JP6316173B2 - 荷電粒子ビーム発生装置、荷電粒子ビーム照射装置、粒子線治療システムおよび荷電粒子ビーム発生装置の運転方法 - Google Patents

荷電粒子ビーム発生装置、荷電粒子ビーム照射装置、粒子線治療システムおよび荷電粒子ビーム発生装置の運転方法 Download PDF

Info

Publication number
JP6316173B2
JP6316173B2 JP2014236712A JP2014236712A JP6316173B2 JP 6316173 B2 JP6316173 B2 JP 6316173B2 JP 2014236712 A JP2014236712 A JP 2014236712A JP 2014236712 A JP2014236712 A JP 2014236712A JP 6316173 B2 JP6316173 B2 JP 6316173B2
Authority
JP
Japan
Prior art keywords
particle beam
charged particle
timing
completion
accelerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014236712A
Other languages
English (en)
Other versions
JP2016100209A5 (ja
JP2016100209A (ja
Inventor
和典 津布久
和典 津布久
真澄 梅澤
真澄 梅澤
尚 伊賀
尚 伊賀
晃司 飛永
晃司 飛永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014236712A priority Critical patent/JP6316173B2/ja
Priority to US14/926,501 priority patent/US9596746B2/en
Publication of JP2016100209A publication Critical patent/JP2016100209A/ja
Publication of JP2016100209A5 publication Critical patent/JP2016100209A5/ja
Application granted granted Critical
Publication of JP6316173B2 publication Critical patent/JP6316173B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/001Arrangements for beam delivery or irradiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/01Devices for producing movement of radiation source during therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1068Gating the beam as a function of a physiological signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • H01J37/1475Scanning means magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3005Observing the objects or the point of impact on the object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3178Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for applying thin layers on objects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/04Synchrotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/08Arrangements for injecting particles into orbits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons

Description

本発明は、荷電粒子ビーム発生装置、荷電粒子ビーム照射装置、粒子線治療システムおよび荷電粒子ビーム発生装置の運転方法に関する。
直線加速器の運転周期に対する最短周期制限を維持したまま円形加速器に対する荷電粒子ビームの入射を任意のタイミングで行うことを可能として照射時間を短縮し、治療時間を短くするために、特許文献1では、加速器制御装置はビーム利用系制御装置からのビーム出射要求信号によりシンクロトロンの運転を制御し、制御装置はシンクロトロンの出射完了後に次の運転サイクルの入射タイミングを知らせるタイミング信号を発生し、直線加速器の運転タイミングを変更して入射タイミングに合致させる発明が記載されている。
特許5456562号
シンクロトロンなどのリング状の円形加速器には、その前段として荷電粒子の加速・入射用の直線加速器(LINAC:Linear Accelerator)が用いられる。直線加速器は、イオン源で発生した荷電粒子を加速し、所定のエネルギーまで加速した後に円形加速器に入射するものである。円形加速器でさらに高いエネルギーまで加速された粒子は例えばがんなどの患者の患部に荷電粒子ビームを照射する粒子線治療に用いられる。
粒子線治療用の円形加速器への荷電粒子入射用の直線加速器の運転は、加速用に高周波の電圧を用いることが知られており、それを発生する高周波電源装置が備わっている。
したがって直線加速器の運転周期はこれら高周波電源の運転周期で定まり、その周期の最小値は例えば、0.5秒(周波数2Hz)や、0.2秒(周波数5Hz)、0.33秒(周波数30Hz)となっている。
直線加速器の運転周期が固定になっている、または最短周期に制限がある理由は以下のとおりである。
高周波電源の運転周期を大きく、例えば固定周期や最短周期の3、4倍まで大きくすると、その動作や高周波特性に定常的な動作から逸脱した不安定性が生じてビーム特性に影響を与える。
また、高周波電源の周期を小さく、例えば固定周期や最短周期の数分の1まで小さくすると、高周波電源や高周波機器の熱負荷等が大きくなり不安定性が生じてビーム特性に影響を与えることなどが知られている。運転周期を小さくした場合の熱負荷については、その熱による機器の故障もあり得るので、機器を保護するために運転間時間(運転周期)を長く取る、すなわち最短周期に制限を加えざるを得ない。また、運転周期は小さければ小さいほど装置の寿命が短くなる傾向がある。
一方、円形加速器で加速された荷電粒子ビームを粒子線治療に用いる場合には、患者の呼吸や心拍などによって患部の位置が変化することがあり、患部が設定位置にあるときのみ荷電粒子ビームを出射するような円形加速器の制御がある。
しかしながら、このような任意のタイミングで円形加速器への入射を試みた場合、その前段加速器である入射器の運転周期が固定あるいは最短周期に制限があるため、入射を試みたタイミングより最長でその1運転周期分に相当する待ち時間が必要となり、所望の円形加速器の運転が不可能になること、またその待ち時間分だけ照射時間が長くなり患者への負担が大きくなることが考えられる。
また、荷電粒子ビームを粒子線治療に用いる場合、患部を深さ方向の層状に分割し、その層内を患部形状に合致させて荷電粒子ビームを走査し、層内の照射の完了後に円形加速器から出射される荷電粒子ビームのエネルギーを変更しながら照射する方法がある。
このような照射では、円形加速器において照射対象の層を変更する場合には前段加速器へのビーム出射信号を送り荷電粒子を加速するが、前段加速器の運転周期が固定あるいは最短周期に制限があった場合、入射を試みたタイミングより最長でその1運転周期分に相当する待ち時間が必要となり、所望の円形加速器の運転が不可能になること、またその待ち時間分だけ照射時間が長くなり患者への負担が大きくなることが考えられる。
従来の入射用直線加速器では上記のように運転周期が固定あるいは最短周期に制限があることから、円形加速器からのビーム要求タイミングに対して最長でその1運転周期分に相当する待ち時間が必要となっていた。したがって、円形加速器で生成される高エネルギーの荷電粒子ビームを粒子線治療に用いる場合において、患者の動きに同期した運転のため、あるいは患部を複数の層や領域に分割した照射に対する運転のための円形加速器の運転に制限が生じる、また患者に対する照射時間が長くなってしまい患者の負担が大きくなる、治療設備における単位時間当たりの治療可能患者数が減少してしまうという問題点があった。
一方、入射用直線加速器において任意のタイミングでビームを利用可能とするためには、その運転周期を可変とする、特に高周波電源の運転間時間、すなわち運転周期を短縮化する必要が出てくる。しかし、その影響で直線加速器の動作やビーム特性に不安定性が発生すること、また高周波電源や高周波機器の熱負荷等により機器が正常に動作しなくなることが予想され、その対策として高周波電源の高性能化、直線加速器の大型化が必要となるという問題点があった。
更に、特許文献1に記載のような技術では、直線加速器の運転周期が次の運転サイクルの入射タイミングを知らせるタイミング信号発生から入射までの時間より長い場合、もとの入射器高周波運転タイミングを維持しながらシンクロトロン側で入射タイミングを待つことになる。そのため、直線加速器の運転周期を可能な限り短くしておかなければ、例えば次のような状況が頻発する恐れがある。次の運転サイクルの入射タイミングを知らせるタイミング信号が直線加速器の運転周期における前回のパルスの直後であった場合に、リサンプルした後の直線加速器の運転周期における次のパルスが到達する前にビームリクエスト(シンクロトロンのビーム要求)が到達してしまい、ビーム供給が間に合わずに待ち時間が発生してしまうとの問題点があった。
本発明は、直線加速器の通常の運転周期をできるだけ最短周期より大きく取ると同時にビームの安定性を確保し、円形加速器に対する荷電粒子ビームの入射を任意のタイミングで行うことが可能な荷電粒子ビーム発生装置、荷電粒子ビーム照射装置、粒子線治療システムおよび荷電粒子ビーム発生装置の運転方法を提供することを目的とする。
上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、所定の運転周期で動作し、イオン源から出射される荷電粒子を加速して荷電粒子ビームを出射する直線加速器と、荷電粒子ビームの入射、加速、出射、減速工程の各期間を含む運転周期で動作し、前記直線加速器で加速された前記荷電粒子ビームを予め定めたタイミングで入射し、加速後に出射するリング状の円形加速器と、この円形加速器の運転周期における荷電粒子ビームの出射工程完了後に、出射工程完了後タイミング信号を発生し、この出射工程完了後タイミング信号に基づいて前記直線加速器を停止させ、次の運転の開始タイミングを知らせるシンクロトロンパターン開始信号を発生し、このシンクロトロンパターン開始信号に基づいて前記直線加速器の所定の運転周期の動作および前記直線加速器の動作を開始させる制御装置とを備えたことを特徴とする。
本発明によれば、直線加速器の円形加速器に対する荷電粒子ビームの入射を任意のタイミングで行うことができ、ビームを安定させ、装置寿命を延長し、照射時間を短縮し、若しくは、治療時間を短くすることができる。
本発明の第1の実施形態である荷電粒子ビーム照射装置の全体概略構成を示す図である。 本発明の第1の実施形態である荷電粒子ビーム照射装置の動作の一例を示すタイミングチャートである。 本発明の第1の実施形態である荷電粒子ビーム照射装置のシンクロトロンの運転パターンの詳細を示す図である。 本発明の第1の実施形態である荷電粒子ビーム照射装置の動作の他の例を示すタイミングチャートである。 本発明の第1の実施形態である荷電粒子ビーム照射装置のシンクロトロンの運転パターンにおいて、出射時の励磁レベルによる動作の相違を示した図である。 本発明の第1の実施形態である荷電粒子ビーム照射装置の加速器制御装置の詳細を示す図である。 本発明の第2の実施形態である荷電粒子ビーム照射装置の全体概略構成を表す図である。 本発明の第2の実施形態である荷電粒子ビーム照射装置の照射装置の構成を示す図である。 本発明の第2の実施形態である荷電粒子ビーム照射装置の照射対象である患部の深さ方向の特定層に設定された線量区画およびビームの走査経路を示す図である。 本発明の第3の実施形態である荷電粒子ビーム照射装置の全体概略構成を表す図である。 本発明の第3の実施形態である荷電粒子ビーム照射装置の患部移動検出信号とビーム照射可能信号の関係を示した図である。
以下、本発明の好適な実施形態を図面を用いて説明する。
<第1の実施形態>
図1は、本発明の第1の実施形態における荷電粒子ビーム発生装置を備えた荷電粒子ビーム照射装置の全体構成を示す概略図である。
本実施形態における荷電粒子ビーム照射装置は、荷電粒子ビームを発生してシンクロトロン(リング状の円形加速器)200への入射に必要なエネルギーまで加速する入射器システム100、入射器システム100にて生成した荷電粒子ビームをシンクロトロン200まで輸送する入射輸送系130、入射した荷電粒子ビームを所望のエネルギーまで加速する上述のシンクロトロン200、シンクロトロン200で加速した荷電粒子ビームを利用するビーム利用系500、加速器制御装置(制御装置又は第2制御装置)210およびビーム利用系制御装置(第1制御装置)400で構成される。
入射器システム100は、荷電粒子を発生させるイオン源101とその電源102、発生した荷電粒子を加速する直線加速器111とその加速用パルス電圧を生成する高周波電源112、入射器制御装置120から構成される。
シンクロトロン200は、偏向電磁石201、高周波加速空胴202、ビーム出射機器203,205、入射に用いられる入射機器204などから構成される。
入射器システム100やシンクロトロン200は加速器制御装置210により制御され、ビーム利用系500の制御装置400からのビーム出射要求信号、シンクロトロンの運転パターンの移行を要求する次パターン移行要求信号、シンクロトロンから出射されるエネルギーを変更させるエネルギー切り替え要求信号などに基づき動作する。
入射器システム100とシンクロトロン200と加速器制御装置210は荷電粒子ビーム発生装置を構成する。
図2に典型的な動作のタイミングチャートを示す。図2(a)はビーム利用系制御装置400から生じるビーム利用系出射要求信号を示し、ビーム利用系で必要な条件の荷電粒子ビームを要求する。図2(b)はシンクロトロン200の運転パターンである電磁石励磁パターンの代表として偏向電磁石201の励磁パターンを示し、入射工程、加速工程、出射工程、減速工程からなる。シンクロトロン200はこれらの工程の各期間を含む時間を1運転周期(1運転サイクル)として動作する。
このシンクロトロンの電磁石励磁パターンについての詳細を図3に示す。図3において、入射タイミングは、直線加速器111で加速した荷電粒子ビームをシンクロトロン200に入射するタイミングであり、この入射タイミング以降、入射工程、加速工程を経て出射工程が開始されるまでの間、および出射工程が完了してから、減速工程を経てシンクロトロンパターン完了の後に次サイクルの入射タイミングに至るまでの間は電磁石励磁パターンとそれに対応した高周波加速や減速の制御が同期している。入射タイミング、入射工程、加速工程、減速工程中のパターンや時間はパターン作成時に予め定めておく。
一方、直線加速器111の高周波運転は図2(c)に示す周期(ここで運転周期をTLINACとする)で行われる。図2(c)において「入射器高周波運転」は直線加速器111の高周波運転周期を意味する。以下の説明で「入射器高周波運転」という場合も同様である。
図2において、シンクロトロン200の運転周期がこの入射器運転周期TLINACと一致、もしくはTLINACの整数倍となっていれば、シンクロトロン200の入射タイミングと直線加速器111からビームを供給可能なタイミング(直線加速器111の運転タイミング)が一致し、問題なく入射可能となる。
しかし、図2(a)に示したようなビーム利用系500からの出射要求信号の時間が不定期な場合や、その時間が定期的であってもシンクロトロン200の運転周期が入射器運転周期TLINACの整数倍となっていない場合は、シンクロトロン200の運転上必要な入射タイミングに入射器運転周期が合致せず、入射工程でシンクロトロン側が待機する待ち時間が発生する。
そこで、本実施形態では、シンクロトロン200の運転中、出射完了以降のタイミングで出射工程完了後タイミング信号を発生させ、この出射工程完了後タイミング信号に基づいて直線加速器111の高周波運転を停止する。そしてマスタ信号(シンクロトロンパターン開始信号)の入力を受けたら直線加速器111の高周波運転を開始し、シンクロトロン200の入射タイミングと直線加速器111からビームを供給可能なタイミング(直線加速器111の運転タイミング)を一致させる。図2(d)に実際のビーム入射タイミングを示す。
ここで、図2に示す通り、シンクロトロン200運転中に発生させる出射工程完了後タイミング信号から次のシンクロトロン運転周期の入射タイミングまでの時間をT’LINACとする。また、T”LINACは、出射工程完了後タイミング信号直前の運転パルス(エージングパルス含む)から、次の入射タイミングまでの時間を示す。
出射工程完了後タイミング信号の発生タイミングは、出射完了後から次の運転サイクルの入射タイミングに至るまでの間のうち、直前のエージングパルスから次のマスタ信号との間の時間が許容できる最大周期と最短周期の間に収まるタイミングを適宜選択し設定することができる。また、出射OFFタイミング信号や減速開始タイミング信号、減速完了タイミング信号等の既存のタイミング信号を利用してもよい。例えば、図2に示した例は、出射工程完了後タイミング信号の発生タイミングは減速開始タイミング信号と一致したタイミングのケースであり、直線加速器111の運転周期T”LINACは出射工程完了後タイミング信号の発生直前のエージングパルスからマスタ信号発生までの時間が長くなっている。
この出射工程完了後タイミング信号の発生タイミングは、炭素等の陽子より重い重粒子線の発生装置の場合は減速開始のタイミング(出射工程完了後タイミング信号は減速開始タイミング信号を用いることが好都合である)、陽子線の発生装置の場合は減速完了のタイミング、等に設定することが望ましい。しかし、荷電粒子ビーム発生装置やビーム利用系500の条件や照射条件に合わせて、例えばスポット線量満了、1スピル終了、減速開始、減速中、減速完了等の任意のタイミングで適宜選択し、設定すればよい。なお、1スピルとは、走査経路を複数回走査(マルチペイント)するビームの走査方法において、ビームの1回のビーム取出し時間のことをいう。
マスタ信号(シンクロトロンパターン開始信号)の発生タイミングは、減速開始タイミングの所定時間経過後や、減速完了後の所定時間経過後、加速制御開始タイミング信号の所定時間前、ビーム利用系出射要求信号の所定時間前、等、荷電粒子ビーム発生装置の構成に応じて適宜設定される。また、次の運転の開始タイミングを知らせる既存のタイミング信号を利用してもよい。
なお、本実施形態の運転制御の方法では、直線加速器111の運転停止後から次の運転開始までの運転周期T’LINACは、もともとの直線加速器111の基本周期TLINACに比べて大きくなる場合と短くなる場合がある。以下図4を参照してより具体的に説明する。
なお、上述のように、直線加速器111の運転周期を短くすると直線加速器111は安定するが消耗が早くなる。また、運転周期を長くすると直線加速器111は不安定になるが消耗が遅くなる。この間で許容可能な運転周期のことを運転可能周期と称する。この運転可能周期は、直線加速器111の構成に依存する値となっており、例えば、直線加速器111の基本周期(運転可能周期)は0.05〜5ecの間とする。また、シンクロトロン200の運転周期は2〜60secの間とする。
図4(a)に示すように、図4(a)における太線で示すシンクロトロンからのビーム出射中であっても、患部が移動するなどの理由で、図4(a)における細線に示すようにシンクロトロンからのビーム出射を止めることがある。
また、直線加速器111の運転周期TLINACも、加速対象となる粒子の核種(例えば陽子、炭素)や加速後のエネルギーに応じて高周波電源の容量や高周波周波数も異なるため、シンクロトロン200の運転周期と入射器運転周期TLINACとの関係は固定できない。
例えば、図5に示す通り、出射時のエネルギーが異なる、すなわちパターン電磁石励磁パターンの励磁レベルが図5(a),(b),(c)のように異なり、また減速工程中の電流変化率を一定とした場合、減速工程の時間がエネルギーによって異なるため、出射工程完了後タイミング信号を減速開始タイミング信号に一致させるとしても、取り得るタイミングが各々タイミング(a),タイミング(b),タイミング(c)と示したように異なり、出射工程完了後タイミング信号の発生から入射までの時間TもTa1,Tb1,Tc1と異なる。
同様に、出射時のエネルギーが異なり、また加速工程中の電流変化率を一定とした場合にも、加速工程の時間がエネルギーによって異なるため、出射タイミングが異なり、マスタ信号の発生から出射開始までの時間も異なる。
そのため、シンクロトロン200の運転上必要な入射タイミングに入射器運転周期が合致せず、何も対策を施さなければ入射工程でシンクロトロン側が待機する待ち時間が発生することとなる。
このような場合も、上述のように出射工程完了後タイミング信号に基づいて直線加速器111の高周波運転を停止し、マスタ信号の入力を受けたら直線加速器111の高周波運転を開始し、シンクロトロン200の入射タイミングと直線加速器111からビームを供給可能なタイミングを一致させる。
このような場合に、図4(b)に示すように直線加速器111のパルス運転基本周期Tを3secとした場合、出射工程完了後タイミング信号の発生タイミングによってT”LINACは短くなったり長くなったりする。これに対し、図4(c)に示すような直線加速器111のパルス運転基本周期Tを1.5secとした場合や、図4(d)に示すような直線加速器111のパルス運転基本周期Tを1secとした場合、図4(e)に示すような直線加速器111のパルス運転基本周期Tを0.5secとした場合のように、パルス運転基本周期TLINACの設定によってはT”LINACが長くなる場合のみのこともある。このように直線加速器111の運転停止後から次の運転開始までの運転周期T”LINACが変動することにより、シンクロトロン200の入射タイミングに合致して直線加速器111からビームを供給することが可能となる。また、運転周期の変動も一部分であり、大部分は基本運転周期で運転できるため、直線加速器111からのビームの安定性を維持することができる。
また、本実施例の制御方法を採用することで、図4(b)のように基本周期TLINACを長めに設定し、直線加速器111の装置寿命を延長することができると同時に、治療時間を短縮するためのシンクロトロンへのビーム供給応答性を維持することができる。
なお、図2および図4において、マスタ信号で発生させたシンクロトロン200へのビーム入射に用いる直線加速器111の運転パルス以外の運転パルスは、直線加速器111のコンディションを整えるために発生させるエージング用パルスである。
本実施形態では、加速器制御装置210は、ビーム利用系500(照射装置)から要求された期間にのみ荷電粒子ビームを出射するようシンクロトロン200の運転周期における荷電粒子ビームの出射工程においてシンクロトロン200の出射機器203,205を制御する第1制御装置、および出射機器203,205の制御によるシンクロトロン200の運転周期における荷電粒子ビームの出射工程完了後に出射工程完了後タイミング信号を発生させ、この出射工程完了後タイミング信号に基づいて直線加速器111の高周波運転を停止し、マスタ信号に基づき直線加速器111の高周波運転を開始し、シンクロトロン200の入射タイミングと直線加速器111からビームを供給可能なタイミングを一致させる第2制御装置を構成する。
次に、図2に示した本実施例の運転制御の方法を実現する加速器制御装置210の詳細を、図6を用いて説明する。
加速器制御装置210は、図3に示したようなシンクロトロン200の電磁石励磁パターンや、それに付随する加速や出射準備のタイミング、減速のタイミング、マスタ信号の発生タイミング、そして出射工程完了後タイミング信号の発生タイミングといったタイミングを含む各種の制御パラメータを記憶する制御パターン・タイミング記憶部211を備える。ここで、出射工程完了後タイミング信号の発生タイミングは、出射完了後から次の運転サイクルの入射タイミングに至るまでの間のうち、直前のエージングパルスから次のマスタ信号との間の時間が許容できる最大周期と最短周期の間に収まる時点として、他のタイミング信号に関連付けて記憶される。
制御パターン・タイミング記憶部211は電磁石電源制御部213に接続され、シンクロトロン200内の機器である偏向電磁石201や入射機器204、出射機器205を制御する。制御パターン・タイミング記憶部211に記憶されているタイミングはタイミング制御装置212を介して他の機器を制御する。すなわち、タイミング制御装置212は高周波加速制御部214を介して高周波加速空胴202を、また出射機器制御部215を介して出射機器203を制御する。このタイミング制御装置212は、ビーム利用系制御装置400に備えられたビーム要求タイミング発生部401から出射要求信号や次パターン移行信号、あるいはエネルギー切り替え要求を受け取り、出射要求に対しては出射機器制御部215を介して出射機器203を動作させビームを出射させる。
直線加速器111の高周波機器運転の基本周期(一定周期)TLINACは入射器用一定周期発生部216より発生させる。この基本周期TLINACは、予め設定しておく。
直線加速器111に対して高周波機器運転タイミングを発生させる入射器高周波機器タイミング発生部217は、タイミング制御装置212から発生する出射工程完了後タイミング信号やマスタ信号に従い入射器用一定周期発生部216からの一定の基本周期を調整して入射器制御装置120に対し高周波機器動作タイミングとして供給する。
入射器制御装置120は、図1に示した高周波電源112を高周波機器動作タイミングと同期させて立ち上げる運転を図2(c)や図4(b)〜(e)に記載の通り繰り返す。ただし、この高周波運転の全回数においてビームが必要ではないため、ビームを加速されないようにして、図2(d)に記載したような入射タイミングにのみビームを加速させる。すなわち、直線加速器111の高周波運転は図2(c)や図4(b)〜(e)に示すような運転周期で行われるが、その運転タイミングのうち図2(d)のビーム入射タイミングに一致しないタイミングでは、イオン源101から荷電粒子が供給されないよう制御され、直線加速器111は空動作し(前述のエージング用パルス)、図2(d)のビーム入射タイミングに一致するタイミングでは、イオン源101で発生した荷電粒子は加速され、シンクロトロン200に入射される。直線加速器を空動作させる方法としては、イオン源と直線加速器の間に荷電粒子の移動を阻害するような手段を設けてもよいし、直線加速器のエージング用パルスのタイミングにおいてはイオン源が動作しないように制御することもできる。
上述したように、本実施形態では、シンクロトロン200の入射、加速、出射、減速工程を制御するタイミング制御に対し、出射工程完了後に、直線加速器111は、シンクロトロン200の運転周期における荷電粒子ビームの出射工程完了後に発生する出射工程完了後タイミング信号により繰り返し運転を停止して待機状態にし、マスタ信号(シンクロトロンパターン開始信号)により一定周期での繰り返し運転を開始する。また、シンクロトロン200は、マスタ信号をもとに直線加速器111からビーム入射され、加速、出射、減速工程の各期間を含む一定周期あるいは不定周期のパターンを開始する。
これによって、シンクロトロン200に対する荷電粒子ビームの入射をビームを必要とする任意のタイミングで行うことが可能となり、シンクロトロン200の入射要求タイミングに合わせて直線加速器111からの入射ビームを得ることが可能となる。従って、シンクロトロン200の待ち時間を無くすことができる。
また、本実施形態によれば、シンクロトロン200の入射要求タイミングに合わせて直線加速器111からの入射ビームを得ることが可能となるため、シンクロトロン200で加速された荷電粒子ビームを用いる荷電粒子ビーム照射装置において、患者へ照射時間を短縮して治療時間を短くし、システムの効率的な運用が可能となる。
なお、入射器用一定周期発生部216や入射器高周波機器タイミング発生部217を加速器制御装置210の一部として説明したが、これら両方あるいはどちらか一方が入射器制御装置120の一部としても上述の制御動作は実現可能である。
また、シンクロトロンの運転パターンは、図2や図4のような入射−加速−出射−減速を1サイクルとし、エネルギーを変えながら複数サイクルのビームを出射するパターンに限られず、入射−加速−出射−加速−出射・・・繰り返し・・・−出射−減速、または、入射−加速−出射−加速−出射・・・繰り返し・・・−出射−減速−出射−減速−出射・・・繰り返し・・・−出射−減速といったように、1サイクルで複数の異なるエネルギーにより照射する、いわゆる多段出射としてもよい。
<第2の実施形態>
次に、図7以降を用いて本発明の第2の実施形態による荷電粒子ビーム照射システムについて説明する。第1の実施形態と同じ構成には同一の符号を示し、説明は省略する。以下の実施形態においても同様とする。
本実施形態は、第1の実施形態でのビーム利用系500として、癌などの患者の患部に陽子や炭素イオン等の荷電粒子ビーム(イオンビーム)を照射する治療方法を実現する照射装置を備えたものであり、粒子線治療システムの一例である。
本実施形態では、シンクロトロン200より得られた荷電粒子を、ビーム輸送系300を通じて照射装置600へ輸送する。照射装置600について図8を用いて説明する。
図8において、照射装置600は、ビーム輸送系300で導かれた荷電粒子ビームを水平(図中X方向)および垂直(図中Y方向)方向に走査し、患者610の患部611の形状に合致させるためのX方向走査電磁石601AとY方向走査電磁石601Bを有する。走査電磁石601A,601Bにより偏向された荷電粒子ビームはビーム位置計測装置602と照射線量計測装置603を通過し、患部611に照射される。ビーム位置計測装置602は荷電粒子ビームの位置および幅(広がり)を計測し、照射線量計測装置603は荷電粒子ビームの照射量を計測する。
ここで、図8および図9を用いてビーム走査法による照射について説明する。図9は、荷電粒子ビームの上流側から患部611を見た説明図である。
図8に示したように患者610の患部611に対して、その患部形状を3次元的な複数の深さ方向(図中Z方向)の層に分割し、各層をさらに図9に示すように2次元的に分割して複数の線量区画612(以下照射スポット)を設定する。深さ方向は荷電粒子ビームの到達深度に対応し、シンクロトロン200から出射される荷電粒子ビームのエネルギー変更により各層を選択的に照射される。各層内では図9に示す例えば経路613に沿って走査電磁石601A,601Bで荷電粒子ビームを2次元的に走査して各照射スポットに所定の線量を与える。各照射スポットに照射される荷電粒子ビームの量は照射線量計測装置603で計測され、位置やその広がりはビーム位置計測装置602で計測される。
なお、図4(a)のシンクロトロン運転パターンは、図の左寄りは出射するビームのエネルギーが高い状態であり、右に向かうに従ってエネルギーが低くなるように制御されている。これは、ビーム利用系500の適用対象が本実施形態のように、癌などの患者の患部に陽子や炭素イオン等の荷電粒子ビーム(イオンビーム)を照射する用途については、ビームのブラッグピークを腫瘍における所定の走査レイヤーに合わせ、深いレイヤーから順に照射するための制御である。この場合、シンクロトロンはビーム出射停止後の減速工程において、電磁石の履歴をリセットするための動作を行うが、直前に出射していたビームのエネルギーが高ければ高いほどリセット動作は短時間で済む。そのため、直前のビームエネルギーが高いほどT’LINACは短くなり、通常の制御では待ち時間が発生しやすく、本実施例の制御適用効果は大きい。更に、照射するビームのエネルギーが最大の場合のT’LINACが、直線加速器についての最短の運転可能周期より大きくなる装置構成を採用すると、本実施例の制御方法による上述の効果をより大きく享受できる。
本実施形態の照射方式において、シンクロトロン200に対して次パターンへの移行要求が発生するのは、図9に示した層内のスポットを照射中にシンクロトロン200に蓄積された荷電粒子が枯渇した場合、或いはシンクロトロン200で1サイクル当りに照射可能な時間が枯渇した場合である。これらの場合、そのサイクル内での出射を停止し、次パターンへ移行するタイミングは不定期となりうる。
また、図9に示した層内のスポットを全て照射し終えた場合には、図8の611に示した深さ方向(Z方向)の変更が必要となり、シンクロトロン200から出射されるエネルギーを変更する。この場合についても、層内の照射時間は患部611の形状によって異なるためシンクロトロンの運転サイクル内で出射が完了するタイミングは不定期になりうる。
このように、本実施形態の照射装置600ではシンクロトロン200の運転周期および出射のタイミングは不定期になるため、直線加速器111の高周波運転の周期が固定となっている場合はシンクロトロン200の所望の入射タイミングに荷電粒子ビームが入射できず、照射時間が延びる可能性がある。
そこで、本実施形態においては、加速器制御装置210は、図9に示した層内のスポットを照射中にシンクロトロン200に蓄積された荷電粒子が枯渇した場合、或いはシンクロトロン200で1サイクル当りに照射可能な時間が枯渇した場合に、シンクロトロン200の運転パターンの移行を要求する次パターン移行要求信号を生成して出力する(第1制御装置)。
また、照射制御装置620は、図9に示した層内のスポットを全て照射し終えた場合に、シンクロトロン200から出射されるエネルギーの変更を要求するエネルギー切り替え要求信号を出力する(第1制御装置)。
加速器制御装置210は、それらの信号の何れかが入力された際には、図2や図4に示したような本発明の運転方法を実施する。すなわち、出射工程完了後タイミング信号に基づいて直線加速器111の高周波運転を停止し、マスタ信号に基づき直線加速器111の高周波運転を開始し、シンクロトロン200の入射タイミングと直線加速器111からビームを供給可能なタイミングを一致させる(制御装置、第2制御装置)。
これにより、本実施形態においても、前述した第1の実施形態とほぼ同様に、入射タイミングを所望のものとできるので照射時間は延びず、治療時間を短縮化でき、システムの効率的な運用が可能な粒子線治療システムを実現できる。
なお、荷電粒子ビームの照射方法におけるビーム走査法は、照射スポットを設定するいわゆるスポットスキャニング照射に限られず、ラスター走査、ジグザグ走査、らせん走査、ライン走査、単円走査等の走査法であってもよい。また、荷電粒子ビームの照射方法はビーム走査法に限られず、積層原体照射等の散乱体法を採用するシステムに本発明は適用することができる。
<第3の実施形態>
次に、図10以降を用いて本発明の第3の実施形態による荷電粒子ビーム照射システムについて説明する。
本実施形態は、第1の実施形態でのビーム利用系500として、癌などの患者の患部に陽子や炭素イオン等の荷電粒子ビーム(イオンビーム)を照射する治療方法を実現する照射装置を備え、かつ患者の呼吸に伴う患部の移動やその他の移動を検出する機器を備えたものである。
本実施形態では、シンクロトロン200より得られた荷電粒子を、ビーム輸送系300を通じて照射装置700へ輸送する。照射装置700について図10を用いて説明する。
図10において、照射装置700における照射野の形成方法については荷電粒子ビームの散乱を用いる散乱体法や上述したビーム走査法など任意の照射野形成方法でよい。散乱体法では、例えば、患部を層に分割して層毎の照射量を規定して満了したら次の層の照射を行うと同時に各層の照射野形状にマルチリーフコリメータ開口を合わせて照射を行う積層原体照射が挙げられる。ビーム走査法では、第2の実施形態で示したようなスポットスキャニング法の他に、ラスター走査、ジグザグ走査、らせん走査,ライン走査、単円走査等の走査法が挙げられる。
本実施形態では、図10に示すように、患者610に対し患部の移動検出機器710を設ける。患部へのより高精度な照射を実現するために、このような患部の移動を検出し、その移動量が所望の範囲内にある場合にのみ照射する方法が提唱されている。例えば、移動検出機器710としては呼吸性移動を検出するために体表の移動を監視する方法、患者の呼吸に伴う呼気、吸気の流れを患者の口元で監視する方法、X線透視画像を用いて直接患部の位置もしくはそれを示すマーカを監視する方法などが考えられる。
図11を用いて患部の移動検出とビーム照射の関係について説明する。図11(a)は患部の移動を検出した信号で、その信号に対し患部が所望の位置にある、あるいは所望の位置からある範囲内にあることを担保するためのしきい値を設定する。そしてそのしきい値内に患部位置検出信号がある場合にのみビームを照射する。この場合の本実施形態における照射装置700で照射可能なタイミングは図11(b)のようになり、この信号は患者の移動に伴う移動であることから、そのタイミングは不定期になり得る。
このように、本実施形態の照射装置700ではシンクロトロン200の運転周期および出射のタイミングは不定期になるため、直線加速器111の高周波運転の周期が固定となっている場合はシンクロトロン200の所望の入射タイミングに荷電粒子ビームが入射できず、照射時間が延びる可能性がある。
そこで、本実施形態においては、シンクロトロン200で1サイクル当りに照射可能な時間が枯渇した場合に、シンクロトロン200の運転パターンの移行を要求する次パターン移行要求信号を生成して出力する(第1制御装置)。
加速器制御装置210は、その信号を受け取り、図2や図4に示したような本発明の運転方法を実施する。すなわち、出射工程完了後タイミング信号に基づいて直線加速器111の高周波運転を停止し、マスタ信号に基づき直線加速器111の高周波運転を開始し、シンクロトロン200の入射タイミングと直線加速器111からビームを供給可能なタイミングを一致させる(制御装置、第2制御装置)。
これにより、本実施形態においても、前述した第1の実施形態とほぼ同様に、入射タイミングを所望のものとできるので照射時間は延びず、治療時間を短縮化でき、システムの効率的な運用が可能との効果が得られる。
<その他>
なお、本発明は、上記の実施形態に限定されるものではなく、様々な変形例が含まれる。上記の実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。本発明は、荷電粒子ビームの出射方法や荷電粒子ビームの照射方法に寄らず、リング状の円形加速器の運転周期が変わりうる運転を行うシステムに適用することができる。
また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることも可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
100…入射器システム、
101…イオン源、
102…イオン源電源、
111…直線加速器、
112…入射器用高周波電源、
120…入射器制御装置、
130…入射輸送系、
200…シンクロトロン、
201…偏向電磁石、
202…高周波加速空胴、
203…ビーム出射機器、
204…入射機器、
205…ビーム出射機器、
210…加速器制御装置(制御装置、第1制御装置、第2制御装置)、
211…制御パターン・タイミング記憶部、
212…タイミング制御装置、
213…電磁石電源制御部、
214…高周波加速制御部、
215…出射機器制御部、
216…入射器用一定周期発生部、
217…入射器高周波機器タイミング発生部、
300…ビーム輸送系、
400…ビーム利用系制御装置(第1制御装置)、
401…ビーム要求タイミング発生部、
500…ビーム利用系、
600…照射装置、
601A,601B…走査電磁石、
602…ビーム位置計測装置、
603…照射線量計測装置、
610…患者、
611…患部、
612…線量区画(照射スポット)、
613…照射経路、
620…照射制御装置(第1制御装置)、
700…照射装置、
710…患部移動検出機器、
720…照射制御装置(第1制御装置)。

Claims (11)

  1. 所定の運転周期で動作し、イオン源から出射される荷電粒子を加速して荷電粒子ビームを出射する直線加速器と、
    荷電粒子ビームの入射、加速、出射、減速工程の各期間を含む運転周期で動作し、前記直線加速器で加速された前記荷電粒子ビームを予め定めたタイミングで入射し、加速後に出射するリング状の円形加速器と、
    この円形加速器の運転周期における荷電粒子ビームの出射工程完了後に、出射工程完了後タイミング信号を発生し、この出射工程完了後タイミング信号に基づいて前記直線加速器を停止させ、次の運転の開始タイミングを知らせるシンクロトロンパターン開始信号を発生し、このシンクロトロンパターン開始信号に基づいて前記直線加速器の所定の運転周期の動作および前記直線加速器の動作を開始させる制御装置とを備えた
    ことを特徴とする荷電粒子ビーム発生装置。
  2. 請求項1記載の荷電粒子ビーム発生装置において、
    前記制御装置は、前記出射工程完了後タイミング信号を、荷電粒子ビームの出射完了、減速開始、減速中、減速完了のいずれかのタイミングとなるよう設定する
    ことを特徴とする荷電粒子ビーム発生装置。
  3. 請求項1記載の荷電粒子ビーム発生装置において、
    前記制御装置は、
    前記円形加速器の荷電粒子ビームの入射、加速、出射、減速の各工程を含む運転パターンに係わる各種タイミング、前記シンクロトロンパターン開始信号のタイミングおよび前記出射工程完了後タイミング信号のタイミングを記憶した記憶装置と、
    前記運転パターンの更新要求と前記記憶装置に記憶したタイミング情報を受け取るタイミング制御装置と、
    前記直線加速器の運転基本周期を発生させる一定周期発生装置と、
    前記一定周期発生装置からの前記運転基本周期を、前記タイミング制御装置からの前記出射工程完了後タイミング信号のタイミングに従い停止し、前記シンクロトロンパターン開始信号のタイミングに従い開始して、前記直線加速器の運転タイミングを発生するタイミング発生装置とを有する
    ことを特徴とする荷電粒子ビーム発生装置。
  4. 請求項1に記載の荷電粒子ビーム発生装置において、
    前記リング状の円形加速器が出射するビームのエネルギーが最大の場合における前記直線加速器の運転停止後から次の運転開始までの運転周期T’LINACが、前記直線加速器についての最短の運転可能周期より大きい
    ことを特徴とする荷電粒子ビーム発生装置。
  5. 請求項1に記載の荷電粒子ビーム発生装置と、
    前記円形加速器から出射された前記荷電粒子ビームを利用する照射装置と、
    前記照射装置から要求された期間にのみ前記荷電粒子ビームを出射するよう前記円形加速器の運転周期における荷電粒子ビームの出射工程において前記円形加速器の出射機器を制御する第1制御装置と、
    前記出射機器の制御による前記円形加速器の運転周期における荷電粒子ビームの出射工程完了後に、出射工程完了後タイミング信号を発生し、この出射工程完了後タイミング信号に基づいて前記直線加速器を停止させ、次の運転の開始タイミングを知らせるシンクロトロンパターン開始信号を発生し、このシンクロトロンパターン開始信号に基づいて前記直線加速器の所定の運転周期の動作および前記直線加速器の動作を開始させる第2制御装置とを備えた
    ことを特徴とする荷電粒子ビーム照射装置。
  6. 請求項1に記載の荷電粒子ビーム発生装置と、
    前記円形加速器から出射された前記荷電粒子ビームを偏向して走査する走査電磁石を有し、この走査電磁石を通過した荷電粒子ビームを照射対象に照射する照射装置と、
    前記荷電粒子ビームの照射対象を深さ方向に分割した複数の層の1つの層に対して、前記走査電磁石の励磁電流を制御して前記荷電粒子ビームを走査し、前記1つの層の荷電粒子ビームの走査完了後に、別の層に対して前記荷電粒子ビームを走査するために前記円形加速器から出射される荷電粒子ビームのエネルギーの変更を要求するエネルギー切換要求を出力する第1制御装置と、
    前記エネルギー切換要求に応じて前記円形加速器の運転周期を次の運転周期に移行させるとき、前記円形加速器の運転周期における荷電粒子ビームの出射工程完了後に、出射工程完了後タイミング信号を発生し、この出射工程完了後タイミング信号に基づいて前記直線加速器を停止させ、次の運転の開始タイミングを知らせるシンクロトロンパターン開始信号を発生し、このシンクロトロンパターン開始信号に基づいて前記直線加速器の所定の運転周期の動作および前記直線加速器の動作を開始させる第2制御装置とを備えた
    ことを特徴とする荷電粒子ビーム照射装置。
  7. 請求項1に記載の荷電粒子ビーム発生装置と、
    前記円形加速器から出射された前記荷電粒子ビームを偏向して走査する走査電磁石を有し、この走査電磁石を通過した荷電粒子ビームを照射対象に照射する照射装置と、
    前記荷電粒子ビームの照射対象に対して、前記走査電磁石の励磁電流を制御して前記荷電粒子ビームを走査し、前記荷電粒子ビームを走査している途中で前記円形加速器に蓄積された前記荷電粒子ビームが枯渇した場合、或いは前記荷電粒子ビームを走査している途中で前記円形加速器で1運転周期当りに照射可能な時間が枯渇した場合に、前記円形加速器のそのときの運転周期での出射工程を中止し、次の運転周期での運転パターンへの移行を要求する運転パターン移行要求を出力する第1制御装置と、
    前記運転パターン移行要求に応じて前記円形加速器の運転周期を次の運転周期に移行させるとき、前記円形加速器の運転周期における荷電粒子ビームの出射工程完了後に、出射工程完了後タイミング信号を発生し、この出射工程完了後タイミング信号に基づいて前記直線加速器を停止させ、次の運転の開始タイミングを知らせるシンクロトロンパターン開始信号を発生し、このシンクロトロンパターン開始信号に基づいて前記直線加速器の所定の運転周期の動作および前記直線加速器の動作を開始させる第2制御装置とを備えた
    ことを特徴とする荷電粒子ビーム照射装置。
  8. 請求項1に記載の荷電粒子ビーム発生装置と、
    前記円形加速器から出射された前記荷電粒子ビームを時間的あるいは空間的に成形して照射対象の形状に一致するよう照射する照射装置と、
    前記照射対象の移動を検出して得られる信号から前記照射対象への照射可能な時間帯のタイミングを設定し、その時間帯の間にのみビーム出射を要求するビーム要求を出力する第1制御装置と、
    前記ビーム要求に応じて前記円形加速器の運転周期を次の運転周期に移行させるとき、前記円形加速器の運転周期における荷電粒子ビームの出射工程完了後に、出射工程完了後タイミング信号を発生し、この出射工程完了後タイミング信号に基づいて前記直線加速器を停止させ、次の運転の開始タイミングを知らせるシンクロトロンパターン開始信号を発生し、このシンクロトロンパターン開始信号に基づいて前記直線加速器の所定の運転周期の動作および前記直線加速器の動作を開始させる第2制御装置とを備えた
    ことを特徴とする荷電粒子ビーム照射装置。
  9. 患者の患部に荷電粒子ビームを照射する粒子線治療システムであって、
    所定の運転周期で動作し、イオン源から出射される荷電粒子を加速して荷電粒子ビームを出射する直線加速器と、
    荷電粒子ビームの入射、加速、出射、減速工程の各期間を含む運転周期で動作し、前記直線加速器で加速された前記荷電粒子ビームを予め定めたタイミングで入射し、加速後に出射するリング状の円形加速器と、
    この円形加速器から出射された前記荷電粒子ビームを照射点まで輸送するビーム輸送装置と、
    このビーム輸送装置によって輸送された荷電粒子ビームを前記患部に照射する照射装置と、
    前記円形加速器、前記ビーム輸送装置および前記照射装置を制御する制御部と、
    前記円形加速器の運転周期における荷電粒子ビームの出射工程完了後に、出射工程完了後タイミング信号を発生し、この出射工程完了後タイミング信号に基づいて前記直線加速器を停止させ、次の運転の開始タイミングを知らせるシンクロトロンパターン開始信号を発生し、このシンクロトロンパターン開始信号に基づいて前記直線加速器の所定の運転周期の動作および前記直線加速器の動作を開始させる直線加速器制御装置と、を備えた
    ことを特徴とする粒子線治療システム。
  10. 所定の運転周期で動作し、イオン源から出射される荷電粒子を加速して荷電粒子ビームを出射する直線加速器と、荷電粒子ビームの入射、加速、出射、減速工程の各期間を含む運転周期で動作し、前記直線加速器で加速された前記荷電粒子ビームを予め定めたタイミングで入射し、加速後に出射する円形加速器とを備えた荷電粒子ビーム発生装置の運転方法であって、
    円形加速器の運転周期における荷電粒子ビームの出射工程完了後に、出射工程完了後タイミング信号を発生し、この出射工程完了後タイミング信号に基づいて前記直線加速器を停止させ、次の運転の開始タイミングを知らせるシンクロトロンパターン開始信号を発生し、このシンクロトロンパターン開始信号に基づいて前記直線加速器の所定の運転周期の動作および前記直線加速器の動作を開始させる
    ことを特徴とする荷電粒子ビーム発生装置の運転方法。
  11. 請求項10に記載の荷電粒子ビーム発生装置の運転方法において、
    前記出射工程完了後タイミング信号を、荷電粒子ビームの出射完了、減速開始、減速中、減速完了のシンクロトロンパターン完了以前のいずれかのタイミングとなるよう設定する
    ことを特徴とする荷電粒子ビーム発生装置の運転方法。
JP2014236712A 2014-11-21 2014-11-21 荷電粒子ビーム発生装置、荷電粒子ビーム照射装置、粒子線治療システムおよび荷電粒子ビーム発生装置の運転方法 Active JP6316173B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014236712A JP6316173B2 (ja) 2014-11-21 2014-11-21 荷電粒子ビーム発生装置、荷電粒子ビーム照射装置、粒子線治療システムおよび荷電粒子ビーム発生装置の運転方法
US14/926,501 US9596746B2 (en) 2014-11-21 2015-10-29 Charged particle beam generator, charged particle irradiation system, method for operating charged particle beam generator and method for operating charged particle irradiation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014236712A JP6316173B2 (ja) 2014-11-21 2014-11-21 荷電粒子ビーム発生装置、荷電粒子ビーム照射装置、粒子線治療システムおよび荷電粒子ビーム発生装置の運転方法

Publications (3)

Publication Number Publication Date
JP2016100209A JP2016100209A (ja) 2016-05-30
JP2016100209A5 JP2016100209A5 (ja) 2017-04-13
JP6316173B2 true JP6316173B2 (ja) 2018-04-25

Family

ID=56011654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014236712A Active JP6316173B2 (ja) 2014-11-21 2014-11-21 荷電粒子ビーム発生装置、荷電粒子ビーム照射装置、粒子線治療システムおよび荷電粒子ビーム発生装置の運転方法

Country Status (2)

Country Link
US (1) US9596746B2 (ja)
JP (1) JP6316173B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6639045B2 (ja) 2016-05-19 2020-02-05 Nittoku株式会社 巻線装置用ワーク支持具
US10661100B2 (en) * 2017-03-08 2020-05-26 Mayo Foundation For Medical Education And Research Method for measuring field size factor for radiation treatment planning using proton pencil beam scanning
KR101993050B1 (ko) * 2017-09-28 2019-06-25 고려대학교 세종산학협력단 빔 위치 모니터 신호처리 시스템
CN111954558A (zh) * 2018-04-12 2020-11-17 住友重机械工业株式会社 带电粒子线治疗装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3602985B2 (ja) * 1999-07-29 2004-12-15 株式会社日立製作所 円形加速器の制御方法及び制御装置
EP1477206B2 (en) * 2003-05-13 2011-02-23 Hitachi, Ltd. Particle beam irradiation apparatus and treatment planning unit
JP2006128087A (ja) * 2004-09-30 2006-05-18 Hitachi Ltd 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
US20060163496A1 (en) * 2005-01-24 2006-07-27 Kazuo Hiramoto Ion beam delivery equipment and an ion beam delivery method
JP4179372B2 (ja) * 2006-11-02 2008-11-12 三菱電機株式会社 直線加速装置、シンクロトロン加速装置、粒子線治療装置および加速装置の制御方法
JP5456562B2 (ja) * 2010-04-30 2014-04-02 株式会社日立製作所 荷電粒子ビーム発生装置、荷電粒子ビーム照射装置及びそれらの運転方法
WO2012068401A1 (en) * 2010-11-19 2012-05-24 Compact Particle Acceleration Corporation Sub-nanosecond ion beam pulse radio frequency quadrupole (rfq) linear accelerator system

Also Published As

Publication number Publication date
US9596746B2 (en) 2017-03-14
JP2016100209A (ja) 2016-05-30
US20160150630A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
JP5456562B2 (ja) 荷電粒子ビーム発生装置、荷電粒子ビーム照射装置及びそれらの運転方法
US7122978B2 (en) Charged-particle beam accelerator, particle beam radiation therapy system using the charged-particle beam accelerator, and method of operating the particle beam radiation therapy system
JP5395912B2 (ja) 粒子線照射システム
JP6316173B2 (ja) 荷電粒子ビーム発生装置、荷電粒子ビーム照射装置、粒子線治療システムおよび荷電粒子ビーム発生装置の運転方法
JP4633002B2 (ja) 荷電粒子ビーム加速器のビーム出射制御方法及び荷電粒子ビーム加速器を用いた粒子ビーム照射システム
JP6017486B2 (ja) 荷電粒子線治療装置、及び荷電粒子線の飛程調整方法
JP6634299B2 (ja) 治療計画装置、治療計画方法、制御装置および粒子線治療システム
JP2010238463A (ja) 荷電粒子ビーム照射装置
TWI481429B (zh) 粒子線治療裝置及粒子線治療裝置的運轉方法
JP2015024024A5 (ja)
JP2008154627A (ja) 粒子線照射システム、並びに、これに用いるコンピュータプログラム及びコンピュータ読み取り可能な記憶媒体
US9937361B2 (en) Particle beam irradiation apparatus
CN108348767B (zh) 粒子束治疗系统
JP5998089B2 (ja) 粒子線照射システムとその運転方法
JP6219208B2 (ja) 荷電粒子線治療装置、及び荷電粒子線治療装置の制御方法
TWI537023B (zh) 粒子線治療裝置
US20210031056A1 (en) Charged particle beam treatment apparatus
JP2014028310A (ja) 粒子線照射システム
JP6815231B2 (ja) 荷電粒子線治療装置
JP6509980B2 (ja) 荷電粒子線治療装置、及び荷電粒子線治療装置の制御方法
JP6279036B2 (ja) 粒子線照射システムとその運転方法
JP6839987B2 (ja) 治療計画装置および粒子線治療システム

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180327

R150 Certificate of patent or registration of utility model

Ref document number: 6316173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150