JP6321397B2 - 脂質含有率推定装置 - Google Patents

脂質含有率推定装置 Download PDF

Info

Publication number
JP6321397B2
JP6321397B2 JP2014030080A JP2014030080A JP6321397B2 JP 6321397 B2 JP6321397 B2 JP 6321397B2 JP 2014030080 A JP2014030080 A JP 2014030080A JP 2014030080 A JP2014030080 A JP 2014030080A JP 6321397 B2 JP6321397 B2 JP 6321397B2
Authority
JP
Japan
Prior art keywords
lipid content
magnetic field
test object
unit
inspection object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014030080A
Other languages
English (en)
Other versions
JP2015155805A (ja
Inventor
雅 近藤
雅 近藤
廣瀬 修
修 廣瀬
拓右 久保
拓右 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishida Co Ltd
Original Assignee
Ishida Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishida Co Ltd filed Critical Ishida Co Ltd
Priority to JP2014030080A priority Critical patent/JP6321397B2/ja
Publication of JP2015155805A publication Critical patent/JP2015155805A/ja
Application granted granted Critical
Publication of JP6321397B2 publication Critical patent/JP6321397B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、コイルに電流を流すことで発生する磁界を用いて検査物の脂質の含有率を推定する脂質含有率推定装置に関する。
食品分野において、食肉や魚肉等の食品の品質を把握するための指標の一つとして、食品の脂質の含有率を把握することが求められている。
従来、食肉や魚肉等の食品の脂質の含有率は、生産者や流通業者等の経験を基に判断される場合が多い。しかし、作業者の経験によらず、定量的に脂質の含有率を把握するために、特許文献1(特開平9−15212号公報)では、コイルに電流を流すことで発生する磁界を利用して、ミンチ状の肉の脂質の含有率を測定している。
具体的には、特許文献1(特開平9−15212号公報)に開示された測定装置は、電磁誘導式導電率測定法を用いるものである。特許文献1(特開平9−15212号公報)の測定装置では、励磁コイルおよび検出コイルを有する検出部がミンチ状の肉に挿入され、励磁コイルに電流を流すことでミンチ状の肉に流れる誘導電流が検出コイルの計測値に基づいて測定され、計測された誘導電流に基づいてミンチ状の肉の脂質の含有率が測定される。
しかし、特許文献1(特開平9−15212号公報)の装置では、検出部を検査対象に接触させる必要があるため、食品衛生管理が困難になりやすい。また、検出部を検査対象に接触させる必要があるため、容器内に収容され、梱包された検査対象を、そのままの状態で検査することが困難である。
本発明の目的は、コイルに電流を流すことで発生する磁界を用いて検査物の脂質の含有率を推定する脂質含有率推定装置であって、衛生的に搬送中の検査物の脂質の含有率を把握することが可能な装置を提供することにある。
本発明に係る脂質含有率推定装置は、磁界発生部と、搬送部と、検出部と、推定部と、を備える。磁界発生部は、交番磁界を発生させる。搬送部は、交番磁界中を通過するように検査物を搬送する。検出部は、磁界を受信する2つの受信コイルを有し、検査物が交番磁界中を通過することで生じる、2つの受信コイルの受信する磁界の差を検出する。推定部は、検出部の検出結果に基づいて検査物の特性量を算出し、特性量を検査物の脂質の含有率に換算するための換算情報を用いて、検査物の脂質の含有率を推定する。磁界発生部および検出部は、搬送部により搬送される検査物と所定距離だけ離して配置される。
ここでは、磁界発生部により発生させられる交番磁界中を検査物が搬送されることで生じる2つの受信コイルの受信する磁界の差から、検査物の脂質の含有率に換算可能な、検査物の特性量が算出される。特に、ここでは、磁界発生部および検出部が、検査物と所定距離だけ離して配置される。この装置では、磁界発生部や検出部を検査物に接触させることなく検出される2つの受信コイルの受信する磁界の差から脂質の含有率を推定するため、衛生的に検査物の脂質の含有率を把握できる。また、この装置では、容器内に梱包されて搬送される検査物も、そのままの状態で検査物を検査でき、効率的に検査を行うことができる。さらに、この装置では、検査物が磁界発生部や検出部と非接触であるため、検査物を高速で搬送することが容易である。
さらに、この装置では、磁界発生部や検出部を検査物内に挿入する必要がないため、特許文献1(特開平9−15212号公報)の装置と異なり、検査物がミンチ状肉に限定されない。また、この装置では、磁界発生部や検出部を検査物内に挿入する必要がないため、搬送される検査物の脂質の含有率を連続的に推定することが容易である。
本発明に係る脂質含有率推定装置では、位相角を特性量として用いることが好ましい。なお、ここでの位相角は、例えば特許文献2(特許第3107875号)に記載の実効位相角と同じものである。
ここでは、検出部の検出結果に基づいて得られる検査物の特性量のうち、値を正確に算出することが比較的容易な位相角が、特性量として利用される。そのため、検査物の位相特性を利用して、脂質の含有率を正確に推定できる。
また、本発明に係る脂質含有率推定装置では、換算情報は、検査物と同じ条件の物品で、脂質の含有率が既知の、脂質の含有率の異なる複数のサンプルに対して特性量が検知され、検知されたサンプルの特性量と、サンプルの脂質の含有率と、が相関付けられることで取得されることが好ましい。
ここでは、同じ条件の物品のサンプルに対して、特性量と脂質の含有率との相関付けが行われているため、特性量から算出される脂質の含有率の精度を向上させることができる。なお、検査物と同じ条件の物品とは、ここでは、検査物と同じ種類で、同じ状態(冷凍状態、解凍状態等)にある物品を意味する。
また、本発明に係る脂質含有率推定装置では、交番磁界の周波数は、検査物の種類に応じて最適値が選定されることが好ましい。
ここでは、検査物の種類に応じて、脂質の含有率を推定する上で最適な交番磁界の周波数が選定されるため、特性量から算出される脂質の含有率の精度を向上させることができる。
また、本発明に係る脂質含有率推定装置では、検査物の脂質の含有率の推定結果に基づき、脂質の含有率の範囲別に定められた階級に、検査物を振り分ける振分部を更に備えることが好ましい。
ここでは、検査物の、脂質の含有率の推定から、脂質の含有率の範囲別に定められた階級への振り分けまでが自動化されるため、これらのプロセスにおける人為的なミスの発生を防止可能である。
本発明に係る脂質含有率推定装置では、磁界発生部や検出部を検査物に接触させることなく検出される2つの受信コイルの受信する磁界の差から脂質の含有率を推定するため、衛生的に検査物の脂質の含有率を把握できる。また、この装置では、容器内に梱包されて搬送される検査物も、そのままの状態で検査物を検査でき、効率的に検査を行うことができる。さらに、この装置では、検査物が磁界発生部や検出部と非接触であるため、検査物を高速で搬送することが容易である。
本発明の一実施形態に係る脂質含有率推定装置の概略図である。 図1の脂質含有率推定装置の検出機構の概略図である。 図1の脂質含有率推定装置のブロック図である。 図1の脂質含有率推定装置の信号処理部が、交番磁界中に検査物が存在することで生じる2つの受信コイルの受信する磁界の差に基づいて生成するベクトルの、大きさや方向を示す図の一例である。 図1の脂質含有率推定装置の信号処理部が、検査物が搬送コンベアにより搬送される時に検出される2つの受信コイルの受信する磁界の差に基づいて生成するベクトルの、時間的変化の軌跡を示す図の一例である。 図1の脂質含有率推定装置の位相特性算出部による、最小値位相角の算出処理のフローチャートである。 図1の脂質含有率推定装置の位相特性算出部により、検査物又はサンプルの最小値位相角の算出処理が行われる過程で得られる、位相特性グラフの一例である。 図1の脂質含有率推定装置のコントローラによる、換算情報の取得処理のフローチャートである。 図8の換算情報の取得処理により取得される換算情報の一例をグラフ化した図である。
以下、図面を参照して、本発明の一実施形態に係る脂質含有率推定装置100について説明する。なお、以下の実施形態は、本発明の実施形態の具体例であって、本発明の技術的範囲を限定するものではない。
(1)全体概要
脂質含有率推定装置100(図1参照)は、検査物の脂質の含有率を推定し、推定された脂質の含有率に基づいて、脂質の含有率の範囲別に定められた階級に検査物を振り分ける装置である。なお、検査物の脂質の含有率とは、検査物の全重量に対して脂質の重量が占める割合を意味する。
検査物は、例えば、冷凍されたフレーク状(薄片状)の牛肉である。ただし、検査物は、冷凍されている必要はなく、解凍された状態であってもよい。また、検査物はフレーク状に限定されるものではなく、ミンチ状や塊状であってもよい。また、検査物は、牛肉に限定されるものではなく、豚肉や羊肉のような各種畜肉や、鶏肉や、魚肉であってもよい。例えば、検査物は、加工さていない魚(魚全体)であってもよい。脂質含有率推定装置100は、脂質の含有率の推定の対象とする検査物の条件(検査物の種類や、検査物の状態)を変更して使用可能である。ただし、検査物の条件を変更する場合には、後述するように、対象となる検査物の条件のそれぞれに対して、検査物の特性量(後述する最小値位相角α)を検査物の脂質の含有率に換算するための換算情報が生成される。
ここでは、検査物は、容器Cの中に収容され梱包されている。容器Cは、例えばダンボール箱である。ただし、検査物が収容される容器Cは、ダンボール箱に限定されるものではない。また、検査物は、容器Cに収容されていなくてもよい。
脂質含有率推定装置100は、搬送コンベア10と、検出機構20と、振分機構50と、コントローラ60と、を主に備える(図1および図3参照)。検出機構20は、磁界発生コイル30と、検出部40と、を主に有する(図2参照)。
搬送コンベア10は、磁界発生コイル30が発生させる交番磁界中を通過するように、容器Cに梱包された検査物を搬送する。
検出機構20の磁界発生コイル30は、交番磁界を発生させる。検出機構20の検出部40は、磁界を受信する2つの受信コイル40a,40bを有し、検査物が交番磁界中を通過することで生じる、2つの受信コイル40a,40bの受信する磁界の差を検出する。
振分機構50は、コントローラ60が検出部40の検出結果に基づき推定した、検査物の脂質の含有率に基づいて、脂質の含有率の範囲別に定められた階級に、検査物(検査物の入った容器C)を振り分ける。振り分けられた検査物は、階級別に、異なるコンベア71,72,73,74(図1参照)により脂質含有率推定装置100の下流側の工程へと搬送される。
コントローラ60(図3参照)は、検出機構20および振分機構50の動作の制御や、各種演算を行う。例えば、コントローラ60は、検出機構20の検出部40の検出結果に基づいて、検査物の特性量として、後述する最小値位相角αを算出し、最小値位相角αを検査物の脂質の含有率に換算するための換算情報を用いて、検査物の脂質の含有率を推定する。また、コントローラ60は、検査物の脂質の含有率の推定結果に基づき、脂質の含有率の範囲別に定められた階級に応じて、異なるコンベア71,72,73,74により脂質含有率推定装置100の下流側の工程へと容器Cに梱包された検査物が搬送されるように、振分機構50の、後述する振分アーム51,52,53(図1参照)の動きを制御する。
(2)詳細構成
搬送コンベア10、検出機構20、振分機構50、およびコントローラ60について、詳細を説明する。
(2−1)搬送コンベア
搬送コンベア10は、搬送部の一例である。搬送コンベア10は、後述する磁界発生コイル30が発生させる交番磁界中を通過するように、検査物、より具体的には検査物が収容された容器C、を搬送する。搬送コンベア10は、図示しない駆動ローラによって無端状のベルト11(図2参照)を回転させながら、ベルト11上に載置された検査物の収容された容器Cを所定の方向へ搬送する(図2参照)。搬送コンベア10のベルト11は、検出部40の受信コイル40a,40b、および、磁界発生コイル30の内部を貫通するように配置される。搬送コンベア10は、受信コイル40a,40bおよび磁界発生コイル30の内部を通過するように検査物を搬送する。なお、磁界発生コイル30と、受信コイル40a,40bを有する検出部40とは、搬送コンベア10により搬送される検査物(検査物が収容された容器C)と所定距離だけ離して配置されている。そのため、検査物(検査物が収容された容器C)は、磁界発生コイル30および検出部40の受信コイル40a,40bと接触することがない。
(2−2)検出機構
検出機構20は、磁界発生コイル30と、検出部40とを含む。磁界発生コイル30は、交番磁界を発生させる。検出部40は、2つの受信コイル40a,40bを有し、交番磁界中を検査物が通過することで生じる、2つの受信コイル40a,40bの受信する磁界の差を検出する。
検出機構20は、交番磁界中に物品を通過させることで生じる2つの受信コイルの受信する磁界の差を検出して物品への金属の混入を検出する金属検出装置(例えば、特許文献3(特開2003−14866号公報))で利用される検出機構と同様の構造である。特に、ここでは、検出機構20は、検出部40の2つの受信コイル40a,40bの間に、磁界発生コイル30が挟まれ、磁界発生コイル30および受信コイル40a,40bの内部を検査物が搬送される、いわゆる同軸型の金属検出装置の検出機構と同様の構造である。
(2−2−1)磁界発生コイル
磁界発生コイル30は、交番磁界を発生させる磁界発生部の一例である。磁界発生コイル30は、設定された振幅および周波数の交流信号を発生する回路と電気的に接続されている。磁界発生コイル30は、回路が発生した交流信号により、交番磁界を発生させる。なお、後述するように、磁界発生コイル30が発生させる交番磁界の周波数は、検査物と同じ条件の物品のサンプルを用いて、検査物の特性量(後述する最小値位相角α)を検査物の脂質の含有率に換算するための換算情報が生成される際に、検査物の種類に応じて最適値が選定される。
(2−2−2)検出コイル
検出部40は、磁界を受信する2つの受信コイル40a,40bを有する(図2参照)。受信コイル40a,40bは、磁界発生コイル30の発生させる交番磁界中に配置される。検出部40は、磁界発生コイル30が発生させた交番磁界中を検査物が通過することで生じる、2つの受信コイル40a,40bの受信する磁界の差を検出する。
受信コイル40a,40bは、磁界発生コイル30と同軸上に配置される。言い換えれば、受信コイル40a,40bのコイルの軸は、磁界発生コイル30の軸と重なるように配置される。コイル30,40a,40bは、搬送コンベア10の搬送方向に沿って、受信コイル40a、磁界発生コイル30、受信コイル40bの順に配置される(図2参照)。受信コイル40a,40bは、受信コイル40aと磁界発生コイル30との距離と、受信コイル40bと磁界発生コイル30との距離と、が等しくなるように配置される。磁界発生コイル30が発生させる交番磁界中に検査物が存在しない状態では、受信コイル40a,40bには、磁束が等しく鎖交する。
受信コイル40a,40bは、差動接続されている。検出部40は、2つの受信コイル40a,40bの受信する磁界の差を、受信コイル40a,40bに誘起される起電力の差により検出する。検出部40は、検出結果(受信コイル40a,40bに誘起される起電力の差)を出力信号として後述するコントローラ60の信号処理部62aに送信する。
交番磁界中に検査物が存在しない状態では、両受信コイル40a,40bに誘起される起電力は等しく、検出部40の出力信号はゼロである。
一方、例えば、交番磁界中に磁性金属(例えば、鉄等)が存在すると、磁性金属は磁束を引きつけるため、交番磁界が乱れ、各受信コイル40a,40bが受信する磁界に差が生じる。また、例えば、交番磁界中に非磁性金属(例えば、アルミニウム等)が存在すると、非磁性金属に渦電流が流れることで交番磁界が乱れ、各受信コイル40a,40bが受信する磁界に差が生じる。交番磁界の乱れにより生じる、2つの受信コイル40a,40bが受信する磁界の差は、受信コイル40a,40bに誘起される起電力の差として検出され、出力信号として信号処理部62aに送信される。
また、交番磁界中に、検査物であるフレーク状の牛肉等が存在する場合にも、検査物中の成分(赤身に含まれている鉄分や、牛肉に含まれる塩分等の電解質等)の影響で、交番磁界に乱れが生じ、2つの受信コイル40a,40bが受信する磁界に差が生じる。検査物が存在することで生じる、2つの受信コイル40a,40bが受信する磁界の差(受信コイル40a,40bに誘起される起電力の差)は、マテリアルエフェクト、又は、プロダクトエフェクトと呼ばれる。
(2−3)振分機構
振分機構50は、コントローラ60により推定された検査物の脂質の含有率に基づいて、搬送コンベア10を搬送される検査物(検査物の収容された容器C)を振り分ける。具体的には、振分機構50は、コントローラ60により推定された検査物の脂質の含有率に基づき、脂質の含有率の範囲別に定められた階級に、検査物を振り分ける。例えば、本実施例では、脂質の含有率が30%以上をAランク、脂質の含有率が20%以上30%未満をBランク、脂質の含有率が10%以上20%未満をCランク、脂質の含有率が10%未満を不合格品と階級が規定されている。なお、ここで挙げた脂質の含有率の数値、階級の数、階級の分け方は、例示にすぎず、これに限定されるものではない。
振分機構50は、3つの振分アーム51,52,53を主に有する(図1参照)。搬送コンベア10の下方には、搬送コンベア10と交差する方向、特にここでは搬送コンベア10と垂直な方向に延びるコンベア71,72,73が配置されている。また、搬送コンベア10の下流側の端部には、搬送コンベア10と交差する方向、特にここでは搬送コンベア10と垂直な方向に延びるコンベア74が配置されている。振分アーム51,52,53は、後述するコントローラ60の振分機構制御部62eにより制御されて回動し、検査物の搬送方向を変化させるように構成されている。振分アーム51,52,53は、搬送コンベア10による搬送を妨げるように回動することで(図1の振分アーム53を参照)、検査物をコンベア71,72,73にそれぞれ導く。振分アーム51,52,53が搬送コンベア10による搬送を妨げるように回動しない場合には、搬送コンベア10は、コンベア74まで検査物を搬送する。
ここでは、コンベア71,72,73,74は、それぞれAランク、Bランク、Cランク、不合格品の階級に対応している。検査物は、コントローラ60による検査物の脂質の含有率の推定結果に基づき、脂質の含有率の範囲別に定められた階級に対応するコンベア71,72,73,74へと振り分けられる。
(2−4)コントローラ
コントローラ60は、CPU、ROM、RAM等を構成として有する。コントローラ60は、図3に示すように、記憶部61および制御部62を有する。
コントローラ60は、図3に示すように、搬送コンベア10、磁界発生コイル30、検出部40、および振分機構50に電気的に接続されている。コントローラ60は、搬送コンベア10、磁界発生コイル30、検出部40、および振分機構50の動作を制御する。また、コントローラ60は、タッチパネル式ディスプレイ70と電気的に接続されている。タッチパネル式ディスプレイ70は、入力部および出力部として機能する。具体的には、タッチパネル式ディスプレイ70には、検査物の脂質の含有率の推定結果や、脂質含有率推定装置100の各種設定等が出力される。また、タッチパネル式ディスプレイ70は、オペレータにより入力される各種設定や、後述する換算情報の取得時に使用されるサンプルの脂質の含有率の情報等の入力を受け付ける。
(2−4−1)記憶部
記憶部61は、制御部62により実行される各種プログラムや、脂質含有率推定装置100の各部を制御するための各種設定や各種情報を記憶する。記憶部61は、図3のように、ベクトル記憶領域61aと、換算情報記憶領域61bと、階級情報記憶領域61cと、を有する。
(2−4−1−1)ベクトル記憶領域
ベクトル記憶領域61aには、後述する換算情報生成時にサンプルを搬送コンベア10で搬送した時に、又は、検査物を搬送コンベア10で搬送した時に、所定期間に取得される検出部40の検出結果(出力信号)を、信号処理部62aが処理して作成するベクトルのデータが、そのサンプル又は検査物のデータとして記憶される。なお、ここでの所定期間は、サンプル又は検査物が、検出部40の上流側の受信コイル40aを通過し始めてから、検出部40の下流側の受信コイル40bを通過し終わるまでの期間である。ベクトル記憶領域61aに記憶されるデータは、時系列データである。ベクトル記憶領域61aに記憶されるデータの内容については、信号処理部62aによる出力信号の処理と併せて後ほど説明する。
(2−4−1−2)換算情報記憶領域
換算情報記憶領域61bには、後述する換算情報生成部62cにより生成された換算情報が記憶される。換算情報は、具体的には、検査物の特性量(ここでは、後述する検査物の最小値位相角α)を、検査物の脂質の含有率に換算するための関係式(換算式)である。換算情報については、換算情報生成部62cによる換算情報の生成処理と併せて後ほど詳述する。
(2−4−1−3)階級情報記憶領域
階級情報記憶領域61cには、検査物の脂質の含有率の範囲別に定められた階級に関する情報が記憶される。ここでは、例えば、階級情報記憶領域61cに、脂質の含有率30%以上がAランク、脂質の含有率20%以上30%未満がBランク、脂質の含有率10%以上20%未満がCランク、脂質の含有率10%未満が不合格品という情報が記憶される。階級情報記憶領域61cの記憶される情報は、例えば、タッチパネル式ディスプレイ70から入力される。
(2−4−2)制御部
制御部62は、コントローラ60が有する各種回路が動作することで、あるいは、記憶部61に記憶されたプログラムをCPUが実行することで、脂質含有率推定装置100の各部の動作を制御する。例えば、制御部62は、搬送コンベア10の搬送速度を、タッチパネル式ディスプレイ70から入力された設定速度に制御する。また、例えば、制御部62は、検査物の脂質の含有率の推定が行われる際に、磁界発生コイル30が、後述する換算情報の生成時に選定された周波数の交番磁界を発生するように制御する。また、例えば、制御部62は、振分機構50の振分アーム51,52,53の動きを制御する。制御部62は、振分アーム51,52,53の動きを制御する機能部として、振分機構制御部62eを有する(図3参照)。
また、制御部62は、記憶部61に記憶されたプログラムを実行することにより、検査物の脂質の含有率を推定する。制御部62は、特に検査物の脂質の含有率の推定に関連する機能部として、信号処理部62a、位相特性算出部62b、換算情報生成部62c、および含有率換算部62dを有する(図3参照)。
(2−4−2−1)信号処理部
信号処理部62aは、差動増幅器、検波回路、フィルタ回路等を有する。信号処理部62aは、検出部40の出力する2つの受信コイル40a,40bが受信する磁界の差に基づく信号、言い換えれば検出部40の出力する2つの受信コイル40a,40bに誘起される起電力の差に基づく信号、を受信する。そして、信号処理部62aは、受信信号を振幅検波した結果を実軸(R軸)の値、受信信号を位相検波した結果を虚軸(i軸)の値、とするベクトルを生成する。例えば、ある瞬間の検出部40の1の出力信号を用いれば、信号処理部62aによる処理の結果、図4に示すような、長さがAで、R軸に対して角度θだけ傾いたベクトルAejθが得られる。
換算情報生成時にサンプルを搬送コンベア10で搬送した際に、又は、検査物を搬送コンベア10で搬送した際に、サンプル又は検査物が受信コイル40aを通過し始めてから受信コイル40bを通過し終わるまでの期間に検出部40から送信されてくる出力信号を、信号処理部62aで処理すると、例えば図5に示すようなベクトルの軌跡がグラフとして得られる。あるサンプル又は検査物に対する検出部40の出力信号を信号処理部62aが処理した結果(図5のベクトルの軌跡のグラフの基礎となるベクトルのデータ)は、そのサンプル又は検査物に関する時系列情報として、ベクトル記憶領域61aに記憶される。
(2−4−2−2)位相特性算出部
位相特性算出部62bは、ベクトル記憶領域61aに記憶されたサンプル又は検査物のベクトルのデータに基づいて、そのサンプル又は検査物の特性量を算出する。ここでの特性量は、最小値位相角αである。なお、最小値位相角αは、特許文献2(特許第3107875号)に記載の実効位相角と同様のものである。
最小値位相角αについて説明する。
ある瞬間の検出部40の1の出力信号を用い、信号処理部62aによる処理の結果、図4に示すベクトルが得られたとする。そして、得られたベクトルの実数成分の絶対値を、2つの受信コイル40a,40bが受信する磁界の差を表す値として算出することを考える。図4のベクトルに対しては、2つの受信コイル40a,40bが受信する磁界の差を表す値として、|Acosθ|という値が得られる。
これに対し、図4のベクトルを、i軸と重なるように、図4中のαだけ反時計回りに回転させたとする。この場合にベクトルの実数成分の絶対値を算出すると、絶対値は|Acos(θ+α)|と表され、(θ+α)はπ/2であるので(図4参照)、ベクトルの実数成分の絶対値が0(最小)となる。この、ベクトルの実数成分の絶対値を最小とするためのα(回転角度)を、最小値位相角と呼ぶ。
ところで、換算情報生成時にサンプルを搬送コンベア10で搬送した際に、又は、検査物を搬送コンベア10で搬送した際に、サンプル又は検査物が受信コイル40aを通過し始めてから受信コイル40bを通過し終わるまでの期間に、検出部40から送信されてくる出力信号を、信号処理部62aで処理すると、実際には、図5に示すようなベクトルの軌跡が得られる。この場合には、全てのベクトルに対して、ベクトルの実数成分の絶対値が0となるような1の位相角を導出できない。
そこで、位相特性算出部62bは、図6のフローチャートに沿って最小値位相角αを求める。なお、前提として、最小値位相角αを求める対象物(サンプル又は検査物)を搬送コンベア10で搬送する際に検出部40から送信されてくる出力信号を、信号処理部62aで処理して得られるベクトルのデータとして、ベクトル記憶領域61aには、n個のベクトルAkjθk(k=1,2,・・・,n)が記憶されているものとする。
まず、ステップS1では、位相特性算出部62bは、aの値を−π/2にセットする。
次に、ステップS2では、位相特性算出部62bは、パラメータkの値を1にセットする。
次に、ステップS3では、位相特性算出部62bは、Vmaxの値を0にリセットする。
次に、ステップS4では、位相特性算出部62bは、ベクトル記憶領域61aに記憶されているn個のベクトルのうち、k番目のベクトルAkjθkを角度aだけ回転させ、実数成分の絶対値を算出する。言い換えれば、位相特性算出部62bは、|Akcos(θk+a)|を算出する。
次に、ステップS5では、位相特性算出部62bは、Vmaxの値と、ステップS4で算出した|Akcos(θk+a)|と、の大小比較を行う。Vmaxの値が|Akcos(θk+a)|より小さい場合にはステップS6に進み、Vmaxの値が|Akcos(θk+a)|以上の場合にはステップS7に進む。
ステップS6では、位相特性算出部62bは、Vmaxの値を、ステップS4で算出された|Akcos(θk+a)|の値に更新する。その後ステップS7に進む。
ステップS7では、位相特性算出部62bは、パラメータkの値がnであるかを判定する。パラメータkの値がnであればステップS9に進み、パラメータkの値がnでなければステップS8に進む。
ステップS8では、パラメータkの値を1加算する処理が行われる。その後ステップS4に戻り、ステップS8でkの値がnであると判定されるまで繰り返し処理が行われる。
ステップS9では、位相特性算出部62bは、現在のVmaxの値を、aに関連付けてV(a)として記憶する。
ステップS10では、位相特性算出部62bは、aの値がπ/2であるかを判定する。aの値がπ/2であればステップS12に進み、aの値がπ/2でなければステップS11に進む。
ステップS11では、aにΔaだけ加算する処理が行われる。その後ステップS2に戻る。Δaの値は、最小値位相角αを精度よく算出する上で適切な十分に小さな値に設定されている。
ステップS12では、位相特性算出部62bは、算出された全てのV(a)の中でV(a)の値が最小となるaの値を、最小値位相角αとして算出する。
つまり、上記の処理では、n個のベクトルAkjθk(k=1,2,・・・,n)を角度aだけ回転させた場合の実数成分の絶対値が算出され、その最大値V(a)が角度aの値を−π/2〜π/2で変化させながら角度a毎に算出され、その値が最小となる角度aが最小値位相角αとして算出される。最小値位相角αの算出処理を行う過程で得られる位相特性グラフは、例えば図7のように表される。図7でV(a)が最小となるaの値が、最小値位相角αとして算出される。
(2−4−2−3)換算情報生成部
換算情報生成部62cは、検査物の特性量(位相特性算出部62bにより算出される最小値位相角α)を、検査物の脂質の含有率に換算するための換算情報を生成する。
主に換算情報生成部62cにより実行される換算情報の生成処理について、図8のフローチャートを用いて説明する。
換算情報の生成処理は、ある条件の検査物に関して脂質の含有率の推定を開始する前に、事前に実行される。換算情報の生成処理は、タッチパネル式ディスプレイ70に換算情報の生成処理の実行指令が入力されると実施される。
換算情報の生成処理を行う際には、検査物と同じ条件の物品がサンプルとして用いられる。検査物と同じ条件の物品とは、検査物と同じ種類で、同じ状態(冷凍状態、解凍状態等)の物品を意味する。つまり、検査物が冷凍されたフレーク状の牛肉であれば、サンプルも冷凍されたフレーク状の牛肉である。なお、換算情報の生成処理には、脂質の含有率が既知で、それぞれの脂質の含有率が異なる複数のサンプルが用いられる。例えば、脂質の含有率が20%のサンプルと、脂質の含有率が80%サンプルとが準備される。なお、換算情報の生成処理に用いられるサンプルの個数は例示であり、サンプルは2個以上であればよい。また、ここで示した各サンプルの脂質の含有率の値は、例示に過ぎず、これに限定されるものではない。
ステップS101では、1のサンプルが搬送コンベア10により搬送され、そのサンプルが搬送コンベア10で搬送される際に検出部40に検出された2つの受信コイル40a,40bが受信する磁界の差(言い換えれば、受信コイル40a,40bに誘起される起電力の差)が、検出部40から出力信号として送信される。そして、検出部40が送信した出力信号が、信号処理部62aにより処理されることで得られるベクトルのデータが、ベクトル記憶領域61aに記憶される。
次に、ステップS102では、ベクトル記憶領域61aに記憶されている(ステップS101で得られた)ベクトルのデータを用いて、位相特性算出部62bにより最小値位相角αの算出処理が行われる。最小値位相角αの算出処理については、上述の通りである。
次に、ステップS103では、ステップS102で最小値位相角αを算出したサンプルの脂質の含有率が、タッチパネル式ディスプレイ70から入力され、換算情報生成部62cは、最小値位相角αの値と、サンプルの脂質の含有率とを相関付ける。
次に、ステップS104では、換算情報生成部62cは、準備された全てのサンプルについて、上記のステップS101からステップS103の処理が実行されたか否かを判定する。この判定は、例えば、ステップS101からステップS103の処理が実行された回数が、予め定められた回数に到達したか、又は、タッチパネル式ディスプレイ70から入力された回数に到達したかを判断することで実行される。ステップS104で、全てのサンプルについてステップS101からステップS103の処理が実行されたと判定された場合にはステップS105に進み、一部のサンプルについて処理が完了していないと判定された場合には、ステップS101に戻り、次のサンプルについてステップS101からステップS103の処理が実行される。
ステップS105では、換算情報生成部62cが相関付けを行った、脂質の含有率と最小値位相角αとの関係を図9のようにグラフ上にプロットし、隣接する点同士を線形補間することで、脂質の含有率と最小値位相角αとの関係式(ここでは一次式)を取得する。ここで得られる関係式が、最小値位相角αを、検査物の脂質の含有率に換算するための換算情報である。生成された換算情報は、換算情報記憶領域61bに記憶される。
なお、換算情報の生成処理の際には、磁界発生コイル30の交番磁界の周波数を複数変更しながら、それぞれの周波数について換算情報を取得する処理が実行される。その上で、その検査物の種類、および/又は、状態に応じて、最適な周波数が、磁界発生コイル30の交番磁界の周波数として選定される。選定は、コントローラ60により行われてもよいし、オペレータが選定した周波数が、タッチパネル式ディスプレイ70に入力されることで行われてもよい。そして、換算情報には、選定された周波数について取得された換算情報が用いられる。
なお、最適な周波数は、例えば、脂質の含有率の差に対して、最小値位相角αの値に大きな差が現れやすい周波数である。また、最適な周波数とは、例えば、最小値位相角αの時のベクトルの実数成分の絶対値の最大値(図7のV(a)の値)が、複数の周波数の中で最も小さな値となる周波数であってもよい。また、最適な周波数は、算出されるベクトルの実数成分の絶対値の最大値(図7のV(a)の値)が、最小値位相角αの近傍で大きく変化する周波数(最小値位相角α近傍で、ベクトルの実数成分の絶対値の最大値(図7のV(a)の値)の曲線が急峻になる周波数)である。
(2−4−2−4)含有率換算部
含有率換算部62dは、換算情報生成部62cにより換算情報が生成された後、検査物について位相特性算出部62bが算出した最小値位相角αを、換算情報記憶領域61bに記憶された換算情報(ここでは、最小値位相角αを、脂質の含有率の値に換算する一次式)を用いて脂質の含有率に換算する。例えば、換算情報記憶領域61bに記憶された換算情報をグラフにした場合、図9のように表されるとすると、最小値位相角αの値がβであれば、図9中のGβが、検査物の推定される脂質の含有率である。
(2−4−2−5)振分機構制御部
振分機構制御部62eは、階級情報記憶領域61cに記憶された脂質の含有率の範囲別に定められた階級に関する情報を用いて、ある検査物が、どの階級に属するかを判定し、検査物を階級別に振り分けるよう振分機構50を制御する。
具体的には、振分機構制御部62eは、ある検査物に対して含有率換算部62dが推定した脂質の含有率の値が、どの階級の脂質の含有率の範囲に含まれるかを、階級情報記憶領域61cに記憶された脂質の含有率の範囲別に定められた階級に関する情報を用いて判定する。そして、振分機構制御部62eは、その判定結果に基づいて、振分機構50の振分アーム51,52,53の動きを制御し、検査物を階級に応じたコンベア71,72,73,74に振り分ける。
本実施形態では、上記のように、階級情報記憶領域61cに、脂質の含有率30%以上がAランク、脂質の含有率20%以上30%未満がBランク、脂質の含有率10%以上20%未満がCランク、脂質の含有率10%未満が不合格品という情報が記憶されている。そこで、振分機構制御部62eは、ある検査物の脂質の含有率が30%以上であれば、振分アーム51を駆動して、その検査物をコンベア71に振り分ける。また、振分機構制御部62eは、ある検査物の脂質の含有率が20%以上30%未満であれば、振分アーム52を駆動して、その検査物をコンベア72に振り分ける。また、振分機構制御部62eは、ある検査物の脂質の含有率が10%以上20%未満であれば、振分アーム53を駆動して、その検査物をコンベア73に振り分ける。また、振分機構制御部62eは、ある検査物の脂質の含有率が10%未満であれば、振分アーム51,52,53をいずれも駆動させず、その検査物をコンベア74に振り分ける。なお、ここでは、検査物が搬送コンベア10により搬送されることを妨げることで、検査物がコンベア71,72,73に振り分けられるように、振分アーム51,52,53が搬送コンベア10のベルト11上に張り出すように動かされた状態を、振分アーム51,52,53が振分機構制御部62eにより駆動された状態と呼んでいる。
(3)特徴
(3−1)
本実施形態に係る脂質含有率推定装置100は、磁界発生部の一例としての磁界発生コイル30と、搬送部の一例としての搬送コンベア10と、検出部40と、推定部の一例としてのコントローラ60と、を備える。磁界発生コイル30は、交番磁界を発生させる。搬送コンベア10は、交番磁界中を通過するように検査物(検査物の収容された容器C)を搬送する。検出部40は、磁界を受信する2つの受信コイル40a,40bを有し、検査物が交番磁界中を通過することで生じる、2つの受信コイル40a,40bの受信する磁界の差を検出する。コントローラ60は、検出部40の検出結果に基づいて検査物の特性量(最小値位相角α)を算出し、特性量を検査物の脂質の含有率に換算するための換算情報を用いて、検査物の脂質の含有率を推定する。磁界発生コイル30および検出部40は、搬送コンベア10により搬送される検査物と所定距離だけ離して配置される。
ここでは、磁界発生コイル30により発生させられる交番磁界中を検査物が搬送されることで生じる2つの受信コイル40a,40bの受信する磁界の差から、検査物の脂質の含有率に換算可能な、検査物の特性量(最小値位相角α)が算出される。特に、ここでは、磁界発生コイル30および検出部40が、検査物と所定距離だけ離して配置される。
この脂質含有率推定装置100では、磁界発生コイル30や検出部40を検査物に接触させることなく検出される2つの受信コイル40a,40bの受信する磁界の差から脂質の含有率を推定するため、衛生的に検査物の脂質の含有率を把握できる。また、この脂質含有率推定装置100では、容器C内に梱包されて搬送される検査物も、そのままの状態で検査物を検査でき、効率的に検査を行うことができる。さらに、この脂質含有率推定装置100では、検査物(検査物の収容された容器C)が磁界発生コイル30や検出部40と非接触であるため、検査物を高速で搬送することが容易である。
さらに、この脂質含有率推定装置100では、磁界発生コイル30や検出部40を検査物内に挿入する必要がないため、特許文献1(特開平9−15212号公報)の装置と異なり、検査物がミンチ状肉に限定されない。また、この装置では、磁界発生コイル30や検出部40を検査物内に挿入する必要がないため、搬送される検査物の脂質の含有率を連続的に推定することが容易である。
(3−2)
本実施形態に係る脂質含有率推定装置100では、最小値位相角αを特性量として用いる。
ここでは、検出部40の検出結果に基づいて得られる検査物の特性量のうち、値を正確に算出することが比較的容易な最小値位相角αが、特性量として利用される。そのため、検査物の位相特性を利用して、脂質の含有率を正確に推定できる。
(3−3)
本実施形態に係る脂質含有率推定装置100では、換算情報は、検査物と同じ条件の物品で、脂質の含有率が既知の、脂質の含有率の異なる複数のサンプルに対して特性量(最小値位相角α)が検知され、検知されたサンプルの特性量と、サンプルの脂質の含有率と、が相関付けられることで取得される。
ここでは、同じ条件の物品のサンプルに対して、特性量と脂質の含有率との相関付けが行われているため、特性量から算出される脂質の含有率の精度を向上させることができる。
(3−4)
本実施形態に係る脂質含有率推定装置100では、交番磁界の周波数は、検査物の種類に応じて最適値が選定される。
ここでは、検査物の種類に応じて、脂質の含有率を推定する上で最適な交番磁界の周波数が選定されるため、特性量から算出される脂質の含有率の精度を向上させることができる。
(3−5)
本実施形態に係る脂質含有率推定装置100では、検査物の脂質の含有率の推定結果に基づき、脂質の含有率の範囲別に定められた階級に、検査物を振り分ける振分部の一例としての振分機構50を備える。
ここでは、検査物の、脂質の含有率の推定から、脂質の含有率の範囲別に定められた階級への振り分けまでが自動化されるため、これらのプロセスにおける人為的なミスの発生を防止可能である。
(4)変形例
以下に、上記実施形態の変形例を示す。以下の変形例は、互いに矛盾しない範囲で、他の変形例と組み合わされてもよい。
(4−1)変形例A
上記実施形態では、検出機構20として、磁界発生コイル30および受信コイル40a,40bの内部を検査物が搬送される、いわゆる同軸型の金属検出装置の検出機構と同様の構造を有するが、これに限定されるものではない。例えば、検出機構20は、磁界発生コイルと対向するように配置された2つの検出用のコイルとの間を検査物が搬送される、いわゆる対向型の金属検出装置の検出機構と同様の構造を有していてもよい。
(4−2)変形例B
上記実施形態では、換算情報は、最小値位相角αと脂質の含有率とを相関付けた一次式としたが、これに限定されるものではない。例えば、換算情報は、最小値位相角αと脂質の含有率とを相関付けた、二次以上の次数の関係式であってもよい。
また、換算情報は、関係式である必要はなく、最小値位相角と脂質の含有率とを相関付けた換算マップであってもよい。この場合には、含有率換算部62dは、関係式に最小値位相角αの値を代入する代わりに、検査物に対して得られた最小値位相角αを換算マップに当てはめることで、検査物の脂質の含有率を推定すればよい。
(4−3)変形例C
上記実施形態では、検査物の特性量として最小値位相角αを用いたが、これに限定されるものではない。例えば、図7におけるV(a)の値が最大となる時のaの値が、検査物の特性量として用いられてもよい。なお、検査物の特性量には、脂質の含有率の違いにより特性量の値に比較的大きな差が生じやすい量が利用されることが望ましい。
(4−4)変形例D
上記実施形態では、コントローラ60の含有率換算部62dは、換算情報生成部62cにより生成された換算情報を用いて、最小値位相角αの値を脂質の含有率に換算するがこれに限定されるものではない。例えば、換算情報は、タッチパネル式ディスプレイ70から入力される情報であってもよく、予めコントローラ60の記憶部61に記憶されている情報であってもよい。
(4−5)変形例E
上記実施形態では、検査物の種類に応じて、磁界発生コイル30の交番磁界の最適周波数を選定しているが、これに限定されるものではなく、交番磁界の周波数は一定としてもよい。ただし、検査物の種類に応じて、脂質の含有率の測定を行う上で最適な周波数が選定されることがより望ましい。
(4−6)変形例F
上記実施形態では、脂質の含有率の範囲別に定められた階級に応じて、振分機構50により4つのコンベア71,72,73,74に検査物が振り分けられるが、これに限定されるものではない。振分機構50は、脂質の含有率に基づく階級に応じて、2つ又は3つ、あるいは5つ以上のコンベアに検査物を振り分けても良い。
また、振分機構50によりコンベア71,72,73,74に検査物を振り分けることに代えて、あるいは、振分機構50によりコンベア71,72,73,74に検査物を振り分けることに加えて、コントローラ60は、検査物の階級に応じて検査物の単価を判定し、検査物の重量情報と組合せて用いることで、検査物の価格ラベルを印字するように構成されてもよい。
(4−7)変形例G
上記実施形態では、振分機構50は振分アーム51,52,53を駆動することで検査物の振り分けを行うが、振り分けのための機構は、これに限定されるものではなく、各種の振り分けのための機構を適用可能である。
(4−8)変形例H
上記実施形態では、脂質含有率推定装置100は、専ら検査物の脂質の含有率を推定するが、検査物への金属の混入を併せて検出するものであってもよい。
本発明の脂質含有率推定装置は、衛生的に搬送中の検査物の脂質の含有率を把握することが可能な装置として有用である。
10 搬送コンベア(搬送部)
30 磁界発生コイル(磁界発生部)
40 検出部
40a,40b 受信コイル
50 振分機構(振分部)
60 コントローラ(推定部)
100 脂質含有率推定装置
特開平9−15212号公報 特許第3107875号 特開2003−14866号公報

Claims (4)

  1. 交番磁界を発生させる磁界発生部と、
    前記交番磁界中を通過するように検査物を搬送する搬送部と、
    磁界を受信する2つの受信コイルを有し、前記検査物が前記交番磁界中を通過することで生じる、2つの前記受信コイルの受信する磁界の差を検出する検出部と、
    前記検出部の検出結果に基づいて前記検査物の特性量を算出し、前記特性量を前記検査物の脂質の含有率に換算するための換算情報を用いて、前記検査物の脂質の含有率を推定する推定部と、
    を備え、
    前記磁界発生部および前記検出部は、前記搬送部により搬送される前記検査物と所定距離だけ離して配置され、
    前記推定部は、位相角を前記特性量として用いる、
    脂質含有率推定装置。
  2. 前記換算情報は、前記検査物と同じ条件の物品で、脂質の含有率が既知の、脂質の含有率の異なる複数のサンプルに対して前記特性量が検知され、検知された前記サンプルの前記特性量と、前記サンプルの脂質の含有率と、が相関付けられることで取得される、
    請求項1に記載の脂質含有率推定装置。
  3. 前記交番磁界の周波数は、前記検査物の種類に応じて最適値が選定される、
    請求項1又は2に記載の脂質含有率推定装置。
  4. 前記検査物の脂質の含有率の推定結果に基づき、脂質の含有率の範囲別に定められた階級に、前記検査物を振り分ける振分部を更に備える、
    請求項1からのいずれか1項に記載の脂質含有率推定装置。
JP2014030080A 2014-02-19 2014-02-19 脂質含有率推定装置 Active JP6321397B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014030080A JP6321397B2 (ja) 2014-02-19 2014-02-19 脂質含有率推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014030080A JP6321397B2 (ja) 2014-02-19 2014-02-19 脂質含有率推定装置

Publications (2)

Publication Number Publication Date
JP2015155805A JP2015155805A (ja) 2015-08-27
JP6321397B2 true JP6321397B2 (ja) 2018-05-09

Family

ID=54775202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014030080A Active JP6321397B2 (ja) 2014-02-19 2014-02-19 脂質含有率推定装置

Country Status (1)

Country Link
JP (1) JP6321397B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2570500B1 (fr) * 1984-09-20 1987-03-20 Siderurgie Fse Inst Rech Procede et dispositif de detection de defauts typiques sur un produit en defilement, notamment pour la detection de criques sur une brame
JPH0915212A (ja) * 1995-07-03 1997-01-17 Dkk Corp ミンチ状肉の脂肪含有率測定方法及び装置、並びに導電率検出器
JP3789618B2 (ja) * 1997-10-17 2006-06-28 味の素株式会社 金属検出装置とその検出異常調査方法および金属検出装置を用いた被検体の主体特性変化調査方法
JP4231171B2 (ja) * 1999-11-02 2009-02-25 株式会社大阪チタニウムテクノロジーズ 半導体の電気抵抗率測定方法
JP3422326B2 (ja) * 2001-04-27 2003-06-30 三菱住友シリコン株式会社 半導体材料の電気抵抗率測定方法
JP3722219B2 (ja) * 2003-03-06 2005-11-30 アンリツ産機システム株式会社 金属検出装置

Also Published As

Publication number Publication date
JP2015155805A (ja) 2015-08-27

Similar Documents

Publication Publication Date Title
JP4913386B2 (ja) 食品品質の自動検査装置および検査方法
CN104735972A (zh) 用于确定液体性质的系统和方法
CN105707197B (zh) 脂肪/肉分级方法和系统
Santos et al. A fast and non-destructive method to discriminate beef samples using TD-NMR
US11035808B2 (en) NMR-based non-invasive and quantitative food attribute measurement apparatus and method
CN103592339B (zh) 用于检测产品中的金属污染物的设备和方法
CN109341823A (zh) 基于视频图像的料流实时检测装置
CN105372299A (zh) 一种快速测定猪肉新鲜度的检测方法
JP5898472B2 (ja) 物品検査装置
JP6321397B2 (ja) 脂質含有率推定装置
JP3177557U (ja) 金属異物検知装置
WO2018144440A1 (en) Eddy current pipeline inspection using swept frequency
JP4141987B2 (ja) 金属検出機
JP2015155830A (ja) 脂質含有率測定装置
JP6652944B2 (ja) 食品検査装置及び食品検査方法
McCarthy et al. Magnetic resonance imaging and nuclear magnetic resonance spectroscopy
JP6077764B2 (ja) 物品検査装置
Di Caro et al. Using a SVD-based algorithm for T 2 spectrum calculation in TD-NMR application to detect hidden defects in hazelnuts
CN109739274A (zh) 一种二氧化碳浓度控制装置及控制方法、终端
US6228404B1 (en) Method and apparatus for determining the lean content of meat products
WO2018056257A1 (ja) 光検査装置及び光検査システム
Wu et al. Laboratory evaluation of microwave Doppler velocimeter for solid flow measurements
JP6046940B2 (ja) 物品検査装置
Yao et al. Nondestructive inspection of melon's sugar content based on impedance characteristics
Zhan et al. A novel method for parametric estimation of 2D geometrical theory of diffraction model based on compressed sensing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180405

R150 Certificate of patent or registration of utility model

Ref document number: 6321397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150