JP6308469B2 - Flame retardant laminate - Google Patents

Flame retardant laminate Download PDF

Info

Publication number
JP6308469B2
JP6308469B2 JP2014198244A JP2014198244A JP6308469B2 JP 6308469 B2 JP6308469 B2 JP 6308469B2 JP 2014198244 A JP2014198244 A JP 2014198244A JP 2014198244 A JP2014198244 A JP 2014198244A JP 6308469 B2 JP6308469 B2 JP 6308469B2
Authority
JP
Japan
Prior art keywords
layer
flame retardant
infrared
clay
reflective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014198244A
Other languages
Japanese (ja)
Other versions
JP2016068316A (en
Inventor
聡雅 野間
聡雅 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CI Takiron Corp
Original Assignee
CI Takiron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CI Takiron Corp filed Critical CI Takiron Corp
Priority to JP2014198244A priority Critical patent/JP6308469B2/en
Publication of JP2016068316A publication Critical patent/JP2016068316A/en
Application granted granted Critical
Publication of JP6308469B2 publication Critical patent/JP6308469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は難燃性積層体に関し、更に詳しくは、赤外線反射層を積層することで難燃性の向上を図った難燃性積層体に関する。   The present invention relates to a flame retardant laminate, and more particularly, to a flame retardant laminate in which flame retardancy is improved by laminating an infrared reflecting layer.

赤外線遮蔽フィルムとして、ポリマーフィルム上に、特定の金属粒子含有層を積層したものが知られている。この赤外線遮蔽フィルムの金属粒子含有層は、少なくとも1種の金属粒子を含有し、この金属粒子が金属平板粒子を60個数%以上有するものであり、金属粒子含有層のうち少なくともひとつの層が800〜2000nmに少なくとも2つの吸収ピークまたは少なくとも2つの反射ピークを有するものである(特許文献1)。   As an infrared shielding film, a film in which a specific metal particle-containing layer is laminated on a polymer film is known. The metal particle-containing layer of the infrared shielding film contains at least one kind of metal particle, and the metal particle has 60% by number or more of metal tabular particles, and at least one of the metal particle-containing layers is 800. It has at least two absorption peaks or at least two reflection peaks at ˜2000 nm (Patent Document 1).

このような赤外線遮蔽フィルムは、赤外線をよく吸収または反射し、赤外線の遮断性能が良いので、乗り物用フィルムや貼合せ構造体、建材用フィルムや貼合せ構造体などとして好適に利用できる、と開示されている。   Such an infrared shielding film absorbs or reflects infrared rays well and has a good infrared shielding performance, so that it can be suitably used as a film for vehicles, a laminated structure, a film for building materials, a laminated structure, etc. Has been.

しかしながら、かかる赤外線遮蔽フィルムは、800〜2000nmに少なくとも2つの吸収ピークまたは反射ピークを有する金属粒子含有層と、フィルムの難燃性との関係が不明であり、金属粒子含有層がフィルムの難燃性に影響を及ぼすものかどうか解明されていない。   However, such an infrared shielding film has an unclear relationship between the metal particle-containing layer having at least two absorption peaks or reflection peaks at 800 to 2000 nm and the flame retardancy of the film, and the metal particle-containing layer is a flame-retardant film. It is not elucidated whether it affects sex.

特開2013−205810号公報JP2013-205810A

本発明は、赤外線の反射と難燃性に関する研究に基づいてなされたもので、樹脂基材上に特定の赤外線反射層を積層することによって難燃性を向上させた難燃性積層体を提供することを目的としている。そして、赤外線反射層の構成材料を選択することで透光性を付与し、赤外線反射層と粘土膜層を積層することで難燃性を更に向上させた難燃性積層体を提供することも目的としている。   The present invention was made based on research on infrared reflection and flame retardancy, and provides a flame retardant laminate having improved flame retardancy by laminating a specific infrared reflective layer on a resin substrate. The purpose is to do. And providing the flame retardant laminated body which gave the translucency by selecting the constituent material of an infrared reflective layer, and also improved the flame retardance by laminating | stacking an infrared reflective layer and a clay film layer is also possible. It is aimed.

上記目的を達成するため、本発明に係る難燃性積層体は、樹脂基材上に、800〜1300nmの赤外線の平均反射率が20%以上である赤外線反射層が積層され、上記樹脂基材と上記赤外線反射層との間に粘土膜層が設けられており、上記赤外線反射層が金属ナノワイヤー又は金属ナノチューブで形成された層であることを特徴とするものである。 In order to achieve the above object, the flame retardant laminate according to the present invention has an infrared reflective layer having an average reflectance of infrared rays of 800 to 1300 nm of 20% or more laminated on a resin substrate, and the resin substrate. A clay film layer is provided between the infrared reflection layer and the infrared reflection layer, and the infrared reflection layer is a layer formed of metal nanowires or metal nanotubes .

本発明の難燃性積層体においては、赤外線反射層の全光線透過率が50%以上であることが望ましい。 In the flame retardant laminate of the present invention, it is preferable total light transmittance of the infrared reflective layer is 50% or more.

また、本発明の難燃性積層体においては、粘土膜層は、分散した粘土粒子の静電気的結合によって形成される粘土の層が重なり合って膜となったものであることが望ましい。 In the flame-retardant laminate of the present invention, it is desirable that the clay film layer is a film formed by overlapping clay layers formed by electrostatic bonding of dispersed clay particles .

本発明の難燃性積層体は、赤外線反射層によって、赤外線エネルギーが高い波長領域である800〜1300nmの赤外線が平均して20%以上反射されるため、樹脂基材に対する遮熱作用が発揮されて難燃性が向上し、後述の表1の燃焼試験データに示されるように、着火時間が延びると共に、総発熱量及び最大発熱量が低下する。   In the flame-retardant laminate of the present invention, the infrared reflection layer reflects an infrared ray having a wavelength of high infrared energy of 800 to 1300 nm on an average of 20% or more. Thus, the flame retardancy is improved, and as shown in the combustion test data in Table 1 to be described later, the ignition time is extended and the total calorific value and the maximum calorific value are reduced.

また、本発明の難燃性積層体は、赤外線反射層が金属ナノワイヤー又は金属ナノチューブで形成された層であるので、金属蒸着層からなる赤外線反射層に比べて、透光性が大幅に向上し、全光線透過率を50%以上に高めることができる。このように赤外線反射層の全光線透過率が50%以上であると、透明な樹脂基材を採用することで、良好な透光性を有する難燃性積層体を得ることができる。 In addition, the flame retardant laminate of the present invention is a layer in which the infrared reflective layer is formed of metal nanowires or metal nanotubes, so that the translucency is greatly improved compared to the infrared reflective layer composed of a metal vapor-deposited layer. In addition, the total light transmittance can be increased to 50% or more. Thus, the flame retardant laminated body which has favorable translucency can be obtained by employ | adopting a transparent resin base material as the total light transmittance of an infrared reflective layer is 50% or more.

更に、本発明の難燃性積層体は、樹脂基材と赤外線反射層との間に粘土膜層を設けたので、後述の表1の光学特性及び燃焼試験のデータに示すように、良好な透光性を維持したまま、難燃性が大幅に向上し、着火時間が大きく延長されると共に、総発熱量や最大発熱量が著しく減少する。そして、粘土膜層が、分散した粘土粒子の静電気的結合によって形成される粘土の層が重なり合って膜となったものであると、上記に加えて柔軟性、ガスバリア性、不燃性等を有する。 Further, the flame-retardant laminate of the present invention, since the clay layer is provided between the resin substrate and an infrared reflective layer, as shown in the data of the optical characteristics and burning test in Table 1 below, a good While maintaining the translucency, the flame retardancy is greatly improved, the ignition time is greatly extended, and the total calorific value and the maximum calorific value are remarkably reduced. In addition to the above, the clay film layer has flexibility, gas barrier properties, nonflammability, and the like when the clay layer formed by electrostatic bonding of dispersed clay particles overlaps to form a film.

本発明の粘土膜層を省略した難燃性積層体の断面図である。It is sectional drawing of the flame-retardant laminated body which abbreviate | omitted the clay film layer of this invention. 本発明の難燃性積層体の断面図である。It is sectional drawing of the flame- retardant laminated body of this invention.

以下、図面を参照して、本発明の難燃性積層体の実施形態について詳細に説明する。   Hereinafter, embodiments of the flame-retardant laminate of the present invention will be described in detail with reference to the drawings.

図1は本発明の粘土膜層を省略した難燃性積層体を示す断面図であって、この難燃性積層体は、樹脂基材1の上に赤外線反射層2を積層した二層構造の積層体である。 FIG. 1 is a cross-sectional view showing a flame retardant laminate in which the clay film layer of the present invention is omitted . This flame retardant laminate has a two-layer structure in which an infrared reflecting layer 2 is laminated on a resin substrate 1. It is a laminated body.

樹脂基材1は公知の種々の合成樹脂からなる基材であって、例えば、ポリカーボネート系樹脂、ポリ塩化ビニル系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ポリフェニレンサルファイド系樹脂、ポリエーテルサルフォン系樹脂、ポリエチレンサルファイド系樹脂、ポリフェニレンエーテル系樹脂、スチレン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、セルロース系樹脂、フッ素樹脂などからなる、フィルム、シート、プレートなどが用いられる。これらの樹脂基材1は着色不透明のものでもよいが、良好な透光性を有する難燃性積層体を得るために、全光線透過率が80%以上、ヘイズが10%以下の無色透明な樹脂基材を選択使用することが望ましい。
尚、樹脂基材は平面的な形状のものに限定されず、ブロック状、柱状、管状、異形状など種々の立体的形状を有するものであってもよい。
The resin substrate 1 is a substrate made of various known synthetic resins. For example, a polycarbonate resin, a polyvinyl chloride resin, a polyolefin resin such as polyethylene or polypropylene, or a polyester resin such as polyethylene terephthalate or polyethylene naphthalate. Resin, polyphenylene sulfide resin, polyether sulfone resin, polyethylene sulfide resin, polyphenylene ether resin, styrene resin, acrylic resin, polyamide resin, polyimide resin, cellulose resin, fluorine resin, etc. Films, sheets, plates, etc. are used. These resin base materials 1 may be colored and opaque, but in order to obtain a flame retardant laminate having good translucency, it is colorless and transparent with a total light transmittance of 80% or more and a haze of 10% or less. It is desirable to selectively use a resin base material.
The resin base material is not limited to a planar shape, and may have various three-dimensional shapes such as a block shape, a column shape, a tubular shape, and an irregular shape.

樹脂基材1上に積層される赤外線反射層2は、金属及び/又は金属酸化物で形成された層であることが好ましい。具体的には、金属蒸着膜や、金属ナノワイヤー、金属ナノチューブ、金属粒子、スズドープ酸化インジウム(ITO)やアンチモンドープ酸化スズ(ATO)等の金属酸化物などで形成された薄層が挙げられる。そして、金属の種類、金属の蒸着量、金属ナノワイヤー、金属ナノチューブ、金属粒子等の目付量、層の厚さなどを調節することで、800〜1300nmの赤外線の平均反射率が20%以上となるようにしたものである。   The infrared reflective layer 2 laminated on the resin substrate 1 is preferably a layer formed of a metal and / or a metal oxide. Specific examples include a metal vapor deposition film, a metal nanowire, a metal nanotube, metal particles, and a thin layer formed of a metal oxide such as tin-doped indium oxide (ITO) or antimony-doped tin oxide (ATO). And the average reflectance of infrared rays of 800 to 1300 nm is 20% or more by adjusting the kind of metal, metal deposition amount, metal nanowire, metal nanotube, basis weight of metal particles, layer thickness, etc. It was made to become.

金属及び金属酸化物の種類としては、赤外線反射率を高める観点から、銀、銅、アルミニウム、チタン、金、白金、ニッケル、ジルコニウム、錫などの金属や、スズドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)、酸化亜鉛(ZnO)、酸化錫(SnO)、酸化ジルコニウム(ZrO )、酸化インジウム(InO 、In)、等の金属酸化物などが好ましく、その中でも、赤外線反射率の高い銀蒸着膜、銀ナノワイヤー、銀ナノチューブなどが好ましく採用される。さらに、金属ナノワイヤー、特に銀ナノワイヤーは、非常に高い透明性、導電性、柔軟性、伸縮性を持ち、直径が0.3〜100nmで長さが0.1〜300μm、好ましくは直径が1〜90nmで長さが1〜90μmのものが使用され、アスペクト比は約100〜3000程度である。このような金属ナノワイヤーや金属ナノチューブは、略均一に分散した状態で樹脂基材1の表面に付着、堆積して赤外線反射層1を形成することができる。 The types of metals and metal oxides include metals such as silver, copper, aluminum, titanium, gold, platinum, nickel, zirconium, tin, tin-doped indium oxide (ITO), and antimony-doped oxide from the viewpoint of increasing infrared reflectance. Metal oxides such as tin (ATO), zinc oxide (ZnO), tin oxide (SnO 2 ), zirconium oxide (ZrO 2 ), indium oxide (In 2 O, In 2 O 3 ), and the like are preferable. A silver deposited film, silver nanowire, silver nanotube or the like having a high infrared reflectance is preferably employed. Furthermore, metal nanowires, in particular silver nanowires, have very high transparency, conductivity, flexibility and stretchability, have a diameter of 0.3 to 100 nm and a length of 0.1 to 300 μm, preferably a diameter. Those having a length of 1 to 90 nm and a length of 1 to 90 μm are used, and the aspect ratio is about 100 to 3000. Such metal nanowires and metal nanotubes can be deposited and deposited on the surface of the resin substrate 1 in a substantially uniformly dispersed state to form the infrared reflective layer 1.

赤外線反射層2を、金属蒸着膜、例えば銀蒸着膜で形成すると、800〜1300nmの赤外線の平均反射率が80%以上と極めて高くなり、積層体の難燃性が大幅に向上する利点がある。けれども、このような銀蒸着膜は全光線透過率が0%に近いので、透光性を有する難燃性積層体を得る場合には不適当であるが、透光性を必要としない難燃が必要な箇所においては、金属板に比べると、軽量で加工や取り扱い性が良く、有用である。
なお、銀蒸着膜からなる赤外線反射層2を形成する場合は、真空蒸着装置の蒸着枠に樹脂基材1をセットし、所定量の銀を樹脂基材1の表面に真空蒸着すればよい。
When the infrared reflective layer 2 is formed of a metal vapor-deposited film, for example, a silver vapor-deposited film, the average reflectance of infrared rays of 800 to 1300 nm is extremely high at 80% or more, and there is an advantage that the flame retardancy of the laminate is greatly improved. . However, since such a silver vapor deposition film has a total light transmittance close to 0%, it is not suitable for obtaining a flame-retardant laminate having translucency, but it does not require translucency. In a place where is required, it is lighter and has better processing and handleability than a metal plate, and is useful.
In addition, when forming the infrared reflective layer 2 which consists of a silver vapor deposition film, the resin base material 1 should just be set to the vapor deposition frame of a vacuum vapor deposition apparatus, and a predetermined amount of silver should be vacuum-deposited on the surface of the resin base material 1. FIG.

一方、赤外線反射層2を、金属ナノワイヤーや金属ナノチューブ(以下、これらをまとめて金属ナノワイヤー等と記す)、例えば銀ナノワイヤーや銀ナノチューブ(以下、これらをまとめて銀ナノワイヤー等と記す)で、透明な樹脂基材1の表面に形成する場合は、その赤外線反射層2の厚さ、銀ナノワイヤー等の目付量などを調整することにより、800〜1300nmの赤外線の平均反射率が20%以上で良好な難燃性を有し、かつ、全光線透過率が50%以上で良好な透光性を兼ね備えた難燃性積層体を得ることができる。   On the other hand, the infrared reflective layer 2 is made of metal nanowires or metal nanotubes (hereinafter collectively referred to as metal nanowires), for example, silver nanowires or silver nanotubes (hereinafter collectively referred to as silver nanowires). And when forming on the surface of the transparent resin base material 1, the average reflectance of the infrared rays of 800-1300nm is 20 by adjusting the thickness of the infrared reflective layer 2, the basis weight of silver nanowires, etc. %, It is possible to obtain a flame-retardant laminate having good flame retardancy and having a total light transmittance of 50% or more and also having good light-transmitting properties.

金属ナノワイヤー等で赤外線反射層2を形成する方法としては、例えば、エタノールやイソプロピルアルコールなどの水溶性溶媒に金属ナノワイヤー等を分散させて調製した水系塗料(金属ナノワイヤー等の含有量:0.2wt%以下、好ましくは0.1wt%以下)を、スプレーコータなどで樹脂基材1の表面に塗工し、乾燥して赤外線反射層2を形成する方法が採用される。その場合、樹脂基材1の表面にコロナ処理などの親水処理を予め施して、樹脂基材1の表面の濡れ性を高め、水系塗料の塗工性を向上させることが好ましい。また、銀ナノワイヤーと樹脂等のバインダーを組合せることや、銀ナノワイヤー塗工後、塗膜にプレスを行えば、なお好ましい。銀ナノワイヤーと樹脂等のバインダーを組合せることによって、バインダーと基材との密着性が強くなる為、塗工後、塗膜の剥離を防ぐ効果がある。また、塗膜のプレスは金属ナノワイヤー等の剥脱を防止するために行われるものであって、プレス条件は特に限定されないが、例えば、温度90℃程度、圧力40MPa程度の条件を採用して熱圧プレスするのが適当である。   As a method of forming the infrared reflective layer 2 with metal nanowires, for example, an aqueous paint prepared by dispersing metal nanowires or the like in a water-soluble solvent such as ethanol or isopropyl alcohol (content of metal nanowires: 0) .2 wt% or less, preferably 0.1 wt% or less) is applied to the surface of the resin substrate 1 with a spray coater or the like and dried to form the infrared reflecting layer 2. In that case, it is preferable to apply a hydrophilic treatment such as corona treatment to the surface of the resin base material 1 in advance to improve the wettability of the surface of the resin base material 1 and improve the coatability of the water-based paint. Moreover, it is still more preferable to combine silver nanowires and binders, such as resin, and to apply a press to a coating film after silver nanowire coating. By combining silver nanowires and a binder such as a resin, the adhesiveness between the binder and the substrate is strengthened, so that there is an effect of preventing peeling of the coating film after coating. Moreover, the coating film is pressed to prevent exfoliation of the metal nanowires and the pressing conditions are not particularly limited. For example, the heating is performed under conditions of a temperature of about 90 ° C. and a pressure of about 40 MPa. It is appropriate to press.

この赤外線反射層2の厚さは、金属材料によって異なりそれぞれの材料に適した厚さにする必要がある。例えば、銀ナノワイヤーの場合では、赤外線反射層2の厚さを500nm以上、900nm未満とすることが好ましく、層厚が500nm以上であると、800〜1300nmの赤外線の平均反射率が20%以上となって積層体の難燃性が向上し、また、層厚が900nm未満であると、赤外線反射層2の全光線透過率が50%以上となるので、樹脂基材1が透明であれば、良好な透光性を有する難燃性積層体を得ることができる。層厚が500nm未満であると、800〜1300nmの赤外線の平均反射率が低下し、900nm以上であると全光線透過率が低下するので、いずれも好ましくない。赤外線反射層2を形成する金属ナノワイヤー等の好ましい目付量は、厚さと同様に金属の種類によって異なるが、例えば銀ナノワイヤー等の場合は、75〜100g/m程度である。
なお、金属蒸着膜で赤外線反射層2を形成する場合は、40nm以上の厚さとすればよい。
The thickness of the infrared reflecting layer 2 varies depending on the metal material and needs to be a thickness suitable for each material. For example, in the case of silver nanowires, the thickness of the infrared reflection layer 2 is preferably 500 nm or more and less than 900 nm. When the layer thickness is 500 nm or more, the average reflectance of infrared rays of 800 to 1300 nm is 20% or more. Thus, the flame retardancy of the laminate is improved, and if the layer thickness is less than 900 nm, the total light transmittance of the infrared reflecting layer 2 is 50% or more. A flame retardant laminate having good translucency can be obtained. If the layer thickness is less than 500 nm, the average reflectance of infrared rays of 800 to 1300 nm is lowered, and if it is 900 nm or more, the total light transmittance is lowered, both are not preferable. Preferred mass per unit area of the metal nanowires such as to form the infrared reflective layer 2 may vary depending on the thickness as well as the type of metal, in the case of, for example, silver nanowires, etc., is about 75~100g / m 2.
In addition, what is necessary is just to set it as the thickness of 40 nm or more when forming the infrared reflective layer 2 with a metal vapor deposition film.

図2は本発明の他の実施形態に係る難燃性積層体の断面図であって、この難燃性積層体は、樹脂基材1と赤外線反射層2との間に粘土膜層3を設けた三層構造の積層体である。ここで、粘土膜層とは、特開2005−313604号公報や特開2007−63118号公報に記載されている粘土膜と同様のものであり、層状ケイ酸塩鉱物を主成分とし、親水性が強く、含水すると可塑性、粘着性を示す粘土を膜状にしたものである。粘土膜層は、水に分散させた粘土粒子を静置させることで、粘土自身が持つ電荷により静電気的結合し、粘土の層(カードハウス構造)を形成する。その後、水分を蒸発させることで粘土層が重なり合い、柔軟性、ガスバリア性、不燃性等を有する膜となる。   FIG. 2 is a cross-sectional view of a flame retardant laminate according to another embodiment of the present invention. This flame retardant laminate has a clay film layer 3 between a resin substrate 1 and an infrared reflecting layer 2. It is the laminated body of the provided 3 layer structure. Here, the clay film layer is the same as the clay film described in JP-A-2005-313604 and JP-A-2007-63118, and has a layered silicate mineral as a main component and is hydrophilic. Is a clay-like clay film that exhibits plasticity and tackiness when it contains water. In the clay film layer, clay particles dispersed in water are allowed to stand, so that they are electrostatically coupled by the charge of the clay itself to form a clay layer (card house structure). Thereafter, by evaporating the water, the clay layers overlap to form a film having flexibility, gas barrier properties, non-combustibility, and the like.

粘土膜層3は、難燃性積層体の透光性を大きく低下させることなく難燃性を大幅に向上させるために、樹脂基材1と赤外線反射層2との間に設けたものであって、水に粘土とポリアクリル酸ナトリウム等の増粘剤を順次投入、振とうした粘稠液をキャスティングした後、乾燥させて得られる粘土膜を、樹脂基材1の表面にアクリル系接着剤などで接着したものである。上記の粘稠液は、キャスティングする前に超音波処理によって粘土粒子の分散性を更に高めることが好ましい。   The clay film layer 3 is provided between the resin base material 1 and the infrared reflecting layer 2 in order to greatly improve the flame retardancy without greatly reducing the translucency of the flame retardant laminate. Then, clay and a thickening agent such as sodium polyacrylate are sequentially added to water, and after casting the shaken viscous liquid, a clay film obtained by drying is applied to the surface of the resin substrate 1 with an acrylic adhesive. It is glued with etc. The viscous liquid is preferably further improved in dispersibility of clay particles by ultrasonic treatment before casting.

この粘土膜層3の好ましい厚さは10μm以上である。粘土膜層3の厚さが100μm以上であれば、難燃性積層体の透光性を大きく低下させることなく、難燃性を大幅に向上させることができるので、極めて有効である。粘土膜層3の厚さが10μm未満の場合は、透光性の低下は実質的に生じないけれども、難燃性の向上が殆どみられなくなる。   A preferable thickness of the clay film layer 3 is 10 μm or more. If the thickness of the clay film layer 3 is 100 μm or more, the flame retardancy can be greatly improved without greatly reducing the translucency of the flame retardant laminate, which is extremely effective. When the thickness of the clay film layer 3 is less than 10 μm, the translucency is not substantially lowered, but the flame retardancy is hardly improved.

尚、図2に示す難燃性積層体の樹脂基材1及び赤外線反射層2は、図1に示す難燃性積層体の前述した樹脂基材1及び赤外線反射層2と同じものであるので、説明を省略する。   In addition, since the resin base material 1 and the infrared reflective layer 2 of a flame-retardant laminated body shown in FIG. 2 are the same as the resin base material 1 and the infrared reflective layer 2 which were mentioned above of the flame-retardant laminated body shown in FIG. The description is omitted.

次に、本発明の更に具体的な実施例と、比較例と、参考例について説明する。   Next, more specific examples of the present invention, comparative examples, and reference examples will be described.

[実施例1]
エタノール溶媒に銀ナノワイヤーを0.07wt%分散させた銀ナノワイヤー(blue nano SLV−NW−90L 直径90nm、長さ25μm)分散液(水系塗料)を、厚さ5mmの透明な板状のポリカーボネート樹脂基材の表面にスプレーコータで塗工し、その塗膜を乾燥して溶媒を揮散させた後、90℃、40MPaの条件で熱プレスすることによって、銀ナノワイヤーが略均一に分散した状態で付着、堆積した厚さ530nmの赤外線反射層をポリカーボネート樹脂基材の表面に積層した難燃性積層体を得た。
得られた難燃性積層体の全光線透過率とヘイズを、HAZE METER NDH5000[日本電色工業(株)製]を用いて測定すると共に、SHIMAZU UV31−3100 PC[(株)島津製作所製]を用いて、拡散反射スペクトルを300−2500k−を測定後、800〜1300nmの反射率の平均値(平均反射率)を算出した。その結果を下記の表1に示す。
また、得られた難燃性積層体の難燃性を評価するため、ISO 5660−1「コーンカロリーメータ法」に準拠して難燃性積層体の着火時間、総発熱量、最大発熱量を測定した。その結果を下記の表1に示す。
[Example 1]
A silver nanowire (blue nano SLV-NW-90L, diameter 90 nm, length 25 μm) in which silver nanowires are dispersed in an ethanol solvent is a transparent plate-like polycarbonate having a thickness of 5 mm. After coating the surface of the resin substrate with a spray coater, drying the coating film to volatilize the solvent, and then hot pressing under conditions of 90 ° C. and 40 MPa, the silver nanowires are dispersed substantially uniformly. A flame retardant laminate was obtained in which an infrared reflective layer having a thickness of 530 nm deposited and deposited on was laminated on the surface of a polycarbonate resin substrate.
While measuring the total light transmittance and haze of the obtained flame-retardant laminate using HAZE METER NDH5000 [manufactured by Nippon Denshoku Industries Co., Ltd.], SHIMAZU UV31-3100 PC [manufactured by Shimadzu Corporation] Then, after measuring the diffuse reflection spectrum of 300-2500 k-, the average value (average reflectance) of the reflectance of 800 to 1300 nm was calculated. The results are shown in Table 1 below.
Moreover, in order to evaluate the flame retardancy of the obtained flame retardant laminate, the ignition time, total calorific value, and maximum calorific value of the flame retardant laminate are determined in accordance with ISO 5660-1 “Cone Calorimeter Method”. It was measured. The results are shown in Table 1 below.

[実施例2]
厚さ5mmの透明な板状のポリカーボネート樹脂基材を、一辺が10cmの正方形に切断し、この切断片を真空蒸着装置[東京真空(株)製]の蒸着枠にセットしてAgを真空蒸着し、ポリカーボネート樹脂基材の表面に厚さ約100nmの銀蒸着膜からなる赤外線反射層を積層した難燃性積層体を得た。
得られた難燃性積層体の全光線透過率、ヘイズ、800〜1300nmの平均反射率を実施例1と同様にして測定すると共に、得られた難燃性積層体の着火時間、総発熱量、最大発熱量を実施例1と同様に測定して難燃性を評価した。その結果を下記の表1に示す。
[Example 2]
A transparent plate-like polycarbonate resin substrate with a thickness of 5 mm is cut into a square with a side of 10 cm, and this cut piece is set on a vapor deposition frame of a vacuum vapor deposition apparatus [manufactured by Tokyo Vacuum Co., Ltd.], and Ag is vacuum vapor deposited. Thus, a flame retardant laminate was obtained in which an infrared reflective layer composed of a silver vapor deposition film having a thickness of about 100 nm was laminated on the surface of the polycarbonate resin substrate.
While measuring the total light transmittance, haze, and average reflectance of 800-1300 nm of the obtained flame-retardant laminate in the same manner as in Example 1, the ignition time and the total calorific value of the obtained flame-retardant laminate. The maximum calorific value was measured in the same manner as in Example 1 to evaluate flame retardancy. The results are shown in Table 1 below.

[実施例3]
蒸留水に攪拌子と共に粘土(クニミネ工業製、クニピアM 広がり方向100〜900nm、厚み1nm)を投入、振とうし、次いでポリアクリル酸ナトリウム[和光純薬工業(株)製]を投入、1時間振とうした後、超音波処理を行って粘稠液を得た。この粘稠液を一辺が15cmの正方形の枠内にキャスティングし、30℃で14時間、ギヤオーブン内で乾燥させて、厚さ45μmの粘土膜を得た。この粘土膜を厚さ5mmの透明な板状のポリカーボネート樹脂基材の表面にアクリル系接着剤で接着して粘土膜層を積層すると共に、その表面に実施例1と同様にして銀ナノワイヤーからなる厚さ530nmの赤外線反射層を積層した三層構造の難燃性積層体を作製した。
この難燃性積層体の全光線透過率、ヘイズ、800〜1300nmの平均反射率を実施例1と同様にして測定すると共に、この難燃性積層体の着火時間、総発熱量、最大発熱量を実施例1と同様に測定して難燃性を評価した。その結果を下記の表1に示す。
[Example 3]
Clay (Kunimine Kogyo Co., Ltd., Kunipia M spreading direction 100-900 nm, thickness 1 nm) is added to distilled water, shaken, and then sodium polyacrylate [manufactured by Wako Pure Chemical Industries, Ltd.] is added for 1 hour. After shaking, ultrasonic treatment was performed to obtain a viscous liquid. This viscous liquid was cast in a square frame having a side of 15 cm and dried in a gear oven at 30 ° C. for 14 hours to obtain a clay film having a thickness of 45 μm. The clay film is bonded to the surface of a transparent plate-like polycarbonate resin substrate having a thickness of 5 mm with an acrylic adhesive to laminate a clay film layer, and the surface is made of silver nanowires in the same manner as in Example 1. A flame-retardant laminate having a three-layer structure in which an infrared reflective layer having a thickness of 530 nm was laminated was prepared.
The total light transmittance, haze, and average reflectance of 800 to 1300 nm of this flame retardant laminate were measured in the same manner as in Example 1, and the ignition time, total calorific value, and maximum calorific value of this flame retardant laminate were measured. Was measured in the same manner as in Example 1 to evaluate flame retardancy. The results are shown in Table 1 below.

[比較例]
比較のために、実施例1〜3で用いた厚さ5mmの透明な板状のポリカーボネート樹脂基材(赤外線反射層が積層されていないもの)について、実施例1と同様にして全光線透過率、ヘイズ、800〜1300nmの平均反射率を測定すると共に、着火時間、総発熱量、最大発熱量を測定して難燃性を評価した。その結果を下記の表1に示す。
[Comparative example]
For comparison, the total light transmittance was the same as in Example 1 for the transparent plate-like polycarbonate resin substrate (those without an infrared reflective layer laminated) having a thickness of 5 mm used in Examples 1 to 3. In addition to measuring haze and an average reflectance of 800 to 1300 nm, flame retardancy was evaluated by measuring ignition time, total calorific value, and maximum calorific value. The results are shown in Table 1 below.

[参考例]
参考のために、厚さ5mmの透明な板状のポリカーボネート樹脂基材の表面に、実施例3で得た厚さ45μmの粘土膜をアクリル系接着剤で接着することにより、ポリカーボネート樹脂基材の表面に粘土膜層を積層した二層構造の積層体を作製した。
この積層体の全光線透過率、ヘイズ、800〜1300nmの平均反射率を実施例1と同様にして測定すると共に、この難燃性積層体の着火時間、総発熱量、最大発熱量を実施例1と同様に測定して難燃性を評価した。その結果を下記の表1に示す。
[Reference example]
For reference, the 45 μm thick clay film obtained in Example 3 was adhered to the surface of a transparent plate-like polycarbonate resin substrate having a thickness of 5 mm with an acrylic adhesive to A laminate having a two-layer structure in which a clay film layer was laminated on the surface was produced.
The total light transmittance, haze, and average reflectance of 800 to 1300 nm of this laminate were measured in the same manner as in Example 1, and the ignition time, total calorific value, and maximum calorific value of this flame retardant laminate were measured in Examples. The flame retardancy was evaluated in the same manner as in 1. The results are shown in Table 1 below.

Figure 0006308469
Figure 0006308469

表1において、PCはポリカーボネート樹脂基材、AgNWは銀ナノワイヤー、Agは銀、T.Tは全光線透過率、HAZEはヘイズを表す。   In Table 1, PC is a polycarbonate resin base material, AgNW is silver nanowire, Ag is silver, T.I. T represents the total light transmittance, and HAZE represents haze.

表1より、赤外線反射層がない比較例のポリカーボネート樹脂基材は、全光線透過率が89.1%、ヘイズが0.5%であり、透明性に優れているが、800〜1300nmの赤外線の平均反射率が8.4%と低いため、燃焼試験では、着火時間が131秒と短く、総発熱量が122.8MJ/m及び最大発熱量が538.4kW/mと多く、難燃性に劣っていることが判る。 From Table 1, the polycarbonate resin base material of the comparative example having no infrared reflective layer has a total light transmittance of 89.1% and a haze of 0.5%, and has excellent transparency, but an infrared ray of 800 to 1300 nm. In the combustion test, the ignition time is as short as 131 seconds, the total heating value is 122.8 MJ / m 2 and the maximum heating value is 538.4 kW / m 2. It turns out that it is inferior in flammability.

これに対し、ポリカーボネート樹脂基材の表面に銀ナノワイヤーや銀蒸着膜で形成された赤外線反射層が積層された実施例1,2の難燃性積層体は、800〜1300nmの赤外線の平均反射率が20%以上であるため、比較例のポリカーボネート樹脂基材に比べて着火時間が延び、総発熱量や最大発熱量も減少して、難燃性が向上していることが判る。   On the other hand, the flame retardant laminates of Examples 1 and 2 in which an infrared reflective layer formed of silver nanowires or a silver deposited film was laminated on the surface of a polycarbonate resin base material had an average infrared reflection of 800 to 1300 nm. Since the rate is 20% or more, it can be seen that the ignition time is extended as compared with the polycarbonate resin substrate of the comparative example, the total calorific value and the maximum calorific value are reduced, and the flame retardancy is improved.

特に、銀蒸着層からなる赤外線反射層が積層された実施例2の難燃性積層体は、800〜1300nmの赤外線の平均反射率が81.5%と高いため、着火時間が403秒と比較例のポリカーボネート樹脂基材の着火時間の略3倍に延び、総発熱量も比較例のポリカーボネート樹脂基材の略1/2以下、最大発熱量も略2/3以下に減少して、難燃性が大幅に向上することが判る。しかし、銀蒸着層からなる赤外線反射層を表面に積層した実施例2の難燃性積層体は、全光線透過率が0.3%で実質的に透光性を有しないため、透光性が要求される用途には不向きであるが、一方、透光性が必要とされない箇所では、有用に利用することができる。   In particular, the flame retardant laminate of Example 2 in which an infrared reflective layer composed of a silver vapor deposition layer was laminated has a high average reflectance of 81.5% for infrared rays of 800 to 1300 nm, so the ignition time is compared with 403 seconds. The ignition time of the polycarbonate resin base material of the example is extended approximately three times, the total calorific value is also reduced to about 1/2 or less of the polycarbonate resin base material of the comparative example, and the maximum calorific value is also reduced to about 2/3 or less, and flame retardant It can be seen that the performance is greatly improved. However, the flame retardant laminate of Example 2 in which an infrared reflective layer composed of a silver vapor deposition layer is laminated on the surface has a total light transmittance of 0.3% and has substantially no translucency. However, it can be effectively used in places where translucency is not required.

一方、銀ナノワイヤーで形成された赤外線反射層を表面に積層した実施例1の難燃性積層体は、難燃性が実施例2の難燃性積層体ほど大幅には向上しないが、銀ナノワイヤーで形成された赤外線反射層が良好な透光性を有するため、難燃性積層体の全光線透過率が63.3%とかなり高く、ヘイズも18.3%とかなり低くなり、実用上充分満足できる透光性を有することが判る。   On the other hand, the flame retardant laminate of Example 1 in which an infrared reflective layer formed of silver nanowires is laminated on the surface does not significantly improve the flame retardancy of the flame retardant laminate of Example 2, Since the infrared reflective layer formed of nanowires has good translucency, the total light transmittance of the flame-retardant laminate is considerably high at 63.3%, and the haze is also considerably low at 18.3%, which is practical. It can be seen that it has a sufficiently satisfactory translucency.

また、銀ナノワイヤーで形成された赤外線反射層とポリカーボネート樹脂基材との間に粘土膜層を設けた実施例3の難燃性積層体は、赤外線反射層も粘土膜層も良好な透光性を有するため、全光線透過率が58.8%と実施例1の難燃性積層体(粘土膜層がない銀ナノワイヤーの赤外線反射層のみが積層されたもの)に比べて僅かに低下する程度であり、しかも、粘土膜層が優れた難燃作用を発揮するため、着火時間が309秒と実施例1の難燃性積層体に比べて大幅に延び、総発熱量も5.9MJ/m、最大発熱量も419kW/mと驚くほど減少して、難燃性が顕著に向上することが判る。 In addition, the flame retardant laminate of Example 3 in which a clay film layer is provided between an infrared reflective layer formed of silver nanowires and a polycarbonate resin base material has good light transmission properties in both the infrared reflective layer and the clay film layer. Therefore, the total light transmittance is 58.8%, which is slightly lower than that of the flame retardant laminate of Example 1 (only the silver nanowire infrared reflective layer laminated without the clay film layer). In addition, since the clay film layer exhibits an excellent flame retarding effect, the ignition time is 309 seconds, which is significantly longer than that of the flame retardant laminate of Example 1, and the total calorific value is also 5.9 MJ. / M 2 and the maximum calorific value are surprisingly reduced to 419 kW / m 2 , indicating that the flame retardancy is remarkably improved.

更に、粘土膜層をポリカーボネート樹脂基材の表面に積層した参考例の積層体を見ると、粘土膜層が良好な透光性を有するため、積層体の全光線透過率が73.1%とかなり高くなっており、また、800〜1300nmの赤外線の平均反射率は8.9%と低いけれども、粘土膜層が優れた難燃作用を発揮するため、着火時間が284秒とながく、総発熱量が14.8MJ/m、最大発熱量も146.5kW/mと減少して、難燃性が大幅に向上することが判る。 Furthermore, when the laminated body of the reference example which laminated | stacked the clay film layer on the surface of a polycarbonate resin base material is shown, since the clay film layer has favorable translucency, the total light transmittance of a laminated body is 73.1%. Although the average reflectance of infrared rays from 800 to 1300 nm is as low as 8.9%, the clay film layer exhibits an excellent flame retardant action, so the ignition time is not likely to be 284 seconds, and the total heat generation It can be seen that the amount is 14.8 MJ / m 2 and the maximum calorific value is also reduced to 146.5 kW / m 2 , so that flame retardancy is greatly improved.

1 樹脂基材
2 赤外線反射層
3 粘土膜層
DESCRIPTION OF SYMBOLS 1 Resin base material 2 Infrared reflective layer 3 Clay film layer

Claims (3)

樹脂基材上に、800〜1300nmの赤外線の平均反射率が20%以上である赤外線反射層が積層され、上記樹脂基材と上記赤外線反射層との間に粘土膜層が設けられており、上記赤外線反射層が金属ナノワイヤー又は金属ナノチューブで形成された層であることを特徴とする、難燃性積層体。 On the resin base material, an infrared reflective layer having an average reflectance of 800 to 1300 nm of infrared rays of 20% or more is laminated , and a clay film layer is provided between the resin base material and the infrared reflective layer, The flame retardant laminate, wherein the infrared reflective layer is a layer formed of metal nanowires or metal nanotubes . 上記赤外線反射層の全光線透過率が50%以上であることを特徴とする、請求項1に記載の難燃性積層体。 The flame retardant laminate according to claim 1 , wherein the total light transmittance of the infrared reflective layer is 50% or more. 上記粘土膜層は、分散した粘土粒子の静電気的結合によって形成される粘土の層が重なり合って膜となったものであることを特徴とする、請求項1又は請求項2に記載の難燃性積層体。The flame retardant according to claim 1 or 2, wherein the clay film layer is a film formed by overlapping clay layers formed by electrostatic bonding of dispersed clay particles. Laminated body.
JP2014198244A 2014-09-29 2014-09-29 Flame retardant laminate Active JP6308469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014198244A JP6308469B2 (en) 2014-09-29 2014-09-29 Flame retardant laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014198244A JP6308469B2 (en) 2014-09-29 2014-09-29 Flame retardant laminate

Publications (2)

Publication Number Publication Date
JP2016068316A JP2016068316A (en) 2016-05-09
JP6308469B2 true JP6308469B2 (en) 2018-04-11

Family

ID=55863674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014198244A Active JP6308469B2 (en) 2014-09-29 2014-09-29 Flame retardant laminate

Country Status (1)

Country Link
JP (1) JP6308469B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5570305B2 (en) * 2009-11-06 2014-08-13 富士フイルム株式会社 Heat ray shielding material
JP5593916B2 (en) * 2010-07-24 2014-09-24 コニカミノルタ株式会社 Near-infrared reflective film and near-infrared reflector provided with the same
JP2012081609A (en) * 2010-10-08 2012-04-26 Nitto Denko Corp Heat-shielding flame-retardant polymer member
JP5798804B2 (en) * 2011-06-03 2015-10-21 株式会社ブリヂストン Heat ray shielding film, heat ray shielding window using the same
JP5878059B2 (en) * 2012-03-29 2016-03-08 富士フイルム株式会社 Infrared shielding film

Also Published As

Publication number Publication date
JP2016068316A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
JP5838152B2 (en) Functional laminate, transparent conductive laminate for touch panel, and touch panel using the same
TWI570600B (en) Transparent conductor and touch panel
JP4893097B2 (en) Conductive laminate and protective plate for plasma display
US20160303838A1 (en) Transparent conductive multilayer assembly
JP2012510716A5 (en)
WO2015025963A1 (en) Heat ray shielding material
CN103744132B (en) A kind of antireflection structure and antireflective film
JP6287533B2 (en) Heat-shielding laminated glass
CN106527792B (en) Display panel and display device
TW201943550A (en) Composite thermal insulation structure
JP5651259B2 (en) LAMINATED FILM, FILM ROLL THEREOF, LIGHT TRANSMITTING CONDUCTIVE FILM OBTAINED FROM THE SAME, AND TOUCH PANEL USING THE SAME
JP6308469B2 (en) Flame retardant laminate
JP6256154B2 (en) Laminated body, touch panel using the laminated body, and method for manufacturing the laminated body
JP6458445B2 (en) Transparent conductive laminate, touch panel using the transparent conductive laminate, a method for producing the transparent conductive laminate, and a method for producing a touch panel using the transparent conductive laminate
JP6877180B2 (en) Method for manufacturing a base material with an infrared reflective multilayer film and a base material with an infrared reflective multilayer film
JP6486768B2 (en) Filter comprising phthalocyanine compound
JP2004155632A (en) Heat shielding film, heat shielding glass plate using the same, and heat shielding laminated glass plate
CN104476840B (en) A kind of flexible membrane
JP7287069B2 (en) Transparent conductive gas barrier laminate, manufacturing method thereof, and device
JP2020082660A (en) Gas barrier laminate
JP6361462B2 (en) Method for selecting transparent conductive laminate, and method for producing transparent conductive laminate
JP2018535122A (en) Conductive translucent film
JP2013168325A (en) Light-transmitting conductive film and application thereof
JP2011171041A (en) Transparent conductor and conductive film for transfer
JP6475461B2 (en) Light transmissive conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180302

R150 Certificate of patent or registration of utility model

Ref document number: 6308469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250