のハッカ(Mentha arvensis L.var.piperascens Malinv)またはその変種の葉を乾燥させたもの、ヤマモモ科(Myricaceae)のヤマモモ(Myrica rubra Sieb.et Zucc)の樹皮を乾燥させたものを含む植物体群又はこれら植物体群からの抽出物を含み、
前記菌糸体肥料は多孔質担体に菌類が担持される様に調整されており且つこの菌類は55〜80℃の温度域で好気的に生育する放線菌等の菌類であることを特徴とする菌糸体系植物調整剤。
A mycelium-type plant regulator comprising a mixture of plant soil fungicide and mycelium fertilizer,
The plant soil fungicide is selected from the group consisting of Rubiaceae's Gardenia jasmoides Ellis , G. jasmimoides Elis forma grandiflora, which is a group of G. sma. Or dried fruit, Labiatae mint (Mentha arvensis L. var. Piperascens Malinv) or dried leaves thereof, Myricaceae bayberry (Myricarubae) .et Zucc) bark only contains an extract from a plant group or their plant group including those obtained by dry,
The mycelium fertilizer is adjusted so that fungi are supported on a porous carrier, and the fungi are fungi such as actinomycetes that grow aerobically in a temperature range of 55 to 80 ° C. Mycelium plant regulator.
前記植物体群としてさらにナス科(Solanaceae)のトウガラシ(Capsicum annuum L.)又はその変種の成熟果実を乾燥させたもの、ミカン科(Rutaceae)のキハダ(Phellodendron amurense Ruprecht)、この変もしくはナシキハダ(Phellodendron chinense Schneid)の樹皮、又はコルク層を除いた樹皮を乾燥させたものが含まれることを特徴とする請求項1に記載の菌糸体系植物調整剤。 Those dried ripe fruit of Capsicum (Capsicum annuum L.) or variants thereof further Na scan family as the plant group (Solanaceae), Rutaceae of (Rutaceae) yellowfin (Phellodendron amurense Ruprecht), varying species of this or hyphae systematic plant regulating agent according to claim 1, characterized in that the bark of Nashikihada (Phellodendron chinense Schneid), or those bark excluding the cork layer was dried are included. 前記植物体群は粉砕され粉末状とされていることを特徴とする請求項1又は請求項2のいずれかに記載の菌糸体系植物調整剤。 The mycelium plant regulator according to claim 1 or 2, wherein the plant group is pulverized into a powder form . 前記植物性土壌殺菌剤は、植物体群から抽出された抽出液であることを特徴とする請求項1又は請求項2に記載の菌糸体系植物調整剤。 The mycelium plant regulator according to claim 1 or 2, wherein the plant soil fungicide is an extract extracted from a group of plants. 前記植物体群からの抽出物は水、メタノール、エタノール等の極性溶媒により抽出され、得られた抽出液からフリーズドライ、或いは他の方法により溶媒成分を除去して得られ、粉末状とされていることを特徴とする請求項1又は請求項2に記載の菌糸体系植物調整剤。 Extract water from the plant group is extracted methanol and the polar solvent such as ethanol, freeze the resulting extract dry, or by other methods is obtained by removing the solvent component is a powder The mycelium plant preparation according to claim 1 or 2, wherein 前記植物性土壌殺菌剤は、前記菌糸体肥料の醗酵工程中に添加されていることを特徴とする請求項1乃至請求項5のいずれかに記載の菌糸体系植物調整剤。 The vegetable soil fungicides, hyphae systematic plant modifier according to any one of claims 1 to 5, characterized in that it is added during the fermentation process of the mycelium fertilizer. 前記植物性土壌殺菌剤は前記菌糸体肥料の醗酵工程前の多孔質担体に吸着されていることを特徴とする請求項に記載の菌糸体系植物調整剤。Hyphae systematic plant regulating agent according to claim 6 wherein the vegetable soil fungicide characterized in that it is adsorbed on the porous carrier before fermentation step of the mycelial fertilizer. アカネ科(Rubiaceae)のコリンクチナシ(Gardenia jasmimoides Ellis)、クチナシ(G.jasmimoides Ellis forma grandiflora)、コクチナシ(G.jasmimoides Ellis var. radicans)からなる群から選択されるいずれか1種の果実を乾燥させたもの、シソ科(Labiatae)のハッカ(Mentha arvensis L.var.piperascens Malinv)またはその変種の葉を乾燥させたもの、ヤマモモ科(Myricaceae)のヤマモモ(Myrica rubra Sieb.et Zucc)の樹皮を乾燥させたものを含む植物体群又はこれら植物体群からの抽出物が含まれる植物性土壌殺菌剤と、多孔質担体に菌が担持される様に調製されており且つこの菌は55℃〜80℃の温度域で好気的に生育する放線菌等の菌類である菌糸体肥料とを別個に又は同時に土壌に施用することを特徴とする土壌調整方法。 Rubiaceae Corinch pear (Gardenia jasmoides Ellis), G. jasmimoides Elis forma grandiflora, or G. jasimoids El. Laveratae mint (Mentha arvensis L. var. Piperascens Malinv) or a variant of the leaves thereof, Myraceaceae bayberry (Myrica rubae Sieb) et Zhu and vegetable soil fungicides containing the extract from the plant group or their plant group including those obtained by, porous The fungus is prepared so that it is supported on the carrier, and the fungus is a mycelium fertilizer such as actinomycetes that grow aerobically in the temperature range of 55 ° C to 80 ° C separately or simultaneously in the soil. A soil conditioning method characterized by applying. 前記植物体群としてさらにナス科(Solanaceae)のトウガラシ(Capsicum annuum L.)又はその変種の成熟果実を乾燥させたもの、ミカン科(Rutaceae)のキハダ(Phellodendron amurense Ruprecht)、この変種もしくはナシキハダ(Phellodendron chinense Schneid)の樹皮、又はコルク層を除いた樹皮を乾燥させたものが含まれることを特徴とする請求項8に記載の土壌調整方法。The plant group further includes a dried fruit of Capsicum annuum L. or its varieties, a red peanut of Rutaceae, a variety or a pod of this plant, The method according to claim 8, wherein the bark of chinse Schneid) or a bark excluding the cork layer is dried. 液体状の前記植物性土壌殺菌剤が土壌に散布され、その後に前記菌糸体肥料が土壌に施されることを特徴とする請求項8又は9に記載の土壌調整方法。Liquid the vegetable soil fungicide is sprayed on the soil, soil adjustment method according to claim 8 or 9 then the mycelium fertilizer is characterized in that it is applied to the soil.
JP51195299A 1997-08-11 1997-08-11 Plant soil fungicide, mycelium plant regulator, and soil conditioning method Expired - Lifetime JP4032137B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/002812 WO1999007226A1 (en) 1997-08-11 1997-08-11 Vegetable-base soil fungicides, mycelial plant regulators, and method for regulating soil

Publications (1)

Publication Number Publication Date
JP4032137B2 true JP4032137B2 (en) 2008-01-16

Family

ID=14180971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51195299A Expired - Lifetime JP4032137B2 (en) 1997-08-11 1997-08-11 Plant soil fungicide, mycelium plant regulator, and soil conditioning method

Country Status (2)

Country Link
JP (1) JP4032137B2 (en)
WO (1) WO1999007226A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6324042B2 (en) * 2013-12-02 2018-05-16 株式会社キングコール Mycelium fertilizer and its production method
CN104026174A (en) * 2014-06-26 2014-09-10 太仓市荣德生物技术研究所 Sterilizing agent for crops
CN114940908B (en) * 2022-05-11 2023-07-04 中国农业科学院特产研究所 Soil restoration composition for relieving continuous cropping obstacle of ginseng and matched planting technology

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185937A (en) * 1975-01-18 1976-07-28 Juichi Ando
US4309207A (en) * 1980-01-07 1982-01-05 Devlin Robert M Plant growth inhibiting and antifungal extract prepared from the vegetative parts of plants of the genera vaccinium and myrica
JPH02108609A (en) * 1988-10-19 1990-04-20 Norin Suisansyo Nogyo Kankyo Gijutsu Kenkyusho Soil blight controlling and plant growth promoting agent
JPH05139924A (en) * 1991-11-25 1993-06-08 Itouen:Kk Plant disease injury controlling agent containing natural ingredient as active ingredient
JPH06287097A (en) * 1993-03-31 1994-10-11 Towa Kagaku Kk Soil disease damage control agent selectively promoting growth of microorganism antagonistic to soil-pathogenic organism and utilization thereof
JP2767370B2 (en) * 1993-10-15 1998-06-18 有限会社漢研 All Chinese herbal medicine powdered soil activator

Also Published As

Publication number Publication date
WO1999007226A1 (en) 1999-02-18

Similar Documents

Publication Publication Date Title
KR101441614B1 (en) Insecticide or compost composition comprising the leaves of Ginkgo biloba by water aging
CN106831174A (en) A kind of pectase, its preparation method, using and application method
CN107759401A (en) A kind of organic fertilizer and preparation method thereof
CN106358671A (en) Method for planting gerbera jamesonii
CN104311334A (en) Composite improver for repairing heavy metal contaminated soil and preparation process
CN108129238A (en) A kind of multi-functional enzyme liquid and preparation method thereof
CN112753516A (en) Ecological cultivation method for intercropping bighead atractylodes rhizome and soybeans
CN107484601A (en) A kind of implantation methods for improving walnut volume increase
CN108276224A (en) A kind of vegetable fertilizer and preparation method thereof for planting in the air
JPH0291010A (en) Antagonist against microorganisms and its production
JP4032137B2 (en) Plant soil fungicide, mycelium plant regulator, and soil conditioning method
CN1806510A (en) Rice cultivation method used rice straw powder, rice straw powder mixture and preparation method
KR100356762B1 (en) Method to manufacture complex microbe culture and manure using complex microbe culture
JPH11255572A (en) Material for applying microorganism
KR101165154B1 (en) Microbial fertilizer for soil improvement using bottom ash carrier
NL2024759B1 (en) All-organic straw granular fertilizer and preparation method therefor
KR20150095329A (en) Method of producing natural insecticides
RU2736340C9 (en) Agricultural growth stimulant
KR20090095149A (en) Fertilizer composition containing natural plant vinegar
JPH07274963A (en) Preparation of high-density antagonistic microorganism substrate
KR100463959B1 (en) a Compost by use of Duck's Manure and Method for Preparing the Same
KR102027654B1 (en) Method of prepairing vegetation sheet for wood-cultivated ginseng and vegetation sheet for wood-cultivated ginseng prepared from the same
JP2824127B2 (en) How to promote turf growth
CN109627068A (en) A kind of active bio charcoal organic fertilizer and preparation method thereof
CN107494105A (en) The implantation methods of walnut

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term