JP6321918B2 - 発電検出装置および回転カウンタ - Google Patents

発電検出装置および回転カウンタ Download PDF

Info

Publication number
JP6321918B2
JP6321918B2 JP2013095104A JP2013095104A JP6321918B2 JP 6321918 B2 JP6321918 B2 JP 6321918B2 JP 2013095104 A JP2013095104 A JP 2013095104A JP 2013095104 A JP2013095104 A JP 2013095104A JP 6321918 B2 JP6321918 B2 JP 6321918B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
power
power generation
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013095104A
Other languages
English (en)
Other versions
JP2014216983A (ja
Inventor
前出 淳
淳 前出
宮長 晃一
晃一 宮長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2013095104A priority Critical patent/JP6321918B2/ja
Publication of JP2014216983A publication Critical patent/JP2014216983A/ja
Application granted granted Critical
Publication of JP6321918B2 publication Critical patent/JP6321918B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electronic Switches (AREA)

Description

本発明は、発電検出装置および回転カウンタに関し、特に、電源が不要な発電検出装置、およびこの発電検出装置を適用し回転数をカウントし記録可能な回転カウンタに関する。
従来の多回転エンコーダにおいては、回転運動をする入力軸に減速歯車を設けて、磁石を有するコード記録媒体を減速して駆動し、固定された基板上の磁気センサを用いて、コード記録媒体の角度の検出を行っている。これにより、入力軸の多回転量を一回転内の角度位置に変換して検出する(例えば、特許文献1参照。)。
上記のように従来の多回転エンコーダでは、減速歯車を用いているため、歯車の機械的な接触面を有することから磨耗による装置の寿命低下あるいは接触面への異物混入等によって、誤検出が発生する。
また、光学式あるいは磁気式の回転角センサを用いて非接触で多回転量を検出する方式がある。しかしながら、この方式では、多回転量の検出に電源を必要とするため、モータ等の本体の電源オフ時においても検出できるようにするためには、バッテリを搭載する必要がある。
一方、歯車等を用いることがなく、機械的な接触部がないため、磨耗による寿命低下あるいは異物等の混入による誤検出の発生がなく、バッテリ等の外部電源を不要とするか、あるいは消費電力を抑えて保守によるコストが小さい多回転検出装置についても開示されている(例えば、特許文献2参照。)。
特表2002−513923号公報 特開2011−185711号公報
本発明の目的は、電源・電池を必要としない発電検出装置およびこの発電検出装置を適用し回転数をカウントし記録可能な回転カウンタを提供することにある。
本発明の一態様によれば、外部エネルギーを電気に変換する発電素子と、前記発電素子により発電された電気エネルギーを蓄積する蓄電素子と、前記蓄電素子に蓄積された電気エネルギーを放電する放電手段と、前記蓄電素子に充電された充電電圧を検出する電圧検出回路と、前記充電電圧を一定値で出力する電源回路と、前記電源回路の出力に接続されるパワーオンリセット回路と、前記パワーオンリセット回路に接続される論理回路とを備え、前記論理回路は、前記パワーオンリセット回路に接続されるシーケンサと、前記シーケンサに接続され、前記電圧検出回路の検出電圧を記録可能な不揮発性ロジック回路とを備え、前記パワーオンリセット回路の出力電圧が閾値電圧を超えると、前記シーケンサを起動して前記電圧検出回路の検出結果を前記不揮発性ロジック回路に記録させる発電検出装置が提供される。
本発明の他の態様によれば、上記の発電検出装置を備え、特定の動作の回転数をカウントし記録可能な回転カウンタが提供される。
本発明によれば、電源・電池を必要としない発電検出装置およびこの発電検出装置を適用し回転数をカウントし記録可能な回転カウンタを提供することができる。
実施の形態に係る発電検出装置の模式的ブロック構成図。 実施の形態に係る発電検出装置の模式的回路ブロック構成図。 実施の形態に係る発電検出装置の動作タイミングチャートであって、(a)蓄電素子に蓄電された電圧VE波形、(b)電圧検出回路の検出電圧VDT波形、(c)電源回路の出力電圧VP波形、(d)パワーオンリセット回路の出力電圧VR波形、(e)シーケンサから放電手段に供給される放電信号DSC波形。 実施の形態に係る発電検出装置において、電源回路の回路構成図。 実施の形態に係る発電検出装置において、(a)論理回路の模式的ブロック構成図、(b)不揮発性ロジック回路の強誘電体メモリセルの回路構成図。 実施の形態に係る発電検出装置において、パワーオンリセット回路の回路構成図。 実施の形態に係る発電検出装置において、パワーオンリセット回路内のヒステリシスコンパレータの入出力電圧のヒステリシス動作の説明図。 実施の形態に係る発電検出装置において、電圧検出回路の回路構成図。 実施の形態に係る発電検出装置を適用した回転カウンタの回路ブロック構成図。 実施の形態に係る発電検出装置を適用した回転カウンタの動作タイミングチャートであって、(a)発電素子101の出力電圧VE1波形、(b)発電素子102の出力電圧VE2波形、(c)P極側電圧検出回路の検出電圧VDT1P波形、(d)N極側電圧検出回路の検出電圧VDT1N波形、(e)P極側電圧検出回路の検出電圧VDT2P波形、(f)N極側電圧検出回路の検出電圧VDT2N波形。 実施の形態に係る発電検出装置を適用した回転カウンタの動作タイミングチャートであって、(a)検出角度、(b)カウント値。
次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の実施の形態は、特許請求の範囲において、種々の変更を加えることができる。
[第1の実施の形態]
実施の形態に係る発電検出装置1の模式的ブロック構成は、図1に示すように表され、模式的回路ブロック構成は、図2に示すように表される。
実施の形態に係る発電検出装置1は、図1および図2に示すように、外部エネルギーを電気に変換する発電素子10と、発電素子10により発電された電気エネルギーを蓄積する蓄電素子11と、蓄電素子11に蓄積された電気エネルギーを放電する放電手段13と、蓄電素子11に充電された充電電圧VEを検出する電圧検出回路16と、充電電圧VEを一定値で出力する電源回路14と、電源回路14の出力に接続されるパワーオンリセット回路18と、パワーオンリセット回路18に接続される論理回路20とを備える。
図2において、破線で囲まれた部分が発電検出回路8に対応する。
ここで、発電素子10により発電された電気エネルギーが交流成分若しくは周期的に振動する成分を含む場合には、図1および図2に示すように、発電素子10により発電された電気エネルギーは、整流回路12を介して整流された後、蓄電素子11に直流的な成分として蓄電されていても良い。
例えば、モータなどの特定の回転動作を検出する際には、S極からN極への回転時には、プラス方向のパルスが検出され、N極からS極への回転時には、マイナス方向のパルスが検出される。このため、それぞれS極からN極への回転・N極からS極への回転時のエネルギーを有効に取り出すために、充電方向に応じた複数の半波整流回路を備えていても良い。
また、論理回路20は、パワーオンリセット回路18に接続されるシーケンサ22と、シーケンサ22に接続される不揮発性ロジック回路24とを備えていても良い。
蓄電素子11は、図2に示すように、キャパシタCで構成可能である。
放電手段13は、図2に示すように、例えば、nチャネル絶縁ゲート電界効果トランジスタ(MOSFET:Metal-Oxide Semiconductor Field Effect Transistor)Qn1を用いて構成されていても良い。nチャネルMOSFETQn1は、シーケンサ22から供給される放電信号DSCによって、オン・オフ制御可能である。
(動作タイミングチャート)
実施の形態に係る発電検出装置1の動作タイミングチャートであって、蓄電素子に蓄電された電圧VE波形は、図3(a)に示すように表され、電圧検出回路16の検出電圧VDT波形は、図3(b)に示すように表され、電源回路14の出力電圧VP波形は、図3(c)に示すように表され、パワーオンリセット回路18の出力電圧VR波形は、図3(d)に示すように表され、シーケンサ22から放電手段13に供給される放電信号DSC波形は、図3(e)に示すように表される。
発電素子10により発電された電気エネルギーは、整流回路12を介して蓄電素子11に蓄積され、蓄電素子11は、図3(a)に示すように、VE=V0に充電される。
蓄電素子11に充電された充電電圧VEは、電圧検出回路16を介して、図3(b)に示すように、電圧検出回路16の検出電圧VDT=V1に等しい一定値で出力される。
電源回路14より、電源回路14の出力電圧VPは、図3(c)に示すように、VP=V2に等しい一定値で出力される。
パワーオンリセット回路18において、時刻t=t2において、パワーオンリセット回路18の出力電圧VRが電圧検出の閾値電圧Vthを超えると、図3(d)に示すように、パワーオンリセット回路18は、リセットが解除され、パワーオンリセット回路18の出力電圧VRは、VR=V3に等しい一定値で出力される。ここで、VHをヒステリシスとすると、V3−Vth=VHで表される。
以下、時間tの経過とともに動作タイミングを説明する。
まず、時刻t=t1において、発電素子10により発電が開始され、発電素子10により発電された電気エネルギーは、整流回路12を介して蓄電素子11に蓄積され、蓄電素子11は、図3(a)に示すように、VE=V0に充電される。
次に、時刻t=t2において、電圧検出回路16の検出電圧VDTは、急峻に立ち上がり、VDT=V1に等しい一定値で出力される。同様に、パワーオンリセット回路18の出力電圧VRは、急峻に立ち上がり、パワーオンリセット回路18の出力電圧VRが電圧検出の閾値電圧Vthを超えると、パワーオンリセット回路18は、リセットが解除され、パワーオンリセット回路18の出力電圧VRは、VR=V3に等しい一定値で出力される。その結果、シーケンサ22が起動し、電圧検出回路16により検出された電圧検出結果(検出電圧VDT=V1)が不揮発性ロジック回路24に記録される。図3(e)に示すように、時刻t=t2〜t3の期間は、ライトイネーブル(書き込み動作)期間WEに対応する。
次に、時刻t=t3において、放電手段13によって、nチャネルMOSFETQn1がオンになると、図3(a)に示すように、充電電圧VE=V0は、瞬時に放電される。同様に、図3(b)に示すように、電圧検出回路16の検出電圧VDT=V1は、瞬時に放電される。図3(e)に示すように、時刻t=t3で書き込み終了後、放電イネーブルとなる。シーケンサ22から放電手段13に供給される放電信号DSCはイネーブル(DSE)となる。
次に、時刻t=t4において、パワーオンリセット回路18の出力電圧VR=V3が閾値電圧Vthまで低下すると、パワーオンリセット回路18は、図3(d)に示すように、リセット点Rにおいて、リセットされる。この結果、リセットにより、放電ディセーブルとなる。
時刻t=t4以降、電源回路14の出力電圧VP波形は、図3(c)に示すように、時定数τで自然放電される。
図3(e)に示すように、時刻t=t3〜t4の期間は、書き込み動作終了後の放電イネーブル期間DSEに対応し、時刻t=t4以降の期間は、リセット後の放電ディセーブル期間DSDに対応する。
実施の形態に係る発電検出装置1によれば、蓄電素子11に蓄積された電荷を放電手段13を介して放電後、電源回路14の出力電圧VPを放電することができる。この結果、不揮発性ロジック回路24に記録した電圧検出結果(検出電圧VDT=V1)以外は、発電検出装置1を初期化することができ、次の発電のカウントに備えることができる。
実施の形態に係る発電検出装置1によれば、自己で状態を一定期間内に初期化することができ、発電周期が短い場合でも発電回数をカウントすることができる。
(電源回路)
実施の形態に係る発電検出装置1において、電源回路14の回路構成は、図4に示すように表される。
実施の形態に係る発電検出装置1において、電源回路14は、コンパレータ15と、コンパレータ15の出力に接続されたpチャネルMOSFETQpとを備える。pチャネルMOSFETQpのソースは、蓄電素子11に接続され、蓄電素子11に蓄電された充電電圧VEが供給される。pチャネルMOSFETQpのドレインには、直列接続された抵抗R1・R2が接続され、かつpチャネルMOSFETQpのドレインからは、電源回路14の出力電圧VPが出力される。
コンパレータ15の正(+)入力には、蓄電素子11に蓄電された充電電圧VEが供給され、コンパレータ15の負(−)入力には、直列接続された抵抗R1・R2で分圧された電圧VP・R2/(R1+R2)が入力される。
実施の形態に係る発電検出装置1において、電源回路14の出力側の放電時間>>電源回路14の入力側の放電時間なる大小関係を満足するように設定されている。
電源回路14の出力電圧は、pチャネルMOSFETQpのボディーダイオードBDを介して放電される。電源回路14の出力電圧は、電源回路14の入力側の電圧に対しボディーダイオードBDの順方向電圧降下Vf分高い電圧となるため、電源回路14の出力側の放電時間は、電源回路14の入力側の放電時間よりも十分に長く設定可能である。電源回路14の入力側の放電時間は、蓄電素子11を構成するキャパシタCの容量値とnチャネルMOSFETQn1のオン抵抗で決まる。例えば、蓄電素子11に蓄電された充電電圧VEが約4Vとした場合、電源回路14の出力電圧VPが1.5Vから放電動作を行うと、充電電圧VEが0.8V程度まで放電されてから、電源回路14の出力電圧VPは放電することになる。キャパシタCの蓄積電荷は、nチャネルMOSFETQn1を介して、容易に放電可能である。
(論理回路)
実施の形態に係る発電検出装置1において、論理回路20の拡大されたブロック回路構成は、図5(a)に示すように表される。論理回路20は、図5(a)に示すように、パワーオンリセット回路に接続されるシーケンサ22と、シーケンサ22および電源回路14に接続される不揮発性ロジック回路24とを備える。
パワーオンリセット回路のリセットが解除され、シーケンサ22が起動すると、電圧検出回路16により検出された電圧検出結果(検出電圧VDT)に基づいて、発電が行われたか否か(ハイレベル若しくはローレベル)の発電検出信号が不揮発性ロジック回路24に記録される(WE)。書き込み終了後、シーケンサ22から放電手段に放電信号DSCを供給する。パワーオンリセット回路がリセットされると、放電ディセーブル期間DSDに移行する。
実施の形態に係る発電検出装置1において、不揮発性ロジック回路24の強誘電体メモリセル60の回路構成は、図5(b)に示すように表される。不揮発性ロジック回路24の強誘電体メモリセル60は、図5(b)に示すように、ビット線BLとワード線WL・プレート線PLとの交差点に配置され、MOSFETQMと、MOSFETQMのソースに接続された強誘電体キャパシタCFとを備える。ビット線BLは、MOSFETQMのドレインに接続され、ワード線WLは、MOSFETQMのゲートに接続され、プレート線PLは、MOSFETQMのソースに接続された強誘電体キャパシタCFのプレート電極(キャパシタを構成する2つの電極の一方の電極)に接続される。
実施の形態に係る発電検出装置1において、不揮発性ロジック回路24は、複数のビット線BLと複数のワード線WL・複数のプレート線PLを備え、図5(b)に示すように、これらの交差点に強誘電体メモリセル60が、複数個マトリックス状に配置される。
また、実施の形態に係る発電検出装置1において、不揮発性ロジック回路24には、通常のロジック回路に強誘電体素子を付加させる技術(ロジック組み込みタイプ)でも適用可能である。ロジック回路に強誘電体素子を組み合わせて不揮発化させたロジックICは、電源を切った後も情報を保持できるため、待機時の消費電力を低減化可能である。
(パワーオンリセット回路)
実施の形態に係る発電検出装置1において、パワーオンリセット回路18の回路構成は、図6に示すように表される。パワーオンリセット回路18は、電源回路14の出力に接続されたヒステリシスコンパレータ17を備える。ヒステリシスコンパレータ17の正(+)入力には、閾値電圧Vthが供給され、ヒステリシスコンパレータ17の負(−)入力には、電源回路14の出力電圧VPを抵抗R01と抵抗R02若しくは抵抗R01と抵抗(R02+R03)で分圧された入力電圧Vinが供給される。ヒステリシスコンパレータ17の出力電圧Vout(=VR)は、nチャネルMOSFETQn3のゲートに入力される。nチャネルMOSFETQn3は、図6に示すように、抵抗R03に並列接続される。
ここで、ヒステリシスコンパレータ17の正(+)入力に供給される閾値電圧Vthが、パワーオンリセット回路18のリセット・リセット解除のレベルを決めており、図4(d)の閾値電圧Vthに対応している。
ヒステリシスコンパレータ17の出力電圧Vout(=VR)がnチャネルMOSFETQn3の閾値電圧よりも高い場合には、nチャネルMOSFETQn3はオンになり、ヒステリシスコンパレータ17の入力電圧Vinは、VP・R02/(R01+R02)で表される。一方、ヒステリシスコンパレータ17の出力電圧Vout(=VR)がnチャネルMOSFETQn3の閾値電圧よりも低い場合には、nチャネルMOSFETQn3はオフになり、ヒステリシスコンパレータ17の入力電圧Vinは、VP・(R02+R03)/(R01+R02+R03)で表される。
実施の形態に係る発電検出装置において、パワーオンリセット回路18内のヒステリシスコンパレータ17の入出力電圧のヒステリシス動作は、図7に示すように表される。すなわち、ヒステリシスコンパレータ17の入力電圧Vinが増加して、閾値電圧Vth2を超えると、矢印aおよびbに沿って、ヒステリシスコンパレータ17の出力電圧Vout(=VR)は上昇する。ヒステリシスコンパレータ17の出力電圧Vout(=VR)がnチャネルMOSFETQn3の閾値電圧を超えると、ヒステリシスコンパレータ17の入力電圧Vinは、VP・R02/(R01+R02)で表され、減少する。ヒステリシスコンパレータ17の入力電圧Vinが減少して、閾値電圧Vth2以下に低下すると、矢印dに沿って、ヒステリシスコンパレータ17の出力電圧Vout(=VR)は低下する。さらに、ヒステリシスコンパレータ17の入力電圧Vinが減少して、閾値電圧Vth1になると、矢印eに沿って、ヒステリシスコンパレータ17の出力電圧Vout(=VR)は低下する。
(電圧検出回路)
実施の形態に係る発電検出装置1において、電圧検出回路16の回路構成は、図8に示すように表される。電圧検出回路16は、図8に示すように、発電素子10により発電されたエネルギーを蓄電するキャパシタCに接続され、キャパシタCに充電された充電電圧VEに基づいて、キャパシタCから不揮発性ロジック回路24へ、電圧検出結果(検出電圧VDT)に基づいて、発電が行われたか否か(ハイレベル若しくはローレベル)の発電検出信号を供給すると共に電源回路14へのエネルギー供給を切り替えるためのスイッチSWとして機能する。
スイッチSWは、キャパシタCと電源回路14との間に接続され、キャパシタCの充電電圧VEに基づいて、キャパシタCから電源回路14への電力供給を切り替える。
ここで、スイッチSWは、図8に示すように、キャパシタCに並列接続される抵抗R11・R12を備える。
スイッチSWは、図8に示すように、第1ソースがキャパシタCに接続可能にされ、第1ドレインが電源回路14に接続されるpチャネルの第1MOSFETQ1と、キャパシタCに並列接続され、キャパシタCの充電電圧VEを分圧する第1抵抗R11および第2抵抗R12と、第1MOSFETQ1の第1ゲートに、第2ドレインが接続され、第2ゲートがキャパシタCの充電電圧VEの分圧(ゲート電圧VG)に接続され、第2ソースが接地電位になされたnチャネルの第2MOSFETQ2と、第1MOSFETQ1の第1ゲートと第1ソース間に接続された第3抵抗R13と、第1ソースとキャパシタC間に配置され、第3ドレインがキャパシタCに接続され、第3ソースが第1ソースに接続され、第3ゲートが第1ゲートに接続されるpチャネルの第3MOSFETQ3とを備える。ここで、第1ゲート・第3ゲート・第2ドレインの接続点より不揮発性ロジック回路24に、電圧検出結果(検出電圧VDT)に基づいて、発電が行われたか否か(ハイレベル若しくはローレベル)の発電検出信号を供給可能である。
第1抵抗R11および第2抵抗R12によって分圧されたゲート電圧VGは、R12・VE/(R11+R12)で表される。図8において、BD1・BD3は、第1MOSFETQ1・第3MOSFETQ3のバックゲートボディーダイオードを表す。キャパシタCに所定のキャパシタCの充電電圧VEが充電された状態で、第1MOSFETQ1がオフ状態では、第1MOSFETQ1のゲート・ソース間には逆バイアスが印加され、第1MOSFETQ1のドレイン・ソース間およびバックゲートボディーダイオードBD1にも逆バイアスが印加される。
また、抵抗R11・R12は、所定のインピーダンス以上の抵抗値を有する。
スイッチSWにおいては、分圧されたゲート電圧VG=R12・VE/(R11+R12)とnチャネルの第2MOSFETQ2の閾値電圧Vth2との大小関係によって、第2MOSFETQ2のオン・オフ状態を調整することができる。
もしもpチャネルの第3MOSFETQ3が存在しない場合には、pチャネルの第1MOSFETQ1の第1ゲート・第1ソース間の電圧がショートされた状態となると、pチャネルの第1MOSFETQ1が、オン状態となるので、電流が逆流する可能性があるが、図8に示されたスイッチSWの構成では、pチャネルの第3MOSFETQ3を備えるため、電流の逆流を防止することができる。
図8に示されたスイッチSWの構成では、スイッチSWがオンしている場合、検出電圧VDTはゼロ電位にあるが、pチャネルの第3MOSFETQ3のバックゲートボディーダイオードBD3の効果によって、電流の逆流を防止することができる。
尚、図8に示されたスイッチSWの構成では、スイッチSWがオフしている場合、検出電圧VDTは、充電電圧VEと同電位となる。
(回転カウンタ)
例えば、モータなどの特定の回転動作を検出する際には、S極からN極への回転時には、プラス方向のパルスが検出され、N極からS極への回転時には、マイナス方向のパルスが検出される。このため、整流回路12にはそれぞれS極からN極への回転・N極からS極への回転時のエネルギーを有効に取り出すために、充電方向に応じた複数の半波整流回路を適用しても良い。また、発電素子は、複数配置されていてもよい。
実施の形態に係る発電検出装置1を適用した回転カウンタ2の模式的回路ブロック構成は、図9に示すように表される。図9の例では、発電素子が2個の場合である。回転カウンタ2は、図9に示すように、外部エネルギーを電気に変換する第1の発電素子101と、第1の発電素子101により発電された電気エネルギーを半波整流する半波整流回路121P・121Nと、半波整流された電気エネルギーを蓄積するキャパシタC1P・C1Nと、キャパシタC1P・C1Nに蓄積された電気エネルギーを放電するnチャネルのMOSFETQn1P・Qn1Nと、キャパシタC1P・C1Nに充電された充電電圧を検出する電圧検出回路161P・161Nと、充電電圧を一定値で出力する電源回路14と、キャパシタC1P・C1Nと電源回路14との間に接続され、キャパシタC1P・C1Nの充電電圧に基づいて、キャパシタC1P・C1Nから電源回路14への電力供給を切り替えるスイッチSW1P・SW1Nと、電源回路14の出力に接続されるパワーオンリセット回路18と、パワーオンリセット回路18に接続される論理回路20とを備える。
ここで、スイッチSW1P・SW1Nは、キャパシタC1P・C1Nに充電された充電電圧に基づいて、キャパシタC1P・C1Nから不揮発性ロジック回路24へ、電圧検出結果(検出電圧VDT1P・VDT1N)に基づいて、発電が行われたか否か(ハイレベル若しくはローレベル)の発電検出信号を供給すると共に電源回路14へのエネルギー供給を切り替える。
また、回転カウンタ2は、図9に示すように、外部エネルギーを電気に変換する第2の発電素子102と、第2の発電素子102により発電された電気エネルギーを半波整流する半波整流回路122P・122Nと、半波整流された電気エネルギーを蓄積するキャパシタC2P・C2Nと、キャパシタC2P・C2Nに蓄積された電気エネルギーを放電するnチャネルのMOSFETQn2P・Qn2Nと、キャパシタC2P・C2Nに充電された充電電圧を検出する電圧検出回路162P・162Nと、キャパシタC2P・C2Nと電源回路14との間に接続され、キャパシタC2P・C2Nの充電電圧に基づいて、キャパシタC2P・C2Nから電源回路14への電力供給を切り替えるスイッチSW2P・SW2Nとを備える。
電源回路14の構成は、図4と同様に表され、パワーオンリセット回路18の構成は、図6と同様に表される。また、論理回路20は、図2と同様に、シーケンサ22と不揮発性ロジック回路24とを備える。
また、電圧検出回路161P・SW1Pの組み合わされた回路構成が、図8に示された電圧検出回路16に対応している。電圧検出回路161N・SW1N、電圧検出回路162P・SW2P、電圧検出回路162P・SW2Nの組み合わされた回路構成についても同様である。
また、実施の形態に係る発電検出装置1を適用した回転カウンタ2の動作タイミングチャートであって、発電素子101の出力電圧VE1波形は、図10(a)に示すように表され、発電素子102の出力電圧VE2波形は、図10(b)に示すように表される。
発電素子101は、図10(a)に示すように、時刻t=t1において正方向のスパイク状の電圧、時刻t=t3において負方向のスパイク状の電圧を発生し、発電素子102は、図10(b)に示すように、時刻t=t2において正方向のスパイク状の電圧、時刻t=t4において負方向のスパイク状の電圧を発生する。そこで、半波整流回路121P・121Nおよび半波整流回路122P・122Nを用いることによって、時刻t=t1における正方向・時刻t=t3における負方向のスパイク状の電圧およひ時刻t=t2における正方向・時刻t=t4における負方向のスパイク状の電圧のいずれも有効に取り出す工夫がなされている。この結果、P極側電圧検出回路161Pの検出電圧VDT1P波形は、図10(c)に示すように表され、N極側電圧検出回路161Nの検出電圧VDT1N波形は、図10(d)に示すように表される。P極側電圧検出回路162Pの検出電圧VDT2P波形は、図10(e)に示すように表され、N極側電圧検出回路162Nの検出電圧VDT2N波形は、図10(f)に示すように表される。検出電圧VDT1P・VDT1N・VDT2P・VDT2Nは、いずれも充放電特性に対応したパルス幅Δt1・Δt2・Δt3・Δt4を有する。
実施の形態に係る発電検出装置1を適用した回転カウンタ2の動作タイミングチャートであって、検出角度は、図11(a)に示すように表され、カウント値は、図11(b)に示すように表される。それぞれの時刻t=t1+Δt1、t2+Δt2、t3+Δt3
、t4+Δt4に応じて、検出角度…0°〜90°、90°〜180°、180°〜270°、270°〜360°(0°)…を検出することによって、カウント値…N、(N+1)、(N+2)…をカウント可能である。
実施の形態に係る発電検出装置を適用した回転カウンタ置よれば、蓄電素子に蓄積された電荷を放電手段を介して放電後、電源回路の出力電圧を放電することができ、この結果、不揮発性ロジック回路に記録した発電検出信号以外は、発電検出装置を初期化することができ、次の発電のカウントに備えることができる。
実施の形態に係る発電検出装置を適用した回転カウンタによれば、自己で状態を一定期間内に初期化することができ、発電周期が短い場合でも発電回数をカウントすることができる。
以上説明したように、本実施の形態によれば、電源・電池を必要としない発電検出装置およびこの発電検出装置を適用し回転数をカウントし記録可能な回転カウンタを提供することができる。
(その他の実施の形態)
上記のように、実施の形態によって記載したが、この開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
本発明の発電検出装置および回転カウンタは、電源・電池を必要としないカウント回路に適用され、モバイル機器、車載機器、産業機器、医療機器などの幅広い分野に適用可能である。
1…発電検出装置
2…回転カウンタ
8…発電検出回路
10、101、102…発電素子
11…蓄電素子
12…整流回路
121P、121N、122P、122N…半波整流回路
13…放電手段(キャパシタC)
14…電源回路
15…コンパレータ
16、161P、161N、162P、162N…電圧検出回路
17…ヒステリシスコンパレータ
18…パワーオンリセット回路
20…論理回路
22…シーケンサ
24…不揮発性ロジック回路
SW1P、SW1N、SW2P、SW2N…スイッチ
Vth、Vth1、Vth2…閾値電圧
VE…充電電圧
VE1、VE2…発電素子の出力電圧
VDT、VDT1P、VDT1N、VDT2P、VDT2N…検出電圧
DSC…放電信号
VP…電源回路の出力電圧
VR…パワーオンリセット回路の出力電圧
C…キャパシタ
s…安定化キャパシタ
n1、Qn2、Qn3、Q2…nチャネルMOSFET
、Q1、Q3…pチャネルMOSFET
WE…書き込みイネーブル期間
DSE…放電イネーブル期間
DSD…放電ディセーブル期間
BD、BD1、BD3…ボディーダイオード
R1、R2、R01、R02、R03、R11、R12、R13…抵抗

Claims (10)

  1. 外部エネルギーを電気に変換する発電素子と、
    前記発電素子により発電された電気エネルギーを蓄積する蓄電素子と、
    前記蓄電素子に蓄積された電気エネルギーを放電する放電手段と、
    前記蓄電素子に充電された充電電圧を検出する電圧検出回路と、
    前記充電電圧を一定値で出力する電源回路と、
    前記電源回路の出力に接続されるパワーオンリセット回路と、
    前記パワーオンリセット回路に接続される論理回路と
    を備え、
    前記論理回路は、
    前記パワーオンリセット回路に接続されるシーケンサと、
    前記シーケンサに接続され、前記電圧検出回路の検出電圧を記録可能な不揮発性ロジック回路と
    を備え、
    記パワーオンリセット回路の出力電圧が閾値電圧を超えると、前記シーケンサを起動して前記電圧検出回路の検出結果を前記不揮発性ロジック回路に記録させる
    ことを特徴とする発電検出装置。
  2. 前記電源回路の入力側の放電時間は、出力側の放電時間よりも短いことを特徴とする請求項1に記載の発電検出装置。
  3. 前記蓄電素子に蓄積された電荷を前記放電手段を介して放電後、前記電源回路の出力電圧を放電可能であることを特徴とする請求項1または2に記載の発電検出装置。
  4. 前記発電素子に接続された整流回路を備え、
    前記発電素子により発電された電気エネルギーは、前記整流回路を介して前記蓄電素子に蓄電されることを特徴とする請求項1〜3のいずれか1項に記載の発電検出装置。
  5. 前記蓄電素子は、キャパシタで構成されることを特徴とする請求項1〜4のいずれか1項に記載の発電検出装置。
  6. 前記放電手段は、前記シーケンサから供給される放電信号によって、オン・オフ制御可能なMOSトランジスタによって構成されることを特徴とする請求項1〜5のいずれか1項に記載の発電検出装置。
  7. 前記パワーオンリセット回路は、ヒステリシスコンパレータを備えることを特徴とする請求項1〜6のいずれか1項に記載の発電検出装置。
  8. 前記電圧検出回路は、
    第1ソースが前記キャパシタに接続可能にされ、第1ドレインが前記電源回路に接続されるpチャネルの第1MOSFETと、
    前記キャパシタに並列接続され、前記キャパシタ電圧を分圧する第1抵抗および第2抵抗と、
    前記第1MOSFETの第1ゲートに、第2ドレインが接続され、第2ゲートが前記キャパシタ電圧の分圧に接続され、第2ソースが接地電位になされたnチャネルの第2MOSFETと、
    前記第1MOSFETの第1ゲートと第1ソース間に接続された第3抵抗と、
    前記第1ソースと前記キャパシタ間に配置され、第3ドレインが前記キャパシタに接続され、第3ソースが前記第1ソースに接続され、第3ゲートが前記第1ゲートに接続されるpチャネルの第3MOSFETと
    を備え、
    前記第1ゲート、前記第3ゲートおよび前記第2ドレインの接続点より前記論理回路に電圧検出結果を供給することを特徴とする請求項1〜7のいずれか1項に記載の発電検出装置。
  9. 前記不揮発性ロジック回路は、強誘電体メモリを備えることを特徴とする請求項1〜8のいずれか1項に記載の発電検出装置。
  10. 請求項1〜9のいずれか1項に記載の発電検出装置を備え、特定の動作の回転数をカウントし記録可能なことを特徴とする回転カウンタ。
JP2013095104A 2013-04-30 2013-04-30 発電検出装置および回転カウンタ Active JP6321918B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013095104A JP6321918B2 (ja) 2013-04-30 2013-04-30 発電検出装置および回転カウンタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013095104A JP6321918B2 (ja) 2013-04-30 2013-04-30 発電検出装置および回転カウンタ

Publications (2)

Publication Number Publication Date
JP2014216983A JP2014216983A (ja) 2014-11-17
JP6321918B2 true JP6321918B2 (ja) 2018-05-09

Family

ID=51942281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013095104A Active JP6321918B2 (ja) 2013-04-30 2013-04-30 発電検出装置および回転カウンタ

Country Status (1)

Country Link
JP (1) JP6321918B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6479564B2 (ja) * 2015-05-11 2019-03-06 ローム株式会社 データ処理装置並びにこれを用いた構造物及び発電装置
CN109936356B (zh) * 2019-03-13 2023-08-04 深圳市路畅科技股份有限公司 编码开关的旋转方向确定方法、系统、装置及存储介质
DE102019113808A1 (de) * 2019-05-23 2020-11-26 Fraba B.V. Magnetfeld-Sensorvorrichtung
JP7459413B1 (ja) 2023-08-23 2024-04-01 三菱電機株式会社 エンコーダ及びモータ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826985A (en) * 1971-06-04 1974-07-30 Motorola Inc Self-powered tachometer circuit
DE4413281C2 (de) * 1994-04-16 1996-02-22 Walter Dr Mehnert Stellungsgeber mit Datenauswerteschaltung
JP4566383B2 (ja) * 2000-10-26 2010-10-20 東芝機械株式会社 ロータリ型アブソリュートエンコーダ
US6628741B2 (en) * 2001-11-20 2003-09-30 Netzer Precision Motion Sensors Ltd. Non-volatile passive revolution counter with reed magnetic sensor
JP2003304145A (ja) * 2002-04-12 2003-10-24 Toko Inc 双方向性直流電子スイッチ装置
JP5181777B2 (ja) * 2008-03-31 2013-04-10 富士通株式会社 電源状態通知方法及び電源状態通知回路
JP2011185711A (ja) * 2010-03-08 2011-09-22 Mitsubishi Electric Corp 多回転検出装置

Also Published As

Publication number Publication date
JP2014216983A (ja) 2014-11-17

Similar Documents

Publication Publication Date Title
JP6321918B2 (ja) 発電検出装置および回転カウンタ
US6822892B2 (en) Resistive memory element sensing using averaging
US8410797B2 (en) Capacitive sensor and sensing method
JP2014023430A (ja) 電源検出機構を使用する構成可能多段チャージポンプ
CN104022642B (zh) 用于从基于电感器的传感器的能量回收的输出驱动器
US8868938B2 (en) Power circuit for data storage device to prevent data loss
TWI283516B (en) Internal voltage generation circuit and voltage detection circuit
CN106956603B (zh) 低功率接近检测装置
CN106787685B (zh) 使用软启动的负电荷泵
US11302859B2 (en) Zero-power wake-up sensing circuit in piezoelectric haptic feedback
US10921158B2 (en) Power supply generating circuit, capacitive array sensing apparatus and terminal device
US20150054572A1 (en) Charge pump generator with direct voltage sensor
JP2012034471A (ja) モータ駆動回路
KR20150056845A (ko) 메모리 셀을 감지하기 위한 셀프 바이어싱 멀티-기준
KR20130142909A (ko) 단락 감지 회로, 단락 감지 방법 및 단락 감지 회로를 포함하는 전력 공급 장치
US9472279B2 (en) Memory cell dynamic grouping using write detection
CN105319599B (zh) 对接lc传感器的方法及其系统
CN1047249C (zh) 半导体存储器
US20170074914A1 (en) Method of operating lc sensors, corresponding system and apparatus
US6542009B2 (en) Signal hold circuit
TW200935560A (en) System and apparatus for generating ideal rise and fall time
JP2005253166A5 (ja)
CN202422763U (zh) 铁电存储器
TWI251325B (en) ESD circuit with an ESD bus
CN219936308U (zh) Mcu断电时长判断装置及电器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180406

R150 Certificate of patent or registration of utility model

Ref document number: 6321918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150