WO2015025963A1 - Heat ray shielding material - Google Patents

Heat ray shielding material Download PDF

Info

Publication number
WO2015025963A1
WO2015025963A1 PCT/JP2014/072056 JP2014072056W WO2015025963A1 WO 2015025963 A1 WO2015025963 A1 WO 2015025963A1 JP 2014072056 W JP2014072056 W JP 2014072056W WO 2015025963 A1 WO2015025963 A1 WO 2015025963A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat ray
ray shielding
layer
shielding material
metal
Prior art date
Application number
PCT/JP2014/072056
Other languages
French (fr)
Japanese (ja)
Inventor
強臣 宮古
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to JP2015532922A priority Critical patent/JPWO2015025963A1/en
Publication of WO2015025963A1 publication Critical patent/WO2015025963A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Definitions

  • the present invention relates to a heat ray shielding material that can be used as a window plate or the like.
  • a method for imparting a function of shielding heat rays to a glass plate or film a method of uniformly forming a metal layer such as aluminum on a film or the like is widely employed.
  • Such a uniform metal layer generally reflects electromagnetic waves, which may cause a problem that it becomes difficult to use a mobile phone, a mobile TV, or the like indoors or in a vehicle. Therefore, development of glass plates and films having functions of shielding heat rays and transmitting electromagnetic waves has been promoted.
  • Patent Document 1 discloses a radio wave transmissive heat ray reflector in which an insulating transparent substrate is coated with a conductive coating divided into a plurality of stripes or lattices.
  • Patent Document 2 discloses a heat ray reflective glass having a radio wave low reflection characteristic in which divided grooves are formed so as to be 1/20 times or less of the wavelength ⁇ of radio waves.
  • Patent Document 3 discloses a base film in which a blocking layer that blocks a wavelength at a specific frequency is laminated.
  • the radio wave transmissive heat ray reflecting plate described in Patent Document 1 has a problem in terms of appearance as a product because of the large size of the conductor coating.
  • the disclosed embodiments have a small area ratio of the portion not covered with the transparent conductive film or a small distance between the conductor film portions, and thus the electromagnetic wave permeability and industrial productivity are improved. Somewhat inferior.
  • the heat ray reflective glass described in Patent Document 2 is mainly intended to reduce radio wave reflectivity, and in the disclosed embodiment, the width of the stripe-shaped coating film is considerably large, so that the appearance as a product. It could be a problem.
  • the base film described in Patent Document 3 is for selectively transmitting electromagnetic waves having a specific wavelength, and since the width and interval of the slits existing between the shielding layers are large, It was a problem.
  • the present invention has been made in view of such circumstances, and it is an object to provide a heat ray shielding material that is excellent in visible light transmission performance, heat ray shielding performance, electromagnetic wave transmission performance, and excellent in appearance. To do.
  • the present inventor has proceeded with studies on the form of the metal layer provided on the substrate.
  • a metal layer a substrate on which a metal film is uniformly formed on the entire surface cannot transmit electromagnetic waves. Therefore, when the metal layer is a layer formed by arranging a large number of island-shaped metal films, the conductivity of the entire substrate is lost. As a result, electromagnetic waves can be transmitted through the gaps between the island-shaped metal films, and it has become possible to impart electromagnetic wave transmission performance to the substrate. Moreover, the visible light transmission performance of the substrate could be improved by providing a gap between the island-shaped metal films.
  • the gap between the island-shaped metal films is made too narrow, the surface resistance value becomes small and the electromagnetic wave transmission performance of the base material is lowered.
  • the island-shaped metal film is made small and the gap between the island-shaped metal films is excessively widened, the electromagnetic wave transmission performance of the base material is improved, but the heat ray shielding performance of the base material is lowered.
  • the island-shaped metal film may be too large, or depending on the shape and arrangement of the island-shaped metal film, the metal film can be easily seen with the naked eye, which impairs the merchantability of the appearance of the base material. .
  • the present inventor has succeeded in identifying the arrangement method of the island-shaped metal film that can satisfy any of visible light transmission performance, heat ray shielding performance, electromagnetic wave transmission performance and appearance.
  • the present invention has been completed. That is, the present invention has the following configuration.
  • a heat ray shielding material comprising a base material and a metal layer, wherein the metal layer is formed by arranging a number of island-like metal films, and the diameter of the metal film is 0.05 to 0.50 mm.
  • the distance between the metal films is 0.02 to 0.23 mm, the area ratio of the portion not covered with the metal film is 11 to 80%, and the visible light transmittance is 45% or more.
  • the electromagnetic wave shielding rate is 10 dB or less.
  • the heat ray shielding material includes a metal layer on one surface of the substrate and a resin layer having a multilayer structure on the other surface, and the thickness per layer of the multilayer structure is 50 to 1000 nm. It is preferable.
  • the base material is preferably a resin material having a multilayer structure, and the thickness per layer of the multilayer structure is preferably 50 to 1000 nm.
  • the visible light reflectance is preferably 25% or less.
  • the heat ray shielding coefficient is preferably 0.9 or less.
  • the metal layer is preferably composed of a plurality of metal layers.
  • the said metal layer contains silver.
  • the heat transmissivity is less than 5.9 W / m 2 K.
  • the ultraviolet transmittance is preferably 5% or less.
  • the diameter of the metal film is 0.15 to 0.50 mm and the distance between the metal films is 0.04 to 0.23 mm.
  • the heat ray shielding material of the present invention is excellent in visible light transmission performance, heat ray shielding performance and electromagnetic wave transmission performance, and is excellent in appearance.
  • the electromagnetic wave refers to an electromagnetic wave having a wavelength of 10 mm to 10 km and a frequency of about 30 KHz to 30 GHz.
  • the electromagnetic wave region is used for radio broadcasting, television broadcasting, wireless communication, cellular phone, satellite communication, and the like.
  • visible light means light that can be recognized with the naked eye among electromagnetic waves, and generally refers to electromagnetic waves having a wavelength of 380 to 780 nm.
  • Near-infrared light is an electromagnetic wave having a wavelength of approximately 800 to 2500 nm and has a wavelength close to red visible light. Near-infrared rays are contained in sunlight and act to heat an object.
  • far-infrared rays are electromagnetic waves having a wavelength of about 5 to 20 ⁇ m (5000 to 20000 nm), are not included in sunlight, and have a wavelength close to that emitted from an object near room temperature.
  • Ultraviolet rays are electromagnetic waves having a wavelength of about 10 to 380 nm.
  • the heat ray means near infrared rays.
  • the heat ray shielding material of the present embodiment is configured to handle electromagnetic waves having five wavelengths of electromagnetic waves, visible rays, near infrared rays, far infrared rays, and ultraviolet rays. That is, the heat ray shielding material according to the present embodiment allows electromagnetic waves to pass between the outside and the inside of the room so that a mobile phone, a mobile TV, or the like can be used indoors or in a vehicle. Moreover, the heat ray shielding material of the present embodiment partially transmits visible light from the outside to the inside of the room to keep the room bright. Near-infrared light is reflected and absorbed by a metal layer to shield it from entering the room from outside, so that the room does not get hot in the summer.
  • Far-infrared rays are emitted from the room, and are reflected by the metal layer so that the indoor heat does not go out of the room in winter or the like.
  • Ultraviolet rays are reflected and absorbed by the metal layer and shielded from entering the room from the outside so that the articles in the room do not deteriorate over time.
  • the heat ray shielding material of this embodiment can be used mainly as a window plate or the like.
  • the heat ray shielding material of this embodiment includes a base material and a metal layer.
  • the metal layer is formed by arranging a number of island-shaped metal films, the diameter of the metal film is 0.05 to 0.50 mm, and the distance between the metal films is 0.02 to 0.23 mm.
  • the area ratio of the portion not covered with the metal film is 11 to 80%.
  • the heat ray shielding material of this embodiment is characterized by having a visible light transmittance of 45% or more and an electromagnetic wave shielding rate of 10 dB or less.
  • the heat ray shielding material of the present embodiment includes a base material and a metal layer and can be used as a window plate.
  • the substrate may be one sheet or two or more sheets.
  • the materials, thicknesses, and shapes of the individual substrates may be the same or different.
  • the heat ray shielding material of the present embodiment may be of a type in which a metal layer is directly formed on a base material that can be used as a normal window plate, or a metal layer is formed on a thin sheet-like base material.
  • it may be of a type that is bonded to a base material as a window plate with an adhesive or the like.
  • the form of the substrate is not particularly limited. Various forms such as a glass sheet, a glass plate, a resin film, a resin plate, a fabric, a nonwoven fabric, a transparent or translucent paper, and a molded product can be used. However, in order to form and arrange a number of island-shaped metal films on the surface of the substrate in an orderly manner, it is preferably a film or sheet having a flat surface.
  • the substrate as the window plate is preferably a glass plate or a resin plate.
  • the heat ray shielding material of the present embodiment can be laminated with various functional layers such as an adhesive layer, a hard coat layer, and a protective layer in addition to the base material and the metal layer. As a result, more effective characteristics can be imparted.
  • the heat ray shielding material of the first embodiment includes a base material and a metal layer, and the metal layer is formed by arranging a number of island-shaped metal films. Two types of base materials are used as the base material, a metal layer is formed on the surface of the first base material, and heat ray shielding is installed on the window plate that is the second base material via an adhesive layer or the like. It is a material.
  • the heat ray shielding material of the first embodiment will be further described with three specific examples.
  • FIG. 15 to 17 are schematic cross-sectional views showing three specific examples having different layer configurations of the heat ray shielding material of the first embodiment.
  • FIG. 15 shows the layer structure of the heat ray shielding material 1A of the first embodiment.
  • FIG. 16 shows the layer structure of the heat ray shielding material 1B of the first embodiment.
  • FIG. 17 shows the layer structure of the heat ray shielding material 1C of the first embodiment.
  • the heat ray shielding material 1A of the first embodiment the heat ray shielding material 1B of the first embodiment, and the heat ray shielding material 1C of the first embodiment will be described. However, many explanations are common to the heat ray shielding material 1A of the first embodiment, the heat ray shielding material 1B of the first embodiment, and the heat ray shielding material 1C of the first embodiment.
  • [Configuration of Heat Ray Shielding Material of First Embodiment] (Layer structure) 1 A of heat ray shielding materials of 1st Embodiment have the hard-coat layer 6 in the room inner side of the 1st base material 5 which consists of transparent resin (refer FIG. 15). An adhesive layer 3 is provided on the outdoor surface of the first base material 5 so as to be in close contact with the metal layer 4a formed by arranging a large number of island-like metal films and the window plate 2 as the second base material. And a window plate 2 as a second base material.
  • the island-shaped metal film of the metal layer 4a is composed of a single layer of aluminum.
  • the heat ray shielding material 1B of the first embodiment has a hard coat layer 6 on the indoor side of the first base material 5 made of a transparent resin (see FIG. 16).
  • an adhesive layer 3 for closely contacting the metal layer 4b formed by arranging a number of island-shaped metal films on the outdoor surface of the first substrate 5 and the window plate 2 as the second substrate.
  • a window plate 2 as a second base material.
  • the island-shaped metal film of the metal layer 4b is composed of three conductive layers of ITO / Ag / ITO.
  • ITO is an abbreviation for indium tin oxide (tin-doped indium oxide).
  • Three layers of ITO / Ag / ITO are formed by sputtering ITO, Ag, and ITO in order on the first substrate 5.
  • the heat ray shielding material 1C of the first embodiment includes a metal layer 4c and a hard coat layer 6 formed by arranging a number of island-shaped metal films on the indoor surface of the first base material 5 made of a transparent resin. (See FIG. 17).
  • a metal layer 4c and a hard coat layer 6 formed by arranging a number of island-shaped metal films on the indoor surface of the first base material 5 made of a transparent resin. (See FIG. 17).
  • an adhesive layer 3 for closely contacting the window plate 2 as the second base material and the window plate 2 as the second base material.
  • the island-shaped metal film of the metal layer 4c is made of a single layer of aluminum.
  • heat ray shielding material 1A the above-mentioned “heat ray shielding material 1A”, “heat ray shielding material 1B”, and “heat ray shielding material 1C” will be collectively referred to as “heat ray shielding material 1”.
  • metal layer 4a the above “metal layer 4b”, “metal layer 4c”, “metal layer 4d” described later, and the like are collectively referred to as “metal layer 4” as appropriate.
  • the metal layer 4 of the heat ray shielding material 1 is installed on the indoor side of the window plate 2 which is the second base material, it is possible to reduce deterioration due to rain and wind.
  • the metal layer 4 of the heat ray shielding material 1 can also be installed in the outdoor side of the window board 2 which is a 2nd base material. 15, 16, and 17, the description of “indoor” is “outdoor” and the description of “outdoor” is “indoor”. (Indoor)
  • the hard coat layer 6 exists in the outdoor outermost layer of the heat ray shielding material 1 installed on the outdoor side of the window plate 2 as the second base material.
  • each material which comprises the heat ray shielding material 1 of 1st Embodiment is demonstrated in detail.
  • the heat ray shielding material of the second embodiment described later, the heat ray shielding material of the third embodiment, the heat ray shielding material of the fourth embodiment, the heat ray shielding material of the fifth embodiment, and modifications thereof The description of each material that constitutes the same is the same and can be applied in the same manner, and thus the description thereof is omitted.
  • the window plate 2 is a transparent plate for taking sunlight from the outside into buildings, traffic vehicles, ships, and the like. It can be a base material for the heat ray shielding material 1. In general, a glass plate or a resin plate is used as the window plate 2. Various resins such as acrylic, styrene, hydrogenated cyclic resin, polycarbonate, and polyester can be used for the resin plate.
  • a base material is a material for maintaining the form as the heat ray shielding material 1, and can be used to form or hold the metal layer 4 constituting the heat ray shielding material on the surface thereof. In addition to the metal layer 4, it has a function of holding the hard coat layer 6, the adhesive layer 3, and the like.
  • the base material may be the window plate 2 (second base material) or the base material 5 (first base material) different from the window plate.
  • the base material is preferably made of a transparent material so as to transmit visible light.
  • the base material is preferably excellent in mechanical strength, durability, visible light transmittance, handleability, etc. that can stably hold the metal layer.
  • the materials used as the substrate include inorganic glass and organic resin.
  • a typical example of inorganic glass is soda-lime glass.
  • the organic resin various resins such as acrylic, polycarbonate, styrene, polyester, polyolefin, hydrogenated cyclic resin, fluorine, silicone, and urethane can be used. These organic resins can be used properly according to the application and purpose. Among these organic resins, polyesters are preferable from the viewpoints of moldability, handleability, weather resistance, and the like.
  • the thickness is 8 to 800 ⁇ m, although it depends on the mechanical properties of the material. Is preferred. More preferably, it is 12 to 400 ⁇ m.
  • the metal layer 4 is a layer that shields heat rays and ultraviolet rays of sunlight irradiated from the outside mainly by reflection and shields far infrared rays emitted from the room mainly by reflection. Reflection of heat rays, ultraviolet rays, and far-infrared rays is considered to occur because a large number of free electrons in the metal collectively vibrate according to the oscillating electric field of electromagnetic waves.
  • the metal layer 4 is a layer provided on at least one side of the substrate. It can be installed on either the indoor side surface or the outdoor side surface of the substrate, or both the indoor side surface and the outdoor side surface. However, it is preferable that the metal layer 4 is on the indoor side surface of the base material because it is excellent in far-infrared reflection performance (heat transmissivity described later).
  • Al, Ag, Sn, Ni, Cu, Cr, In, Pd, Pt, Au, or the like can be used as the metal constituting the metal layer 4. These metals have excellent conductive performance and can reflect heat rays, far infrared rays, and ultraviolet rays.
  • a film can be formed on the substrate by a vapor phase method, and an island-shaped metal film can be formed by etching or the like. These metals may be used alone or as an alloy if there is no problem in performance.
  • the metal film made of these metals usually has insufficient visible light transmission performance. Therefore, as described below, visible light and electromagnetic wave transmission performance can be imparted by arranging a large number of island-shaped metal films.
  • the metal layer 4 is formed by arranging a number of island-shaped metal films.
  • the diameter of the metal film is 0.05 to 0.50 mm.
  • the thickness is preferably 0.15 to 0.50 mm, more preferably 0.20 to 0.45 mm.
  • the diameter of the metal film refers to an average value of the maximum length of the island-shaped metal film.
  • the shielding performance such as heat rays becomes insufficient. If the diameter of the metal film exceeds 0.50 mm, the metal film can be easily recognized with the naked eye, the metallic luster becomes strong, and the appearance merchantability decreases.
  • the distance between the metal films is 0.02 to 0.23 mm.
  • the thickness is preferably 0.04 to 0.23 mm, and more preferably 0.05 to 0.2 mm.
  • the distance between the metal films refers to the shortest distance between the end of the island-shaped metal film and the end of the adjacent island-shaped metal film. If the distance between the metal films is less than 0.02 mm, the visible light transmittance may be reduced, and the radio wave permeability may be reduced. In addition, it may be difficult to manufacture by etching. When the distance between the metal films exceeds 0.23 mm, the metal film is easily recognized with the naked eye, and the appearance merchantability is reduced. Moreover, shielding performance, such as a heat ray, becomes insufficient.
  • the shape of the island-shaped metal film is not particularly limited, and can be a circle, a square, a rectangle, a regular polygon, an ellipse, an irregular shape, or the like. From the viewpoint of ease of production and ease of management of the shape of the metal film, a circle, a square, a rectangle, and a regular polygon are preferable. Further, the manner of arranging a large number of island-shaped metal films may be arranged regularly or randomly. From the viewpoint of ease of production and ease of management of the shape of the metal film, it is preferable to arrange them regularly.
  • the ability to reflect far infrared rays depends on the conductive performance of the metal film of the metal layer 4.
  • the conductive performance of the metal film can be quantified as a surface resistance value.
  • the surface resistance value can be measured by a 4-terminal 4-probe method according to JIS K7194. In the first embodiment, the surface resistance value is measured before the island-shaped metal film is formed by etching or the like.
  • the surface resistance value of the metal film is preferably 100 ⁇ / ⁇ or less, and more preferably 20 ⁇ / ⁇ or less.
  • the surface resistance value of the metal film is 100 ⁇ / ⁇ or less, the ability to reflect far-infrared rays becomes excellent, and the heat ray shielding material 1 having a low heat transmissivity can be obtained.
  • the numerical value of the surface resistance value can be adjusted according to the type and thickness of the metal of the metal layer 4.
  • FIG. 19 to 21 are examples of how to arrange island-shaped metal films.
  • FIG. 19 shows a circular staggered arrangement. It arranges regularly so that the center of a circular metal membrane may be located in the vertex of an equilateral triangle.
  • the diameter of the metal film is D (mm), and the distance between the metal films is P (mm).
  • FIG. 20 shows a square parallel arrangement.
  • the square metal film is regularly arranged so that the center of the metal film is located at the vertex of the rectangle.
  • the diameter of the metal film is about 1.41 ⁇ W (mm).
  • the distance between the metal films is SP 1 (mm) in the vertical direction and SP 2 (mm) in the horizontal direction.
  • Fig. 21 shows a hexagonal staggered arrangement.
  • the regular hexagonal metal coating is regularly arranged so that the center of the metal film is located at the apex of the regular triangle.
  • the diameter of the metal film is about 1.15 ⁇ W (mm), and the distance between the metal films is P (mm).
  • the area ratio (opening area ratio) of the portion not covered with the metal film is 11 to 80%.
  • the area ratio of the portion not covered with the metal film is preferably 15 to 75%, more preferably 18 to 70%, and still more preferably 20 to 65%.
  • the area ratio R 1 (%) of the portion not covered with the metal film can be calculated by the following equation (1).
  • R 1 100 ⁇ ⁇ (90.6 ⁇ D 2 ) / (P + D) 2 ⁇ (1)
  • the area ratio R 2 (%) of the portion not covered with the metal film can be calculated by the following equation (2).
  • R 2 100-100 ⁇ W 2 / ⁇ (W + SP 1 ) ⁇ (W + SP 2 ) ⁇ (2)
  • the area ratio R 3 (%) of the portion not covered with the metal film can be calculated by the following equation (3).
  • R 3 100-100 ⁇ ⁇ W 2 / (W + P) 2 ⁇ (3)
  • the metal layer 4 may be composed of a single metal layer 4 or a plurality of metal layers 4. Since the performance as the metal layer 4 is stabilized and it is easy to obtain a layer having excellent transparency, the metal layer 4 is preferably composed of a plurality of metal layers.
  • the metal constituting the metal layer 4 is preferably composed of aluminum or silver. Silver is more preferable because of its excellent conductivity and easy formation and etching of a metal film by a vapor phase method.
  • the metal layer 4 is composed of a plurality of conductive layers, by using a combination of highly refractive materials such as ITO (indium tin oxide), zinc oxide, tin oxide, tungsten oxide, titanium oxide, and aluminum nitride, The visible light transmittance of the metal layer 4 can be increased.
  • ITO indium tin oxide
  • zinc oxide zinc oxide
  • tin oxide tungsten oxide
  • titanium oxide titanium oxide
  • aluminum nitride aluminum nitride
  • the visible light transmittance of the metal layer 4 can be increased.
  • a conductive layer composed of three layers of ITO / Ag / ITO is used as the metal layer 4 (see FIG. 16).
  • the heat ray shielding material 10 of 2nd Embodiment mentioned later uses the conductive layer which consists of five layers of ITO / Ag / ITO / Ag / ITO as the metal layer 4 (refer FIG. 18).
  • the thickness of the metal film constituting the metal layer 4 is preferably 2 to 120 nm, more preferably 4 to 70 nm, and still more preferably 5 to 30 nm.
  • the thickness of the metal film refers to the total thickness of layers made of only metals such as Ag and Al. When the thickness of the metal film is in this range, the heat ray, far-infrared ray, and ultraviolet ray reflection properties are excellent, and the durability and handleability are also excellent.
  • the adhesive layer 3 is used, for example, when the purchaser of the heat ray shielding material product adheres the first base material 5 to the window plate 2 as the second base material, so that both are adhered. It can be.
  • the adhesive layer has adhesiveness, and can also be referred to as an adhesive layer.
  • a release sheet is affixed to the adhesive layer as necessary for improving the handleability. When installing on the window plate 2 as the second substrate, the release sheet is peeled off. Adhere.
  • the adhesive layer 3 As a material used for the adhesive layer 3, it is possible to use an adhesive or a pressure-sensitive adhesive generally used for glass sticking or the like. Examples include acrylic, silicone, urethane, butadiene, and natural rubber. Among these, acrylic and silicone are preferable from the viewpoint of durability.
  • the thickness of the adhesive layer 3 is preferably 5 to 50 ⁇ m.
  • the hard coat layer 6 is provided as the outermost layer in order to prevent the surface of the heat ray shielding material 1 from being damaged or the inner layer portion from being destroyed by an external force.
  • a material used for the hard coat layer 6 generally, an inorganic hard coat layer, an organic hard coat layer, an organic inorganic hard coat layer, a silicone hard coat layer, or the like can be used. Among these, ultraviolet curable acrylic resins are preferable.
  • the thickness of the hard coat layer 6 is preferably 0.5 to 20 ⁇ m.
  • the heat ray shielding material 1 according to the first embodiment is provided with a protective layer between the metal layer 4 and the adhesive layer 3 on the base material in order to prevent the metal layer 4 from being damaged by an external force or the like during manufacture. May be.
  • the protective layer include a coating method and a protective film adhesion method. In the coating method, an organic hard coat agent, an inorganic hard coat agent, a silicone hard coat agent, or the like can be applied and cured. Among these, ultraviolet curable acrylic resins are preferable.
  • the thickness of the protective layer is preferably 0.5 to 20 ⁇ m.
  • the protective film there is a method in which the protective film is bonded onto the metal layer 4 with an adhesive layer.
  • a material such as a PET film can be used similarly to the base material.
  • the adhesive for the adhesive layer of the protective film include acrylic, silicone, urethane, butadiene, and natural rubber. Among these, acrylic and silicone are preferable from the viewpoint of durability.
  • the thickness of the adhesive layer is preferably 0.5 to 20 ⁇ m.
  • a metal compound that absorbs heat rays in a range that does not affect the visible light transmittance and other performances, the base material 5 and the hard coat It may be added to any one of the layer 6, the adhesive layer 3, and the window plate 2. Further, a layer containing a metal compound that absorbs heat rays may be provided separately. In this case, the layer containing the metal compound that absorbs heat rays is preferably arranged on the indoor side of the heat ray shielding material 1 in terms of performance.
  • the metal compound that absorbs heat rays is a metal compound having a maximum absorption wavelength peak at 800 to 2500 nm.
  • Specific examples of the metal compound that absorbs heat rays include cesium-containing tungsten oxide, lanthanum hexaboride, antimony-containing tin oxide, tin-containing indium oxide, and gallium-containing zinc oxide.
  • cesium-containing tungsten oxide having an excellent ability to absorb heat rays is particularly preferable.
  • the heat ray shielding material 1 of the first embodiment has a total thickness including the first base material 5, the metal layer 4, the hard coat layer 6, and the adhesive layer 3 excluding the window plate 2 that is the second base material.
  • the thickness is preferably 10 to 800 ⁇ m, more preferably 16 to 500 ⁇ m.
  • the heat ray shielding material 1 of the first embodiment transmits visible light having a wavelength of 380 to 780 nm in order to brighten the room.
  • the visible light transmittance of the heat ray shielding material 1 is 45% or more. 60% or more is preferable, and 70% or more is more preferable.
  • the visible light transmittance can be measured using an infrared reflection measuring instrument in accordance with JIS A5759. The numerical value of the visible light transmittance can be adjusted according to the shape, thickness, metal type, material and thickness of the base material and the hard coat layer 6 of the metal layer 4 described above.
  • the heat ray shielding material 1 uses an index called an electromagnetic wave shielding rate in order to quantify and evaluate the electromagnetic wave transmission performance.
  • an evaluation method the KEC method was adopted.
  • the measurement range of electromagnetic waves is 30 MHz to 1 GHz.
  • a numerical value (dB) at a frequency of 800 MHz was used for the electromagnetic wave shielding rate.
  • the electromagnetic wave shielding rate is 10 dB or less. When the electromagnetic wave shielding rate is 10 dB or less, there can be no trouble when using a cellular phone, a portable TV, or the like indoors or in a vehicle.
  • the electromagnetic wave shielding rate is preferably 5 dB or less, more preferably 3 dB or less, and even more preferably 1 dB or less.
  • the numerical value of the electromagnetic wave shielding rate can be adjusted by the shape, thickness, type of metal and the like of the metal film of the metal layer 4 described above.
  • the visible light reflectance of the heat ray shielding material 1 of 1st Embodiment is not specifically limited, The one where a numerical value is low is preferable. Specifically, the visible light reflectance is preferably 25% or less. When the visible light reflectance is 25% or less, the metallic luster is small and the appearance as a product is excellent. The visible light reflectance is more preferably 20% or less, and further preferably 10% or less. The visible light reflectance can be measured using an infrared reflection measuring instrument in accordance with JIS A5759. The numerical value of the visible light reflectance can be adjusted by the shape, thickness, type of metal, and the like of the metal film of the metal layer 4 described above.
  • the heat ray shielding material 1 of the first embodiment suppresses transmission of visible light and near infrared light in the wavelength range of 300 to 2500 nm.
  • the solar radiation transmittance of the heat ray shielding material 1 is preferably 60% or less. When the solar transmittance is 60% or less, the heat ray shielding property is excellent. 50% or less is more preferable.
  • the solar radiation transmittance can be measured using an infrared reflection measuring instrument in accordance with JIS A5759. The numerical value of the solar radiation transmittance can be adjusted by the material, thickness, etc. of each layer constituting the same as in the case of the visible light transmittance described above.
  • the heat ray shielding material 1 of the first embodiment preferably has a solar reflectance of 25% or more. When the solar reflectance is 25% or more, the heat ray shielding property is excellent.
  • the solar reflectance is more preferably 30% or more.
  • the solar reflectance can be measured using an infrared reflection measuring instrument in accordance with JIS A5759. The numerical value of solar reflectance can be adjusted by the material, thickness, etc. of each layer constituting the same as in the case of the visible light transmittance described above.
  • the heat ray shielding material 1 of the first embodiment preferably has a solar radiation absorption rate of 40% or less.
  • the solar radiation absorptivity is 40% or less, the temperature of the heat ray shielding material 1 is prevented from rising and the performance is deteriorated, and adverse effects that damage the window plate 2 are also suppressed.
  • the solar radiation absorption rate is more preferably 35% or less.
  • the solar absorptance can be measured using an infrared reflection measuring instrument in accordance with JIS A5759.
  • the numerical value of the solar radiation absorptance can be adjusted by the material, thickness, etc. of each layer constituting the same as in the case of the visible light transmittance described above. Note that the sum of the values of solar transmittance, solar reflectance, and solar absorption rate is 100%.
  • Heat shielding coefficient In the first embodiment, in order to quantify and evaluate the heat ray shielding performance of the metal layer 4, an index called a heat ray shielding coefficient is used.
  • the heat ray shielding coefficient is measured using a spectrophotometer according to JIS A5759.
  • the heat ray shielding coefficient is obtained by setting the Ni value to 0.34.
  • the heat ray shielding coefficient of the heat ray shielding material 1 of the first embodiment is preferably 0.9 or less. When the heat ray shielding coefficient exceeds 0.9, the shielding efficiency of near infrared rays is insufficient in view of the Green Purchasing Law standard of the Ministry of the Environment.
  • the heat ray shielding coefficient is more preferably 0.8 or less, still more preferably 0.7 or less, and particularly preferably 0.6 or less.
  • the numerical value of the heat ray shielding coefficient can be adjusted by the shape, thickness, metal type, and the like of the metal film of the metal layer 4 described above.
  • UV transmittance Sunlight that has passed through the heat-shielding material 1 is irradiated to indoor articles, but it is preferable to reduce the ultraviolet transmittance so that the indoor articles are not deteriorated by ultraviolet rays.
  • the ultraviolet transmittance is evaluated using light having a wavelength of 380 nm as a measure of the ultraviolet transmittance.
  • the ultraviolet transmittance (380 nm transmittance) can be measured using a spectrophotometer according to JIS A5759.
  • the ultraviolet ray transmittance (380 nm transmittance) of the heat ray shielding material 1 of the first embodiment is preferably 5% or less.
  • the numerical value of the ultraviolet transmittance can be adjusted by the shape, thickness, type of metal, and the like of the metal film of the metal layer 4 described above.
  • heat transmissivity in order to quantify and evaluate the far-infrared reflection efficiency of the metal layer 4, an index called a heat transmissivity is used.
  • the heat transmissivity can be measured using an infrared reflection measuring instrument in accordance with JIS A5759. It is preferable that the heat transmissivity of the heat ray shielding material 1 of 1st Embodiment is less than 5.9 W / m ⁇ 2 > K.
  • the heat ray shielding material 1 excellent in far-infrared reflection efficiency is preferably disposed on the surface layer as much as possible so as not to absorb far-infrared rays.
  • the heat ray shielding material 1 of the first embodiment preferably has a haze of 1.5% or less. When the haze is 1.5% or less, the visual field is excellent.
  • the haze can be measured using a haze meter (haze meter) according to JIS K7136. The numerical value of haze can be adjusted according to the material, thickness, and the like of each layer constituting the same as in the case of the visible light transmittance described above.
  • the appearance of the heat ray shielding material 1 according to the first embodiment affects the merchantability as a heat ray shielding material.
  • the diameter of the metal film that forms the metal layer 4 is larger than 0.50 mm or the distance between the metal films exceeds 0.23 mm, the appearance of the heat ray shielding material 1 is not visible to the naked eye. It becomes easy to recognize and the merchantability of the appearance is lowered.
  • the appearance of the heat ray shielding material 1 is determined by visual observation with the naked eye.
  • the heat ray shielding material 1 of 1st Embodiment can be manufactured by forming each layer which comprises the heat ray shielding material 1 on the 1st base material 5 one by one.
  • a representative example of the manufacturing method for forming each layer will be described below.
  • a method for forming the metal layer 4 will be described.
  • a predetermined metal film is formed on the entire surface of the substrate 5 by a vapor phase method.
  • a known method such as a vacuum deposition method, a sputtering method, or a CVD method can be appropriately selected.
  • a resist (photosensitive resin) film is formed on the metal film formed on the entire surface of the base material 5 by a predetermined arrangement of island-shaped metal films.
  • a known method for forming the resist film a known method such as a printing method or a photolithographic method can be selected.
  • the printing method a known method such as gravure printing or screen printing can be selected.
  • a method for forming a predetermined island-shaped metal film is a laser in which a laser beam is irradiated onto the metal film in a pattern and the metal film at a specific position is removed by heating. The method can also be used.
  • the method for forming the adhesive layer 3 will be described. An appropriate amount of an adhesive or pressure-sensitive adhesive polymer is mixed with a solvent to prepare a solution having an appropriate viscosity. The solution is coated on the substrate 5. Then, the adhesive layer 3 can be formed by drying.
  • the method for forming the hard coat layer 6 will be described.
  • An appropriate amount of a thermosetting resin or a photocurable resin is mixed in a solvent to prepare a solution having an appropriate viscosity.
  • the solution is coated on the substrate 5.
  • the hard coat layer 6 can be formed by performing a curing reaction using heat or light.
  • the heat ray shielding material 1 of the first embodiment transmits electromagnetic waves, a mobile phone, a mobile TV, or the like can be used indoors. Visible light irradiated from the outside is transmitted to some extent, so that the room can be brightened.
  • the heat ray shielding material 1 of 1st Embodiment shields a heat ray, it can suppress the raise of indoor air temperature. Further, far infrared rays emitted from the room can be prevented from escaping outside the room. Furthermore, ultraviolet rays can be shielded to prevent deterioration of indoor articles over time due to ultraviolet rays.
  • the heat ray shielding material of the second embodiment described later the heat ray shielding material of the third embodiment, the heat ray shielding material of the fourth embodiment, the heat ray shielding material of the fifth embodiment, and modifications thereof This is also the same and can be applied in the same manner, so that the description thereof is omitted.
  • the heat ray shielding material of the first embodiment is a heat ray shielding material of a type in which a metal layer is formed on the surface of a first base material and is installed on a window plate as a second base material via an adhesive layer or the like.
  • a type in which the metal layer is directly formed on the window plate using only the window plate as the substrate without using the first substrate may be used.
  • a metal layer is formed on the surface of a temporary support, and this is laminated and pressure-bonded on the surface of the base material on which the metal layer is formed, and the temporary support is peeled off to transfer the metal layer to the base material. You may print directly with the method and the ink containing a metal in a base material.
  • a transparent glass plate or a transparent resin plate can be used as the window plate as the base material.
  • the heat ray shielding material of the first embodiment uses two types of base materials, a first base material and a window plate that is a second base material.
  • the first base material has sufficient mechanical strength, durability, handleability, etc. that can stably hold the metal layer
  • the window plate as the second base material is bonded. You don't have to. In this case, only the first substrate is used as the substrate.
  • the first base material having a metal layer formed on the surface and the second base material that is a window plate are attached via an adhesive layer.
  • the first base material and the second base material it is possible to use a method in which the first base material and the second base material are stacked as they are, or mechanically fitted, or pressed from both sides without using an adhesive layer.
  • the heat ray shielding material of 2nd Embodiment has two or more base materials as window plates as compared with the heat ray shielding material of the first embodiment, and the metal layer is sandwiched between these two or more base materials. It is a heat ray shielding material which has.
  • the substrate as the window plate may be at least two, and may be three or more.
  • FIG. 18 is a schematic cross-sectional view showing a layer configuration of the heat ray shielding material 10 of the second embodiment.
  • the heat ray shielding material 10 according to the second embodiment includes a metal layer 4d formed by arranging a large number of island-shaped metal films on the indoor surface of the first base material 5 made of a transparent resin, and a second base material. And an adhesive layer 3a for closely contacting the window plate 2a (see FIG. 18). In addition, on the outdoor side of the base film 5, there is an adhesive layer 3 a for tightly contacting the window plate 2 a that is the third base material.
  • the heat ray shielding material 10 has a sandwich structure in which the metal layer 4d is sandwiched between two window plates 2a that are base materials from both sides via an adhesive layer or the like.
  • the island-shaped metal film of the metal layer 4d is composed of five conductive layers of ITO / Ag / ITO / Ag / ITO.
  • the five layers of ITO / Ag / ITO / Ag / ITO are formed by sequentially sputtering ITO, Ag, ITO, Ag, and ITO on the first substrate 5.
  • the heat ray shielding material 10 of the second embodiment has a configuration in which a metal layer 4d is formed on a base material 5 and is further sandwiched by two window plates 2a through two adhesive layers 3a. Therefore, no matter which side is the outdoor side, deterioration due to rain and wind can be reduced.
  • the heat ray shielding material 10 of the second embodiment when a glass plate is used as the material of the two window plates 2a as the base material, a so-called laminated glass is formed.
  • the laminated glass can be provided with excellent penetration resistance, impact resistance, and scattering prevention effects.
  • the adhesive layer 3a is not particularly limited as long as it is a resin film that is generally used as an intermediate film of laminated glass, and preferably has no absorption in the visible light region or the infrared region.
  • the material used for the adhesive layer 3a of the heat ray shielding material 10 of the second embodiment is different from the material used for the adhesive layer 3 of the heat ray shielding material of the first embodiment.
  • the adhesive layer 3a of the heat ray shielding material 10 according to the second embodiment is applied or laminated on a base material as a resin having no adhesiveness at room temperature, and then heat-treats after laminating each material constituting the heat ray shielding material. In this way, the adhesive exhibits adhesiveness and adhesiveness, and can bond the respective layers.
  • Examples of such an adhesive include polyvinyl butyral resin (PVB resin), ethylene-vinyl acetate copolymer resin (EVA resin), and the like.
  • PVB resin polyvinyl butyral resin
  • EVA resin ethylene-vinyl acetate copolymer resin
  • An ultraviolet absorber, an antioxidant, an antistatic agent, a heat stabilizer, a lubricant, a filler, a colorant, an adhesion adjusting agent, and the like may be appropriately added to the resin forming the adhesive layer 3a. These resins may be used alone or in combination of two or more.
  • the adhesive layer 3a may be manufactured using a known method, but a commercially available product may be used. Examples of commercially available products include plasticized PVB manufactured by Sekisui Chemical Co., Ltd. and Mitsubishi Plastics, EVA resin manufactured by DuPont and Takeda Pharmaceutical, and modified EVA resin manufactured by Tosoh.
  • the adhesive layer 3a may be composed of a single layer of the above resin
  • the thickness of the adhesive layer 3a of the heat ray shielding material 10 of the second embodiment is preferably 100 to 1000 ⁇ m. It does not restrict
  • a metal film is used as the material used for the adhesive layers 3, 3a.
  • a neutral pH is preferable.
  • a chemical structure that does not contain a carboxylic acid is preferable.
  • a method for producing the heat ray shielding material 10 of the second embodiment will be described.
  • the method for forming the metal film on the substrate 5 and the method for forming the predetermined island-shaped metal film are the same as those in the method of manufacturing the heat ray shielding material of the first embodiment, and thus the description thereof is omitted. .
  • adhesive layers 3a are formed on both surfaces of the base material 5 provided with the metal layer 4, respectively.
  • An appropriate amount of the polymer adhesive is mixed with a solvent to prepare a solution having an appropriate viscosity.
  • the solution is coated on the substrate 5 or the metal layer 4.
  • the adhesive layer 3a can be formed by drying. Further, as described above, a protective layer may be provided between the metal layer 4 and the adhesive layer 3a.
  • FIG. 22 is a schematic diagram showing a method for manufacturing the heat ray shielding material 10 according to the second embodiment.
  • a base material 9 having an adhesive layer on both sides is laminated between two glass plates 2a.
  • the laminated glass plate 2a and the base material 9 having adhesive layers on both surfaces move on the roller 21 and move to the next step.
  • the laminated glass plate 2 a and the base material 9 having the adhesive layers on both surfaces are heated to about 90 ° C. by the heater 23 in the sealed chamber 22. Subsequently, by passing a pair of pressure-bonding rolls 24, the laminated glass plate 2a and the base material 9 having an adhesive layer on both surfaces are temporarily pressure-bonded.
  • the heat ray shielding material 10 that has been temporarily press-bonded is accommodated in the autoclave 25.
  • autoclave 25 it is pressurized to about 1 MPa and heated to about 130 ° C., thereby removing bubbles remaining after temporary pressure bonding, and the adhesive layer of heat ray shielding material 10 is sufficiently bonded to the glass plate, The heat ray shielding material 10 is manufactured.
  • the glass plate on the indoor side of the two glass plates that are the base material of the heat ray shielding material contains iron ions.
  • the indoor adhesive layer constituting the heat ray shielding material contains heat ray absorbing metal compound fine particles. Also in this case, in order to improve the shielding performance in the wavelength range of 800 to 2500 nm, it is effective that the indoor adhesive layer contains the heat ray absorbing metal compound fine particles among the plurality of adhesive layers of the heat ray shielding material. It is.
  • FIG. 18 is a schematic cross-sectional view showing the layer configuration of the first modification of the heat ray shielding material 10 of the second embodiment, with the upper side being the indoor side and the lower side being the outdoor side.
  • the indoor side glass plate 2a contains the iron ion (not shown) among the two glass plates 2a which are base materials.
  • the glass plate containing iron ions is soda lime glass mainly composed of silicon dioxide (SiO 2 ), sodium oxide (Na 2 O), calcium oxide (CaO), and iron content is Fe 2 O 3.
  • a glass plate containing 0.3 to 0.9% by mass and having iron reduced at a high reduction rate is preferable.
  • the content ratio of divalent iron ions to trivalent iron ions is 50 to 250%.
  • the iron content As a method for reducing the iron content, it can be prepared by melting in an electric melting furnace or the like using powders such as silica sand, feldspar, soda ash, and bengara as soda lime glass raw materials and carbon as a reducing agent.
  • the reduction rate of iron can be measured by a redox measuring device.
  • the indoor glass plate 2a By using a glass plate containing iron ions as the indoor glass plate 2a, it is possible to improve the shielding performance in the wavelength region of 800 to 2500 nm. As a result, the heat ray shielding coefficient as the heat ray shielding material 10 can be pushed down by the combined effect of the heat ray shielding material 10 with the metal layer 4d.
  • FIG. 18 is a schematic cross-sectional view illustrating a layer configuration of a second modification of the heat ray shielding material 10 of the second embodiment.
  • the contact bonding layer 3a of the indoor side of the heat ray shielding material 10 contains a heat ray absorptive metal compound fine particle (not shown). That is, the heat ray absorbing metal compound fine particles described below are uniformly contained in the adhesive used for the adhesive layer 3a.
  • the heat ray absorbing metal compound is a metal compound having a maximum absorption wavelength peak in the infrared region.
  • heat-absorbing metal compounds include cesium-containing tungsten oxide, lanthanum hexaboride, cerium hexaboride, antimony-containing tin oxide, tin-containing indium oxide, aluminum-containing zinc oxide, indium-containing zinc oxide, tin-containing zinc oxide. And silicon-containing zinc oxide, gallium oxide-containing zinc oxide, and the like.
  • At least one selected from cesium-containing tungsten oxide, lanthanum hexaboride, antimony-containing tin oxide, and tin-containing indium oxide is preferable, and tin-containing indium oxide is particularly preferable.
  • the heat ray absorbing metal compound is contained in the adhesive layer 3a as fine particles.
  • the average particle diameter of the fine particles is preferably 100 nm or less. When it exceeds 100 nm, the scattering of visible light by the fine particles becomes remarkable, and the transparency may be lowered. More preferably, it is 10 to 80 nm.
  • the content of the heat ray absorbing metal compound fine particles is preferably 0.1 to 3% by mass with respect to the adhesive. When it is less than 0.1% by mass, the heat ray shielding performance is not sufficiently exhibited. On the other hand, if it exceeds 3% by mass, the visible light transmittance is lowered or the haze is increased.
  • the present inventors have found that it is effective to increase the reflectance in the near-infrared wavelength region (800 to 1200 nm) close to visible light in order to further improve the heat ray shielding performance. Therefore, it has been found that a method of installing a transparent resin layer having a multilayer structure is effective as a method different from the method shown in the modification of the second embodiment. Further, the present inventor has effective to use a transparent resin layer having a multilayer structure with a thickness of 50 to 1000 nm per layer in order to increase the reflectance in the wavelength region of 800 to 1200 nm. I found out. That is, as one of the elements constituting the heat ray shielding material, it is possible to further improve the heat ray shielding performance by introducing a transparent resin layer having a multilayer structure by coating with a multilayer film or a liquid crystal resin. I found.
  • the heat ray shielding material of 3rd Embodiment is equipped with the base material and the metal layer, The metal layer is provided in one surface of the said base material, The resin layer which has a multilayer structure in the other surface of the said base material It has.
  • the multilayer structure has a thickness of 50 to 1000 nm per layer.
  • FIG. 23 is a schematic cross-sectional view showing the layer configuration of the heat ray shielding material 20A of the third embodiment.
  • the adhesive layer 3, the transparent resin layer 8 having a multilayer structure, the adhesive layer 3, and the second base material are sequentially provided on the outdoor side of the first base material 5.
  • Window plate 2 is laminated.
  • a metal layer 4 is formed on the indoor side of the first base material 5. The metal layer 4 is formed by arranging a large number of island-shaped metal films.
  • the transparent resin layer 8 having a multilayer structure is a layer having a particularly excellent reflectance in the near-infrared wavelength region (800 to 1200 nm) close to visible light among sunlight irradiated from outside.
  • the transparent resin layer 8 having a multilayer structure on the substrate 5 There are several methods for forming the transparent resin layer 8 having a multilayer structure on the substrate 5. Specifically, there are a method using a multilayer film and a method using a liquid crystal resin coating.
  • the multilayer film is a film having a structure in which the same or different polymers having different refractive indexes are alternately laminated.
  • the thickness per layer of the multilayer structure can be adjusted by changing the extrusion thickness and the stretching ratio at the time of co-extrusion.
  • a method for producing a multilayer film having such a structure is described in, for example, JP-T 9-506837, JP-A 2007-307893, JP-A 2008-273186, JP-A 2013-209246, and the like. Yes.
  • the resin constituting the multilayer film acrylic, polycarbonate, styrene, polyester, and polyolefin resins can be used.
  • polyester resins such as PET, PBT, and PEN are preferable.
  • a liquid crystal resin forms a multilayered layer by coating a solution on a base film.
  • a chiral agent is added to an acrylic resin nematic liquid crystal and UV cured, a cholesteric liquid crystal layer is formed.
  • the thickness per layer can be adjusted by changing the addition amount of the chiralizing agent.
  • a method for producing a liquid crystal resin layer having such a structure is described in, for example, Japanese Patent Application Laid-Open Nos. 2010-286663 and 2012-13963.
  • the transparent resin layer 8 having a multilayer structure has a high reflectance in a wavelength region of 800 to 1200 nm because the thickness per layer of the multilayer structure is 50 to 1000 nm.
  • the transparent resin layer 8 having a multilayer structure is irradiated with heat rays, the heat rays are usually reflected at each interface of the multilayer structure having a different refractive index.
  • the thickness per layer of the multilayer structure is in the above range. .
  • the thickness per layer of the multilayer structure is preferably 70 to 300 nm.
  • the number of layers in the multilayer structure is preferably 50 to 600 layers, more preferably 100 to 400 layers. preferable.
  • the wavelength region having a high reflectance is widened, and the light in the visible light region is also reflected. Therefore, the visible light transmittance is reduced.
  • the heat shrinkage of the multilayer film is preferably 1% or less when left in a drying oven at 130 to 150 ° C. for 30 minutes. When this value exceeds 1%, it becomes a factor that wrinkles are easily formed when adhering to the base film 5 or adhering to laminated glass described later, and the metal layer is cracked or peeled off.
  • FIG. 24 is a schematic cross-sectional view showing a layer structure of a heat ray shielding material 20B of a comparative example of the third embodiment. Although it has the metal layer 4 on one surface of the 1st base material 5, the metal layer is not formed by arrange
  • the heat-shielding material 20B is constituted as a whole by being bonded to the window plate 2 as the second base material with the adhesive layer 3.
  • FIG. 25 is a schematic cross-sectional view showing a layer configuration of a heat ray shielding material 20C of a comparative example of the third embodiment.
  • the heat ray shielding material 20 ⁇ / b> C has the transparent resin layer 8 having a multilayer structure, but does not have the metal layer 4.
  • the transparent resin layer 8 having a multilayer structure is bonded to the window plate 2 as a base material by the adhesive layer 3.
  • FIG. 26 is a schematic cross-sectional view illustrating a layer configuration of a heat ray shielding material 20D according to a modification of the third embodiment.
  • the heat ray shielding material 20D has a hard coat layer 6 in the outermost layer on the indoor side in addition to the layer configuration of the heat ray shielding material 20A of FIG.
  • FIG. 27 is a schematic cross-sectional view showing a layer configuration of a heat ray shielding material 20E according to a modification of the third embodiment.
  • the heat ray shielding material 20E has four layers of the metal layer 4, the base material 5, the adhesive layer 3, and the transparent resin layer 8 having a multilayer structure, and the directions to the inside and the outside are reversed. ing. At this time, unlike the heat ray shielding material 20E, the heat ray shielding material 20D is preferable because the metal layer 4 is on the indoor side of the transparent resin layer 8 having a multilayer structure, and is excellent in the effect of improving the heat ray shielding performance.
  • the heat ray shielding material of the fourth embodiment includes a base material and a metal layer, and the base material is a resin material having a multilayer structure.
  • the multilayer structure has a thickness of 50 to 1000 nm per layer.
  • FIG. 28 is a schematic cross-sectional view showing the layer structure of the heat ray shielding material 30 of the fourth embodiment.
  • the adhesive layer 3 and the window plate 2 as the second base material are sequentially laminated on the outdoor side of the transparent resin layer 8a having a multilayer structure as the base material.
  • a metal layer 4 and a hard coat layer 6 are sequentially laminated on the indoor side of the transparent resin layer 8a having a multilayer structure as a base material.
  • the metal layer 4 is formed by arranging a large number of island-shaped metal films.
  • the metal layer 4 is on the indoor side of the transparent resin layer 8a having a multilayer structure because the effect of improving the heat ray shielding performance is superior. Further, it is possible to reversely read indoors and outdoors as in the case of the first embodiment.
  • the transparent resin layer 8a having the multilayer structure of the fourth embodiment is a layer having a function as a base material. Therefore, the transparent resin layer 8a having the multilayer structure of the fourth embodiment also has a function of holding the metal layer 4, the adhesive layer 3, and the like, and is excellent in mechanical strength, visible light transmittance, workability, and the like. Is preferred. Therefore, the transparent resin layer 8a having a multilayer structure is preferably manufactured by a method using a multilayer film rather than a method using a liquid crystal resin coating.
  • the heat ray shielding material of the fifth embodiment has two or more base materials as window plates, and these two or more base materials as window plates are metal. It has the structure which pinches
  • FIG. 29 is a schematic cross-sectional view showing the layer configuration of the heat ray shielding material 40 of the fifth embodiment.
  • the heat ray shielding material 40 shown in FIG. 29 shows an example thereof, and is an example when the base material is a resin material having a multilayer structure.
  • the adhesive layer 3a and the window plate 2a as the second base material are sequentially laminated on the outdoor side of the transparent resin layer 8a having a multilayer structure as the base material. Yes.
  • a metal layer 4 On the other hand, on the indoor side of the transparent resin layer 8a having a multilayer structure as a base material, a metal layer 4, an adhesive layer 3a, and a window plate 2a as a third base material are laminated in order. Therefore, the heat ray shielding material 40 has a sandwich structure in which the metal layer 4 is sandwiched between two window plates 2a that are base materials from both sides via an adhesive layer or the like.
  • the metal layer 4 is formed by arranging a large number of island-shaped metal films.
  • the heat ray shielding material 40 is formed on the transparent resin layer 8a having a multilayer structure in which the metal layer 4 is a base material, and is further sandwiched by two window plates 2a through two adhesive layers 3a. Because of this configuration, it is possible to reduce deterioration due to rain and wind, regardless of which side is the outdoor side.
  • the 5th Embodiment will comprise what is called a laminated glass, when a glass plate is used as a raw material of the window plate 2a.
  • the laminated glass is constituted using the adhesive layer 3a, the laminated glass can be provided with excellent penetration resistance, impact resistance, and scattering prevention effects.
  • the material, manufacturing method, modification, and the like constituting the heat ray shielding material 40 are the same as those in the case of the heat ray shielding material of the second embodiment, the description thereof is omitted.
  • Example 1 A composition A having the following composition was coated on one surface of an easily-adhesive PET film (U40, 100 ⁇ m thickness) using a bar coater and dried in a hot air oven at 100 ° C. for 2 minutes. Thereafter, the coated surface was cured by irradiating with ultraviolet rays (integrated light amount 300 mJ / cm 2 ) with a high-pressure mercury lamp, thereby forming a hard coat layer having a thickness of about 4 ⁇ m.
  • ultraviolet rays integrated light amount 300 mJ / cm 2
  • Aluminum was deposited on the surface of the PET film opposite to the hard coat layer using a deposition method under a vacuum of 5 ⁇ 10 ⁇ 5 Torr.
  • a resist dissolved in a solvent was printed by gravure printing so as to have the predetermined island-like arrangement shown in FIG.
  • a circle means a circular staggered type (see FIG. 19)
  • a square means a square parallel type (see FIG. 20)
  • a hexagon means a hexagonal staggered type (see FIG. 21).
  • the resist was dissolved using an aqueous solution of sodium hydroxide and peeled off from the surface of the aluminum film. After washing with water and drying, a metal layer having a predetermined island-like metal film disposed on the surface of the PET film opposite to the hard coat layer was formed.
  • composition B having the following composition was applied on a silicone-treated separator (manufactured by Mitsubishi Plastics, MRQ # 38, 38 ⁇ m thickness) using an applicator. Then, it was dried in a hot air oven at 100 ° C. for 2 minutes to form an adhesive layer having a thickness of about 22 ⁇ m.
  • the adhesive layer was laminated with the surface on which the metal layer of the PET film was formed. After leaving for 7 days, the separator was peeled off, and the adhesive layer was bonded to a 3 mm thick alkali glass plate to produce a heat ray shielding material, and various performances were evaluated.
  • Example 2 The thickness of the metal layer (aluminum film), the shape of the metal film, the diameter of the metal film, the distance between the metal films, and the opening area ratio (the area ratio of the portion not covered with the metal film) are shown in FIG. Except for the changes, a heat ray shielding material was produced in the same manner as in Example 1, and various performances were evaluated.
  • Example 6 In the same manner as in Example 1, an easy-adhesion PET film having a hard coat layer formed on one side was produced. On the surface opposite to the hard coat layer of the PET film, using a sputtering method under a vacuum of 5 ⁇ 10 ⁇ 5 Torr, a 30 nm thick ITO film, a 10 nm thick Ag film, and a 30 nm thick ITO film The films were sequentially laminated to form a metal film having a three-layer structure.
  • a resist (photosensitive resin) film is thermally laminated on the prepared metal film, exposed and developed by a photolithography method, and the resist is formed to have the predetermined island-like arrangement shown in FIG. did.
  • the metal film on the portion where the resist was not printed was dissolved and removed using an aqueous solution of ferric chloride.
  • the resist was dissolved using an aqueous solution of sodium hydroxide and peeled off from the surface of the metal film.
  • a metal layer having a predetermined island-like metal film disposed on the surface of the PET film opposite to the hard coat layer was formed. Thereafter, in the same manner as in Example 1, a heat ray shielding material was produced, and various performances were evaluated.
  • Example 8 On one side of an easy-adhesive PET film (manufactured by Teijin Ltd., HB, 100 ⁇ m thickness), using a sputtering method under a vacuum of 5 ⁇ 10 ⁇ 5 Torr, a 40 nm thick ITO film, a 10 nm thick Ag film, A 70 nm thick ITO film, a 12 nm thick Ag film, and a 35 nm thick ITO film were sequentially laminated to form a metal film having a five-layer structure.
  • an easy-adhesive PET film manufactured by Teijin Ltd., HB, 100 ⁇ m thickness
  • a resist film was heat-laminated on the produced metal film, exposed and developed by a photolithography method, and a resist was formed to have a predetermined island-like arrangement shown in FIG.
  • the metal film on the portion where the resist was not printed was dissolved and removed using an aqueous solution of ferric chloride.
  • the resist was dissolved using an aqueous solution of sodium hydroxide and peeled off from the surface of the metal film. It washed with water and dried and formed the metal layer by which the predetermined island-like metal membrane
  • a single alkali glass plate having an adhesive layer was placed on a flat table with the adhesive layer facing upward. On top of that, the above PET film was placed with the layer on which the metal layer was formed facing upward. Further thereon, another alkali glass plate having an adhesive layer was placed with the adhesive layer on the lower side.
  • the obtained multilayer sheet was temporarily pressure-bonded through a roll laminator having a metal roll heated at 60 ° C. Thereafter, the multilayer sheet temporarily bonded was put in an autoclave and subjected to main pressure bonding by autoclaving under conditions of 130 ° C., 13 atm, and 1 hour to produce a heat ray shielding material in the form of laminated glass (see FIG. 18). . Thereafter, various performances were evaluated.
  • Example 10 In the same manner as in Example 1, first, aluminum was vapor-deposited on one surface of the easy-adhesion PET film using a vapor deposition method under a vacuum of 5 ⁇ 10 ⁇ 5 Torr. Next, a resist is printed on the prepared aluminum film in the same manner as in Example 1 so as to have the predetermined island-like arrangement shown in FIG. A metal layer in which a metal film was disposed was formed.
  • Example 2 the surface of the PET film on which the metal layer on which the island-shaped metal film was arranged was formed, the composition A was applied using a bar coater, and the procedure described in Example 1 was performed to obtain a thickness of about 4 ⁇ m. A hard coat layer was formed. In the same manner as in Example 1, an adhesive layer was laminated on the surface of the PET film opposite to the surface on which the metal layer and the hard coat layer were formed. Thereafter, in the same manner as in Example 1, a heat ray shielding material was produced, and various performances were evaluated.
  • Example 11 A heat ray shielding material was prepared in the same manner as in Example 10 except that the thickness of the metal layer (aluminum film), the diameter of the metal film, the distance between the metal films, and the opening area ratio were changed to the values described in FIG. Various performances were evaluated.
  • Example 12 Except that the composition A was changed to the following composition C, Example 12 was prepared in the same manner as in Example 11, and Example 15 was prepared in the same manner as in Example 14 to produce a heat ray shielding material and evaluated various performances. Went.
  • Example 16 a heat ray shielding material was produced in the same manner as in Example 7 except that the diameter of the metal film, the distance between the metal films, and the opening area ratio were changed to the numerical values described in FIG. Went.
  • Example 17 a heat ray shielding material was produced in the same manner as in Example 6 except that the configuration of the metal layer was changed to the same as that in Example 9, and various performances were evaluated.
  • Comparative Examples 1 to 14 were heat ray shieldings produced in Examples 1 to 6, Example 8, and Examples 10 to 15, respectively, without forming the metal film into a predetermined island-shaped metal film using a resist. It is a material.
  • the comparative example 14 is the heat ray shielding material produced in Example 1 without forming a metal film. Each performance was evaluated.
  • Comparative Examples 15 to 17 were heat ray shielding materials in which a heat ray shielding material was produced in the same manner as in Example 1 except that the diameter of the metal coating, the distance between the metal coatings, and the opening area ratio were changed to the numerical values shown in FIG. It is.
  • Comparative Example 17 is a heat ray shielding material produced without forming a metal film into a predetermined island-shaped metal film using a resist while forming a metal layer in the same manner as in Example 16. Each performance was evaluated.
  • Examples 18 to 34, Comparative Examples 18 to 20 are heat ray shielding materials prepared in Examples 1 to 15 without being bonded to an alkali glass plate, respectively. These have a configuration corresponding to a modification of the first embodiment.
  • Examples 24 and 28 are heat ray shielding materials that were manufactured without being bonded to an alkali glass plate in the same manner as in Examples 18 to 23 and the like, although the structure of the metal layer was partially different.
  • Comparative Examples 18 and 19 are heat ray shielding materials produced in Comparative Examples 15 and 16 without being bonded to an alkali glass plate, respectively.
  • the comparative example 20 is a heat ray shielding material manufactured without being bonded to an alkali glass plate in the same manner as in the example 23 and the like, although the structure of the metal layer is partially different. Each performance was evaluated.
  • ⁇ Performance evaluation method> surface resistance value, electromagnetic wave shielding rate, visible light transmittance, visible light reflectance, solar transmittance, solar reflectance, solar absorption rate, chromaticity / saturation of reflected light, heat ray shielding coefficient. The performance was evaluated under the conditions described below for the ultraviolet transmittance, thermal conductivity, haze, and appearance. In addition, evaluation was performed about the transmitted light and reflected light by irradiating a predetermined light ray from the outdoor side of the heat ray shielding material.
  • Electromagnetic wave shielding rate (Electromagnetic wave shielding rate) Using a sample of 15 cm ⁇ 15 cm, the electromagnetic wave shielding rate was measured in the frequency range of 30 MHz to 1 GHz by the KEC method. The numerical value of the electromagnetic wave shielding rate was a value (dB) at a frequency of 800 MHz.
  • the heat ray shielding coefficient is measured using a spectrophotometer according to JIS A5759. The heat ray shielding coefficient was determined by setting the Ni value to 0.34. In this example, a spectrophotometer (manufactured by Shimadzu Corporation, UV3160) was used.
  • UV transmittance In accordance with JIS A5759, the transmittance of light having a wavelength of 380 nm was measured. In this example, a spectrophotometer (manufactured by Shimadzu Corporation, UV3160) was used.
  • the heat transmissivity is measured using an infrared reflectometer in accordance with JIS A5759. When the heat transmissivity is less than 5.9 W / m 2 K, it is determined that the far-infrared reflection efficiency is excellent. In this example, an infrared reflection measuring machine (manufactured by Shimadzu Corporation, FTIR8700) was used.
  • the appearance of the heat ray shielding material is determined by visual observation with the naked eye. When the metal film could not be recognized with the naked eye, it was judged as ⁇ , and when the metal film could be recognized with the naked eye, it was judged as x.
  • FIGS. As a reference, the performance of a single alkali glass plate is shown as Comparative Example 14.
  • the column of “surface resistance value” indicates that the metal layer is formed of an island-shaped metal film or there is no metal layer, so that the measurement terminals are electrically insulative. It is shown that.
  • the column with “-” indicates that measurement could not be performed. The same applies to FIGS.
  • the heat ray shielding materials of Examples 1 to 5 have the layer configuration of the first embodiment (FIGS. 15 and 1A), and the thickness of the metal layer, the arrangement of the metal film, the area ratio of the opening, The diameter of the metal film and the distance between the metal films are different.
  • Each of the examples satisfies the provisions of claim 1 and is a heat ray shielding material having excellent visible light transmission performance, heat ray shielding performance, electromagnetic wave transmission performance, and ultraviolet ray shielding performance, and an excellent appearance. .
  • the heat ray shielding materials of Examples 6, 7, 16, and 17 have the layer configuration of the first embodiment (FIGS. 16 and 1B), and three layers of ITO / Ag / ITO or ITO / Ag / ITO / Ag / ITO. And having a multi-layer metal layer composed of five layers.
  • Examples 8 and 9 have the layer configuration of the second embodiment (FIGS. 18 and 10), and have a multilayer metal layer composed of five layers of ITO / Ag / ITO / Ag / ITO. It has the structure pinched
  • Examples 6 to 9, 16, and 17 are superior to Examples 1 to 5 in terms of visible light transmittance and visible light reflectance.
  • the heat ray shielding materials of Examples 10 to 15 have the layer configuration of the first embodiment (FIGS. 17 and 1C). Compared with Examples 1 to 5, it is a heat ray shielding material that has an excellent heat transmissibility and an excellent far-infrared reflection efficiency. In particular, Example 12 and Example 15 are superior to the corresponding Examples 11 and 14, respectively, because the hard coat layer contains cesium-containing tungsten oxide, so that the heat ray shielding coefficient is superior. Yes.
  • Comparative Examples 1 to 13 the metal layer was not formed by arranging a large number of island-shaped metal films, and all of the values were excessive in electromagnetic wave shielding rate.
  • Comparative Example 15 and Comparative Example 16 have the layer configuration of the first embodiment (FIGS. 15 and 1A), but satisfy the provisions of the present invention in terms of the opening area ratio, the diameter of the metal film, and the distance between the metal films. Not done. Comparative Example 15 was inferior in visible light transmission performance and appearance, and Comparative Example 16 was inferior in heat ray shielding performance. In Comparative Example 17, the metal layer was not formed by arranging a large number of island-shaped metal films, and the numerical value was excessive in the electromagnetic wave shielding rate.
  • Examples 18 to 34 and Comparative Examples 18 to 20 in FIGS. 5 and 6 is a heat ray shielding material not bonded to an alkali glass plate
  • Examples 1 to 17 in FIGS. 3 and 4 and Comparative Examples. 15 and 16 have almost the corresponding performance.
  • PET film B1 A metal layer having a five-layer structure was formed on one surface of an easily adhesive PET film (Toray Industries, Inc., U40, 50 ⁇ m thickness, hereinafter referred to as “PET film”). Specifically, using a sputtering method under a vacuum of 5 ⁇ 10 ⁇ 5 Torr, a 40 nm thick ITO film, a 10 nm thick Ag film, a 70 nm thick ITO film, a 12 nm thick Ag film, A metal layer having a five-layer structure was formed by sequentially laminating an ITO film having a thickness of 35 nm.
  • PET film Toray Industries, Inc., U40, 50 ⁇ m thickness
  • a resist dissolved in a solvent was printed on the produced metal layer by gravure printing so as to have the island-like arrangement shown in FIG.
  • the diameter of the metal film was 360 ⁇ m
  • the distance between the metal films was 40 ⁇ m
  • the opening area ratio was 19%.
  • the metal film of the portion where the resist was not printed was dissolved and removed using an aqueous ferric chloride solution. Thereafter, the resist was dissolved using an aqueous solution of sodium hydroxide and peeled off from the surface of the metal film. After washing with water and drying, a metal layer in which a metal film having a predetermined five-layer structure was disposed was formed on the PET film.
  • composition D having the following composition was coated on a separator treated with silicone (manufactured by Mitsubishi Plastics, MRQ # 38, 38 ⁇ m thickness, hereinafter referred to as “separator”) using an applicator. Thereafter, it was dried in a hot air oven at 100 ° C. for 2 minutes to form an adhesive layer having a thickness of about 1 ⁇ m.
  • the adhesive layer was laminated with the surface of the PET film on which the metal layer was formed.
  • the separator was peeled off, and the exposed adhesive layer and a 50 ⁇ m-thick PET film as a protective film were bonded together to produce a laminated film B1.
  • (Laminated film B2) A metal layer having a five-layer structure was formed on one surface of the PET film. Specifically, using a sputtering method under a vacuum of 5 ⁇ 10 ⁇ 5 Torr, a 35 nm thick ITO film, a 9 nm thick Ag film, a 60 nm thick ITO film, a 9 nm thick Ag film, A 30 nm thick ITO film was sequentially laminated to form a metal layer having a five-layer structure. Thereafter, etching was performed on the produced metal layer in the same manner as B1, thereby forming a metal layer in which a metal film having a five-layer structure having a predetermined shape described in FIG. 21 was disposed.
  • the diameter of the metal film was 250 ⁇ m
  • the distance between the metal films was 60 ⁇ m
  • the opening area ratio was 35%.
  • the composition A On the surface of the PET film on which the metal layer was formed, the composition A was applied using a bar coater and dried in a hot air oven at 80 ° C. for 2 minutes. Thereafter, the coated surface was cured by irradiating with ultraviolet light (integrated light amount 500 mJ / cm 2 ) with a high-pressure mercury lamp, and a protective layer having a thickness of about 4 ⁇ m was formed to produce a laminated film B2.
  • ultraviolet light integrated light amount 500 mJ / cm 2
  • PVB polyvinyl butyral film, manufactured by Sekisui Chemical Co., Ltd., S-LEC PVB0.38
  • PVB sheet float glass plate (thickness 2 mm) of soda-lime glass
  • soda lime glass instead of soda lime glass, a glass plate (thickness 2 mm) of soda lime glass containing iron ions was used, and a PVB sheet as an adhesive layer was placed on the iron ion containing glass plate in the same manner as described above.
  • a glass plate having an adhesive layer was placed on a flat table so that the adhesive layer was on the upper side.
  • the laminated film B1 was placed so that the metal layer was on the upper side.
  • an iron ion-containing glass plate having an adhesive layer was placed so that the adhesive layer was on the lower side.
  • the obtained laminate was passed through the production line described in FIG. That is, in the sealed chamber 22, the obtained laminate was heated to about 90 ° C. using the heater 23. Then, the glass plate 2a laminated
  • the heat-shielding material 10 that was temporarily bonded was stored in the autoclave 25.
  • the autoclave 25 is pressurized to about 1 MPa and heated at about 130 ° C. for 30 minutes to remove bubbles remaining after the temporary pressure bonding, and the base material 9 having an adhesive layer on both sides is sufficiently adhered to the glass plate 2a by the adhesive layer.
  • the bonded heat ray shielding material 10 was manufactured.
  • the configuration according to the configuration shown in FIG. 18 was assumed.
  • Example 37 Unlike Example 36, a float glass plate (thickness 2 mm) of soda-lime glass was used as each of the two glass plates without using an iron ion-containing glass plate. A PVB sheet having a thickness of 380 ⁇ m as an adhesive layer was placed on one glass plate.
  • a glass plate having an adhesive layer was placed on a flat table with the adhesive layer facing upward. On top of that, the laminated film B1 was placed so that the metal layer was on the upper side. Further thereon, a glass plate having an adhesive layer containing heat-absorbing metal compound fine particles was placed with the adhesive layer facing down.
  • the obtained laminate was passed through the production line described in FIG. That is, in the sealed chamber 22, the obtained laminate was heated to about 90 ° C. using the heater 23. Then, the base material 9 which has the laminated
  • the heat-shielded laminated glass 10 that was temporarily press-bonded was stored in the autoclave 25.
  • the autoclave 25 is pressurized to about 1 MPa and heated at about 130 ° C. for 30 minutes to remove bubbles remaining after the temporary pressure bonding, and the base material 9 having an adhesive layer on both sides is sufficiently adhered to the glass plate 2a by the adhesive layer.
  • the bonded heat ray shielding material 10 was manufactured.
  • the configuration according to the configuration shown in FIG. 18 was assumed.
  • Example 38 In Example 37, the heat ray shielding material 10 was produced in the same manner as in Example 37 except that the laminated film B2 was used instead of the laminated film B1.
  • Example 39 In Example 36, it was manufactured in the same manner as in Example 36 except that a glass sheet of soda-lime glass (thickness 2 mm) was used as the two glass sheets without using the iron ion-containing glass sheet. Thus, the heat ray shielding material 10 was manufactured.
  • Example 35 In Example 36, except that the iron ion-containing glass plate was not used, and as the two glass plates, a soda-lime glass float glass plate (thickness 2 mm) was used, and the configuration of the metal layer was partially changed. Were manufactured in the same manner as in Example 36 to manufacture the heat ray shielding material 10.
  • the heat ray shielding materials of Examples 36 to 38 have a glass plate containing iron ions or an adhesive layer containing heat ray absorbing metal compound fine particles on the indoor side of the metal layer.
  • the heat ray shielding materials of Examples 35 and 39 do not have a glass plate containing iron ions or an adhesive layer containing heat ray absorbing metal compound fine particles. All of them had good performance in heat ray shielding coefficient, visible light transmittance, visible light reflectance, solar transmittance, solar reflectance, solar absorption rate, and electromagnetic wave shielding rate.
  • the heat ray shielding materials of Examples 36 to 38 were extremely excellent with a heat ray shielding coefficient of 0.60 or less.
  • the laminated film B1 and laminated film B2 of the reference example do not have a glass plate containing iron ions or an adhesive layer containing heat ray-absorbing metal compound fine particles. Compared with Examples 36 to 38, heat ray shielding The coefficient was inferior.
  • 30 to 35 are spectrum diagrams of transmittance and reflectance of the heat ray shielding materials of Examples and Reference Examples.
  • a solid line is a spectrum of transmitted light, and a broken line is a spectrum of reflected light.
  • 30 and 31 show the spectra of Example 36 and Example 37, respectively.
  • FIG. 32 shows the spectrum of Example 39, which shows the characteristics of only the metal layer having an island-shaped metal film.
  • the transmittance in the near infrared and near-wavelength region (800 to 1800 nm) close to visible light was slightly high, resulting in slightly inferior heat ray shielding coefficient.
  • FIGS. 33, 34, and 35 are spectra of reference examples, respectively.
  • FIG. 33 is a spectrum of a laminated glass having a structure in which only a 380 ⁇ m-thick PVB sheet is sandwiched between two iron ion-containing glass plates (thickness 2 mm) and bonded.
  • FIG. 34 only a sheet of PVB (polyvinyl butyral film, 760 ⁇ m thickness) containing tin-containing indium oxide fine particles as an adhesive layer is sandwiched between two soda-lime glass float glass plates (thickness 2 mm). It is a spectrum of the laminated glass of the structure only bonded together.
  • FIG. 33 is a spectrum of a laminated glass having a structure in which only a 380 ⁇ m-thick PVB sheet is sandwiched between two iron ion-containing glass plates (thickness 2 mm) and bonded.
  • FIG. 34 only a sheet of PVB (polyvinyl butyral film, 760
  • 35 shows a configuration in which only a sheet of PVB (760 ⁇ m thick) containing tin-containing indium oxide fine particles is sandwiched between two iron ion-containing glass plates (thickness 2 mm) and bonded together. It is the spectrum of glass. These reference examples have only a glass plate containing iron ions, only an adhesive layer containing heat-absorbing metal compound fine particles, or both, and do not have a metal layer. All of them had a characteristic of absorbing from visible light to the near infrared region, and reflected light was slight.
  • the heat ray shielding coefficient is obtained by absorbing iron ions or heat ray absorbing metal compound fine particles in a wavelength region of near infrared or higher near visible light that is not sufficiently shielded by the metal layer alone. Improvements have been made.
  • a metal layer having a three-layer structure was formed on one surface of an easy-adhesion PET film (Toray Industries, Inc., U40, 100 ⁇ m thickness, hereinafter referred to as “PET film”). Specifically, using a sputtering method under a vacuum of 5 ⁇ 10 ⁇ 5 Torr, a 50 nm thick ITO film, an 11 nm thick Ag film, and a 50 nm thick ITO film are sequentially laminated on one surface of the PET film. Thus, a metal layer having a three-layer structure was formed.
  • PET film easy-adhesion PET film
  • composition B was applied onto a silicone-treated separator (Mitsubishi Plastics, MRQ # 38, 38 ⁇ m thickness, hereinafter referred to as “separator”) using an applicator. Then, it was dried in a hot air oven at 100 ° C. for 2 minutes to form an adhesive layer having a thickness of about 22 ⁇ m.
  • a silicone-treated separator Mitsubishi Plastics, MRQ # 38, 38 ⁇ m thickness
  • the adhesive layer was laminated with the surface of the PET film on which the metal layer was formed. After leaving for 7 days, the separator was peeled off, and the adhesive layer was bonded to a 3 mm thick alkali glass plate (hereinafter referred to as “glass plate”) to produce a heat ray shielding material F1, and various performances were evaluated. (See FIGS. 24 and 20B).
  • Multilayer film C Multilayer film D
  • Some multilayer films as transparent resin layers having a multilayer structure used in the present embodiment are commercially available, and they were obtained and used for experiments.
  • As a multilayer film in which 200 layers are alternately laminated in the thickness direction there is nano90 (non-adhesive product) manufactured by 3M.
  • the multilayer film has a thickness of 50 ⁇ m, and the average thickness per layer of the multilayer structure is 250 nm (hereinafter referred to as “multilayer film C”).
  • As a multilayer film in which 1000 layers are alternately laminated in the thickness direction there is Picasas GL-30 manufactured by Toray. This is because the thickness of the multilayer film is 100 ⁇ m, and the average thickness per layer of the multilayer structure is 100 nm (hereinafter referred to as “multilayer film D”).
  • composition A was applied onto two separators using an applicator. Thereafter, it was dried in a hot air oven at 100 ° C. for 2 minutes to form two adhesive layers having a thickness of about 22 ⁇ m.
  • One of the adhesive layers was laminated with the surface of the PET film on which the metal layer and the hard coat layer were not formed.
  • Another adhesive layer was laminated with one surface of the multilayer film C.
  • the separator of the PET film was peeled off and bonded to the surface of the multilayer film C where the adhesive layer was not formed.
  • the separator of the multilayer film C was peeled off, and the adhesive layer was bonded to a glass plate to produce a heat ray shielding material F3, and various performances were evaluated (see FIGS. 24 and 20B).
  • Example 46 A 50 nm thick ITO film, an 11 nm thick Ag film, and a 50 nm thick ITO film were sequentially laminated on one surface of the PET film by sputtering under a vacuum of 5 ⁇ 10 ⁇ 5 Torr. A metal layer having a three-layer structure was formed. Thereafter, a resist dissolved in a solvent was printed on the produced metal layer by gravure printing so as to have the island-like arrangement shown in FIG.
  • the diameter of the metal film was 300 ⁇ m
  • the distance between the metal films was 33 ⁇ m
  • the opening area ratio was 19%.
  • the portion of the metal film where the resist was not printed was dissolved and removed using an aqueous ferric chloride solution. Thereafter, the resist was dissolved using an aqueous solution of sodium hydroxide and peeled off from the surface of the metal film. After washing with water and drying, a metal layer in which a metal film having a predetermined three-layer structure was disposed was formed on the PET film (hereinafter referred to as “circular zigzag-arranged three-layer metal layer”).
  • the composition A was coated on the separator using an applicator. Then, it was dried in a hot air oven at 100 ° C. for 2 minutes to form an adhesive layer having a thickness of about 22 ⁇ m. Further, the adhesive layer was laminated with the surface of the PET film on which the metal layer was formed. After leaving for 7 days, the separator was peeled off, and the adhesive layer was bonded to a glass plate to produce a heat ray shielding material F4, and various performances were evaluated.
  • Example 40 A PET film having a metal layer was produced in the same manner as the heat ray shielding material F3 except that a PET film having a circular staggered three-layer metal layer created in the heat ray shielding material F4 was used. Furthermore, the separator of the multilayer film C was peeled off, and the adhesive layer was bonded to a glass plate to produce a heat ray shielding material F5, and various performances were evaluated (see FIGS. 26 and 20D).
  • Example 47 It produced similarly to the heat ray shielding material F5 except having used the multilayer film D instead of the multilayer film C.
  • FIG. Furthermore, the separator of the multilayer film D was peeled off, and the adhesive layer was bonded to a glass plate to produce a heat ray shielding material F7, and various performances were evaluated (see FIGS. 26 and 20D).
  • Example 48 On one side of the PET film, using a sputtering method under a vacuum of 5 ⁇ 10 ⁇ 5 Torr, a 40 nm thick ITO film, 10 nm thick Ag film, 70 nm thick ITO film, 12 nm thick An Ag film and a 35 nm-thick ITO film were sequentially laminated to form a metal layer having a five-layer structure. Thereafter, a resist dissolved in a solvent was printed on the produced metal layer by gravure printing so as to have the island-like arrangement shown in FIG.
  • the diameter of the metal film was 360 ⁇ m
  • the distance between the metal films was 40 ⁇ m
  • the opening area ratio was 19%.
  • the obtained metal layer is referred to as “circular staggered arrangement five-layer metal layer”.
  • Other manufacturing conditions were produced in the same manner as the heat ray shielding material F4. After leaving for 7 days, the separator was peeled off, and the adhesive layer was bonded to a glass plate to produce a heat ray shielding material F8, and various performances were evaluated.
  • Example 41 A PET film having a metal layer formed thereon was prepared in the same manner as the heat ray shielding material F5 except that a PET film having a circular staggered 5-layer metal layer prepared in the heat ray shielding material F8 was used. Furthermore, the separator of the multilayer film C was peeled off, and the adhesive layer was bonded to a glass plate to produce a heat ray shielding material F9, and various performances were evaluated (see FIGS. 26 and 20D).
  • Example 42 Except for the contents described below, the production conditions described in the heat ray shielding material F3 and the heat ray shielding material F8 were used. A hard coat layer was formed on one surface of the multilayer film C. Furthermore, the adhesive layer formed on the separator was laminated on the surface of the multilayer film C where the hard coat layer was not formed. The adhesive layer formed on the other separator was laminated on the metal layer of the PET film having the circular staggered five-layer metal layer prepared in the heat ray shielding material F8. After leaving for 7 days, the separator of the multilayer film C was peeled off and bonded to the surface of the PET film on which the adhesive layer was not formed. Furthermore, the separator of the PET film was peeled off, and the adhesive layer was bonded to a glass plate to produce a heat ray shielding material F10, and various performances were evaluated (see FIGS. 27 and 20E).
  • Example 43 A 47 nm thick ITO film, an 11 nm thick Ag film, and a 47 nm thick ITO film are sequentially laminated on one surface of the multilayer film C using a sputtering method under a vacuum of 5 ⁇ 10 ⁇ 5 Torr. Thus, a metal layer having a three-layer structure was formed. Thereafter, a resist dissolved in a solvent was printed on the produced metal layer by gravure printing so as to have the island-like arrangement shown in FIG.
  • the diameter of the metal film was 150 ⁇ m
  • the distance between the metal films was 45 ⁇ m
  • the opening area ratio was 41.0%.
  • the portion of the metal film where the resist was not printed was dissolved and removed using an aqueous ferric chloride solution. Thereafter, the resist was dissolved using an aqueous solution of sodium hydroxide and peeled off from the surface of the metal film. It was washed with water and dried to form a metal layer on the multilayer film C in which a metal film having a predetermined three-layer structure was disposed.
  • the composition B was applied using a bar coater and dried in a hot air oven at 100 ° C. for 2 minutes. Thereafter, the coated surface was cured by irradiating with ultraviolet rays (integrated light amount 300 mJ / cm 2 ) with a high-pressure mercury lamp, thereby forming a hard coat layer having a thickness of about 4 ⁇ m.
  • the composition A was coated on the separator using an applicator. Then, it was dried in a hot air oven at 100 ° C. for 2 minutes to form an adhesive layer having a thickness of about 22 ⁇ m. Further, the adhesive layer was laminated with the surface of the multilayer film C where the metal layer was not formed. After leaving for 7 days, the separator was peeled off, and the adhesive layer was bonded to a glass plate to produce a heat ray shielding material F11, and various performances were evaluated (see FIGS. 28 and 30).
  • Example 44 In the heat ray shielding material F5, the heat ray shielding sheet which did not provide the contact bonding layer on the glass plate side of the multilayer film C was produced.
  • a sheet of PVB polyvinyl butyral film, Sekisui Chemical Co., Ltd., S-LETB
  • a thickness of 380 ⁇ m as a second adhesive layer was placed on each of two glass plates. Thereafter, it was dried in a hot air oven at 100 ° C. for 2 minutes to bond the glass plate and PVB, and two glass plates having an adhesive layer on one side were produced.
  • a single alkali glass plate having an adhesive layer was placed on a flat table with the adhesive layer facing upward.
  • the heat ray shielding sheet was placed with the side on which the multilayer film C was bonded facing up.
  • another alkali glass plate having an adhesive layer was placed with the adhesive layer on the lower side.
  • the obtained multilayer sheet was temporarily pressure-bonded through a roll laminator having a metal roll heated at 60 ° C.
  • the multilayer sheet that had been temporarily press-bonded was placed in an autoclave and autoclaved under conditions of 130 ° C., 13 atm, and 1 hour, thereby being subjected to main press-bonding to produce a laminated glass having a heat ray shielding sheet sandwiched therebetween.
  • various performances were evaluated (see FIGS. 29 and 40).
  • Example 45 In the heat ray shielding material F9, the heat ray shielding sheet which did not provide the contact bonding layer on the glass plate side of the multilayer film C was produced. Others were produced under the same conditions as in Example 38 to produce a laminated glass with a heat ray shielding sheet sandwiched between them. Thereafter, various performances were evaluated (see FIGS. 29 and 40).
  • T1 and R1 are spectral diagrams of transmittance and reflectance, respectively, of a laminated material in which a multilayer film C and a glass plate are bonded together with an adhesive layer.
  • the multilayer film C has a thickness of 250 nm per layer of the multilayer structure, but it is shown that the transmittance is specifically low and the reflectance is high in the wavelength region of 850 to 1050 nm.
  • T2 and R2 are spectrum diagrams of transmittance and reflectance of the heat ray shielding material F4 (Example 46), respectively. It is shown that the heat ray shielding material having only the circular staggered three-layer metal layer has high transmittance and low reflectance in the near infrared wavelength region (800 to 1200 nm) close to visible light.
  • T3 and R3 are spectrum diagrams of transmittance and reflectance of the heat ray shielding material F5 (Example 40), respectively.
  • the combination of the multilayer film C and the circular staggered three-layer metal layer shows that the transmittance is kept low and the reflectance is increased in the near-infrared wavelength region (800 to 1200 nm) close to visible light. ing.
  • T4 and R4 are spectral diagrams of transmittance and reflectance of a laminated material in which a multilayer film D and a glass plate are bonded with an adhesive layer, respectively.
  • the multilayer film D has a thickness of 100 nm per layer of the multilayer structure, but the transmittance decreases in the near-infrared wavelength region (800 to 1200 nm) close to visible light as seen in the multilayer film C. No specific characteristics were found.
  • the heat ray shielding materials of Examples 40 to 48 have a metal layer formed by arranging a large number of island-like metal films and a transparent resin layer (multilayer film) having a multilayer structure. is there. All have excellent heat ray shielding coefficient of 0.60 or less, visible light transmittance, visible light reflectance, solar transmittance, solar reflectance, solar absorption rate, chromaticity / saturation of reflected light, electromagnetic wave shielding rate Also had good performance.
  • Example 41 having a five-layer metal layer is more It was excellent in heat ray shielding coefficient and visible light reflectance.
  • Example 41 and Example 42 the configuration having a metal layer on the indoor side and a transparent resin layer having a multilayer structure on the outdoor side is superior in heat ray shielding coefficient and solar reflectance. It was.
  • Example 43 is an example according to the fourth embodiment. This is an example according to the third embodiment, and has almost the same performance when compared with Example 40 having a similar configuration.
  • Example 44 and Example 45 have a laminated glass structure, and both have excellent heat ray shielding coefficient of 0.60 or less, visible light transmittance, visible light reflection. In terms of rate, solar transmittance, solar reflectance, solar radiation absorption rate, and electromagnetic wave shielding rate, it also had good performance.
  • Comparative Example 21 and Comparative Example 22 have an excessive electromagnetic shielding rate because the metal layer is present on the entire surface of the heat ray shielding material.
  • Example 46 and Example 48 did not have a transparent resin layer having a multilayer structure, and were slightly inferior to the heat ray shielding coefficient as compared with Example 40.
  • Example 47 has a metal layer formed by arranging a large number of island-shaped metal films and a transparent resin layer (multilayer film D) having a multilayer structure. However, due to the optical characteristics of the multilayer film D, although the heat ray shielding coefficient was relatively low, the visible light transmittance was considerably low and the visible light reflectance was relatively high.
  • Examples 49 to 52, Comparative Examples 23 to 30 are heat ray shielding materials prepared without being bonded to an alkali glass plate. These have a configuration corresponding to a modification of the first embodiment.
  • the manufacturing method was performed according to Examples 23 to 28 and Comparative Example 20, and a heat ray shielding material having a metal layer having the contents shown in FIG. 11 was produced. However, it manufactured using SZO (tin containing zinc oxide) instead of ITO used for a metal layer. Each performance was evaluated.
  • the results obtained in Examples 49 to 52 and Comparative Examples 23 to 30 are shown in FIGS.
  • the examples satisfying the provisions of the present invention have good performance in heat ray shielding coefficient, visible light transmittance, visible light reflectance, electromagnetic wave shielding rate, appearance, and the like. there were.
  • the comparative example which does not satisfy the provisions of the present invention in terms of the shape of the metal film is inferior in electromagnetic wave shielding rate, appearance and the like.
  • Example 53 to 60, Comparative Example 31, Comparative Example 32 is a heat ray shielding material produced without being bonded to an alkali glass plate, as in Examples 23 to 28 and Comparative Example 20. These have a configuration corresponding to a modification of the first embodiment.
  • the manufacturing method was performed according to Examples 23 to 28 and Comparative Example 20, and a heat ray shielding material having a metal layer having the contents shown in FIG. 13 was produced. However, it manufactured using IZO (indium containing zinc oxide) instead of ITO used for a metal layer. Each performance was evaluated.
  • the results obtained in Examples 53 to 60, Comparative Example 31, and Comparative Example 32 are shown in FIGS.
  • the examples satisfying the provisions of the present invention are as follows: heat ray shielding coefficient, visible light transmittance, visible light reflectance, chromaticity / saturation of reflected light, electromagnetic wave shielding rate, and appearance. It had good performance.
  • the comparative example in which a large number of island-shaped metal films are not formed in the metal layer is inferior in the electromagnetic wave shielding rate.

Abstract

Provided is a heat ray shielding material which exhibits excellent visible light transmission performance, heat ray shielding performance and electromagnetic wave transmission performance, while having excellent appearance, and which can be used as a window plate and the like. A heat ray shielding material (1A) which is provided with bases (2, 5) and a metal layer (4a). This heat ray shielding material (1A) is characterized in that: the metal layer (4a) is formed by arranging a plurality of island-like metal coating films; each metal coating film has a diameter of 0.05-0.50 mm; the distance between any two metal coating films is 0.02-0.23 mm; the area ratio of the portions that are not covered by the metal coating films is 11-80%; the visible light transmittance thereof is 45% or more; and the electromagnetic wave shielding ratio thereof is 10 dB or less.

Description

熱線遮蔽材Heat ray shielding material
 本発明は、窓板等として使用し得る熱線遮蔽材に関するものである。 The present invention relates to a heat ray shielding material that can be used as a window plate or the like.
 従来から、ビル、住宅等の建築物や電車、乗用車、船舶等の交通機関の省エネルギー対策の一つとして、熱線遮蔽性能を有した透明材料の開発が進められている。例えば、窓から降り注ぐ太陽光線のうちの可視光線は透過するが、熱線は遮蔽し、一方、室内の熱を外部へ逃がさないための断熱機能を有したガラス板やフィルムなどが開発されている。 Conventionally, the development of transparent materials with heat ray shielding performance has been promoted as one of the energy-saving measures for buildings, buildings, and other transportation systems such as trains, passenger cars, and ships. For example, a glass plate or a film having a heat insulating function for transmitting visible light of sunlight falling from a window but blocking heat rays while preventing indoor heat from being released to the outside has been developed.
 ガラス板やフィルムに熱線を遮蔽する機能を付与する方法としては、アルミニウム等の金属層をフィルム等の上に均一に形成する方法が広く採用されている。 As a method for imparting a function of shielding heat rays to a glass plate or film, a method of uniformly forming a metal layer such as aluminum on a film or the like is widely employed.
 ところが、このような均一な金属層は、一般に電磁波を反射するため、屋内や車内において携帯電話や携帯テレビ等を使用することが困難になるといった問題が生じることがある。そこで、熱線は遮蔽し、電磁波は透過させるといった機能を有したガラス板やフィルムの開発が進められてきている。 However, such a uniform metal layer generally reflects electromagnetic waves, which may cause a problem that it becomes difficult to use a mobile phone, a mobile TV, or the like indoors or in a vehicle. Therefore, development of glass plates and films having functions of shielding heat rays and transmitting electromagnetic waves has been promoted.
 例えば、特許文献1には、絶縁性透明基板上に複数のストライプ状や格子状に分割された導電性被膜が被覆された電波透過性熱線反射板が開示されている。また、特許文献2には、電波の波長λの1/20倍以下になるように分割して分割溝を形成した電波低反射特性を有する熱線反射ガラスが開示されている。また、特許文献3には、特定周波数の波長を遮断する遮断層が積層されてなる基材フィルムが開示されている。 For example, Patent Document 1 discloses a radio wave transmissive heat ray reflector in which an insulating transparent substrate is coated with a conductive coating divided into a plurality of stripes or lattices. Patent Document 2 discloses a heat ray reflective glass having a radio wave low reflection characteristic in which divided grooves are formed so as to be 1/20 times or less of the wavelength λ of radio waves. Patent Document 3 discloses a base film in which a blocking layer that blocks a wavelength at a specific frequency is laminated.
特開平7-242441号公報Japanese Patent Laid-Open No. 7-242441 特開平5-50548号公報Japanese Patent Laid-Open No. 5-50548 特開2008-68519号公報JP 2008-68519 A
 しかしながら、特許文献1に記載の電波透過性熱線反射板は、導電体被膜部の寸法が大きいため、商品としての外観上問題となり得るものであった。また、開示された実施例は、透明導電性皮膜に被覆されていない部分の面積率が小さかったり、導電体被膜部間の距離が小さかったりして、電磁波の透過性や工業的な生産性にやや劣るものであった。 However, the radio wave transmissive heat ray reflecting plate described in Patent Document 1 has a problem in terms of appearance as a product because of the large size of the conductor coating. In addition, the disclosed embodiments have a small area ratio of the portion not covered with the transparent conductive film or a small distance between the conductor film portions, and thus the electromagnetic wave permeability and industrial productivity are improved. Somewhat inferior.
 また、特許文献2に記載の熱線反射ガラスは、電波反射率の低減を主たる課題とするものであり、開示された実施例では、ストライプ状被覆膜の幅がかなり大きいため、商品としての外観上問題となり得るものであった。 In addition, the heat ray reflective glass described in Patent Document 2 is mainly intended to reduce radio wave reflectivity, and in the disclosed embodiment, the width of the stripe-shaped coating film is considerably large, so that the appearance as a product. It could be a problem.
 また、特許文献3に記載の基材フィルムは、特定波長の電磁波を選択的に透過させるためのものであり、遮蔽層の間に存在するスリットの幅や間隔が大きいため、商品としての外観上問題となるものであった。 In addition, the base film described in Patent Document 3 is for selectively transmitting electromagnetic waves having a specific wavelength, and since the width and interval of the slits existing between the shielding layers are large, It was a problem.
 本発明は、このような状況に鑑みてなされたものであり、可視光線の透過性能、熱線の遮蔽性能、電磁波の透過性能に優れ、外観にも優れた熱線遮蔽材を提供することを課題とする。 The present invention has been made in view of such circumstances, and it is an object to provide a heat ray shielding material that is excellent in visible light transmission performance, heat ray shielding performance, electromagnetic wave transmission performance, and excellent in appearance. To do.
 本発明者は、上記課題を解決するために、基材上に設けた金属層の形態について検討を進めた。金属層として、金属皮膜が全面に均一に形成された基材は、電磁波を透過させることができない。そこで金属層として、島状の金属皮膜を多数配置して形成された層とすると、基材全体としての導電性は失われた。その結果、島状の金属皮膜間の隙間を電磁波が透過することが可能となり、基材に電磁波透過性能を付与することが可能となった。また、島状の金属皮膜間に隙間を設けることによって基材の可視光線透過性能を高めることができた。 In order to solve the above problems, the present inventor has proceeded with studies on the form of the metal layer provided on the substrate. As a metal layer, a substrate on which a metal film is uniformly formed on the entire surface cannot transmit electromagnetic waves. Therefore, when the metal layer is a layer formed by arranging a large number of island-shaped metal films, the conductivity of the entire substrate is lost. As a result, electromagnetic waves can be transmitted through the gaps between the island-shaped metal films, and it has become possible to impart electromagnetic wave transmission performance to the substrate. Moreover, the visible light transmission performance of the substrate could be improved by providing a gap between the island-shaped metal films.
 しかし、島状の金属皮膜の隙間を狭くし過ぎると、表面抵抗値が小さくなり、基材の電磁波透過性能が低下することとなった。一方、島状の金属皮膜を小さくして、島状の金属皮膜の隙間を広げ過ぎると、基材の電磁波透過性能は向上するものの、基材の熱線遮蔽性能が低下することとなった。さらに、島状の金属皮膜を大きくし過ぎたり、島状の金属皮膜の形状や配置の仕方によっては、金属皮膜が肉眼で見え易くなって、基材の外観の商品性を損なう懸念があった。 However, when the gap between the island-shaped metal films is made too narrow, the surface resistance value becomes small and the electromagnetic wave transmission performance of the base material is lowered. On the other hand, when the island-shaped metal film is made small and the gap between the island-shaped metal films is excessively widened, the electromagnetic wave transmission performance of the base material is improved, but the heat ray shielding performance of the base material is lowered. Furthermore, there is a concern that the island-shaped metal film may be too large, or depending on the shape and arrangement of the island-shaped metal film, the metal film can be easily seen with the naked eye, which impairs the merchantability of the appearance of the base material. .
 このような状況を踏まえて、本発明者は、可視光線透過性能、熱線遮蔽性能、電磁波透過性能および外観のいずれをも満足し得る島状の金属皮膜の配置の仕方を特定することに成功して、本発明を完成するに至ったものである。すなわち、本発明は以下のような構成を有するものである。 Based on such a situation, the present inventor has succeeded in identifying the arrangement method of the island-shaped metal film that can satisfy any of visible light transmission performance, heat ray shielding performance, electromagnetic wave transmission performance and appearance. Thus, the present invention has been completed. That is, the present invention has the following configuration.
(1)基材と金属層とを備える熱線遮蔽材であって、前記金属層が島状の金属皮膜を多数配置して形成されており、前記金属皮膜の径が0.05~0.50mmであり、前記金属皮膜間の距離が0.02~0.23mmであり、前記金属皮膜に被覆されていない部分の面積率が11~80%であり、可視光線透過率が45%以上であり、電磁波遮蔽率が10dB以下であることを特徴としている。 (1) A heat ray shielding material comprising a base material and a metal layer, wherein the metal layer is formed by arranging a number of island-like metal films, and the diameter of the metal film is 0.05 to 0.50 mm. The distance between the metal films is 0.02 to 0.23 mm, the area ratio of the portion not covered with the metal film is 11 to 80%, and the visible light transmittance is 45% or more. The electromagnetic wave shielding rate is 10 dB or less.
(2)熱線遮蔽材は、前記基材の一方の面に金属層を備え、他方の面に多層構造を有する樹脂層を備え、前記多層構造の1層当たりの厚さが50~1000nmであることが好ましい。 (2) The heat ray shielding material includes a metal layer on one surface of the substrate and a resin layer having a multilayer structure on the other surface, and the thickness per layer of the multilayer structure is 50 to 1000 nm. It is preferable.
(3)熱線遮蔽材は、前記基材が、多層構造を有する樹脂材であり、前記多層構造の1層当たりの厚さが50~1000nmであることが好ましい。 (3) In the heat ray shielding material, the base material is preferably a resin material having a multilayer structure, and the thickness per layer of the multilayer structure is preferably 50 to 1000 nm.
(4)前記基材が2枚あり、当該2枚の基材で前記金属層を挟む構成を有することが好ましい。 (4) It is preferable that there are two base materials, and the metal layer is sandwiched between the two base materials.
(5)可視光線反射率が25%以下であることが好ましい。 (5) The visible light reflectance is preferably 25% or less.
(6)熱線遮蔽係数が0.9以下であることが好ましい。 (6) The heat ray shielding coefficient is preferably 0.9 or less.
(7)前記金属層が複数の金属層から構成されていることが好ましい。 (7) The metal layer is preferably composed of a plurality of metal layers.
(8)前記金属層が銀を含有することが好ましい。 (8) It is preferable that the said metal layer contains silver.
(9)熱貫流率が5.9W/mK未満であることが好ましい。 (9) It is preferable that the heat transmissivity is less than 5.9 W / m 2 K.
(10)紫外線透過率が5%以下であることが好ましい。 (10) The ultraviolet transmittance is preferably 5% or less.
(11)前記金属皮膜の径が0.15~0.50mmであり、前記金属皮膜間の距離が0.04~0.23mmであることが好ましい。 (11) It is preferable that the diameter of the metal film is 0.15 to 0.50 mm and the distance between the metal films is 0.04 to 0.23 mm.
 本発明の熱線遮蔽材は、可視光線の透過性能、熱線の遮蔽性能および電磁波の透過性能に優れ、外観にも優れている。 The heat ray shielding material of the present invention is excellent in visible light transmission performance, heat ray shielding performance and electromagnetic wave transmission performance, and is excellent in appearance.
比較例の構成と物性を示す表である。It is a table | surface which shows the structure and physical property of a comparative example. 比較例の性能を示す表である。It is a table | surface which shows the performance of a comparative example. 実施例、比較例の構成と物性を示す表である。It is a table | surface which shows the structure and physical property of an Example and a comparative example. 実施例、比較例の性能を示す表である。It is a table | surface which shows the performance of an Example and a comparative example. 実施例、比較例の構成と物性を示す表である。It is a table | surface which shows the structure and physical property of an Example and a comparative example. 実施例、比較例の性能を示す表である。It is a table | surface which shows the performance of an Example and a comparative example. 実施例、参考例の構成と物性を示す表である。It is a table | surface which shows the structure and physical property of an Example and a reference example. 実施例、参考例の性能を示す表である。It is a table | surface which shows the performance of an Example and a reference example. 実施例、比較例の構成と物性を示す表である。It is a table | surface which shows the structure and physical property of an Example and a comparative example. 実施例、比較例の性能を示す表である。It is a table | surface which shows the performance of an Example and a comparative example. 実施例、比較例の構成と物性を示す表である。It is a table | surface which shows the structure and physical property of an Example and a comparative example. 実施例、比較例の性能を示す表である。It is a table | surface which shows the performance of an Example and a comparative example. 実施例、比較例の構成と物性を示す表である。It is a table | surface which shows the structure and physical property of an Example and a comparative example. 実施例、比較例の性能を示す表である。It is a table | surface which shows the performance of an Example and a comparative example. 第1実施形態の熱線遮蔽材1Aの層構成を示す模式的断面図である。It is typical sectional drawing which shows the layer structure of 1 A of heat ray shielding materials of 1st Embodiment. 第1実施形態の熱線遮蔽材1Bの層構成を示す模式的断面図である。It is typical sectional drawing which shows the layer structure of the heat ray shielding material 1B of 1st Embodiment. 第1実施形態の熱線遮蔽材1Cの層構成を示す模式的断面図である。It is a typical sectional view showing layer composition of heat ray shielding material 1C of a 1st embodiment. 第2実施形態の熱線遮蔽材10の層構成を示す模式的断面図である。It is typical sectional drawing which shows the layer structure of the heat ray shielding material 10 of 2nd Embodiment. 第1実施形態の熱線遮蔽材の島状の金属皮膜の配置の仕方の例であり、円形千鳥型配置である。It is an example of the arrangement | positioning method of the island-shaped metal film of the heat ray shielding material of 1st Embodiment, and is a circular staggered arrangement. 第1実施形態の熱線遮蔽材の島状の金属皮膜の配置の仕方の例であり、正方形並列型配置である。It is an example of the arrangement | positioning method of the island-shaped metal film of the heat ray shielding material of 1st Embodiment, and is a square parallel type arrangement | positioning. 第1実施形態の熱線遮蔽材の島状の金属皮膜の配置の仕方の例であり、六角形千鳥型配置である。It is an example of the arrangement | positioning method of the island-shaped metal film of the heat ray shielding material of 1st Embodiment, and is a hexagonal staggered arrangement. 第2実施形態の熱線遮蔽材10の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the heat ray shielding material 10 of 2nd Embodiment. 第3実施形態の熱線遮蔽材20Aの層構成を示す模式的断面図である。It is a typical sectional view showing the layer composition of heat ray shielding material 20A of a 3rd embodiment. 第3実施形態の比較例の熱線遮蔽材20Bの層構成を示す模式的断面図である。It is typical sectional drawing which shows the layer structure of the heat ray shielding material 20B of the comparative example of 3rd Embodiment. 第3実施形態の比較例の熱線遮蔽材20Cの層構成を示す模式的断面図である。It is a typical sectional view showing layer composition of heat ray shielding material 20C of a comparative example of a 3rd embodiment. 第3実施形態の熱線遮蔽材20Dの層構成を示す模式的断面図である。It is a typical sectional view showing layer composition of heat ray shielding material 20D of a 3rd embodiment. 第3実施形態の熱線遮蔽材20Eの層構成を示す模式的断面図である。It is a typical sectional view showing the layer composition of heat ray shielding material 20E of a 3rd embodiment. 第4実施形態の熱線遮蔽材30の層構成を示す模式的断面図である。It is typical sectional drawing which shows the layer structure of the heat ray shielding material 30 of 4th Embodiment. 第5実施形態の熱線遮蔽材40の層構成を示す模式的断面図である。It is typical sectional drawing which shows the layer structure of the heat ray shielding material 40 of 5th Embodiment. 第2実施形態の実施例と比較例の熱線遮蔽材の透過率・反射率のスペクトル図である。It is a spectrum figure of the transmittance | permeability and reflectance of the heat ray shielding material of the Example of 2nd Embodiment, and a comparative example. 第2実施形態の実施例と比較例の熱線遮蔽材の透過率・反射率のスペクトル図である。It is a spectrum figure of the transmittance | permeability and reflectance of the heat ray shielding material of the Example of 2nd Embodiment, and a comparative example. 第2実施形態の実施例と比較例の熱線遮蔽材の透過率・反射率のスペクトル図である。It is a spectrum figure of the transmittance | permeability and reflectance of the heat ray shielding material of the Example of 2nd Embodiment, and a comparative example. 第2実施形態の実施例と比較例の熱線遮蔽材の透過率・反射率のスペクトル図である。It is a spectrum figure of the transmittance | permeability and reflectance of the heat ray shielding material of the Example of 2nd Embodiment, and a comparative example. 第2実施形態の実施例と比較例の熱線遮蔽材の透過率・反射率のスペクトル図である。It is a spectrum figure of the transmittance | permeability and reflectance of the heat ray shielding material of the Example of 2nd Embodiment, and a comparative example. 第2実施形態の実施例と比較例の熱線遮蔽材の透過率・反射率のスペクトル図である。It is a spectrum figure of the transmittance | permeability and reflectance of the heat ray shielding material of the Example of 2nd Embodiment, and a comparative example. 第3実施形態の実施例と比較例の熱線遮蔽材の透過率・反射率のスペクトル図である。It is a spectrum figure of the transmittance | permeability and reflectance of the heat ray shielding material of the Example of 3rd Embodiment, and a comparative example. 第3実施形態の実施例と比較例の熱線遮蔽材の透過率・反射率のスペクトル図である。It is a spectrum figure of the transmittance | permeability and reflectance of the heat ray shielding material of the Example of 3rd Embodiment, and a comparative example. 第3実施形態の比較例の熱線遮蔽材の透過率・反射率のスペクトル図である。It is a spectrum figure of the transmittance | permeability and reflectance of the heat ray shielding material of the comparative example of 3rd Embodiment. 第3実施形態の比較例の熱線遮蔽材の透過率・反射率のスペクトル図である。It is a spectrum figure of the transmittance | permeability and reflectance of the heat ray shielding material of the comparative example of 3rd Embodiment.
 本発明の実施形態について説明する。但し、本発明の実施形態は、以下の実施形態に限定されるものではない。 Embodiments of the present invention will be described. However, embodiments of the present invention are not limited to the following embodiments.
(電磁波、可視光線、近赤外線、遠赤外線、紫外線)
 本実施形態において、電磁波とは、波長10mm~10km、周波数30KHz~30GHz程度の電磁波のことをいう。ラジオ放送、テレビ放送、無線通信、携帯電話、衛星通信等に使用される電磁波領域のものである。
 本実施形態において、可視光線とは、電磁波のうち肉眼で認識することができる光のことであり、一般に波長380~780nmの電磁波のことを指している。近赤外線とは、およそ波長800~2500nmの電磁波であり、赤色の可視光線に近い波長を有する。近赤外線は、太陽光の中に含まれており、物体を加熱する作用がある。これに対して、遠赤外線は、およそ波長5~20μm(5000~20000nm)の電磁波であり、太陽光の中には含まれず、室温付近の物体から放射される波長に近いものである。また、紫外線とは、およそ波長10~380nmの電磁波である。
 本実施形態において、熱線とは、近赤外線のことを意味する。
(Electromagnetic wave, visible light, near infrared, far infrared, ultraviolet)
In the present embodiment, the electromagnetic wave refers to an electromagnetic wave having a wavelength of 10 mm to 10 km and a frequency of about 30 KHz to 30 GHz. The electromagnetic wave region is used for radio broadcasting, television broadcasting, wireless communication, cellular phone, satellite communication, and the like.
In the present embodiment, visible light means light that can be recognized with the naked eye among electromagnetic waves, and generally refers to electromagnetic waves having a wavelength of 380 to 780 nm. Near-infrared light is an electromagnetic wave having a wavelength of approximately 800 to 2500 nm and has a wavelength close to red visible light. Near-infrared rays are contained in sunlight and act to heat an object. On the other hand, far-infrared rays are electromagnetic waves having a wavelength of about 5 to 20 μm (5000 to 20000 nm), are not included in sunlight, and have a wavelength close to that emitted from an object near room temperature. Ultraviolet rays are electromagnetic waves having a wavelength of about 10 to 380 nm.
In the present embodiment, the heat ray means near infrared rays.
 本実施形態の熱線遮蔽材は、電磁波、可視光線、近赤外線、遠赤外線、紫外線の5つの波長の電磁波を意識して扱う構成となっている。すなわち、本実施形態の熱線遮蔽材は、電磁波を室外・室内間に透過させて、屋内や車内において携帯電話や携帯テレビ等を使用することを可能とする。また、本実施形態の熱線遮蔽材は、可視光線を室外から室内に部分的に透過させて、室内を明るく保つようにする。近赤外線は、金属層によって反射・吸収させて、室外から室内に入らないように遮蔽し、夏季等に室内が暑くならないようにする。遠赤外線は、室内から発せられるものであり、金属層によって反射させることによって、冬季等に室内の熱が室外へ出ていかないようにする。紫外線は、金属層によって反射・吸収させて、室外から室内に入らないように遮蔽し、室内の物品が経時的に劣化を引き起こすことがないようにする。 The heat ray shielding material of the present embodiment is configured to handle electromagnetic waves having five wavelengths of electromagnetic waves, visible rays, near infrared rays, far infrared rays, and ultraviolet rays. That is, the heat ray shielding material according to the present embodiment allows electromagnetic waves to pass between the outside and the inside of the room so that a mobile phone, a mobile TV, or the like can be used indoors or in a vehicle. Moreover, the heat ray shielding material of the present embodiment partially transmits visible light from the outside to the inside of the room to keep the room bright. Near-infrared light is reflected and absorbed by a metal layer to shield it from entering the room from outside, so that the room does not get hot in the summer. Far-infrared rays are emitted from the room, and are reflected by the metal layer so that the indoor heat does not go out of the room in winter or the like. Ultraviolet rays are reflected and absorbed by the metal layer and shielded from entering the room from the outside so that the articles in the room do not deteriorate over time.
 本実施形態の熱線遮蔽材は、主として窓板等として使用し得るものである。本実施形態の熱線遮蔽材は、基材と金属層とを備えている。前記金属層は、島状の金属皮膜を多数配置して形成されており、前記金属皮膜の径が0.05~0.50mmであり、前記金属皮膜間の距離が0.02~0.23mmであり、前記金属皮膜に被覆されていない部分の面積率が11~80%である。そして、本実施形態の熱線遮蔽材は、可視光線透過率が45%以上であり、電磁波遮蔽率が10dB以下であることを特徴としている。 The heat ray shielding material of this embodiment can be used mainly as a window plate or the like. The heat ray shielding material of this embodiment includes a base material and a metal layer. The metal layer is formed by arranging a number of island-shaped metal films, the diameter of the metal film is 0.05 to 0.50 mm, and the distance between the metal films is 0.02 to 0.23 mm. The area ratio of the portion not covered with the metal film is 11 to 80%. And the heat ray shielding material of this embodiment is characterized by having a visible light transmittance of 45% or more and an electromagnetic wave shielding rate of 10 dB or less.
 本実施形態の熱線遮蔽材とは、基材と金属層とを備えて、窓板として使用し得るものである。ここで、基材は、1枚であってもよいし、2枚以上であってもよい。基材を2枚以上用いるときは、個々の基材は材質、厚さ、形状は同一であってもよいし、異なっていてもよい。 The heat ray shielding material of the present embodiment includes a base material and a metal layer and can be used as a window plate. Here, the substrate may be one sheet or two or more sheets. When two or more substrates are used, the materials, thicknesses, and shapes of the individual substrates may be the same or different.
 そのため、本実施形態の熱線遮蔽材は、通常窓板として使用し得る基材に直接金属層を形成させた形式のものであってもよいし、薄いシート状の基材に金属層を形成させて、接着剤等で窓板としての基材に貼り合せた形式のものであってもよい。 Therefore, the heat ray shielding material of the present embodiment may be of a type in which a metal layer is directly formed on a base material that can be used as a normal window plate, or a metal layer is formed on a thin sheet-like base material. In addition, it may be of a type that is bonded to a base material as a window plate with an adhesive or the like.
 さらに、基材の形態は、特に限定されるわけではない。ガラスシート、ガラス板、樹脂フィルム、樹脂板、布帛、不織布、透明乃至半透明紙、成形品等の種々の形態とすることができる。但し、基材の表面に島状の金属皮膜を多数、整然と配置して形成させるためには、表面がフラットなフィルムやシートであることが好ましい。窓板としての基材は、ガラス板、樹脂板であることが好ましい。 Furthermore, the form of the substrate is not particularly limited. Various forms such as a glass sheet, a glass plate, a resin film, a resin plate, a fabric, a nonwoven fabric, a transparent or translucent paper, and a molded product can be used. However, in order to form and arrange a number of island-shaped metal films on the surface of the substrate in an orderly manner, it is preferably a film or sheet having a flat surface. The substrate as the window plate is preferably a glass plate or a resin plate.
 また、本実施形態の熱線遮蔽材は、基材と金属層以外に、接着層、ハードコート層、保護層等の種々の機能性層を積層させることができる。そのことによって、さらに有効な特性を付与することが可能となる。 Moreover, the heat ray shielding material of the present embodiment can be laminated with various functional layers such as an adhesive layer, a hard coat layer, and a protective layer in addition to the base material and the metal layer. As a result, more effective characteristics can be imparted.
 以下に、本実施形態について、さらに具体的な実施形態に分類して説明する。すなわち、第1実施形態~第5実施形態およびこれらの変形例について説明する。 Hereinafter, the present embodiment will be described by classifying it into more specific embodiments. That is, the first to fifth embodiments and their modifications will be described.
<第1実施形態の熱線遮蔽材>
 第1実施形態の熱線遮蔽材は、前記したように、基材と金属層とを備えて、金属層は、島状の金属皮膜を多数配置して形成されている。基材として2種類の基材を有しており、第1の基材の表面に金属層を形成し、第2の基材である窓板に接着層等を介して設置する形式の熱線遮蔽材である。第1実施形態の熱線遮蔽材をさらに3つの具体例を示しつつ説明する。
<The heat ray shielding material of the first embodiment>
As described above, the heat ray shielding material of the first embodiment includes a base material and a metal layer, and the metal layer is formed by arranging a number of island-shaped metal films. Two types of base materials are used as the base material, a metal layer is formed on the surface of the first base material, and heat ray shielding is installed on the window plate that is the second base material via an adhesive layer or the like. It is a material. The heat ray shielding material of the first embodiment will be further described with three specific examples.
 図15~図17は、第1実施形態の熱線遮蔽材の層構成の異なる3つの具体例を示す模式的断面図である。図15は第1実施形態の熱線遮蔽材1Aの層構成を示している。図16は第1実施形態の熱線遮蔽材1Bの層構成を示している。図17は第1実施形態の熱線遮蔽材1Cの層構成を示している。 15 to 17 are schematic cross-sectional views showing three specific examples having different layer configurations of the heat ray shielding material of the first embodiment. FIG. 15 shows the layer structure of the heat ray shielding material 1A of the first embodiment. FIG. 16 shows the layer structure of the heat ray shielding material 1B of the first embodiment. FIG. 17 shows the layer structure of the heat ray shielding material 1C of the first embodiment.
 以下、第1実施形態の熱線遮蔽材1A、第1実施形態の熱線遮蔽材1Bおよび第1実施形態の熱線遮蔽材1Cについて説明する。但し、多くの説明内容は、第1実施形態の熱線遮蔽材1A、第1実施形態の熱線遮蔽材1Bおよび第1実施形態の熱線遮蔽材1Cにおいて共通するものである。 Hereinafter, the heat ray shielding material 1A of the first embodiment, the heat ray shielding material 1B of the first embodiment, and the heat ray shielding material 1C of the first embodiment will be described. However, many explanations are common to the heat ray shielding material 1A of the first embodiment, the heat ray shielding material 1B of the first embodiment, and the heat ray shielding material 1C of the first embodiment.
[第1実施形態の熱線遮蔽材の構成]
(層構成)
 第1実施形態の熱線遮蔽材1Aは、透明樹脂からなる第1の基材5の室内側に、ハードコート層6を有している(図15参照)。また、第1の基材5の室外側表面には、島状の金属皮膜を多数配置して形成された金属層4aと第2の基材である窓板2に密着させるための接着層3と第2の基材である窓板2を有している。金属層4aの島状の金属皮膜は、単層のアルミニウムから構成されている。
[Configuration of Heat Ray Shielding Material of First Embodiment]
(Layer structure)
1 A of heat ray shielding materials of 1st Embodiment have the hard-coat layer 6 in the room inner side of the 1st base material 5 which consists of transparent resin (refer FIG. 15). An adhesive layer 3 is provided on the outdoor surface of the first base material 5 so as to be in close contact with the metal layer 4a formed by arranging a large number of island-like metal films and the window plate 2 as the second base material. And a window plate 2 as a second base material. The island-shaped metal film of the metal layer 4a is composed of a single layer of aluminum.
 第1実施形態の熱線遮蔽材1Bは、透明樹脂からなる第1の基材5の室内側に、ハードコート層6を有している(図16参照)。また、第1の基材5の室外側表面には、島状の金属皮膜を多数配置して形成された金属層4bと第2の基材である窓板2に密着させるための接着層3と第2の基材である窓板2を有している。金属層4bの島状の金属皮膜は、ITO/Ag/ITOの3層の導電層から構成されている。ここで、ITOとは、酸化インジウム・スズ(スズドープ酸化インジウム)の略称である。ITO/Ag/ITOの3層は、第1の基材5上にITO、Ag、ITOを順番にスパッタリングすることによって形成される。 The heat ray shielding material 1B of the first embodiment has a hard coat layer 6 on the indoor side of the first base material 5 made of a transparent resin (see FIG. 16). In addition, an adhesive layer 3 for closely contacting the metal layer 4b formed by arranging a number of island-shaped metal films on the outdoor surface of the first substrate 5 and the window plate 2 as the second substrate. And a window plate 2 as a second base material. The island-shaped metal film of the metal layer 4b is composed of three conductive layers of ITO / Ag / ITO. Here, ITO is an abbreviation for indium tin oxide (tin-doped indium oxide). Three layers of ITO / Ag / ITO are formed by sputtering ITO, Ag, and ITO in order on the first substrate 5.
 第1実施形態の熱線遮蔽材1Cは、透明樹脂からなる第1の基材5の室内側表面には、島状の金属皮膜を多数配置して形成された金属層4cとハードコート層6とを有している(図17参照)。また、第1の基材5の室外側には、第2の基材である窓板2に密着させるための接着層3と第2の基材である窓板2を有している。金属層4cの島状の金属皮膜は、単層のアルミニウムから構成されている。 The heat ray shielding material 1C of the first embodiment includes a metal layer 4c and a hard coat layer 6 formed by arranging a number of island-shaped metal films on the indoor surface of the first base material 5 made of a transparent resin. (See FIG. 17). In addition, on the outdoor side of the first base material 5, there are an adhesive layer 3 for closely contacting the window plate 2 as the second base material and the window plate 2 as the second base material. The island-shaped metal film of the metal layer 4c is made of a single layer of aluminum.
 以下、上記の「熱線遮蔽材1A」、「熱線遮蔽材1B」および「熱線遮蔽材1C」をまとめて、適宜「熱線遮蔽材1」と記載する。また、上記の「金属層4a」、「金属層4b」、「金属層4c」および後記する「金属層4d」等を総称して、適宜「金属層4」と記載する。 Hereinafter, the above-mentioned “heat ray shielding material 1A”, “heat ray shielding material 1B”, and “heat ray shielding material 1C” will be collectively referred to as “heat ray shielding material 1”. In addition, the above “metal layer 4a”, “metal layer 4b”, “metal layer 4c”, “metal layer 4d” described later, and the like are collectively referred to as “metal layer 4” as appropriate.
 熱線遮蔽材1の金属層4は、第2の基材である窓板2の室内側に設置されているため、雨風等による劣化を低減できる。なお、熱線遮蔽材1の金属層4は、第2の基材である窓板2の室外側に設置することもできる。その場合の層構成は、図15、図16、図17の各図において、「室内」(Indoor)との記載を「室外」(Outdoor)、「室外」(Outdoor)との記載を「室内」(Indoor)と読み替えたものとなる。この場合、第2の基材である窓板2の室外側に設置された熱線遮蔽材1の室外の最外層には、ハードコート層6が存在することとなる。 Since the metal layer 4 of the heat ray shielding material 1 is installed on the indoor side of the window plate 2 which is the second base material, it is possible to reduce deterioration due to rain and wind. In addition, the metal layer 4 of the heat ray shielding material 1 can also be installed in the outdoor side of the window board 2 which is a 2nd base material. 15, 16, and 17, the description of “indoor” is “outdoor” and the description of “outdoor” is “indoor”. (Indoor) In this case, the hard coat layer 6 exists in the outdoor outermost layer of the heat ray shielding material 1 installed on the outdoor side of the window plate 2 as the second base material.
[第1実施形態の熱線遮蔽材の材料]
 以下、第1実施形態の熱線遮蔽材1を構成する各材料について、詳細に説明する。
 尚、特に断らない限り、後記する第2実施形態の熱線遮蔽材、第3実施形態の熱線遮蔽材、第4実施形態の熱線遮蔽材、第5実施形態の熱線遮蔽材、およびこれらの変形例を構成する各材料についての説明も、同様であり、同様に適用できるものであるので、その説明を省略する。
[Material of Heat Ray Shielding Material of First Embodiment]
Hereinafter, each material which comprises the heat ray shielding material 1 of 1st Embodiment is demonstrated in detail.
Unless otherwise specified, the heat ray shielding material of the second embodiment described later, the heat ray shielding material of the third embodiment, the heat ray shielding material of the fourth embodiment, the heat ray shielding material of the fifth embodiment, and modifications thereof The description of each material that constitutes the same is the same and can be applied in the same manner, and thus the description thereof is omitted.
(窓板2)
 窓板2とは、外界から建築物や交通車輛や船舶等の内部に太陽光を取り込むための透明な板である。熱線遮蔽材1の基材となり得る。一般的には、ガラス板や樹脂板が窓板2として使われる。樹脂板には、アクリル系、スチレン系、水添環状樹脂、ポリカーボネート系、ポリエステル系など種々の樹脂を使用することができる。
(Window plate 2)
The window plate 2 is a transparent plate for taking sunlight from the outside into buildings, traffic vehicles, ships, and the like. It can be a base material for the heat ray shielding material 1. In general, a glass plate or a resin plate is used as the window plate 2. Various resins such as acrylic, styrene, hydrogenated cyclic resin, polycarbonate, and polyester can be used for the resin plate.
(基材)
 基材とは、熱線遮蔽材1としての形態を維持するための材料であり、熱線遮蔽材を構成する金属層4をその表面に形成させたり、保持するために使用され得るものである。金属層4以外にも、ハードコート層6、接着層3等を保持する機能を有している。基材は、窓板2(第2の基材)であったり、窓板とは異なる基材5(第1の基材)であったりする。
(Base material)
A base material is a material for maintaining the form as the heat ray shielding material 1, and can be used to form or hold the metal layer 4 constituting the heat ray shielding material on the surface thereof. In addition to the metal layer 4, it has a function of holding the hard coat layer 6, the adhesive layer 3, and the like. The base material may be the window plate 2 (second base material) or the base material 5 (first base material) different from the window plate.
 基材は、可視光線を透過させるように透明材料から構成されていることが好ましい。基材は、金属層を安定して保持し得るだけの機械的強度、耐久性、可視光線透過率、取扱性等に優れていることが好ましい。 The base material is preferably made of a transparent material so as to transmit visible light. The base material is preferably excellent in mechanical strength, durability, visible light transmittance, handleability, etc. that can stably hold the metal layer.
 基材として使用される材料としては、無機系のガラスや有機系の樹脂がある。無機系のガラスとしては、ソーダ石灰ガラスが代表的なものである。有機系の樹脂としては、アクリル系、ポリカーボネート系、スチレン系、ポリエステル系、ポリオレフィン系、水添環状樹脂、フッ素系、シリコーン系、ウレタン系など種々の樹脂が使用できる。これらの有機系樹脂は、用途や目的に応じて、使い分けることができる。これらの有機系樹脂の中では、成形性、取扱性、耐候性等の観点から、ポリエステル系が好ましい。 The materials used as the substrate include inorganic glass and organic resin. A typical example of inorganic glass is soda-lime glass. As the organic resin, various resins such as acrylic, polycarbonate, styrene, polyester, polyolefin, hydrogenated cyclic resin, fluorine, silicone, and urethane can be used. These organic resins can be used properly according to the application and purpose. Among these organic resins, polyesters are preferable from the viewpoints of moldability, handleability, weather resistance, and the like.
 第1の基材5は、窓板2上に接着層3等を介して接着させて使用する場合には、材料の機械的物性等にも因るが、厚さは8~800μmであることが好ましい。より好ましくは12~400μmである。 When the first base material 5 is used by being adhered to the window plate 2 via the adhesive layer 3 or the like, the thickness is 8 to 800 μm, although it depends on the mechanical properties of the material. Is preferred. More preferably, it is 12 to 400 μm.
(金属層4)
 金属層4は、室外から照射される太陽光のうち、熱線と紫外線を主に反射によって遮蔽するとともに、室内から発せられる遠赤外線を主に反射によって遮蔽する層である。熱線、紫外線、遠赤外線の反射は、金属内の多数の自由電子が電磁波の振動電場に合わせて集団振動するために起きると考えられている。
(Metal layer 4)
The metal layer 4 is a layer that shields heat rays and ultraviolet rays of sunlight irradiated from the outside mainly by reflection and shields far infrared rays emitted from the room mainly by reflection. Reflection of heat rays, ultraviolet rays, and far-infrared rays is considered to occur because a large number of free electrons in the metal collectively vibrate according to the oscillating electric field of electromagnetic waves.
 金属層4は、基材の少なくとも片面に設けられた層である。基材の室内側の表面もしくは室外側の表面のいずれか、または室内側の表面と室外側の表面の両方に設置することができる。但し、金属層4が、基材の室内側の表面にある方が、遠赤外線の反射性能(後記する熱貫流率)に優れているため、好ましい。 The metal layer 4 is a layer provided on at least one side of the substrate. It can be installed on either the indoor side surface or the outdoor side surface of the substrate, or both the indoor side surface and the outdoor side surface. However, it is preferable that the metal layer 4 is on the indoor side surface of the base material because it is excellent in far-infrared reflection performance (heat transmissivity described later).
 金属層4を構成する金属としては、Al、Ag、Sn、Ni、Cu、Cr、In、Pd、Pt、Au等を使用することができる。これらの金属は、導電性能に優れ、熱線、遠赤外線、紫外線を反射することが可能である。また、気相法によって基材上に皮膜を形成することが可能であり、エッチング等によって島状の金属皮膜を形成することが可能である。これらの金属は、単独で使用してもよいし、性能的に問題がなければ、合金として使用してもよい。 As the metal constituting the metal layer 4, Al, Ag, Sn, Ni, Cu, Cr, In, Pd, Pt, Au, or the like can be used. These metals have excellent conductive performance and can reflect heat rays, far infrared rays, and ultraviolet rays. In addition, a film can be formed on the substrate by a vapor phase method, and an island-shaped metal film can be formed by etching or the like. These metals may be used alone or as an alloy if there is no problem in performance.
 これらの金属からなる金属皮膜は、通常、可視光線の透過性能が十分ではない。そのため、以下に述べるように、島状の金属皮膜を多数配置させることによって、可視光線と電磁波の透過性能を付与することができる。 The metal film made of these metals usually has insufficient visible light transmission performance. Therefore, as described below, visible light and electromagnetic wave transmission performance can be imparted by arranging a large number of island-shaped metal films.
 金属層4は、島状の金属皮膜を多数配置して形成されている。金属皮膜の径は、0.05~0.50mmである。好ましくは0.15~0.50mmであり、さらに好ましくは0.20~0.45mmである。ここで、金属皮膜の径とは、島状の金属皮膜の最大差し渡し長さの平均値のことをいう。金属皮膜の径が0.05mm未満であると、熱線等の遮蔽性能が不十分となる。金属皮膜の径が0.50mmを超えると、肉眼で金属皮膜が認識し易くなり、金属光沢が強くなり、外観の商品性が低下する。 The metal layer 4 is formed by arranging a number of island-shaped metal films. The diameter of the metal film is 0.05 to 0.50 mm. The thickness is preferably 0.15 to 0.50 mm, more preferably 0.20 to 0.45 mm. Here, the diameter of the metal film refers to an average value of the maximum length of the island-shaped metal film. When the diameter of the metal film is less than 0.05 mm, the shielding performance such as heat rays becomes insufficient. If the diameter of the metal film exceeds 0.50 mm, the metal film can be easily recognized with the naked eye, the metallic luster becomes strong, and the appearance merchantability decreases.
 また、金属皮膜間の距離は、0.02~0.23mmである。好ましくは0.04~0.23mmであり、さらに好ましくは0.05~0.2mmである。ここで、金属皮膜間の距離とは、島状の金属皮膜の端部と隣り合う島状の金属皮膜の端部との最短距離のことをいう。金属皮膜間の距離が0.02mm未満であると、可視光線透過率が低下し、電波透過性が低下する可能性がある。また製造上もエッチングによる製造が困難となる可能性がある。金属皮膜間の距離が0.23mmを超えると、肉眼で金属皮膜が認識し易くなり、外観の商品性が低下する。また、熱線等の遮蔽性能が不十分となる。 Also, the distance between the metal films is 0.02 to 0.23 mm. The thickness is preferably 0.04 to 0.23 mm, and more preferably 0.05 to 0.2 mm. Here, the distance between the metal films refers to the shortest distance between the end of the island-shaped metal film and the end of the adjacent island-shaped metal film. If the distance between the metal films is less than 0.02 mm, the visible light transmittance may be reduced, and the radio wave permeability may be reduced. In addition, it may be difficult to manufacture by etching. When the distance between the metal films exceeds 0.23 mm, the metal film is easily recognized with the naked eye, and the appearance merchantability is reduced. Moreover, shielding performance, such as a heat ray, becomes insufficient.
 島状の金属皮膜の形状については、特に制約はなく、円形、正方形、長方形、正多角形、楕円形、不定形等が可能である。製造上の容易さや金属皮膜の形状の管理のし易さからは、円形、正方形、長方形、正多角形が好ましい。また多数の島状の金属皮膜の配置の仕方は、規則正しく配置してもよいし、ランダムに配置してもよい。製造上の容易さや金属皮膜の形状の管理のし易さからは、規則正しく配置させる方が好ましい。 The shape of the island-shaped metal film is not particularly limited, and can be a circle, a square, a rectangle, a regular polygon, an ellipse, an irregular shape, or the like. From the viewpoint of ease of production and ease of management of the shape of the metal film, a circle, a square, a rectangle, and a regular polygon are preferable. Further, the manner of arranging a large number of island-shaped metal films may be arranged regularly or randomly. From the viewpoint of ease of production and ease of management of the shape of the metal film, it is preferable to arrange them regularly.
(表面抵抗値)
 遠赤外線を反射する能力は、金属層4の金属皮膜の導電性能に依存している。金属皮膜の導電性能は、表面抵抗値として定量化することができる。表面抵抗値は、JIS K7194に準拠して、4端子4探針法によって測定することができる。第1実施形態においては、表面抵抗値はエッチング等によって島状の金属皮膜を形成する前に測定する。
 金属皮膜の表面抵抗値は、100Ω/□以下であることが好ましく、20Ω/□以下であることがより好ましい。金属皮膜の表面抵抗値を100Ω/□以下にすると、遠赤外線を反射する能力が優れたものとなり、熱貫流率が低い熱線遮蔽材1を得ることができる。表面抵抗値の数値は、金属層4の金属の種類や厚さ等によって調整することができる。
(Surface resistance value)
The ability to reflect far infrared rays depends on the conductive performance of the metal film of the metal layer 4. The conductive performance of the metal film can be quantified as a surface resistance value. The surface resistance value can be measured by a 4-terminal 4-probe method according to JIS K7194. In the first embodiment, the surface resistance value is measured before the island-shaped metal film is formed by etching or the like.
The surface resistance value of the metal film is preferably 100Ω / □ or less, and more preferably 20Ω / □ or less. When the surface resistance value of the metal film is 100 Ω / □ or less, the ability to reflect far-infrared rays becomes excellent, and the heat ray shielding material 1 having a low heat transmissivity can be obtained. The numerical value of the surface resistance value can be adjusted according to the type and thickness of the metal of the metal layer 4.
 図19~21は、島状の金属皮膜の配置の仕方の例である。図19は円形千鳥型配置である。円形の金属皮膜の中心が正三角形の頂点に位置するように、規則正しく配置している。金属皮膜の径はD(mm)であり、金属皮膜間の距離はP(mm)である。 19 to 21 are examples of how to arrange island-shaped metal films. FIG. 19 shows a circular staggered arrangement. It arranges regularly so that the center of a circular metal membrane may be located in the vertex of an equilateral triangle. The diameter of the metal film is D (mm), and the distance between the metal films is P (mm).
 図20は正方形並列型配置である。正方形の金属皮膜の中心が長方形の頂点に位置するように、規則正しく配置している。金属皮膜の径は約1.41×W(mm)である。金属皮膜間の距離は、縦方向がSP(mm)であり、横方向がSP(mm)である。 FIG. 20 shows a square parallel arrangement. The square metal film is regularly arranged so that the center of the metal film is located at the vertex of the rectangle. The diameter of the metal film is about 1.41 × W (mm). The distance between the metal films is SP 1 (mm) in the vertical direction and SP 2 (mm) in the horizontal direction.
 図21は六角形千鳥型配置である。正六角形の金属皮膜の中心が正三角形の頂点に位置するように、規則正しく配置している。金属皮膜の径は約1.15×W(mm)であり、金属皮膜間の距離はP(mm)である。 Fig. 21 shows a hexagonal staggered arrangement. The regular hexagonal metal coating is regularly arranged so that the center of the metal film is located at the apex of the regular triangle. The diameter of the metal film is about 1.15 × W (mm), and the distance between the metal films is P (mm).
 金属層4において、金属皮膜に被覆されていない部分の面積率(開口面積率)は、11~80%である。金属皮膜に被覆されていない部分の面積率が11~80%であるときに、電磁波の透過性能、熱線の遮蔽性能、可視光線の透過性能、遠赤外線の反射性能(後記する熱貫流率)をいずれもバランスよく満足することができる。金属皮膜に被覆されていない部分の面積率は、好ましくは15~75%であり、より好ましくは18~70%であり、更に好ましくは20~65%である。 In the metal layer 4, the area ratio (opening area ratio) of the portion not covered with the metal film is 11 to 80%. When the area ratio of the part not covered with the metal film is 11 to 80%, the electromagnetic wave transmission performance, heat ray shielding performance, visible light transmission performance, far-infrared reflection performance (heat transmissivity described later) Both can be satisfied with a good balance. The area ratio of the portion not covered with the metal film is preferably 15 to 75%, more preferably 18 to 70%, and still more preferably 20 to 65%.
 図19の円形千鳥型配置において、金属皮膜に被覆されていない部分の面積率R(%)は、以下の式(1)によって算出することができる。
 R=100-{(90.6×D)/(P+D)}・・(1)
In the circular staggered arrangement of FIG. 19, the area ratio R 1 (%) of the portion not covered with the metal film can be calculated by the following equation (1).
R 1 = 100 − {(90.6 × D 2 ) / (P + D) 2 } (1)
 図20の正方形並列型配置において、金属皮膜に被覆されていない部分の面積率R(%)は、以下の式(2)によって算出することができる。
 R=100-100×W/{(W+SP)×(W+SP)}・・(2)
In the square parallel arrangement in FIG. 20, the area ratio R 2 (%) of the portion not covered with the metal film can be calculated by the following equation (2).
R 2 = 100-100 × W 2 / {(W + SP 1 ) × (W + SP 2 )} (2)
 図21の六角形千鳥型配置において、金属皮膜に被覆されていない部分の面積率R(%)は、以下の式(3)によって算出することができる。
 R=100-100×{W/(W+P)}・・(3)
In the hexagonal staggered arrangement of FIG. 21, the area ratio R 3 (%) of the portion not covered with the metal film can be calculated by the following equation (3).
R 3 = 100-100 × {W 2 / (W + P) 2 } (3)
 金属層4は、単一の金属層4から構成されていてもよいし、複数の金属層4から構成されていてもよい。金属層4としての性能が安定化し、透明性に優れた層とすることが容易であることから、複数の金属層から構成されていることが好ましい。 The metal layer 4 may be composed of a single metal layer 4 or a plurality of metal layers 4. Since the performance as the metal layer 4 is stabilized and it is easy to obtain a layer having excellent transparency, the metal layer 4 is preferably composed of a plurality of metal layers.
 金属層4を構成する金属としては、アルミニウムまたは銀から構成されていることが好ましい。銀は、導電性に優れ、気相法による金属皮膜の形成とエッチングが容易であることから、より好ましい。 The metal constituting the metal layer 4 is preferably composed of aluminum or silver. Silver is more preferable because of its excellent conductivity and easy formation and etching of a metal film by a vapor phase method.
 金属層4を複数の導電層から構成する場合には、ITO(酸化インジウム・スズ)、酸化亜鉛、酸化スズ、酸化タングステン、酸化チタン、窒化アルミ等の高屈折の材料を組み合わせて用いることによって、金属層4の可視光線透過性を高めることが可能となる。第1実施形態の熱線遮蔽材1Bは、金属層4として、ITO/Ag/ITOの3層からなる導電層を用いている(図16参照)。また、後記する第2実施形態の熱線遮蔽材10は、金属層4として、ITO/Ag/ITO/Ag/ITOの5層からなる導電層を用いている(図18参照)。 When the metal layer 4 is composed of a plurality of conductive layers, by using a combination of highly refractive materials such as ITO (indium tin oxide), zinc oxide, tin oxide, tungsten oxide, titanium oxide, and aluminum nitride, The visible light transmittance of the metal layer 4 can be increased. In the heat ray shielding material 1B of the first embodiment, a conductive layer composed of three layers of ITO / Ag / ITO is used as the metal layer 4 (see FIG. 16). Moreover, the heat ray shielding material 10 of 2nd Embodiment mentioned later uses the conductive layer which consists of five layers of ITO / Ag / ITO / Ag / ITO as the metal layer 4 (refer FIG. 18).
 金属層4を構成する金属皮膜の厚さは、2~120nmであることが好ましく、4~70nmであることがより好ましく、5~30nmであることがさらに好ましい。ここで、金属皮膜の厚さとは、AgやAl等の金属のみからなる層の厚さの合計のことをいう。金属皮膜の厚さがこの範囲にあると、熱線、遠赤外線、紫外線の反射性能に優れ、耐久性と取扱性にも優れている。 The thickness of the metal film constituting the metal layer 4 is preferably 2 to 120 nm, more preferably 4 to 70 nm, and still more preferably 5 to 30 nm. Here, the thickness of the metal film refers to the total thickness of layers made of only metals such as Ag and Al. When the thickness of the metal film is in this range, the heat ray, far-infrared ray, and ultraviolet ray reflection properties are excellent, and the durability and handleability are also excellent.
(接着層3)
 第1実施形態の熱線遮蔽材1では、第1の基材5と第2の基材である窓板2とを接着するために、接着層3が設けられている。
(Adhesive layer 3)
In the heat ray shielding material 1 of 1st Embodiment, in order to adhere | attach the 1st base material 5 and the window board 2 which is a 2nd base material, the contact bonding layer 3 is provided.
 接着層3は、例えば、熱線遮蔽材製品の購入者が第1の基材5を第2の基材である窓板2に自ら接着する際に、両者を貼着させるために使用する接着層とすることができる。この場合、接着層は粘着性を有しており、粘着層と称することも可能である。この接着層には、取扱性向上のために、必要に応じて、離型シートが貼付されており、第2の基材である窓板2に設置するときには、この離型シートを剥がしてから貼着させる。 The adhesive layer 3 is used, for example, when the purchaser of the heat ray shielding material product adheres the first base material 5 to the window plate 2 as the second base material, so that both are adhered. It can be. In this case, the adhesive layer has adhesiveness, and can also be referred to as an adhesive layer. A release sheet is affixed to the adhesive layer as necessary for improving the handleability. When installing on the window plate 2 as the second substrate, the release sheet is peeled off. Adhere.
 接着層3に用いられる材料としては、一般にガラス貼着用等に使用されている接着剤や粘着剤を使用することができる。例えば、アクリル系、シリコーン系、ウレタン系、ブタジエン系、天然ゴム系等が挙げられる。これらの中では、耐久性の観点から、アクリル系およびシリコーン系が好ましい。
 接着層3の厚さは、5~50μmであることが好ましい。
As a material used for the adhesive layer 3, it is possible to use an adhesive or a pressure-sensitive adhesive generally used for glass sticking or the like. Examples include acrylic, silicone, urethane, butadiene, and natural rubber. Among these, acrylic and silicone are preferable from the viewpoint of durability.
The thickness of the adhesive layer 3 is preferably 5 to 50 μm.
(ハードコート層6)
 第1実施形態の熱線遮蔽材1において、外力によって熱線遮蔽材1の表面が傷付いたり、内層部が破壊されることを防止するため、最外層にハードコート層6を設けている。
 ハードコート層6に用いられる材料としては、一般に、無機系ハードコート層、有機系ハードコート層、有機無機系ハードコート層、シリコーン系ハードコート層等を使用することができる。中でも、紫外線硬化型のアクリル系樹脂が好ましい。
 ハードコート層6の厚さは、0.5~20μmであることが好ましい。
(Hard coat layer 6)
In the heat ray shielding material 1 of the first embodiment, the hard coat layer 6 is provided as the outermost layer in order to prevent the surface of the heat ray shielding material 1 from being damaged or the inner layer portion from being destroyed by an external force.
As a material used for the hard coat layer 6, generally, an inorganic hard coat layer, an organic hard coat layer, an organic inorganic hard coat layer, a silicone hard coat layer, or the like can be used. Among these, ultraviolet curable acrylic resins are preferable.
The thickness of the hard coat layer 6 is preferably 0.5 to 20 μm.
(保護層)
 第1実施形態の熱線遮蔽材1は、製造中の外力等によって金属層4が破損されることを防止するため、基材上の金属層4と接着層3との間に、保護層を設けてもよい。
 保護層としては、コーティング法や保護フィルムの接着法等がある。コーティング法では、有機系ハードコート剤、無機系ハードコート剤、シリコーン系ハードコート剤等を塗布して、硬化させて形成することができる。中でも、紫外線硬化型のアクリル系樹脂が好ましい。保護層の厚さは0.5~20μmであることが好ましい。
(Protective layer)
The heat ray shielding material 1 according to the first embodiment is provided with a protective layer between the metal layer 4 and the adhesive layer 3 on the base material in order to prevent the metal layer 4 from being damaged by an external force or the like during manufacture. May be.
Examples of the protective layer include a coating method and a protective film adhesion method. In the coating method, an organic hard coat agent, an inorganic hard coat agent, a silicone hard coat agent, or the like can be applied and cured. Among these, ultraviolet curable acrylic resins are preferable. The thickness of the protective layer is preferably 0.5 to 20 μm.
 保護フィルムの接着法では、保護フィルムを接着層によって金属層4上に貼合する方法がある。保護フィルムとしては、基材と同様に、PETフィルム等の材料を使用することができる。保護フィルムの接着層の接着剤としては、アクリル系、シリコーン系、ウレタン系、ブタジエン系、天然ゴム系等が挙げられる。これらの中では、耐久性の観点から、アクリル系およびシリコーン系が好ましい。接着層の厚さは0.5~20μmであることが好ましい。 In the adhesion method of the protective film, there is a method in which the protective film is bonded onto the metal layer 4 with an adhesive layer. As the protective film, a material such as a PET film can be used similarly to the base material. Examples of the adhesive for the adhesive layer of the protective film include acrylic, silicone, urethane, butadiene, and natural rubber. Among these, acrylic and silicone are preferable from the viewpoint of durability. The thickness of the adhesive layer is preferably 0.5 to 20 μm.
(熱線を吸収する金属化合物)
 第1実施形態の熱線遮蔽材1の熱線遮蔽性能をさらに向上させるために、可視光線透過率や他の性能に影響を与えない範囲で、熱線を吸収する金属化合物を、基材5、ハードコート層6、接着層3、窓板2のいずれかの層に添加してもよい。また、熱線を吸収する金属化合物を含有する層を別途設けてもよい。この場合、熱線を吸収する金属化合物を含有する層は、熱線遮蔽材1の室内側に配置することが性能上好ましい。
(Metal compounds that absorb heat rays)
In order to further improve the heat ray shielding performance of the heat ray shielding material 1 of the first embodiment, a metal compound that absorbs heat rays in a range that does not affect the visible light transmittance and other performances, the base material 5 and the hard coat It may be added to any one of the layer 6, the adhesive layer 3, and the window plate 2. Further, a layer containing a metal compound that absorbs heat rays may be provided separately. In this case, the layer containing the metal compound that absorbs heat rays is preferably arranged on the indoor side of the heat ray shielding material 1 in terms of performance.
 ここで、熱線を吸収する金属化合物とは、800~2500nmに最大吸収波長ピークを有する金属化合物である。熱線を吸収する金属化合物の具体例としては、セシウム含有酸化タングステン、六ホウ化ランタン、アンチモン含有酸化錫、スズ含有酸化インジウム、ガリウム含有酸化亜鉛などを挙げることができる。中でも、セシウム含有酸化タングステン、六ホウ化ランタンおよびアンチモン含有酸化錫から選ばれるいずれか1種以上であることが好ましい。さらに、熱線を吸収する能力に優れたセシウム含有酸化タングステンが、特に好ましい。 Here, the metal compound that absorbs heat rays is a metal compound having a maximum absorption wavelength peak at 800 to 2500 nm. Specific examples of the metal compound that absorbs heat rays include cesium-containing tungsten oxide, lanthanum hexaboride, antimony-containing tin oxide, tin-containing indium oxide, and gallium-containing zinc oxide. Especially, it is preferable that it is any 1 or more types chosen from a cesium containing tungsten oxide, a lanthanum hexaboride, and an antimony containing tin oxide. Further, cesium-containing tungsten oxide having an excellent ability to absorb heat rays is particularly preferable.
 第1実施形態の熱線遮蔽材1は、第2の基材である窓板2を除く、第1の基材5、金属層4、ハードコート層6および接着層3を含む合計の厚さが、10~800μmであることが好ましく、16~500μmであることがより好ましい。 The heat ray shielding material 1 of the first embodiment has a total thickness including the first base material 5, the metal layer 4, the hard coat layer 6, and the adhesive layer 3 excluding the window plate 2 that is the second base material. The thickness is preferably 10 to 800 μm, more preferably 16 to 500 μm.
[第1実施形態の熱線遮蔽材の性能]
 以下、第1実施形態の熱線遮蔽材1が有する各種性能について説明する。
 尚、特に断らない限り、後記する第2実施形態の熱線遮蔽材、第3実施形態の熱線遮蔽材、第4実施形態の熱線遮蔽材、第5実施形態の熱線遮蔽材、およびこれらの変形例が有する各種性能についての説明も、同様であり、同様に適用できるものであるので、その説明を省略する。
[Performance of the heat ray shielding material of the first embodiment]
Hereinafter, various performances of the heat ray shielding material 1 of the first embodiment will be described.
Unless otherwise specified, the heat ray shielding material of the second embodiment described later, the heat ray shielding material of the third embodiment, the heat ray shielding material of the fourth embodiment, the heat ray shielding material of the fifth embodiment, and modifications thereof The description of the various performances of the system is the same and can be applied in the same manner, and thus the description thereof is omitted.
(可視光線透過率)
 第1実施形態の熱線遮蔽材1は、室内を明るくするために、波長380~780nmの可視光線を透過させる。具体的には、熱線遮蔽材1の可視光線透過率は、45%以上である。60%以上が好ましく、70%以上がより好ましい。可視光線透過率は、JIS A5759に準拠して、赤外反射測定機を用いて測定することができる。可視光線透過率の数値は、前記した金属層4の金属皮膜の形状、厚さ、金属の種類、基材やハードコート層6の素材や厚さ等によって調整することができる。
(Visible light transmittance)
The heat ray shielding material 1 of the first embodiment transmits visible light having a wavelength of 380 to 780 nm in order to brighten the room. Specifically, the visible light transmittance of the heat ray shielding material 1 is 45% or more. 60% or more is preferable, and 70% or more is more preferable. The visible light transmittance can be measured using an infrared reflection measuring instrument in accordance with JIS A5759. The numerical value of the visible light transmittance can be adjusted according to the shape, thickness, metal type, material and thickness of the base material and the hard coat layer 6 of the metal layer 4 described above.
(電磁波遮蔽率)
 第1実施形態の熱線遮蔽材1は、電磁波の透過性能を定量化して評価するために、電磁波遮蔽率という指標を用いている。評価方法としては、KEC法を採用した。電磁波の測定範囲は、30MHz~1GHzである。電磁波遮蔽率は、周波数800MHzにおける数値(dB)を用いた。
 電磁波遮蔽率は、10dB以下である。電磁波遮蔽率が10dB以下であるときに、屋内や車内における携帯電話や携帯テレビ等の使用時において、支障のないものとすることができる。電磁波遮蔽率は、好ましくは5dB以下、より好ましくは3dB以下であり、さらに好ましくは1dB以下である。
 電磁波遮蔽率の数値は、前記した金属層4の金属皮膜の形状、厚さ、金属の種類等によって調整することができる。
(Electromagnetic wave shielding rate)
The heat ray shielding material 1 according to the first embodiment uses an index called an electromagnetic wave shielding rate in order to quantify and evaluate the electromagnetic wave transmission performance. As an evaluation method, the KEC method was adopted. The measurement range of electromagnetic waves is 30 MHz to 1 GHz. A numerical value (dB) at a frequency of 800 MHz was used for the electromagnetic wave shielding rate.
The electromagnetic wave shielding rate is 10 dB or less. When the electromagnetic wave shielding rate is 10 dB or less, there can be no trouble when using a cellular phone, a portable TV, or the like indoors or in a vehicle. The electromagnetic wave shielding rate is preferably 5 dB or less, more preferably 3 dB or less, and even more preferably 1 dB or less.
The numerical value of the electromagnetic wave shielding rate can be adjusted by the shape, thickness, type of metal and the like of the metal film of the metal layer 4 described above.
(可視光線反射率)
 第1実施形態の熱線遮蔽材1の可視光線反射率は、特に限定するものではないが、数値が低いほうが好ましい。具体的には、可視光線反射率が25%以下であることが好ましい。可視光線反射率が25%以下であると、金属光沢が少なく、商品としての外観に優れたものとなる。可視光線反射率は、20%以下がより好ましく、10%以下がさらに好ましい。可視光線反射率は、JIS A5759に準拠して、赤外反射測定機を用いて測定することができる。可視光線反射率の数値は、前記した金属層4の金属皮膜の形状、厚さ、金属の種類等によって調整することができる。
(Visible light reflectance)
Although the visible light reflectance of the heat ray shielding material 1 of 1st Embodiment is not specifically limited, The one where a numerical value is low is preferable. Specifically, the visible light reflectance is preferably 25% or less. When the visible light reflectance is 25% or less, the metallic luster is small and the appearance as a product is excellent. The visible light reflectance is more preferably 20% or less, and further preferably 10% or less. The visible light reflectance can be measured using an infrared reflection measuring instrument in accordance with JIS A5759. The numerical value of the visible light reflectance can be adjusted by the shape, thickness, type of metal, and the like of the metal film of the metal layer 4 described above.
(日射透過率)
 第1実施形態の熱線遮蔽材1は、波長300~2500nmの範囲の可視光線と近赤外線の透過を抑制する。熱線遮蔽材1の日射透過率は、60%以下であることが好ましい。日射透過率が60%以下であると、熱線遮蔽性に優れたものとなる。50%以下がより好ましい。日射透過率は、JIS A5759に準拠して、赤外反射測定機を用いて測定することができる。日射透過率の数値は、前記した可視光透過率の場合と同様に、構成する各層の素材や厚さ等によって調整することができる。
(Solar radiation transmittance)
The heat ray shielding material 1 of the first embodiment suppresses transmission of visible light and near infrared light in the wavelength range of 300 to 2500 nm. The solar radiation transmittance of the heat ray shielding material 1 is preferably 60% or less. When the solar transmittance is 60% or less, the heat ray shielding property is excellent. 50% or less is more preferable. The solar radiation transmittance can be measured using an infrared reflection measuring instrument in accordance with JIS A5759. The numerical value of the solar radiation transmittance can be adjusted by the material, thickness, etc. of each layer constituting the same as in the case of the visible light transmittance described above.
(日射反射率)
 第1実施形態の熱線遮蔽材1は、日射反射率が25%以上であることが好ましい。日射反射率が25%以上であると、熱線遮蔽性に優れたものとなる。日射反射率は、30%以上がより好ましい。日射反射率は、JIS A5759に準拠して、赤外反射測定機を用いて測定することができる。日射反射率の数値は、前記した可視光透過率の場合と同様に、構成する各層の素材や厚さ等によって調整することができる。
(Solar reflectance)
The heat ray shielding material 1 of the first embodiment preferably has a solar reflectance of 25% or more. When the solar reflectance is 25% or more, the heat ray shielding property is excellent. The solar reflectance is more preferably 30% or more. The solar reflectance can be measured using an infrared reflection measuring instrument in accordance with JIS A5759. The numerical value of solar reflectance can be adjusted by the material, thickness, etc. of each layer constituting the same as in the case of the visible light transmittance described above.
(日射吸収率)
 第1実施形態の熱線遮蔽材1は、日射吸収率が40%以下であることが好ましい。日射吸収率が40%以下であると、熱線遮蔽材1の温度が上昇して性能が劣化することを抑制し、窓板2を損傷させる弊害も抑制する。日射吸収率は、35%以下がより好ましい。日射吸収率は、JIS A5759に準拠して、赤外反射測定機を用いて測定することができる。日射吸収率の数値は、前記した可視光透過率の場合と同様に、構成する各層の素材や厚さ等によって調整することができる。
 なお、日射透過率と日射反射率と日射吸収率の数値を合計すると、100%となる。
(Solar radiation absorption rate)
The heat ray shielding material 1 of the first embodiment preferably has a solar radiation absorption rate of 40% or less. When the solar radiation absorptivity is 40% or less, the temperature of the heat ray shielding material 1 is prevented from rising and the performance is deteriorated, and adverse effects that damage the window plate 2 are also suppressed. The solar radiation absorption rate is more preferably 35% or less. The solar absorptance can be measured using an infrared reflection measuring instrument in accordance with JIS A5759. The numerical value of the solar radiation absorptance can be adjusted by the material, thickness, etc. of each layer constituting the same as in the case of the visible light transmittance described above.
Note that the sum of the values of solar transmittance, solar reflectance, and solar absorption rate is 100%.
(反射光の色度・彩度)
 第1実施形態の熱線遮蔽材1において、反射光が色彩を帯びていると、外観上の商品性が低下する。そのため、色彩を帯びていない方が好ましい。すなわち、JIS Z8729に記載のL表色系の色度図において、反射光における色相a値、b値および彩度C値がいずれも数値が少ないことが好ましい。具体的には、いずれも10以下であることが好ましく、5以下であることがより好ましい。
(Chromaticity / Saturation of reflected light)
In the heat ray shielding material 1 of the first embodiment, when the reflected light is tinged with color, the merchantability on the appearance is deteriorated. Therefore, it is preferable that the color is not tinged. That is, in the chromaticity diagram of the L * a * b * color system described in JIS Z8729, it is preferable that the hue a * value, b * value and chroma C * value in reflected light are all small. Specifically, both are preferably 10 or less, and more preferably 5 or less.
(熱線遮蔽係数)
 第1実施形態では、金属層4による熱線の遮蔽性能を定量化して評価するために、熱線遮蔽係数という指標を用いている。熱線遮蔽係数は、JIS A5759に準拠して、分光光度計を用いて測定される。Ni値は0.34として、熱線遮蔽係数を求める。
 第1実施形態の熱線遮蔽材1の熱線遮蔽係数は、0.9以下であることが好ましい。熱線遮蔽係数が0.9を超えると、近赤外線の遮蔽効率が環境省のグリーン購入法基準等に照らして、不十分となる。熱線遮蔽係数は、より好ましくは0.8以下であり、さらに好ましくは0.7以下、特に好ましくは0.6以下である。
 熱線遮蔽係数の数値は、前記した金属層4の金属皮膜の形状、厚さ、金属の種類等によって調整することができる。
(Heat shielding coefficient)
In the first embodiment, in order to quantify and evaluate the heat ray shielding performance of the metal layer 4, an index called a heat ray shielding coefficient is used. The heat ray shielding coefficient is measured using a spectrophotometer according to JIS A5759. The heat ray shielding coefficient is obtained by setting the Ni value to 0.34.
The heat ray shielding coefficient of the heat ray shielding material 1 of the first embodiment is preferably 0.9 or less. When the heat ray shielding coefficient exceeds 0.9, the shielding efficiency of near infrared rays is insufficient in view of the Green Purchasing Law standard of the Ministry of the Environment. The heat ray shielding coefficient is more preferably 0.8 or less, still more preferably 0.7 or less, and particularly preferably 0.6 or less.
The numerical value of the heat ray shielding coefficient can be adjusted by the shape, thickness, metal type, and the like of the metal film of the metal layer 4 described above.
(紫外線透過率)
 熱線遮蔽材1を透過した太陽光は、室内の物品に照射されることとなるが、室内の物品が紫外線によって劣化しないように、紫外線透過率を低減させることが好ましい。第1実施形態では、紫外線透過率の目安として、波長が380nmの光を用いて、紫外線透過率を評価する。紫外線透過率(380nm透過率)は、JIS A5759に準拠して、分光光度計を用いて測定することができる。
 第1実施形態の熱線遮蔽材1の紫外線透過率(380nm透過率)は5%以下であることが好ましい。紫外線透過率の数値は、前記した金属層4の金属皮膜の形状、厚さ、金属の種類等によって調整することができる。
(UV transmittance)
Sunlight that has passed through the heat-shielding material 1 is irradiated to indoor articles, but it is preferable to reduce the ultraviolet transmittance so that the indoor articles are not deteriorated by ultraviolet rays. In the first embodiment, the ultraviolet transmittance is evaluated using light having a wavelength of 380 nm as a measure of the ultraviolet transmittance. The ultraviolet transmittance (380 nm transmittance) can be measured using a spectrophotometer according to JIS A5759.
The ultraviolet ray transmittance (380 nm transmittance) of the heat ray shielding material 1 of the first embodiment is preferably 5% or less. The numerical value of the ultraviolet transmittance can be adjusted by the shape, thickness, type of metal, and the like of the metal film of the metal layer 4 described above.
(熱貫流率)
 第1実施形態では、金属層4による遠赤外線の反射効率を定量化して評価するために、熱貫流率という指標を用いている。熱貫流率は、JIS A5759に準拠して、赤外反射測定機を使用して、測定することができる。
 第1実施形態の熱線遮蔽材1の熱貫流率が、5.9W/mK未満であることが好ましい。遠赤外線の反射効率に優れた熱線遮蔽材1は、遠赤外線を吸収させないようできるだけ表層に配置することが好ましい。
(Heat flow rate)
In the first embodiment, in order to quantify and evaluate the far-infrared reflection efficiency of the metal layer 4, an index called a heat transmissivity is used. The heat transmissivity can be measured using an infrared reflection measuring instrument in accordance with JIS A5759.
It is preferable that the heat transmissivity of the heat ray shielding material 1 of 1st Embodiment is less than 5.9 W / m < 2 > K. The heat ray shielding material 1 excellent in far-infrared reflection efficiency is preferably disposed on the surface layer as much as possible so as not to absorb far-infrared rays.
(ヘイズ)
 第1実施形態の熱線遮蔽材1は、ヘイズが1.5%以下であることが好ましい。ヘイズが1.5%以下であると、視野的に優れたものとなる。ヘイズは、JIS K7136に準拠して、ヘイズメータ(曇り度計)を用いて測定することができる。ヘイズの数値は、前記した可視光透過率の場合と同様に、構成する各層の素材や厚さ等によって調整することができる。
(Haze)
The heat ray shielding material 1 of the first embodiment preferably has a haze of 1.5% or less. When the haze is 1.5% or less, the visual field is excellent. The haze can be measured using a haze meter (haze meter) according to JIS K7136. The numerical value of haze can be adjusted according to the material, thickness, and the like of each layer constituting the same as in the case of the visible light transmittance described above.
(外観)
 第1実施形態の熱線遮蔽材1の外観は、熱線遮蔽材としての商品性を左右するものである。熱線遮蔽材1の外観は、金属層4を形成する金属皮膜の径が0.50mmを超えて大きいものであったり、金属皮膜間の距離が0.23mmを超えたりすると、肉眼で金属皮膜が認識し易くなり、外観の商品性が低下する。熱線遮蔽材1の外観は、肉眼による目視によって判定される。
(appearance)
The appearance of the heat ray shielding material 1 according to the first embodiment affects the merchantability as a heat ray shielding material. When the diameter of the metal film that forms the metal layer 4 is larger than 0.50 mm or the distance between the metal films exceeds 0.23 mm, the appearance of the heat ray shielding material 1 is not visible to the naked eye. It becomes easy to recognize and the merchantability of the appearance is lowered. The appearance of the heat ray shielding material 1 is determined by visual observation with the naked eye.
[第1実施形態の熱線遮蔽材の製造方法]
 第1実施形態の熱線遮蔽材1は、第1の基材5上に熱線遮蔽材1を構成する各層を順次形成することによって、製造することができる。以下に各層を形成するための製造方法について、代表的な例を説明する。
 尚、特に断らない限り、後記する第2実施形態の熱線遮蔽材、第3実施形態の熱線遮蔽材、第4実施形態の熱線遮蔽材、第5実施形態の熱線遮蔽材、およびこれらの変形例の製造方法についての説明も、同様であり、同様に適用できるものであるので、その説明を省略する。
[Method for Manufacturing Heat-ray Shielding Material of First Embodiment]
The heat ray shielding material 1 of 1st Embodiment can be manufactured by forming each layer which comprises the heat ray shielding material 1 on the 1st base material 5 one by one. A representative example of the manufacturing method for forming each layer will be described below.
Unless otherwise specified, the heat ray shielding material of the second embodiment described later, the heat ray shielding material of the third embodiment, the heat ray shielding material of the fourth embodiment, the heat ray shielding material of the fifth embodiment, and modifications thereof Since the description of the manufacturing method is the same and can be applied in the same manner, the description thereof is omitted.
 金属層4を形成する方法について説明する。まず、基材5の表面全体に気相法によって、所定の金属の皮膜を形成する。気相法としては、真空蒸着法、スパッタリング法、CVD法など公知の方法を適宜選択することができる。
 次に、基材5の表面全体に形成された金属皮膜の上に、所定の島状の金属皮膜の配置の仕方でレジスト(感光性樹脂)膜を形成する。レジスト膜の形成方法としては、印刷法、フォトリソグラフ法等の公知の方法を選択することができる。印刷法としては、グラビア印刷、スクリーン印刷等の公知の方法を選択することができる。
 次に、レジスト膜が存在しない部分の金属皮膜を酸やアルカリによってエッチングして、除去する。その後レジスト膜を溶剤や水等で剥離することによって、所定の島状の金属皮膜の配置を有する金属層4を形成することができる。
 また、所定の島状の金属皮膜を形成する方法としては、上記のレジスト法以外にも、レーザー光を金属皮膜上にパターン状に照射して、特定の位置の金属皮膜を加熱除去するというレーザー法を用いることもできる。
A method for forming the metal layer 4 will be described. First, a predetermined metal film is formed on the entire surface of the substrate 5 by a vapor phase method. As the vapor phase method, a known method such as a vacuum deposition method, a sputtering method, or a CVD method can be appropriately selected.
Next, a resist (photosensitive resin) film is formed on the metal film formed on the entire surface of the base material 5 by a predetermined arrangement of island-shaped metal films. As a method for forming the resist film, a known method such as a printing method or a photolithographic method can be selected. As the printing method, a known method such as gravure printing or screen printing can be selected.
Next, the portion of the metal film where the resist film is not present is removed by etching with acid or alkali. Thereafter, the resist film is peeled off with a solvent, water, or the like, whereby the metal layer 4 having a predetermined island-shaped metal film arrangement can be formed.
In addition to the resist method described above, a method for forming a predetermined island-shaped metal film is a laser in which a laser beam is irradiated onto the metal film in a pattern and the metal film at a specific position is removed by heating. The method can also be used.
 接着層3を形成する方法について説明する。接着剤や粘着剤の高分子等を溶剤に適当量混合し、適切な粘度の溶液を調製する。その溶液を基材5上にコーティングする。その後乾燥させることによって、接着層3を形成することができる。 The method for forming the adhesive layer 3 will be described. An appropriate amount of an adhesive or pressure-sensitive adhesive polymer is mixed with a solvent to prepare a solution having an appropriate viscosity. The solution is coated on the substrate 5. Then, the adhesive layer 3 can be formed by drying.
 ハードコート層6を形成する方法について説明する。熱硬化性樹脂または光硬化性樹脂を溶剤に適当量混合し、適切な粘度の溶液を調製する。その溶液を基材5上にコーティングする。乾燥させた後、熱または光を用いて硬化反応をさせることによって、ハードコート層6を形成することができる。 The method for forming the hard coat layer 6 will be described. An appropriate amount of a thermosetting resin or a photocurable resin is mixed in a solvent to prepare a solution having an appropriate viscosity. The solution is coated on the substrate 5. After drying, the hard coat layer 6 can be formed by performing a curing reaction using heat or light.
[第1実施形態の熱線遮蔽材の用途]
 第1実施形態の熱線遮蔽材1は、電磁波を透過させるので、室内において携帯電話や携帯テレビ等を使用することができる。屋外から照射される可視光線をある程度は透過させるので、室内を明るくすることができる。一方、第1実施形態の熱線遮蔽材1は、熱線を遮蔽するので、室内の気温の上昇を抑制することができる。また、室内から放射される遠赤外線は室外へ逃げないようにすることができる。さらに、紫外線は遮蔽して、室内の物品が紫外線によって経時的に劣化することを防止することができる。
 尚、特に断らない限り、後記する第2実施形態の熱線遮蔽材、第3実施形態の熱線遮蔽材、第4実施形態の熱線遮蔽材、第5実施形態の熱線遮蔽材、およびこれらの変形例の用途についても、同様であり、同様に適用できるものであるので、その説明を省略する。
[Use of heat ray shielding material of first embodiment]
Since the heat ray shielding material 1 of the first embodiment transmits electromagnetic waves, a mobile phone, a mobile TV, or the like can be used indoors. Visible light irradiated from the outside is transmitted to some extent, so that the room can be brightened. On the other hand, since the heat ray shielding material 1 of 1st Embodiment shields a heat ray, it can suppress the raise of indoor air temperature. Further, far infrared rays emitted from the room can be prevented from escaping outside the room. Furthermore, ultraviolet rays can be shielded to prevent deterioration of indoor articles over time due to ultraviolet rays.
Unless otherwise specified, the heat ray shielding material of the second embodiment described later, the heat ray shielding material of the third embodiment, the heat ray shielding material of the fourth embodiment, the heat ray shielding material of the fifth embodiment, and modifications thereof This is also the same and can be applied in the same manner, so that the description thereof is omitted.
<第1実施形態の熱線遮蔽材の変形例>
 第1実施形態の熱線遮蔽材は、第1の基材の表面に金属層を形成し、第2の基材である窓板に接着層等を介して設置する形式の熱線遮蔽材である。しかし、当該第1の基材を使用せずに、基材として窓板のみを用いて、窓板に直接金属層を形成させる形式のものであってもよい。例えば、仮の支持体の表面に金属層を形成し、これを基材の金属層を形成する面に積層、圧着し、仮の支持体を剥がしとることにより、基材に金属層を転写する方法や、基材に金属を含有するインクで直接印刷してもよい。基材としての窓板としては、前記したように、透明ガラス板や透明樹脂板等を使用することができる。
<Modification of the heat ray shielding material of the first embodiment>
The heat ray shielding material of the first embodiment is a heat ray shielding material of a type in which a metal layer is formed on the surface of a first base material and is installed on a window plate as a second base material via an adhesive layer or the like. However, a type in which the metal layer is directly formed on the window plate using only the window plate as the substrate without using the first substrate may be used. For example, a metal layer is formed on the surface of a temporary support, and this is laminated and pressure-bonded on the surface of the base material on which the metal layer is formed, and the temporary support is peeled off to transfer the metal layer to the base material. You may print directly with the method and the ink containing a metal in a base material. As described above, a transparent glass plate or a transparent resin plate can be used as the window plate as the base material.
 また、第1実施形態の熱線遮蔽材は、第1の基材と第2の基材である窓板の2種類の基材を用いている。しかし、第1の基材が、金属層を安定して保持し得るだけの機械的強度、耐久性、取扱性等を有したものであれば、第2の基材である窓板を貼合させなくともよい。この場合は、基材としては第1の基材のみを使用することとなる。 Moreover, the heat ray shielding material of the first embodiment uses two types of base materials, a first base material and a window plate that is a second base material. However, if the first base material has sufficient mechanical strength, durability, handleability, etc. that can stably hold the metal layer, the window plate as the second base material is bonded. You don't have to. In this case, only the first substrate is used as the substrate.
 また、第1実施形態の熱線遮蔽材は、表面に金属層を形成した第1の基材と窓板である第2の基材とは、接着層を介して貼着されている。しかし、第1の基材と第2の基材とを積層するにあたって、接着層を使用しないで、そのまま重ね合わせたり、機械的にはめ込んだり、両側から圧接したりする方法を取ることもできる。 Also, in the heat ray shielding material of the first embodiment, the first base material having a metal layer formed on the surface and the second base material that is a window plate are attached via an adhesive layer. However, when laminating the first base material and the second base material, it is possible to use a method in which the first base material and the second base material are stacked as they are, or mechanically fitted, or pressed from both sides without using an adhesive layer.
<第2実施形態の熱線遮蔽材>
 第2実施形態の熱線遮蔽材は、第1実施形態の熱線遮蔽材に比べて、窓板としての基材を2枚以上有しており、これら2枚以上の基材で金属層を挟む構成を有している熱線遮蔽材である。窓板としての基材は、少なくとも2枚あればよく、3枚以上であってもよい。
<The heat ray shielding material of 2nd Embodiment>
The heat ray shielding material of the second embodiment has two or more base materials as window plates as compared with the heat ray shielding material of the first embodiment, and the metal layer is sandwiched between these two or more base materials. It is a heat ray shielding material which has. The substrate as the window plate may be at least two, and may be three or more.
[第2実施形態の熱線遮蔽材の構成]
 図18は第2実施形態の熱線遮蔽材10の層構成を示す模式的断面図である。
 第2実施形態の熱線遮蔽材10は、透明樹脂からなる第1の基材5の室内側表面には、島状の金属皮膜を多数配置して形成された金属層4dと第2の基材である窓板2aに密着させるための接着層3aとを有している(図18参照)。また、基材フィルム5の室外側には、第3の基材である窓板2aに密着させるための接着層3aを有している。そのため、熱線遮蔽材10は、金属層4dが、接着層等を介して、両側から基材である2枚の窓板2aで挟まれたサンドイッチ構造を有している。金属層4dの島状の金属皮膜は、ITO/Ag/ITO/Ag/ITOの5層の導電層から構成されている。ITO/Ag/ITO/Ag/ITOの5層は、第1の基材5上にITO、Ag、ITO、Ag、ITOを順番にスパッタリングすることによって形成される。
[Configuration of Heat Ray Shielding Material of Second Embodiment]
FIG. 18 is a schematic cross-sectional view showing a layer configuration of the heat ray shielding material 10 of the second embodiment.
The heat ray shielding material 10 according to the second embodiment includes a metal layer 4d formed by arranging a large number of island-shaped metal films on the indoor surface of the first base material 5 made of a transparent resin, and a second base material. And an adhesive layer 3a for closely contacting the window plate 2a (see FIG. 18). In addition, on the outdoor side of the base film 5, there is an adhesive layer 3 a for tightly contacting the window plate 2 a that is the third base material. Therefore, the heat ray shielding material 10 has a sandwich structure in which the metal layer 4d is sandwiched between two window plates 2a that are base materials from both sides via an adhesive layer or the like. The island-shaped metal film of the metal layer 4d is composed of five conductive layers of ITO / Ag / ITO / Ag / ITO. The five layers of ITO / Ag / ITO / Ag / ITO are formed by sequentially sputtering ITO, Ag, ITO, Ag, and ITO on the first substrate 5.
 第2実施形態の熱線遮蔽材10は、金属層4dが基材5上に形成され、さらに2層の接着層3aを介して、2枚の基材である窓板2aによって挟まれた構成であるため、いずれの側が室外側になっても、雨風等による劣化を低減することができる。 The heat ray shielding material 10 of the second embodiment has a configuration in which a metal layer 4d is formed on a base material 5 and is further sandwiched by two window plates 2a through two adhesive layers 3a. Therefore, no matter which side is the outdoor side, deterioration due to rain and wind can be reduced.
[第2実施形態の熱線遮蔽材の材料]
 第2実施形態の熱線遮蔽材10において、基材である2枚の窓板2aの材料として、ガラス板を用いたときは、いわゆる合わせガラスを構成することとなる。2層の接着層3aを用いて、合わせガラスを構成する各材料が強力に接着されると、合わせガラスに優れた耐貫通性能、耐衝撃性能、飛散防止効果を付与することができる。接着層3aとしては合わせガラスの中間膜として汎用的に使用される樹脂膜であれば特に制限されず、可視光線領域や赤外線領域に吸収が無いものが好ましい。
[Material of Heat Ray Shielding Material of Second Embodiment]
In the heat ray shielding material 10 of the second embodiment, when a glass plate is used as the material of the two window plates 2a as the base material, a so-called laminated glass is formed. When the materials constituting the laminated glass are strongly bonded using the two adhesive layers 3a, the laminated glass can be provided with excellent penetration resistance, impact resistance, and scattering prevention effects. The adhesive layer 3a is not particularly limited as long as it is a resin film that is generally used as an intermediate film of laminated glass, and preferably has no absorption in the visible light region or the infrared region.
 第2実施形態の熱線遮蔽材10の接着層3aに用いられる材料は、前記の第1実施形態の熱線遮蔽材の接着層3に用いられる材料とは種類が異なっている。第2実施形態の熱線遮蔽材10の接着層3aは、例えば、室温では粘着性のない樹脂として基材に塗布や積層され、熱線遮蔽材を構成する各材料を積層させた後に、加熱処理することによって、粘着性や接着性が発現して、各層間を接着させることを可能とする接着剤である。 The material used for the adhesive layer 3a of the heat ray shielding material 10 of the second embodiment is different from the material used for the adhesive layer 3 of the heat ray shielding material of the first embodiment. For example, the adhesive layer 3a of the heat ray shielding material 10 according to the second embodiment is applied or laminated on a base material as a resin having no adhesiveness at room temperature, and then heat-treats after laminating each material constituting the heat ray shielding material. In this way, the adhesive exhibits adhesiveness and adhesiveness, and can bond the respective layers.
 このような接着剤の例としては、ポリビニルブチラール系樹脂(PVB系樹脂)、エチレン-酢酸ビニル共重合体系樹脂(EVA系樹脂)等が挙げられる。接着層3aを形成する樹脂には、紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を適宜添加配合してもよい。これらの樹脂は単独で用いても良いし、2種類以上を併用してもよい。接着層3aは公知の方法を用いて製造したものでもよいが、市販品を利用してもよい。市販品としては、例えば、積水化学工業社製や三菱樹脂社製の可塑化PVB、デュポン社製や武田薬品工業社製のEVA樹脂、東ソー社製の変性EVA樹脂等がある。接着層3aは、上記の樹脂膜の単層で構成してもよいし、2層以上を積層させた状態で構成してもよい。 Examples of such an adhesive include polyvinyl butyral resin (PVB resin), ethylene-vinyl acetate copolymer resin (EVA resin), and the like. An ultraviolet absorber, an antioxidant, an antistatic agent, a heat stabilizer, a lubricant, a filler, a colorant, an adhesion adjusting agent, and the like may be appropriately added to the resin forming the adhesive layer 3a. These resins may be used alone or in combination of two or more. The adhesive layer 3a may be manufactured using a known method, but a commercially available product may be used. Examples of commercially available products include plasticized PVB manufactured by Sekisui Chemical Co., Ltd. and Mitsubishi Plastics, EVA resin manufactured by DuPont and Takeda Pharmaceutical, and modified EVA resin manufactured by Tosoh. The adhesive layer 3a may be composed of a single layer of the above resin film, or may be composed of two or more layers laminated.
 第2実施形態の熱線遮蔽材10の接着層3aの厚さは、100~1000μmであることが好ましい。第2実施形態の合わせガラスを作製する方法としては特に制限されず、一般的な合わせガラスの製造方法を用いればよい。具体的には、第2実施形態の合わせガラスは、ガラス板の間に、接着層3a、金属層が形成された基材、接着層3aを積層して予備接着した後に、予備接着後に残った気泡を高温高圧で圧着することにより取り除く工程によって製造することができる。 The thickness of the adhesive layer 3a of the heat ray shielding material 10 of the second embodiment is preferably 100 to 1000 μm. It does not restrict | limit especially as a method of producing the laminated glass of 2nd Embodiment, What is necessary is just to use the manufacturing method of a general laminated glass. Specifically, in the laminated glass of the second embodiment, the adhesive layer 3a, the base material on which the metal layer is formed, and the adhesive layer 3a are laminated and pre-adhered between the glass plates, and then bubbles remaining after the pre-adhesion are removed. It can be manufactured by a process of removing by pressure bonding at high temperature and high pressure.
 前記した第1実施形態や第2実施形態等のように、接着層3、3aと金属層4とが接して存在しているときには、接着層3、3aに用いられる材料としては、金属皮膜を劣化させないために、pHが中性のものが好ましい。具体的には、化学構造としてカルボン酸を含まないものが好ましい。また、接着層3、3aに用いられる材料に防錆材を添加してもよい。 When the adhesive layers 3, 3a and the metal layer 4 are in contact with each other as in the first embodiment and the second embodiment described above, a metal film is used as the material used for the adhesive layers 3, 3a. In order to prevent deterioration, a neutral pH is preferable. Specifically, a chemical structure that does not contain a carboxylic acid is preferable. Moreover, you may add a rust preventive material to the material used for the contact bonding layers 3 and 3a.
[第2実施形態の熱線遮蔽材の製造方法]
 第2実施形態の熱線遮蔽材10を作製する方法について説明する。
 基材5上に金属皮膜を形成する方法、所定の島状の金属皮膜を形成する方法については、第1実施形態の熱線遮蔽材の製造方法の場合と同様であるので、その説明を省略する。
[Method for Manufacturing Heat-ray Shielding Material of Second Embodiment]
A method for producing the heat ray shielding material 10 of the second embodiment will be described.
The method for forming the metal film on the substrate 5 and the method for forming the predetermined island-shaped metal film are the same as those in the method of manufacturing the heat ray shielding material of the first embodiment, and thus the description thereof is omitted. .
 次に、金属層4が設けられた基材5の両面に、それぞれ接着層3aを形成する。高分子粘着剤を溶剤に適当量混合し、適切な粘度の溶液を調製する。その溶液を基材5または金属層4の上にコーティングする。その後乾燥させることによって、接着層3aを形成することができる。また前記したように、金属層4と接着層3aとの間に保護層を設けてもよい。 Next, adhesive layers 3a are formed on both surfaces of the base material 5 provided with the metal layer 4, respectively. An appropriate amount of the polymer adhesive is mixed with a solvent to prepare a solution having an appropriate viscosity. The solution is coated on the substrate 5 or the metal layer 4. Thereafter, the adhesive layer 3a can be formed by drying. Further, as described above, a protective layer may be provided between the metal layer 4 and the adhesive layer 3a.
 金属層4と接着層3aが設けられた基材5とガラス板2aとを貼合する方法は特に制限されず、一般的な合わせガラスの製造方法を用いればよい。具体例を次に説明する。
 図22は、第2実施形態に係る熱線遮蔽材10の製造方法を示す模式図である。
The method in particular of bonding the base material 5 provided with the metal layer 4 and the contact bonding layer 3a and the glass plate 2a is not restrict | limited, What is necessary is just to use the manufacturing method of a general laminated glass. A specific example will be described next.
FIG. 22 is a schematic diagram showing a method for manufacturing the heat ray shielding material 10 according to the second embodiment.
 まず、図22(a)に示すように、2枚のガラス板2aの間に、両面に接着層を有する基材9を積層する。積層されたガラス板2aと両面に接着層を有する基材9は、ローラー21上を移動して、次の工程に移る。 First, as shown in FIG. 22A, a base material 9 having an adhesive layer on both sides is laminated between two glass plates 2a. The laminated glass plate 2a and the base material 9 having adhesive layers on both surfaces move on the roller 21 and move to the next step.
 次に、図22(b)に示すように、密閉されたチャンバ22内で、積層されたガラス板2aと両面に接着層を有する基材9は、ヒータ23によって90℃程度に加熱される。続いて、1対の圧着ロール24を通過させることによって、積層されたガラス板2aと両面に接着層を有する基材9は仮圧着される。 Next, as shown in FIG. 22 (b), the laminated glass plate 2 a and the base material 9 having the adhesive layers on both surfaces are heated to about 90 ° C. by the heater 23 in the sealed chamber 22. Subsequently, by passing a pair of pressure-bonding rolls 24, the laminated glass plate 2a and the base material 9 having an adhesive layer on both surfaces are temporarily pressure-bonded.
 次に、図22(c)に示すように、仮圧着された熱線遮蔽材10は、オートクレーブ25中に収納される。オートクレーブ25中で、約1MPaに加圧され、130℃程度に加熱されることによって、仮圧着後に残った気泡は取り除かれ、熱線遮蔽材10の接着層がガラス板と十分に貼合されて、熱線遮蔽材10が製造される。 Next, as shown in FIG. 22 (c), the heat ray shielding material 10 that has been temporarily press-bonded is accommodated in the autoclave 25. In autoclave 25, it is pressurized to about 1 MPa and heated to about 130 ° C., thereby removing bubbles remaining after temporary pressure bonding, and the adhesive layer of heat ray shielding material 10 is sufficiently bonded to the glass plate, The heat ray shielding material 10 is manufactured.
<第2実施形態の熱線遮蔽材の変形例>
 本発明者は、熱線遮蔽材の熱線の遮蔽性能をさらに高めるために、光の波長との関係について検討を進めたところ、可視光線に近い近赤外線以上の波長領域(800~2500nm)の透過率を低下させることが有効であることを見出した。そして、当該波長領域の透過率を低下させるためには、鉄イオンを含有したガラス板または熱線吸収性金属化合物微粒子を含有した接着層を設けることが有効であることを見出した。
<Modification of Heat Ray Shielding Material of Second Embodiment>
In order to further improve the heat ray shielding performance of the heat ray shielding material, the present inventor has studied the relationship with the wavelength of light. As a result, the transmittance in the wavelength region (800 to 2500 nm) of near-infrared or higher near visible light. Has been found to be effective. And in order to reduce the transmittance | permeability of the said wavelength range, it discovered that it was effective to provide the adhesive layer containing the glass plate containing an iron ion, or a heat ray absorptive metal compound fine particle.
 すなわち、第2実施形態の熱線遮蔽材の第1の変形例は、熱線遮蔽材の基材である2枚のガラス板のうち、室内側のガラス板が鉄イオンを含有している。800~2500nmの波長領域における遮蔽性能を高めるためには、2枚のガラス板のうち室内側のガラス板が鉄イオンを含有していることが有効である。 That is, in the first modification of the heat ray shielding material of the second embodiment, the glass plate on the indoor side of the two glass plates that are the base material of the heat ray shielding material contains iron ions. In order to improve the shielding performance in the wavelength range of 800 to 2500 nm, it is effective that the glass plate on the indoor side of the two glass plates contains iron ions.
 また、第2実施形態の熱線遮蔽材の第2の変形例は、熱線遮蔽材を構成する室内側の接着層が熱線吸収性金属化合物微粒子を含有している。この場合も、800~2500nmの波長領域における遮蔽性能を高めるためには、熱線遮蔽材が有する複数の接着層のうち室内側の接着層が熱線吸収性金属化合物微粒子を含有していることが有効である。 Also, in the second modification of the heat ray shielding material of the second embodiment, the indoor adhesive layer constituting the heat ray shielding material contains heat ray absorbing metal compound fine particles. Also in this case, in order to improve the shielding performance in the wavelength range of 800 to 2500 nm, it is effective that the indoor adhesive layer contains the heat ray absorbing metal compound fine particles among the plurality of adhesive layers of the heat ray shielding material. It is.
(第2実施形態の熱線遮蔽材の第1の変形例)
 図18は、第2実施形態の熱線遮蔽材10の第1の変形例の層構成を示す模式的断面図であり、上方が室内側であり、下方が室外側である。第2実施形態の熱線遮蔽材10の第1の変形例においては、基材である2枚のガラス板2aのうち、室内側のガラス板2aが鉄イオンを含有している(不図示)。
(First modification of the heat ray shielding material of the second embodiment)
FIG. 18 is a schematic cross-sectional view showing the layer configuration of the first modification of the heat ray shielding material 10 of the second embodiment, with the upper side being the indoor side and the lower side being the outdoor side. In the 1st modification of the heat ray shielding material 10 of 2nd Embodiment, the indoor side glass plate 2a contains the iron ion (not shown) among the two glass plates 2a which are base materials.
(鉄イオン含有ガラス板)
 鉄イオンを含有するガラス板としては、二酸化けい素(SiO)、酸化ナトリウム(NaO)、酸化カルシウム(CaO)を主成分とするソーダ石灰ガラスであって、鉄分をFeとして0.3~0.9質量%含有し、鉄分を高い還元率で還元させたガラス板が好ましい。鉄分の高い還元率の目安としては、3価の鉄イオンに対する2価の鉄イオンの含有量比(Fe2+/Fe3+)が50~250%であることをいう。鉄分を還元して2価の鉄イオンの含有量比を増大させることによって、赤外線領域の吸収率を高めることができる。鉄分を還元する方法としては、ソーダ石灰ガラス原料としての珪砂、長石、ソーダ灰、ベンガラ等の粉末と、還元剤としてカーボンを用いて、電気溶融窯等で溶融させることによって調製することができる。また鉄分の還元率は、レドックス測定装置によって測定することができる。
(Iron ion-containing glass plate)
The glass plate containing iron ions is soda lime glass mainly composed of silicon dioxide (SiO 2 ), sodium oxide (Na 2 O), calcium oxide (CaO), and iron content is Fe 2 O 3. A glass plate containing 0.3 to 0.9% by mass and having iron reduced at a high reduction rate is preferable. As a standard for a high reduction rate of iron, the content ratio of divalent iron ions to trivalent iron ions (Fe 2+ / Fe 3+ ) is 50 to 250%. By reducing the iron content and increasing the content ratio of divalent iron ions, the absorptance in the infrared region can be increased. As a method for reducing the iron content, it can be prepared by melting in an electric melting furnace or the like using powders such as silica sand, feldspar, soda ash, and bengara as soda lime glass raw materials and carbon as a reducing agent. The reduction rate of iron can be measured by a redox measuring device.
 鉄イオンを含有するガラス板を室内側のガラス板2aとして使用することによって、800~2500nmの波長領域における遮蔽性能の向上を図ることが可能となる。その結果、熱線遮蔽材10の金属層4dとの複合効果によって、熱線遮蔽材10としての熱線遮蔽係数を押し下げることが可能となる。 By using a glass plate containing iron ions as the indoor glass plate 2a, it is possible to improve the shielding performance in the wavelength region of 800 to 2500 nm. As a result, the heat ray shielding coefficient as the heat ray shielding material 10 can be pushed down by the combined effect of the heat ray shielding material 10 with the metal layer 4d.
(第2実施形態の熱線遮蔽材の第2の変形例)
 図18は、第2実施形態の熱線遮蔽材10の第2の変形例の層構成を示す模式的断面図である。第2実施形態の熱線遮蔽材10の第2の変形例においては、熱線遮蔽材10の室内側の接着層3aが熱線吸収性金属化合物微粒子を含有している(不図示)。すなわち、接着層3aに使用される接着剤中に下記に記載の熱線吸収性金属化合物微粒子が均一に含有されている。
(Second modification of the heat ray shielding material of the second embodiment)
FIG. 18 is a schematic cross-sectional view illustrating a layer configuration of a second modification of the heat ray shielding material 10 of the second embodiment. In the 2nd modification of the heat ray shielding material 10 of 2nd Embodiment, the contact bonding layer 3a of the indoor side of the heat ray shielding material 10 contains a heat ray absorptive metal compound fine particle (not shown). That is, the heat ray absorbing metal compound fine particles described below are uniformly contained in the adhesive used for the adhesive layer 3a.
(熱線吸収性金属化合物微粒子)
 熱線吸収性金属化合物とは、赤外線領域に最大吸収波長ピークを有する金属化合物である。熱線吸収性金属化合物の具体例としては、セシウム含有酸化タングステン、六ホウ化ランタン、六ホウ化セリウム、アンチモン含有酸化錫、スズ含有酸化インジウム、アルミニウム含有酸化亜鉛、インジウム含有酸化亜鉛、スズ含有酸化亜鉛、ケイ素含有酸化亜鉛ガリウム含有酸化亜鉛などを挙げることができる。中でも、セシウム含有酸化タングステン、六ホウ化ランタン、アンチモン含有酸化錫、スズ含有酸化インジウムから選ばれるいずれか1種以上であることが好ましく、スズ含有酸化インジウムが特に好ましい。
(Heat-absorbing metal compound fine particles)
The heat ray absorbing metal compound is a metal compound having a maximum absorption wavelength peak in the infrared region. Specific examples of heat-absorbing metal compounds include cesium-containing tungsten oxide, lanthanum hexaboride, cerium hexaboride, antimony-containing tin oxide, tin-containing indium oxide, aluminum-containing zinc oxide, indium-containing zinc oxide, tin-containing zinc oxide. And silicon-containing zinc oxide, gallium oxide-containing zinc oxide, and the like. Among these, at least one selected from cesium-containing tungsten oxide, lanthanum hexaboride, antimony-containing tin oxide, and tin-containing indium oxide is preferable, and tin-containing indium oxide is particularly preferable.
 上記の熱線吸収性金属化合物は、微粒子として、接着層3aに含有されている。微粒子の平均粒子径は100nm以下であることが好ましい。100nmを超えると、微粒子による可視光線の散乱が顕著になり、透明性が低下することがある。より好ましくは10~80nmである。 The heat ray absorbing metal compound is contained in the adhesive layer 3a as fine particles. The average particle diameter of the fine particles is preferably 100 nm or less. When it exceeds 100 nm, the scattering of visible light by the fine particles becomes remarkable, and the transparency may be lowered. More preferably, it is 10 to 80 nm.
 熱線吸収性金属化合物微粒子の含有量は、接着剤に対して0.1~3質量%であることが好ましい。0.1質量%未満であると、熱線遮蔽性能が十分に発揮されない。一方、3質量%を超えると、可視光線透過性が低下したり、ヘイズが大きくなったりする。 The content of the heat ray absorbing metal compound fine particles is preferably 0.1 to 3% by mass with respect to the adhesive. When it is less than 0.1% by mass, the heat ray shielding performance is not sufficiently exhibited. On the other hand, if it exceeds 3% by mass, the visible light transmittance is lowered or the haze is increased.
 上記の熱線吸収性金属化合物微粒子を含有する接着層を室内側の接着層3aとして使用することによって、熱線遮蔽性能の向上を図ることが可能となる。その結果、熱線遮蔽材10の金属層4dとの複合効果によって、熱線遮蔽材10としての熱線遮蔽係数を押し下げることが可能となる。 It is possible to improve the heat ray shielding performance by using the adhesive layer containing the heat ray absorbing metal compound fine particles as the indoor adhesive layer 3a. As a result, the heat ray shielding coefficient as the heat ray shielding material 10 can be pushed down by the combined effect of the heat ray shielding material 10 with the metal layer 4d.
 第2実施形態の第1の変形例では、熱線遮蔽材10の室内側のガラス板2aが鉄イオンを含有している場合を例示した。また、第2実施形態の第2の変形例では、熱線遮蔽材10の室内側の接着層3aが熱線吸収性金属化合物微粒子を含有している場合を例示した。そこで、これら2つの変形例を組み合わせてもよい。すなわち、熱線遮蔽材10の室内側のガラス板2aに鉄イオンを含有させ、かつ室内側の接着層3aに熱線吸収性金属化合物微粒子を含有させる。かかる熱線遮蔽材10は、両方の変形例の効果をいずれも発揮させることが可能となり、より好ましい。 In the first modification of the second embodiment, the case where the indoor side glass plate 2a of the heat ray shielding material 10 contains iron ions is exemplified. Moreover, in the 2nd modification of 2nd Embodiment, the case where the indoor side adhesion layer 3a of the heat ray shielding material 10 contained the heat ray absorptive metal compound fine particle was illustrated. Therefore, these two modifications may be combined. That is, iron ions are contained in the glass plate 2a on the indoor side of the heat ray shielding material 10, and heat ray absorbing metal compound fine particles are contained in the adhesive layer 3a on the indoor side. Such a heat ray shielding material 10 can exhibit both the effects of both modifications, and is more preferable.
 前記したように、本発明者は、熱線の遮蔽性能をさらに高めるために、可視光線に近い近赤外線の波長領域(800~1200nm)の反射率を高めることが有効であることを見出した。そのために、第2実施形態の前記の変形例に示した方法とは別の方法として、多層構造を有する透明樹脂層を設置する方法が有効であることを見出した。さらに、本発明者は、800~1200nmの波長領域において、反射率を高めるためには、多層構造を有する透明樹脂層であって、1層当たりの厚さが50~1000nmであるものが有効であることを見出した。
 すなわち、熱線遮蔽材を構成する要素の1つとして、多層フィルムや液晶樹脂のコーティング等によって、多層構造を有する透明樹脂層を導入することによって、熱線の遮蔽性能をさらに高めることが可能となることを見出した。
As described above, the present inventors have found that it is effective to increase the reflectance in the near-infrared wavelength region (800 to 1200 nm) close to visible light in order to further improve the heat ray shielding performance. Therefore, it has been found that a method of installing a transparent resin layer having a multilayer structure is effective as a method different from the method shown in the modification of the second embodiment. Further, the present inventor has effective to use a transparent resin layer having a multilayer structure with a thickness of 50 to 1000 nm per layer in order to increase the reflectance in the wavelength region of 800 to 1200 nm. I found out.
That is, as one of the elements constituting the heat ray shielding material, it is possible to further improve the heat ray shielding performance by introducing a transparent resin layer having a multilayer structure by coating with a multilayer film or a liquid crystal resin. I found.
 ここで、多層構造を有する透明樹脂層を熱線遮蔽材に導入する方法としては、基材の一方の面に多層構造を有する樹脂層を積層する方法と、基材自体を多層構造を有する樹脂材とする方法がある。そこで、これらの2つの実施形態をそれぞれ第3実施形態、第4実施形態として、以下に説明する。 Here, as a method for introducing a transparent resin layer having a multilayer structure into a heat ray shielding material, a method of laminating a resin layer having a multilayer structure on one surface of a substrate, and a resin material having a multilayer structure as the substrate itself There is a method. Therefore, these two embodiments will be described below as a third embodiment and a fourth embodiment, respectively.
<第3実施形態の熱線遮蔽材>
 第3実施形態の熱線遮蔽材は、基材と金属層とを備えており、前記基材の一方の面には金属層を備え、前記基材の他方の面には多層構造を有する樹脂層を備えている。そして、前記多層構造の1層当たりの厚さが50~1000nmであることを特徴としている。
<The heat ray shielding material of 3rd Embodiment>
The heat ray shielding material of 3rd Embodiment is equipped with the base material and the metal layer, The metal layer is provided in one surface of the said base material, The resin layer which has a multilayer structure in the other surface of the said base material It has. The multilayer structure has a thickness of 50 to 1000 nm per layer.
[第3実施形態の熱線遮蔽材の構成]
 図23は、第3実施形態の熱線遮蔽材20Aの層構成を示す模式的断面図である。
 第3実施形態の熱線遮蔽材20Aにおいて、第1の基材5の室外側には、順番に、接着層3、多層構造を有する透明樹脂層8、接着層3、第2の基材である窓板2が積層されている。一方、第1の基材5の室内側には、金属層4が形成されている。金属層4は、島状の金属皮膜を多数配置して形成されている。
[Configuration of Heat Ray Shielding Material of Third Embodiment]
FIG. 23 is a schematic cross-sectional view showing the layer configuration of the heat ray shielding material 20A of the third embodiment.
In the heat ray shielding material 20 </ b> A of the third embodiment, the adhesive layer 3, the transparent resin layer 8 having a multilayer structure, the adhesive layer 3, and the second base material are sequentially provided on the outdoor side of the first base material 5. Window plate 2 is laminated. On the other hand, a metal layer 4 is formed on the indoor side of the first base material 5. The metal layer 4 is formed by arranging a large number of island-shaped metal films.
[第3実施形態の熱線遮蔽材の材料]
(多層構造を有する透明樹脂層8)
 多層構造を有する透明樹脂層8は、室外から照射される太陽光のうち、可視光線に近い近赤外線の波長領域(800~1200nm)において、特異的に優れた反射率を有する層である。
[Material for Heat-ray Shielding Material of Third Embodiment]
(Transparent resin layer 8 having a multilayer structure)
The transparent resin layer 8 having a multilayer structure is a layer having a particularly excellent reflectance in the near-infrared wavelength region (800 to 1200 nm) close to visible light among sunlight irradiated from outside.
 基材5上に多層構造を有する透明樹脂層8を形成するためには、いくつかの方法が存在する。具体的には、多層フィルムによる方法や液晶樹脂のコーティングによる方法等がある。 There are several methods for forming the transparent resin layer 8 having a multilayer structure on the substrate 5. Specifically, there are a method using a multilayer film and a method using a liquid crystal resin coating.
 多層フィルムは、屈折率の異なる、同種または異種のポリマーを交互に積層させた構造を有するフィルムである。共押出する際の押出厚さや延伸率等を変更することによって、多層構造の1層当たりの厚さを調整することができる。
 かかる構造の多層フィルムを製造する方法は、例えば、特表平9-506837号公報、特開2007-307893号公報、特開2008-273186号公報、特開2013-209246号公報等に記載されている。多層フィルムを構成する樹脂としては、アクリル系、ポリカーボネート系、スチレン系、ポリエステル系、ポリオレフィン系などの樹脂を使用することができる。特に、PET、PBT、PEN等のポリエステル系樹脂が好ましい。
The multilayer film is a film having a structure in which the same or different polymers having different refractive indexes are alternately laminated. The thickness per layer of the multilayer structure can be adjusted by changing the extrusion thickness and the stretching ratio at the time of co-extrusion.
A method for producing a multilayer film having such a structure is described in, for example, JP-T 9-506837, JP-A 2007-307893, JP-A 2008-273186, JP-A 2013-209246, and the like. Yes. As the resin constituting the multilayer film, acrylic, polycarbonate, styrene, polyester, and polyolefin resins can be used. In particular, polyester resins such as PET, PBT, and PEN are preferable.
 液晶樹脂は、基材フィルム上に溶液をコーティングすることによって、多層化した層を形成することが知られている。例えば、アクリル樹脂系のネマチィック液晶にキラル化剤を添加してUV硬化させるとコレステリック液晶の層が形成される。キラル化剤の添加量を変えることによって1層当たりの厚さを調整することができる。かかる構造の液晶樹脂の層を製造する方法は、例えば、特開2010-286643号公報、特開2012-13963号公報等に記載されている。 It is known that a liquid crystal resin forms a multilayered layer by coating a solution on a base film. For example, when a chiral agent is added to an acrylic resin nematic liquid crystal and UV cured, a cholesteric liquid crystal layer is formed. The thickness per layer can be adjusted by changing the addition amount of the chiralizing agent. A method for producing a liquid crystal resin layer having such a structure is described in, for example, Japanese Patent Application Laid-Open Nos. 2010-286663 and 2012-13963.
 多層構造を有する透明樹脂層8は、多層構造の1層当たりの厚さが50~1000nmであることによって、800~1200nmの波長領域において、高い反射率を有するものとなる。多層構造を有する透明樹脂層8に熱線が照射されたとき、通常、屈折率が異なる多層構造の各界面において、熱線は反射されることとなる。そして、多層薄膜構造において、個々の層から反射が生じ、各反射光の位相が揃って反射率を高めるためには、多層構造の1層当たりの厚さが上記範囲にあることが有効である。多層構造の1層当たりの厚さは、好ましくは70~300nmである。 The transparent resin layer 8 having a multilayer structure has a high reflectance in a wavelength region of 800 to 1200 nm because the thickness per layer of the multilayer structure is 50 to 1000 nm. When the transparent resin layer 8 having a multilayer structure is irradiated with heat rays, the heat rays are usually reflected at each interface of the multilayer structure having a different refractive index. In a multilayer thin film structure, in order for reflection to occur from individual layers and the phase of each reflected light to be aligned to increase the reflectance, it is effective that the thickness per layer of the multilayer structure is in the above range. . The thickness per layer of the multilayer structure is preferably 70 to 300 nm.
 また、800~1200nmの波長領域において、特異的に高い反射率を有するものとするために、多層構造の層数は、50~600層であることが好ましく、100~400層であることがより好ましい。多層構造の層数が、600層を超えると、高い反射率を有する波長領域が広がり、可視光の領域の光をも反射することとなる。そのため、可視光線の透過率が低下してしまう。
 多層フィルムの熱収縮率は130~150℃の乾燥オーブン中で30分放置した際、1%以下であることが好ましい。この値が1%を超えると、基材フィルム5との接着の際や後記する合わせガラスとの接着の際にしわが入り易くなったり、金属層に亀裂が入ったり、剥がれてしまう要因となる。
Also, in order to have a specifically high reflectance in the wavelength region of 800 to 1200 nm, the number of layers in the multilayer structure is preferably 50 to 600 layers, more preferably 100 to 400 layers. preferable. When the number of layers in the multilayer structure exceeds 600, the wavelength region having a high reflectance is widened, and the light in the visible light region is also reflected. Therefore, the visible light transmittance is reduced.
The heat shrinkage of the multilayer film is preferably 1% or less when left in a drying oven at 130 to 150 ° C. for 30 minutes. When this value exceeds 1%, it becomes a factor that wrinkles are easily formed when adhering to the base film 5 or adhering to laminated glass described later, and the metal layer is cracked or peeled off.
<第3実施形態の熱線遮蔽材の比較例・変形例>
 図24は、第3実施形態の比較例の熱線遮蔽材20Bの層構成を示す模式的断面図である。第1の基材5の一方の面に金属層4を有するものであるが、金属層は、島状の金属皮膜を多数配置して形成されてない。また、多層構造を有する透明樹脂層8を有していない。第2の基材である窓板2に接着層3で貼合されて、全体として、熱線遮蔽材20Bを構成している。
 図25は、第3実施形態の比較例の熱線遮蔽材20Cの層構成を示す模式的断面図である。熱線遮蔽材20Cは、多層構造を有する透明樹脂層8を有するものであるが、金属層4を有していない。多層構造を有する透明樹脂層8は接着層3によって基材である窓板2に貼合されている。
 図26は、第3実施形態の変形例の熱線遮蔽材20Dの層構成を示す模式的断面図である。熱線遮蔽材20Dは、図23の熱線遮蔽材20Aの層構成に加えて、室内側の最外層に、ハードコート層6を有している。
 図27は、第3実施形態の変形例の熱線遮蔽材20Eの層構成を示す模式的断面図である。熱線遮蔽材20Eは、熱線遮蔽材20Dの層構成のうち、金属層4、基材5、接着層3、多層構造を有する透明樹脂層8からなる4層の室内・室外に対する向きが逆になっている。このとき、熱線遮蔽材20Dは、熱線遮蔽材20Eと異なり、金属層4が多層構造を有する透明樹脂層8の室内側にあるため、熱線の遮蔽性能の向上効果により優れており、好ましい。
<The comparative example and modification of the heat ray shielding material of 3rd Embodiment>
FIG. 24 is a schematic cross-sectional view showing a layer structure of a heat ray shielding material 20B of a comparative example of the third embodiment. Although it has the metal layer 4 on one surface of the 1st base material 5, the metal layer is not formed by arrange | positioning many island-shaped metal films. Further, the transparent resin layer 8 having a multilayer structure is not provided. The heat-shielding material 20B is constituted as a whole by being bonded to the window plate 2 as the second base material with the adhesive layer 3.
FIG. 25 is a schematic cross-sectional view showing a layer configuration of a heat ray shielding material 20C of a comparative example of the third embodiment. The heat ray shielding material 20 </ b> C has the transparent resin layer 8 having a multilayer structure, but does not have the metal layer 4. The transparent resin layer 8 having a multilayer structure is bonded to the window plate 2 as a base material by the adhesive layer 3.
FIG. 26 is a schematic cross-sectional view illustrating a layer configuration of a heat ray shielding material 20D according to a modification of the third embodiment. The heat ray shielding material 20D has a hard coat layer 6 in the outermost layer on the indoor side in addition to the layer configuration of the heat ray shielding material 20A of FIG.
FIG. 27 is a schematic cross-sectional view showing a layer configuration of a heat ray shielding material 20E according to a modification of the third embodiment. Of the layer configuration of the heat ray shielding material 20D, the heat ray shielding material 20E has four layers of the metal layer 4, the base material 5, the adhesive layer 3, and the transparent resin layer 8 having a multilayer structure, and the directions to the inside and the outside are reversed. ing. At this time, unlike the heat ray shielding material 20E, the heat ray shielding material 20D is preferable because the metal layer 4 is on the indoor side of the transparent resin layer 8 having a multilayer structure, and is excellent in the effect of improving the heat ray shielding performance.
<第4実施形態の熱線遮蔽材>
 第4実施形態の熱線遮蔽材は、基材と金属層とを備えており、前記基材が多層構造を有する樹脂材である。そして、前記多層構造の1層当たりの厚さが50~1000nmであることを特徴としている。
<Heat ray shielding material of the fourth embodiment>
The heat ray shielding material of the fourth embodiment includes a base material and a metal layer, and the base material is a resin material having a multilayer structure. The multilayer structure has a thickness of 50 to 1000 nm per layer.
[第4実施形態の熱線遮蔽材の構成]
 図28は第4実施形態の熱線遮蔽材30の層構成を示す模式的断面図である。
 第4実施形態の熱線遮蔽材30において、基材である多層構造を有する透明樹脂層8aの室外側には、順番に、接着層3、第2の基材である窓板2が積層されている。一方、基材である多層構造を有する透明樹脂層8aの室内側には順番に、金属層4、ハードコート層6が積層されている。金属層4は、島状の金属皮膜を多数配置して形成されている。
[Configuration of Heat Ray Shielding Material of Fourth Embodiment]
FIG. 28 is a schematic cross-sectional view showing the layer structure of the heat ray shielding material 30 of the fourth embodiment.
In the heat ray shielding material 30 of the fourth embodiment, the adhesive layer 3 and the window plate 2 as the second base material are sequentially laminated on the outdoor side of the transparent resin layer 8a having a multilayer structure as the base material. Yes. On the other hand, a metal layer 4 and a hard coat layer 6 are sequentially laminated on the indoor side of the transparent resin layer 8a having a multilayer structure as a base material. The metal layer 4 is formed by arranging a large number of island-shaped metal films.
 熱線遮蔽材30に対して、金属層4と多層構造を有する透明樹脂層8aの配置を逆にして、多層構造を有する透明樹脂層8aの室外側に金属層4を形成するという第4実施形態の変形例(不図示)が存在する。このとき、金属層4は、多層構造を有する透明樹脂層8aの室内側にある方が、熱線の遮蔽性能の向上効果により優れているため、好ましい。また、室内と室外とを逆に読み替えることが可能であることも第1実施形態の場合と同様である。 A fourth embodiment in which the arrangement of the metal layer 4 and the transparent resin layer 8a having a multilayer structure is reversed with respect to the heat ray shielding material 30, and the metal layer 4 is formed outside the transparent resin layer 8a having the multilayer structure. There exists a modification (not shown). At this time, it is preferable that the metal layer 4 is on the indoor side of the transparent resin layer 8a having a multilayer structure because the effect of improving the heat ray shielding performance is superior. Further, it is possible to reversely read indoors and outdoors as in the case of the first embodiment.
 但し、第4実施形態の多層構造を有する透明樹脂層8aは、第3実施形態とは異なり、基材としての機能も併せ持つ層である。そのため、第4実施形態の多層構造を有する透明樹脂層8aは、金属層4、接着層3等を保持する機能も有し、機械的強度、可視光線透過率、加工性等に優れていることが好ましい。したがって、多層構造を有する透明樹脂層8aは、液晶樹脂のコーティングによる方法よりも多層フィルムによる方法で製造する方が好ましい。 However, unlike the third embodiment, the transparent resin layer 8a having the multilayer structure of the fourth embodiment is a layer having a function as a base material. Therefore, the transparent resin layer 8a having the multilayer structure of the fourth embodiment also has a function of holding the metal layer 4, the adhesive layer 3, and the like, and is excellent in mechanical strength, visible light transmittance, workability, and the like. Is preferred. Therefore, the transparent resin layer 8a having a multilayer structure is preferably manufactured by a method using a multilayer film rather than a method using a liquid crystal resin coating.
<第5実施形態の熱線遮蔽材>
 第5実施形態の熱線遮蔽材は、第2実施形態の熱線遮蔽材と同様に、窓板としての基材を2枚以上有しており、これら2枚以上の窓板としての基材で金属層を挟む構成を有している。さらに、第3実施形態や第4実施形態において使用した多層構造を有する透明樹脂層8、8aをその構成要素として有している。すなわち、第2実施形態に対して、第3実施形態と第4実施形態において特徴的な多層構造を有する透明樹脂層8、8aを組み合わせた構成を有するものである。
<The heat ray shielding material of 5th Embodiment>
Similarly to the heat ray shielding material of the second embodiment, the heat ray shielding material of the fifth embodiment has two or more base materials as window plates, and these two or more base materials as window plates are metal. It has the structure which pinches | interposes a layer. Furthermore, it has the transparent resin layers 8 and 8a which have the multilayer structure used in 3rd Embodiment or 4th Embodiment as the component. That is, the second embodiment has a configuration in which the transparent resin layers 8 and 8a having a multilayer structure characteristic in the third embodiment and the fourth embodiment are combined.
[第5実施形態の熱線遮蔽材の構成]
 図29は、第5実施形態の熱線遮蔽材40の層構成を示す模式的断面図である。
第2実施形態に対して、第3実施形態または第4実施形態を組み合わせる構成としては、種々の組み合わせのものが存在する。図29に示した熱線遮蔽材40は、その一例を示したものであり、基材が多層構造を有する樹脂材である場合の例である。
[Configuration of Heat Ray Shielding Material of Fifth Embodiment]
FIG. 29 is a schematic cross-sectional view showing the layer configuration of the heat ray shielding material 40 of the fifth embodiment.
Various combinations of the third embodiment or the fourth embodiment with respect to the second embodiment exist. The heat ray shielding material 40 shown in FIG. 29 shows an example thereof, and is an example when the base material is a resin material having a multilayer structure.
 第5実施形態の熱線遮蔽材40において、基材である多層構造を有する透明樹脂層8aの室外側には、順番に、接着層3a、第2の基材である窓板2aが積層されている。一方、基材である多層構造を有する透明樹脂層8aの室内側には、順番に、金属層4、接着層3a、第3の基材である窓板2aが積層されている。そのため、熱線遮蔽材40は、金属層4が、接着層等を介して、両側から基材である2枚の窓板2aで挟まれたサンドイッチ構造を有している。金属層4は、島状の金属皮膜を多数配置して形成されている。 In the heat ray shielding material 40 of the fifth embodiment, the adhesive layer 3a and the window plate 2a as the second base material are sequentially laminated on the outdoor side of the transparent resin layer 8a having a multilayer structure as the base material. Yes. On the other hand, on the indoor side of the transparent resin layer 8a having a multilayer structure as a base material, a metal layer 4, an adhesive layer 3a, and a window plate 2a as a third base material are laminated in order. Therefore, the heat ray shielding material 40 has a sandwich structure in which the metal layer 4 is sandwiched between two window plates 2a that are base materials from both sides via an adhesive layer or the like. The metal layer 4 is formed by arranging a large number of island-shaped metal films.
 熱線遮蔽材40は、金属層4が基材である多層構造を有する透明樹脂層8a上に形成され、さらに2層の接着層3aを介して、2枚の基材である窓板2aによって挟まれた構成であるため、いずれの側が室外側になっても、雨風等による劣化を低減することができる。 The heat ray shielding material 40 is formed on the transparent resin layer 8a having a multilayer structure in which the metal layer 4 is a base material, and is further sandwiched by two window plates 2a through two adhesive layers 3a. Because of this configuration, it is possible to reduce deterioration due to rain and wind, regardless of which side is the outdoor side.
 第5実施形態は、窓板2aの素材として、ガラス板を用いたときは、いわゆる合わせガラスを構成することとなる。接着層3aを用いて、合わせガラスを構成すると、合わせガラスに優れた耐貫通性能、耐衝撃性能、飛散防止効果を付与することができる。
 その他、熱線遮蔽材40を構成する材料、製造方法、変形例等については、第2実施形態の熱線遮蔽材等の場合と同様であるので、それらの説明を省略する。
5th Embodiment will comprise what is called a laminated glass, when a glass plate is used as a raw material of the window plate 2a. When the laminated glass is constituted using the adhesive layer 3a, the laminated glass can be provided with excellent penetration resistance, impact resistance, and scattering prevention effects.
In addition, since the material, manufacturing method, modification, and the like constituting the heat ray shielding material 40 are the same as those in the case of the heat ray shielding material of the second embodiment, the description thereof is omitted.
 本実施形態を下記の実施例によって、さらに具体的に説明する。 This embodiment will be described more specifically with reference to the following examples.
(実施例1)
 下記配合の組成物Aを易接着PETフィルム(東レ社製、U40、100μm厚さ)の一方の面にバーコーターを用いて塗工し、100℃の熱風オーブン中で2分間乾燥させた。その後、塗工面に高圧水銀灯にて紫外線(積算光量300mJ/cm)を照射することで硬化させ、約4μm厚さのハードコート層を形成した。
Example 1
A composition A having the following composition was coated on one surface of an easily-adhesive PET film (U40, 100 μm thickness) using a bar coater and dried in a hot air oven at 100 ° C. for 2 minutes. Thereafter, the coated surface was cured by irradiating with ultraviolet rays (integrated light amount 300 mJ / cm 2 ) with a high-pressure mercury lamp, thereby forming a hard coat layer having a thickness of about 4 μm.
<組成物A>
 ジペンタエリスリトールポリアクレート系紫外線硬化型樹脂(荒川化学社製、ビームセット700) 83.3質量部
 光重合開始剤(BASF社製、イルガキュア184) 1質量部
 トルエン 320質量部
<Composition A>
Dipentaerythritol polyacrylate-based ultraviolet curable resin (Arakawa Chemical Co., Ltd., Beam Set 700) 83.3 parts by mass Photopolymerization initiator (BASF, Irgacure 184) 1 part by mass Toluene 320 parts by mass
 PETフィルムのハードコート層とは反対側の面に、5×10-5Torrの真空下で、蒸着法を用いてアルミニウムを蒸着した。作製したアルミニウム皮膜の上に、溶剤に溶解したレジストをグラビア印刷によって、図3に記載した所定の島状の配置となるように印刷した。各図の金属皮膜の形状において、円形とは円形千鳥型(図19参照)、正方形とは正方形並列型(図20参照)、六角形とは六角形千鳥型(図21参照)を意味する。レジストを200℃で乾燥させた後、塩酸水溶液を用いて、レジストが印刷されていない部分のアルミニウム皮膜を溶解・除去した。その後、レジストを水酸化ナトリウムの水溶液を用いて溶解して、アルミニウム皮膜表面から剥離した。水洗・乾燥して、PETフィルムのハードコート層とは反対側の面に、所定の島状の金属皮膜が配置された金属層を形成した。 Aluminum was deposited on the surface of the PET film opposite to the hard coat layer using a deposition method under a vacuum of 5 × 10 −5 Torr. On the produced aluminum film, a resist dissolved in a solvent was printed by gravure printing so as to have the predetermined island-like arrangement shown in FIG. In the shape of the metal film in each figure, a circle means a circular staggered type (see FIG. 19), a square means a square parallel type (see FIG. 20), and a hexagon means a hexagonal staggered type (see FIG. 21). After the resist was dried at 200 ° C., the aluminum film on the portion where the resist was not printed was dissolved and removed using an aqueous hydrochloric acid solution. Thereafter, the resist was dissolved using an aqueous solution of sodium hydroxide and peeled off from the surface of the aluminum film. After washing with water and drying, a metal layer having a predetermined island-like metal film disposed on the surface of the PET film opposite to the hard coat layer was formed.
 一方、シリコーンで処理されたセパレータ(三菱樹脂社製、MRQ#38、38μm厚さ)上に下記配合の組成物Bをアプリケータを用いて塗工した。その後100℃の熱風オーブン中で2分間乾燥させて、約22μm厚さの接着層を形成した。 On the other hand, a composition B having the following composition was applied on a silicone-treated separator (manufactured by Mitsubishi Plastics, MRQ # 38, 38 μm thickness) using an applicator. Then, it was dried in a hot air oven at 100 ° C. for 2 minutes to form an adhesive layer having a thickness of about 22 μm.
<組成物B>
 アクリル系中性粘着剤(綜研化学社製、SKダイン2975) 100質量部
 硬化剤(綜研化学社製、Y-75) 0.2質量部
 トリアジン系紫外線吸収剤(BASF社製、Tinuvin477) 3質量部
 トルエン 100質量部
<Composition B>
Acrylic neutral adhesive (manufactured by Soken Chemical Co., Ltd., SK Dine 2975) 100 parts by mass Curing agent (manufactured by Soken Chemical Co., Ltd., Y-75) 0.2 parts by mass Triazine UV absorber (manufactured by BASF, Tinuvin 477) 3 parts by mass Parts 100 parts by mass of toluene
 さらに、上記接着層を、上記PETフィルムの金属層を形成した面とラミネートした。7日間放置後、セパレータを剥離し、接着層を3mm厚のアルカリガラス板に貼り合せて、熱線遮蔽材を作製し、各種性能の評価を行った。 Furthermore, the adhesive layer was laminated with the surface on which the metal layer of the PET film was formed. After leaving for 7 days, the separator was peeled off, and the adhesive layer was bonded to a 3 mm thick alkali glass plate to produce a heat ray shielding material, and various performances were evaluated.
(実施例2~5)
 金属層(アルミニウム皮膜)の厚さ、金属皮膜の形状、金属皮膜の径、金属皮膜間の距離、開口面積率(金属皮膜に被覆されていない部分の面積率)を図3に記載した数値に変更した以外は実施例1と同様にして、熱線遮蔽材を作製し、各種性能の評価を行った。
(Examples 2 to 5)
The thickness of the metal layer (aluminum film), the shape of the metal film, the diameter of the metal film, the distance between the metal films, and the opening area ratio (the area ratio of the portion not covered with the metal film) are shown in FIG. Except for the changes, a heat ray shielding material was produced in the same manner as in Example 1, and various performances were evaluated.
(実施例6、7)
 実施例1と同様にして、ハードコート層を片面に形成した易接着PETフィルムを作製した。PETフィルムのハードコート層とは反対側の面に、5×10-5Torrの真空下で、スパッタリング法を用いて、30nm厚さのITO皮膜、10nm厚さのAg皮膜、30nm厚さのITO皮膜を順次積層して、3層構造の金属皮膜を形成した。
(Examples 6 and 7)
In the same manner as in Example 1, an easy-adhesion PET film having a hard coat layer formed on one side was produced. On the surface opposite to the hard coat layer of the PET film, using a sputtering method under a vacuum of 5 × 10 −5 Torr, a 30 nm thick ITO film, a 10 nm thick Ag film, and a 30 nm thick ITO film The films were sequentially laminated to form a metal film having a three-layer structure.
 作製した金属皮膜の上に、レジスト(感光性樹脂)フィルムを熱ラミネートし、フォトリソグラフィー法にて、露光、現像して、レジストを図3に記載した所定の島状の配置となるように形成した。レジストを120~160℃で乾燥させた後、塩化第二鉄の水溶液を用いて、レジストが印刷されていない部分の金属皮膜を溶解・除去した。その後、レジストを水酸化ナトリウムの水溶液を用いて溶解して、金属皮膜表面から剥離した。水洗・乾燥して、PETフィルムのハードコート層とは反対側の面に、所定の島状の金属皮膜が配置された金属層を形成した。
 その後は、実施例1と同様にして、熱線遮蔽材を作製し、各種性能の評価を行った。
A resist (photosensitive resin) film is thermally laminated on the prepared metal film, exposed and developed by a photolithography method, and the resist is formed to have the predetermined island-like arrangement shown in FIG. did. After the resist was dried at 120 to 160 ° C., the metal film on the portion where the resist was not printed was dissolved and removed using an aqueous solution of ferric chloride. Thereafter, the resist was dissolved using an aqueous solution of sodium hydroxide and peeled off from the surface of the metal film. After washing with water and drying, a metal layer having a predetermined island-like metal film disposed on the surface of the PET film opposite to the hard coat layer was formed.
Thereafter, in the same manner as in Example 1, a heat ray shielding material was produced, and various performances were evaluated.
(実施例8、9)
 易接着PETフィルム(帝人社製、HB、100μm厚さ)の片面に、5×10-5Torrの真空下で、スパッタリング法を用いて、40nm厚さのITO皮膜、10nm厚さのAg皮膜、70nm厚さのITO皮膜、12nm厚さのAg皮膜、35nm厚さのITO皮膜を順次積層して、5層構造の金属皮膜を形成した。
(Examples 8 and 9)
On one side of an easy-adhesive PET film (manufactured by Teijin Ltd., HB, 100 μm thickness), using a sputtering method under a vacuum of 5 × 10 −5 Torr, a 40 nm thick ITO film, a 10 nm thick Ag film, A 70 nm thick ITO film, a 12 nm thick Ag film, and a 35 nm thick ITO film were sequentially laminated to form a metal film having a five-layer structure.
 作製した金属皮膜の上に、レジストフィルムを熱ラミネートし、フォトリソグラフィー法にて、露光、現像して、レジストを図3に記載した所定の島状の配置となるように形成した。レジストを120~160℃で乾燥させた後、塩化第二鉄の水溶液を用いて、レジストが印刷されていない部分の金属皮膜を溶解・除去した。その後、レジストを水酸化ナトリウムの水溶液を用いて溶解して、金属皮膜表面から剥離した。水洗・乾燥して、PETフィルムの片面上に、所定の島状の金属皮膜が配置された金属層を形成した。 A resist film was heat-laminated on the produced metal film, exposed and developed by a photolithography method, and a resist was formed to have a predetermined island-like arrangement shown in FIG. After the resist was dried at 120 to 160 ° C., the metal film on the portion where the resist was not printed was dissolved and removed using an aqueous solution of ferric chloride. Thereafter, the resist was dissolved using an aqueous solution of sodium hydroxide and peeled off from the surface of the metal film. It washed with water and dried and formed the metal layer by which the predetermined island-like metal membrane | film | coat was arrange | positioned on the single side | surface of PET film.
 一方、2枚の3mm厚のアルカリガラス板上にそれぞれ、接着層として380μm厚のPVB(ポリビニルブチラールフィルム、積水化学工業社製、S-LEC TB)のシートを置いた。その後100℃の熱風オーブン中で2分間乾燥させて、アルカリガラス板とPVBとを接着させて、片面に接着層を有するアルカリガラス板を2枚作製した。 On the other hand, a sheet of PVB (polyvinyl butyral film, Sekisui Chemical Co., Ltd., S-LEC TB) having a thickness of 380 μm was placed as an adhesive layer on two alkali glass plates having a thickness of 3 mm. Thereafter, it was dried in a hot air oven at 100 ° C. for 2 minutes to adhere the alkali glass plate and PVB, thereby producing two alkali glass plates having an adhesive layer on one side.
 平らなテーブル上に、接着層を有する1枚のアルカリガラス板を接着層を上側にして置いた。その上に、上記のPETフィルムを金属層が形成された層を上側にして置いた。さらにその上に、接着層を有するもう1枚のアルカリガラス板を接着層を下側にして置いた。得られた多層シートを60℃加熱された金属ロールを有するロールラミネーターに通して仮圧着した。その後、仮圧着した多層シートをオートクレーブに入れ、130℃、13気圧、1時間の条件にてオートクレーブすることによって、本圧着して、合わせガラスの形式の熱線遮蔽材を作製した(図18参照)。その後、各種性能の評価を行った。 A single alkali glass plate having an adhesive layer was placed on a flat table with the adhesive layer facing upward. On top of that, the above PET film was placed with the layer on which the metal layer was formed facing upward. Further thereon, another alkali glass plate having an adhesive layer was placed with the adhesive layer on the lower side. The obtained multilayer sheet was temporarily pressure-bonded through a roll laminator having a metal roll heated at 60 ° C. Thereafter, the multilayer sheet temporarily bonded was put in an autoclave and subjected to main pressure bonding by autoclaving under conditions of 130 ° C., 13 atm, and 1 hour to produce a heat ray shielding material in the form of laminated glass (see FIG. 18). . Thereafter, various performances were evaluated.
(実施例10)
 実施例1と同様にして、まず、易接着PETフィルムの一方の面に、5×10-5Torrの真空下で、蒸着法を用いてアルミニウムを蒸着した。次に、作製したアルミニウム皮膜の上に、実施例1と同様にして、レジストを図3に記載した所定の島状の配置となるように印刷して、同様の手順を行って、所定の島状の金属皮膜が配置された金属層を形成した。
(Example 10)
In the same manner as in Example 1, first, aluminum was vapor-deposited on one surface of the easy-adhesion PET film using a vapor deposition method under a vacuum of 5 × 10 −5 Torr. Next, a resist is printed on the prepared aluminum film in the same manner as in Example 1 so as to have the predetermined island-like arrangement shown in FIG. A metal layer in which a metal film was disposed was formed.
 次いで、PETフィルムの島状の金属皮膜が配置された金属層を形成した面に、組成物Aをバーコーターを用いて塗工して、実施例1に記載した手順を行って、約4μm厚さのハードコート層を形成した。PETフィルムの金属層とハードコート層を形成した面とは反対側の面に、実施例1と同様にして、接着層をラミネートした。その後、実施例1と同様にして、熱線遮蔽材を作製し、各種性能の評価を行った。 Next, the surface of the PET film on which the metal layer on which the island-shaped metal film was arranged was formed, the composition A was applied using a bar coater, and the procedure described in Example 1 was performed to obtain a thickness of about 4 μm. A hard coat layer was formed. In the same manner as in Example 1, an adhesive layer was laminated on the surface of the PET film opposite to the surface on which the metal layer and the hard coat layer were formed. Thereafter, in the same manner as in Example 1, a heat ray shielding material was produced, and various performances were evaluated.
(実施例11、13、14)
 金属層(アルミニウム皮膜)の厚さ、金属皮膜の径、金属皮膜間の距離、開口面積率を図3に記載した数値に変更した以外は実施例10と同様にして、熱線遮蔽材を作製し、各種性能の評価を行った。
(Examples 11, 13, and 14)
A heat ray shielding material was prepared in the same manner as in Example 10 except that the thickness of the metal layer (aluminum film), the diameter of the metal film, the distance between the metal films, and the opening area ratio were changed to the values described in FIG. Various performances were evaluated.
(実施例12、15)
 組成物Aを下記の組成物Cに変更した以外は、実施例12は実施例11と同様にして、実施例15は実施例14と同様にして、熱線遮蔽材を作製し、各種性能の評価を行った。
(Examples 12 and 15)
Except that the composition A was changed to the following composition C, Example 12 was prepared in the same manner as in Example 11, and Example 15 was prepared in the same manner as in Example 14 to produce a heat ray shielding material and evaluated various performances. Went.
<組成物C>
 ジペンタエリスリトールポリアクレート系紫外線硬化型樹脂(荒川化学社製、ビームセット700) 83.3質量部
 Cs0.33WO(住友金属鉱山社製、YMF-02A、平均粒径20nm)の固形分20質量%トルエン分散液 固形分として9.0質量部
 光重合開始剤(BASF社製、イルガキュア184) 1質量部
 トルエン 320質量部
<Composition C>
Solid content of dipentaerythritol polyacrylate-based ultraviolet curable resin (Arakawa Chemical Co., Ltd., Beam Set 700) 83.3 parts by mass Cs 0.33 WO 3 (Sumitomo Metal Mining Co., Ltd., YMF-02A, average particle size 20 nm) 20 mass% toluene dispersion 9.0 mass parts as solid content Photopolymerization initiator (BASF, Irgacure 184) 1 mass part Toluene 320 mass parts
(実施例16、17)
 実施例16は、金属皮膜の径、金属皮膜間の距離、開口面積率を図3に記載した数値に変更した以外は実施例7と同様にして、熱線遮蔽材を作製し、各種性能の評価を行った。実施例17は、金属層の構成を実施例9と同様のものに変更した以外は、実施例6と同様にして、熱線遮蔽材を作製し、各種性能の評価を行った。
(Examples 16 and 17)
In Example 16, a heat ray shielding material was produced in the same manner as in Example 7 except that the diameter of the metal film, the distance between the metal films, and the opening area ratio were changed to the numerical values described in FIG. Went. In Example 17, a heat ray shielding material was produced in the same manner as in Example 6 except that the configuration of the metal layer was changed to the same as that in Example 9, and various performances were evaluated.
(比較例1~14)
 比較例1~13はそれぞれ、実施例1~6、実施例8、実施例10~15において、金属皮膜をレジストを用いて所定の島状の金属皮膜に形成することをしないで作製した熱線遮蔽材である。比較例14は、実施例1において、金属皮膜を形成することなしに作製された熱線遮蔽材である。それぞれ各種性能の評価を行った。
(Comparative Examples 1 to 14)
Comparative Examples 1 to 13 were heat ray shieldings produced in Examples 1 to 6, Example 8, and Examples 10 to 15, respectively, without forming the metal film into a predetermined island-shaped metal film using a resist. It is a material. The comparative example 14 is the heat ray shielding material produced in Example 1 without forming a metal film. Each performance was evaluated.
(比較例15~17)
 比較例15、16は、金属皮膜の径、金属皮膜間の距離、開口面積率を図3に記載した数値に変更した以外は実施例1と同様にして、熱線遮蔽材を作製した熱線遮蔽材である。比較例17は、金属層を実施例16と同様に形成しながら、金属皮膜をレジストを用いて所定の島状の金属皮膜に形成することをしないで作製した熱線遮蔽材である。それぞれ各種性能の評価を行った。
(Comparative Examples 15 to 17)
Comparative Examples 15 and 16 were heat ray shielding materials in which a heat ray shielding material was produced in the same manner as in Example 1 except that the diameter of the metal coating, the distance between the metal coatings, and the opening area ratio were changed to the numerical values shown in FIG. It is. Comparative Example 17 is a heat ray shielding material produced without forming a metal film into a predetermined island-shaped metal film using a resist while forming a metal layer in the same manner as in Example 16. Each performance was evaluated.
(実施例18~34、比較例18~20)
 実施例18~23、25~27、29~34はそれぞれ、実施例1~15において、アルカリガラス板に貼り合せることをしないで作製した熱線遮蔽材である。これらは、第1実施形態の変形例に相当する構成のものである。同様に、実施例24、28は、金属層の構成が一部異なるが、他は実施例18~23等と同様にして、アルカリガラス板に貼り合せることをしないで作製した熱線遮蔽材である。同様に、比較例18、19は、それぞれ、比較例15、16において、アルカリガラス板に貼り合せることをしないで作製した熱線遮蔽材である。同様に、比較例20は、金属層の構成が一部異なるが、他は実施例23等と同様にして、アルカリガラス板に貼り合せることをしないで作製した熱線遮蔽材である。それぞれ各種性能の評価を行った。
(Examples 18 to 34, Comparative Examples 18 to 20)
Examples 18 to 23, 25 to 27, and 29 to 34 are heat ray shielding materials prepared in Examples 1 to 15 without being bonded to an alkali glass plate, respectively. These have a configuration corresponding to a modification of the first embodiment. Similarly, Examples 24 and 28 are heat ray shielding materials that were manufactured without being bonded to an alkali glass plate in the same manner as in Examples 18 to 23 and the like, although the structure of the metal layer was partially different. . Similarly, Comparative Examples 18 and 19 are heat ray shielding materials produced in Comparative Examples 15 and 16 without being bonded to an alkali glass plate, respectively. Similarly, the comparative example 20 is a heat ray shielding material manufactured without being bonded to an alkali glass plate in the same manner as in the example 23 and the like, although the structure of the metal layer is partially different. Each performance was evaluated.
<性能評価方法>
 実施例、比較例において、表面抵抗値、電磁波遮蔽率、可視光線透過率、可視光線反射率、日射透過率、日射反射率、日射吸収率、反射光の色度・彩度、熱線遮蔽係数、紫外線透過率、熱貫流率、ヘイズ、外観について、以下に記載の条件にて性能の評価を行った。尚、評価は、熱線遮蔽材の室外側から所定の光線を照射して、その透過光、反射光について行った。
<Performance evaluation method>
In Examples and Comparative Examples, surface resistance value, electromagnetic wave shielding rate, visible light transmittance, visible light reflectance, solar transmittance, solar reflectance, solar absorption rate, chromaticity / saturation of reflected light, heat ray shielding coefficient, The performance was evaluated under the conditions described below for the ultraviolet transmittance, thermal conductivity, haze, and appearance. In addition, evaluation was performed about the transmitted light and reflected light by irradiating a predetermined light ray from the outdoor side of the heat ray shielding material.
(表面抵抗値)
 JIS K7194 4端子4探針法(ダイヤインスツルメンツ社製、ロレスタMCP-T610)によって測定した。
(Surface resistance value)
It was measured by JIS K7194 4 terminal 4 probe method (Dia Instruments Co., Ltd., Loresta MCP-T610).
(電磁波遮蔽率)
 15cm×15cmのサンプルを使用して、KEC法によって、30MHz~1GHzの周波数範囲で電磁波遮蔽率を測定した。電磁波遮蔽率の数値は、周波数800MHzのときの値(dB)とした。
(Electromagnetic wave shielding rate)
Using a sample of 15 cm × 15 cm, the electromagnetic wave shielding rate was measured in the frequency range of 30 MHz to 1 GHz by the KEC method. The numerical value of the electromagnetic wave shielding rate was a value (dB) at a frequency of 800 MHz.
(可視光線透過率)
 JIS A5759に準拠する。本実施例では、分光光度計(島津製作所社製、UV3160)を使用した。
(Visible light transmittance)
Conforms to JIS A5759. In this example, a spectrophotometer (manufactured by Shimadzu Corporation, UV3160) was used.
(可視光線反射率)
 JIS A5759に準拠する。本実施例では、分光光度計(島津製作所社製、UV3160)を使用した。
(Visible light reflectance)
Conforms to JIS A5759. In this example, a spectrophotometer (manufactured by Shimadzu Corporation, UV3160) was used.
(日射透過率)
 JIS A5759に準拠する。本実施例では、分光光度計(島津製作所社製、UV3160)を使用した。
(Solar radiation transmittance)
Conforms to JIS A5759. In this example, a spectrophotometer (manufactured by Shimadzu Corporation, UV3160) was used.
(日射反射率)
 JIS A5759に準拠する。本実施例では、分光光度計(島津製作所社製、UV3160)を使用した。
(Solar reflectance)
Conforms to JIS A5759. In this example, a spectrophotometer (manufactured by Shimadzu Corporation, UV3160) was used.
(日射吸収率)
 JIS A5759に準拠する。本実施例では、分光光度計(島津製作所社製、UV3160)を使用した。
(Solar radiation absorption rate)
Conforms to JIS A5759. In this example, a spectrophotometer (manufactured by Shimadzu Corporation, UV3160) was used.
(反射光の色度、彩度)
 JIS Z8729に記載のL表色系の色度図から、色度a、b、彩度Cを算出した。彩度Cは、下記式によって算出される。
  C={(a+(b1/2
 JIS Z8722に準拠して、光源D65を使用して、熱線遮蔽材を反射した光について測定を行った。測定装置として、日本電色社製、SE2000を使用した。
(Chromaticity and saturation of reflected light)
From the chromaticity diagram of the L * a * b * color system described in JIS Z8729, chromaticity a * , b * , and saturation C * were calculated. The saturation C * is calculated by the following formula.
C * = {(a * ) 2 + (b * ) 2 } 1/2
Based on JIS Z8722, it measured about the light which reflected the heat ray shielding material using the light source D65. As a measuring apparatus, SE2000 manufactured by Nippon Denshoku Co., Ltd. was used.
(熱線遮蔽係数)
 熱線遮蔽係数は、JIS A5759に準拠して、分光光度計を用いて測定される。Ni値を0.34として、熱線遮蔽係数を求めた。本実施例では、分光光度計(島津製作所社製、UV3160)を使用した。
(Heat shielding coefficient)
The heat ray shielding coefficient is measured using a spectrophotometer according to JIS A5759. The heat ray shielding coefficient was determined by setting the Ni value to 0.34. In this example, a spectrophotometer (manufactured by Shimadzu Corporation, UV3160) was used.
(紫外線透過率)
 JIS A5759に準拠して、波長380nmの光の透過率を測定した。本実施例では、分光光度計(島津製作所社製、UV3160)を使用した。
(UV transmittance)
In accordance with JIS A5759, the transmittance of light having a wavelength of 380 nm was measured. In this example, a spectrophotometer (manufactured by Shimadzu Corporation, UV3160) was used.
(熱貫流率)
 熱貫流率は、JIS A5759に準拠して、赤外反射測定機を使用して測定する。熱貫流率が、5.9W/mK未満のとき、遠赤外線の反射効率は優れていると判定される。本実施例では、赤外反射測定機(島津製作所社製、FTIR8700)を使用した。
(Heat flow rate)
The heat transmissivity is measured using an infrared reflectometer in accordance with JIS A5759. When the heat transmissivity is less than 5.9 W / m 2 K, it is determined that the far-infrared reflection efficiency is excellent. In this example, an infrared reflection measuring machine (manufactured by Shimadzu Corporation, FTIR8700) was used.
(ヘイズ)
 ヘイズは、JIS K7136に準拠して、ヘイズメータ(日本電色社製、NDH7000)を用いて測定した。
(Haze)
The haze was measured using a haze meter (Nippon Denshoku Co., Ltd., NDH7000) in accordance with JIS K7136.
(外観)
 熱線遮蔽材の外観は、肉眼による目視によって判定される。肉眼で金属皮膜が認識できないときは○、肉眼で金属皮膜が認識できるときは×と判定した。
(appearance)
The appearance of the heat ray shielding material is determined by visual observation with the naked eye. When the metal film could not be recognized with the naked eye, it was judged as ◯, and when the metal film could be recognized with the naked eye, it was judged as x.
 実施例、比較例で得られた結果を図1~6に示す。参考として、アルカリガラス板の単体の性能を比較例14として示した。表面抵抗値の欄において、「over」と記載された欄は、金属層が島状の金属皮膜で形成されていたり、金属層がないために、測定用端子間が電気的に絶縁性であることを示している。図1~6において「-」を記載した欄は、測定ができなかったことを示している。図7~14においても同様である。 The results obtained in Examples and Comparative Examples are shown in FIGS. As a reference, the performance of a single alkali glass plate is shown as Comparative Example 14. In the column of “surface resistance value”, the column “over” indicates that the metal layer is formed of an island-shaped metal film or there is no metal layer, so that the measurement terminals are electrically insulative. It is shown that. In FIG. 1 to FIG. 6, the column with “-” indicates that measurement could not be performed. The same applies to FIGS.
 図3、図4において、実施例1~5の熱線遮蔽材は、第1実施形態(図15、1A)の層構成を有し、金属層の厚さ、金属皮膜の配置、開口面積率、金属皮膜の径、金属皮膜間の距離において異なるものである。いずれの実施例も請求項1の規定を満足しており、可視光線の透過性能、熱線の遮蔽性能、電磁波の透過性能、紫外線の遮蔽性能に優れ、外観に優れた熱線遮蔽材となっている。 3 and 4, the heat ray shielding materials of Examples 1 to 5 have the layer configuration of the first embodiment (FIGS. 15 and 1A), and the thickness of the metal layer, the arrangement of the metal film, the area ratio of the opening, The diameter of the metal film and the distance between the metal films are different. Each of the examples satisfies the provisions of claim 1 and is a heat ray shielding material having excellent visible light transmission performance, heat ray shielding performance, electromagnetic wave transmission performance, and ultraviolet ray shielding performance, and an excellent appearance. .
 実施例6、7、16、17の熱線遮蔽材は、第1実施形態(図16、1B)の層構成を有し、ITO/Ag/ITOの3層またはITO/Ag/ITO/Ag/ITOの5層からなる多層の金属層を有するものである。また、実施例8、9は、第2実施形態(図18、10)の層構成を有し、ITO/Ag/ITO/Ag/ITOの5層からなる多層の金属層を有し、2枚の窓板に挟まれる構成を有するものである。実施例6~9、16、17は、実施例1~5と比べて、可視光線透過率、可視光線反射率により優れたものとなっている。 The heat ray shielding materials of Examples 6, 7, 16, and 17 have the layer configuration of the first embodiment (FIGS. 16 and 1B), and three layers of ITO / Ag / ITO or ITO / Ag / ITO / Ag / ITO. And having a multi-layer metal layer composed of five layers. In addition, Examples 8 and 9 have the layer configuration of the second embodiment (FIGS. 18 and 10), and have a multilayer metal layer composed of five layers of ITO / Ag / ITO / Ag / ITO. It has the structure pinched | interposed into a window plate. Examples 6 to 9, 16, and 17 are superior to Examples 1 to 5 in terms of visible light transmittance and visible light reflectance.
 実施例10~15の熱線遮蔽材は、第1実施形態(図17、1C)の層構成を有したものである。実施例1~5と比べて、熱貫流率に優れ、遠赤外線の反射効率に優れた熱線遮蔽材となっている。特に、実施例12と実施例15は、それぞれ対応する実施例11と実施例14と比べて、ハードコート層にセシウム含有酸化タングステンを含有しているため、熱線遮蔽係数により優れたものとなっている。 The heat ray shielding materials of Examples 10 to 15 have the layer configuration of the first embodiment (FIGS. 17 and 1C). Compared with Examples 1 to 5, it is a heat ray shielding material that has an excellent heat transmissibility and an excellent far-infrared reflection efficiency. In particular, Example 12 and Example 15 are superior to the corresponding Examples 11 and 14, respectively, because the hard coat layer contains cesium-containing tungsten oxide, so that the heat ray shielding coefficient is superior. Yes.
 比較例1~13は、金属層が島状の金属皮膜を多数配置して形成されていないものであり、いずれも電磁波遮蔽率において数値が過大なものであった。
 比較例15と比較例16は、第1実施形態(図15、1A)の層構成を有しているが、開口面積率、金属皮膜の径、金属皮膜間の距離において本発明の規定を満足していない。比較例15は可視光線透過性能と外観に劣り、比較例16は熱線遮蔽性能に劣っていた。比較例17は、金属層が島状の金属皮膜を多数配置して形成されていないものであり、電磁波遮蔽率において数値が過大なものであった。
In Comparative Examples 1 to 13, the metal layer was not formed by arranging a large number of island-shaped metal films, and all of the values were excessive in electromagnetic wave shielding rate.
Comparative Example 15 and Comparative Example 16 have the layer configuration of the first embodiment (FIGS. 15 and 1A), but satisfy the provisions of the present invention in terms of the opening area ratio, the diameter of the metal film, and the distance between the metal films. Not done. Comparative Example 15 was inferior in visible light transmission performance and appearance, and Comparative Example 16 was inferior in heat ray shielding performance. In Comparative Example 17, the metal layer was not formed by arranging a large number of island-shaped metal films, and the numerical value was excessive in the electromagnetic wave shielding rate.
 図5、図6の実施例18~34、比較例18~20はいずれも、アルカリガラス板と貼合させていない熱線遮蔽材である、図3、図4の実施例1~17や比較例15、16とほぼ対応する性能を有するものであった。 Each of Examples 18 to 34 and Comparative Examples 18 to 20 in FIGS. 5 and 6 is a heat ray shielding material not bonded to an alkali glass plate, Examples 1 to 17 in FIGS. 3 and 4 and Comparative Examples. 15 and 16 have almost the corresponding performance.
(積層フィルムB1)
 易接着PETフィルム(東レ社製、U40、50μm厚さ、以下「PETフィルム」と記載する。)の一方の面に、5層構造の金属層を形成した。具体的には、5×10-5Torrの真空下で、スパッタリング法を用いて、40nm厚さのITO皮膜、10nm厚さのAg皮膜、70nm厚さのITO皮膜、12nm厚さのAg皮膜、35nm厚さのITO皮膜を順次積層して、5層構造の金属層を形成した。
(Laminated film B1)
A metal layer having a five-layer structure was formed on one surface of an easily adhesive PET film (Toray Industries, Inc., U40, 50 μm thickness, hereinafter referred to as “PET film”). Specifically, using a sputtering method under a vacuum of 5 × 10 −5 Torr, a 40 nm thick ITO film, a 10 nm thick Ag film, a 70 nm thick ITO film, a 12 nm thick Ag film, A metal layer having a five-layer structure was formed by sequentially laminating an ITO film having a thickness of 35 nm.
 その後、作製した金属層の上に、溶剤に溶解したレジストをグラビア印刷によって、図21に記載した島状の配置となるように印刷した。ここで、金属皮膜の径は360μmであり、金属皮膜間の距離は40μmであり、開口面積率は19%とした。 Thereafter, a resist dissolved in a solvent was printed on the produced metal layer by gravure printing so as to have the island-like arrangement shown in FIG. Here, the diameter of the metal film was 360 μm, the distance between the metal films was 40 μm, and the opening area ratio was 19%.
 レジストを200℃で乾燥させた後、塩化第二鉄水溶液を用いて、レジストが印刷されていない部分の金属皮膜を溶解・除去した。その後、レジストを水酸化ナトリウムの水溶液を用いて溶解して、金属皮膜表面から剥離した。水洗・乾燥して、上記PETフィルム上に、所定形状の5層構造の金属皮膜が配置された金属層を形成した。 After the resist was dried at 200 ° C., the metal film of the portion where the resist was not printed was dissolved and removed using an aqueous ferric chloride solution. Thereafter, the resist was dissolved using an aqueous solution of sodium hydroxide and peeled off from the surface of the metal film. After washing with water and drying, a metal layer in which a metal film having a predetermined five-layer structure was disposed was formed on the PET film.
 一方、シリコーンで処理されたセパレータ(三菱樹脂社製、MRQ#38、38μm厚さ、以下「セパレータ」と記載する。)上に下記配合の組成物Dをアプリケータを用いて塗工した。その後100℃の熱風オーブン中で2分間乾燥させて、約1μm厚さの接着層を形成した。 On the other hand, a composition D having the following composition was coated on a separator treated with silicone (manufactured by Mitsubishi Plastics, MRQ # 38, 38 μm thickness, hereinafter referred to as “separator”) using an applicator. Thereafter, it was dried in a hot air oven at 100 ° C. for 2 minutes to form an adhesive layer having a thickness of about 1 μm.
<組成物D>
 アクリル系中性粘着剤(綜研化学社製、SKダイン2975) 100質量部
 硬化剤(綜研化学社製、Y-75) 0.2質量部 
 トルエン 100質量部
<Composition D>
Acrylic neutral adhesive (manufactured by Soken Chemical Co., Ltd., SK Dyne 2975) 100 parts by mass Curing agent (manufactured by Soken Chemical Co., Ltd., Y-75) 0.2 parts by mass
100 parts by mass of toluene
 さらに、上記接着層を、上記PETフィルムの金属層が形成された側の面とラミネートした。セパレータを剥離し、露出させた接着層と保護フィルムとしての50μm厚のPETフィルムとを貼り合せて、積層フィルムB1を作製した。 Furthermore, the adhesive layer was laminated with the surface of the PET film on which the metal layer was formed. The separator was peeled off, and the exposed adhesive layer and a 50 μm-thick PET film as a protective film were bonded together to produce a laminated film B1.
(積層フィルムB2)
 PETフィルムの一方の面に、5層構造の金属層を形成した。具体的には、5×10-5Torrの真空下で、スパッタリング法を用いて、35nm厚さのITO皮膜、9nm厚さのAg皮膜、60nm厚さのITO皮膜、9nm厚さのAg皮膜、30nm厚さのITO皮膜を順次積層して、5層構造の金属層を形成した。その後、作製した金属層の上に、B1と同様に、エッチングを行って、図21に記載した所定形状の5層構造の金属皮膜が配置された金属層を形成した。ここで、金属皮膜の径は250μmであり、金属皮膜間の距離は60μmであり、開口面積率は35%とした。
(Laminated film B2)
A metal layer having a five-layer structure was formed on one surface of the PET film. Specifically, using a sputtering method under a vacuum of 5 × 10 −5 Torr, a 35 nm thick ITO film, a 9 nm thick Ag film, a 60 nm thick ITO film, a 9 nm thick Ag film, A 30 nm thick ITO film was sequentially laminated to form a metal layer having a five-layer structure. Thereafter, etching was performed on the produced metal layer in the same manner as B1, thereby forming a metal layer in which a metal film having a five-layer structure having a predetermined shape described in FIG. 21 was disposed. Here, the diameter of the metal film was 250 μm, the distance between the metal films was 60 μm, and the opening area ratio was 35%.
 PETフィルムの金属層が形成された面上に、組成物Aをバーコーターを用いて塗工し、80℃の熱風オーブン中で2分間乾燥させた。その後、塗工面に高圧水銀灯にて紫外線(積算光量500mJ/cm)を照射することで硬化させ、約4μm厚さの保護層を形成して、積層フィルムB2を作製した。 On the surface of the PET film on which the metal layer was formed, the composition A was applied using a bar coater and dried in a hot air oven at 80 ° C. for 2 minutes. Thereafter, the coated surface was cured by irradiating with ultraviolet light (integrated light amount 500 mJ / cm 2 ) with a high-pressure mercury lamp, and a protective layer having a thickness of about 4 μm was formed to produce a laminated film B2.
(実施例36)
 ソーダ石灰ガラスのフロートガラス板(厚さ2mm)上に、接着層としての380μm厚のPVB(ポリビニルブチラールフィルム、積水化学工業社製、S-LEC PVB0.38)のシート(以下「PVBシート」と記載する。)を置いた。
(Example 36)
A sheet of PVB (polyvinyl butyral film, manufactured by Sekisui Chemical Co., Ltd., S-LEC PVB0.38) having a thickness of 380 μm as an adhesive layer on a float glass plate (thickness 2 mm) of soda-lime glass (hereinafter referred to as “PVB sheet”) To be described).
 一方、ソーダ石灰ガラスの代わりに、鉄イオン含有したソーダ石灰ガラスのガラス板(厚さ2mm)を用い、上記と同様にして、鉄イオン含有ガラス板上に接着層としてのPVBシートを置いた。 On the other hand, instead of soda lime glass, a glass plate (thickness 2 mm) of soda lime glass containing iron ions was used, and a PVB sheet as an adhesive layer was placed on the iron ion containing glass plate in the same manner as described above.
 平らなテーブル上に、接着層を有するガラス板を接着層が上側となるように置いた。その上に、積層フィルムB1を金属層が上側となるようにして置いた。さらにその上に、接着層を有する鉄イオン含有ガラス板を接着層が下側となるように置いた。得られた積層板を図22に記載した製造ラインに通した。すなわち、密閉されたチャンバ22内で、得られた積層板をヒータ23を用いて約90℃に加熱した。その後、1対の圧着ロール24を通過させることによって、積層されたガラス板2aと両面に接着層を有する基材9とを仮圧着させた。 A glass plate having an adhesive layer was placed on a flat table so that the adhesive layer was on the upper side. On top of that, the laminated film B1 was placed so that the metal layer was on the upper side. Further thereon, an iron ion-containing glass plate having an adhesive layer was placed so that the adhesive layer was on the lower side. The obtained laminate was passed through the production line described in FIG. That is, in the sealed chamber 22, the obtained laminate was heated to about 90 ° C. using the heater 23. Then, the glass plate 2a laminated | stacked and the base material 9 which has an adhesive layer on both surfaces were temporarily crimped | bonded by letting a pair of crimping | compression-bonding rolls 24 pass.
 次に、仮圧着された熱線遮蔽材10をオートクレーブ25中に収納した。オートクレーブ25中で、約1MPaに加圧し、約130℃で30分間加熱することによって、仮圧着後に残った気泡を取り除き、両面に接着層を有する基材9が接着層によってガラス板2aと十分に貼合された熱線遮蔽材10を製造した。図18に示した構成に準じた構成を有したものとした。 Next, the heat-shielding material 10 that was temporarily bonded was stored in the autoclave 25. The autoclave 25 is pressurized to about 1 MPa and heated at about 130 ° C. for 30 minutes to remove bubbles remaining after the temporary pressure bonding, and the base material 9 having an adhesive layer on both sides is sufficiently adhered to the glass plate 2a by the adhesive layer. The bonded heat ray shielding material 10 was manufactured. The configuration according to the configuration shown in FIG. 18 was assumed.
(実施例37)
 実施例36とは異なり、鉄イオン含有ガラス板を使わずに、2枚のガラス板として、いずれもソーダ石灰ガラスのフロートガラス板(厚さ2mm)を用いた。一方のガラス板上に、接着層としての380μm厚のPVBシートを置いた。
(Example 37)
Unlike Example 36, a float glass plate (thickness 2 mm) of soda-lime glass was used as each of the two glass plates without using an iron ion-containing glass plate. A PVB sheet having a thickness of 380 μm as an adhesive layer was placed on one glass plate.
 他方のガラス板上に、接着層として、スズ含有酸化インジウム微粒子を含有するPVBポリビニルブチラールフィルム(積水化学工業社製、S-LEC SCF(L)、780μm厚)のシートを置いた。 On the other glass plate, a sheet of PVB polyvinyl butyral film (S-LEC SCF (L), 780 μm thickness) containing tin-containing indium oxide fine particles was placed as an adhesive layer.
 平らなテーブル上に、接着層を有するガラス板を接着層を上側にして置いた。その上に、積層フィルムB1を金属層が上側となるようにして置いた。さらにその上に、熱線吸収性金属化合物微粒子を含有する接着層を有するガラス板を接着層を下側にして置いた。得られた積層板を図22に記載した製造ラインに通した。すなわち、密閉されたチャンバ22内で、得られた積層板をヒータ23を用いて約90℃に加熱した。その後、1対の圧着ロール24を通過させることによって、積層されたガラス板2aと両面に接着層を有する基材9を仮圧着させた。 A glass plate having an adhesive layer was placed on a flat table with the adhesive layer facing upward. On top of that, the laminated film B1 was placed so that the metal layer was on the upper side. Further thereon, a glass plate having an adhesive layer containing heat-absorbing metal compound fine particles was placed with the adhesive layer facing down. The obtained laminate was passed through the production line described in FIG. That is, in the sealed chamber 22, the obtained laminate was heated to about 90 ° C. using the heater 23. Then, the base material 9 which has the laminated | stacked glass plate 2a and an adhesive layer on both surfaces was temporarily crimped | bonded by letting a pair of crimping | compression-bonding rolls 24 pass.
 次に、仮圧着された熱線遮蔽合わせガラス10をオートクレーブ25中に収納した。オートクレーブ25中で、約1MPaに加圧し、約130℃で30分間加熱することによって、仮圧着後に残った気泡を取り除き、両面に接着層を有する基材9が接着層によってガラス板2aと十分に貼合された熱線遮蔽材10を製造した。図18に示した構成に準じた構成を有したものとした。 Next, the heat-shielded laminated glass 10 that was temporarily press-bonded was stored in the autoclave 25. The autoclave 25 is pressurized to about 1 MPa and heated at about 130 ° C. for 30 minutes to remove bubbles remaining after the temporary pressure bonding, and the base material 9 having an adhesive layer on both sides is sufficiently adhered to the glass plate 2a by the adhesive layer. The bonded heat ray shielding material 10 was manufactured. The configuration according to the configuration shown in FIG. 18 was assumed.
(実施例38)
 実施例37において、積層フィルムB1の代わりに、積層フィルムB2を用いた以外は、実施例37と同様に製造して、熱線遮蔽材10を製造した。
(Example 38)
In Example 37, the heat ray shielding material 10 was produced in the same manner as in Example 37 except that the laminated film B2 was used instead of the laminated film B1.
(実施例39)
 実施例36において、鉄イオン含有ガラス板を使わずに、2枚のガラス板として、いずれもソーダ石灰ガラスのフロートガラス板(厚さ2mm)を用いた以外は、実施例36と同様に製造して、熱線遮蔽材10を製造した。
(Example 39)
In Example 36, it was manufactured in the same manner as in Example 36 except that a glass sheet of soda-lime glass (thickness 2 mm) was used as the two glass sheets without using the iron ion-containing glass sheet. Thus, the heat ray shielding material 10 was manufactured.
(実施例35)
 実施例36において、鉄イオン含有ガラス板を使わずに、2枚のガラス板として、いずれもソーダ石灰ガラスのフロートガラス板(厚さ2mm)を用い、金属層の構成を一部変更したこと以外は、実施例36と同様に製造して、熱線遮蔽材10を製造した。
(Example 35)
In Example 36, except that the iron ion-containing glass plate was not used, and as the two glass plates, a soda-lime glass float glass plate (thickness 2 mm) was used, and the configuration of the metal layer was partially changed. Were manufactured in the same manner as in Example 36 to manufacture the heat ray shielding material 10.
(参考例B1、参考例B2)
 なお、参考として、上記の積層フィルムB1と積層フィルムB2についても、性能を評価した。
(Reference Example B1, Reference Example B2)
For reference, the performance of the above laminated film B1 and laminated film B2 was also evaluated.
 実施例35~39、参考例B1、B2について、得られた結果を図7、図8に示した。 The results obtained for Examples 35 to 39 and Reference Examples B1 and B2 are shown in FIGS.
 図7、8において、実施例36~38の熱線遮蔽材は、鉄イオンを含有するガラス板または熱線吸収性金属化合物微粒子を含有する接着層を金属層の室内側に有するものである。実施例35と実施例39の熱線遮蔽材は、鉄イオンを含有するガラス板または熱線吸収性金属化合物微粒子を含有する接着層を有しないものである。いずれも、熱線遮蔽係数、可視光透過率、可視光反射率、日射透過率、日射反射率、日射吸収率、電磁波遮蔽率においても、良好な性能を有するものであった。特に、実施例36~38の熱線遮蔽材は、熱線遮蔽係数が0.60以下と極めて優れるものであった。 7 and 8, the heat ray shielding materials of Examples 36 to 38 have a glass plate containing iron ions or an adhesive layer containing heat ray absorbing metal compound fine particles on the indoor side of the metal layer. The heat ray shielding materials of Examples 35 and 39 do not have a glass plate containing iron ions or an adhesive layer containing heat ray absorbing metal compound fine particles. All of them had good performance in heat ray shielding coefficient, visible light transmittance, visible light reflectance, solar transmittance, solar reflectance, solar absorption rate, and electromagnetic wave shielding rate. In particular, the heat ray shielding materials of Examples 36 to 38 were extremely excellent with a heat ray shielding coefficient of 0.60 or less.
 なお、参考例の積層フィルムB1、積層フィルムB2は、鉄イオンを含有するガラス板または熱線吸収性金属化合物微粒子を含有する接着層を有しないものであり、実施例36~38に比べると熱線遮蔽係数に劣るものであった。 The laminated film B1 and laminated film B2 of the reference example do not have a glass plate containing iron ions or an adhesive layer containing heat ray-absorbing metal compound fine particles. Compared with Examples 36 to 38, heat ray shielding The coefficient was inferior.
 図30~図35は、実施例と参考例の熱線遮蔽材の透過率・反射率のスペクトル図である。実線は、透過光のスペクトルであり、破線は反射光のスペクトルである。図30、31はそれぞれ、実施例36、実施例37のスペクトルである。これに対して、図32は実施例39のスペクトルであり、島状の金属皮膜を有する金属層のみの特性を示している。可視光線に近い近赤外線以の波長領域(800~1800nm)の透過率がやや高いものであり、熱線遮蔽係数にやや劣る結果となった。 30 to 35 are spectrum diagrams of transmittance and reflectance of the heat ray shielding materials of Examples and Reference Examples. A solid line is a spectrum of transmitted light, and a broken line is a spectrum of reflected light. 30 and 31 show the spectra of Example 36 and Example 37, respectively. On the other hand, FIG. 32 shows the spectrum of Example 39, which shows the characteristics of only the metal layer having an island-shaped metal film. The transmittance in the near infrared and near-wavelength region (800 to 1800 nm) close to visible light was slightly high, resulting in slightly inferior heat ray shielding coefficient.
 一方、図33、34、35はそれぞれ、参考例のスペクトルである。図33は、2枚の鉄イオン含有ガラス板(厚さ2mm)の間に、接着層として、380μm厚のPVBシートのみを挟んで、貼合させただけの構成の合わせガラスのスペクトルである。図34は、2枚のソーダ石灰ガラスのフロートガラス板(厚さ2mm)の間に、接着層として、スズ含有酸化インジウム微粒子を含有するPVB(ポリビニルブチラールフィルム、760μm厚)のシートのみを挟んで、貼合させただけの構成の合わせガラスのスペクトルである。図35は、2枚の鉄イオン含有ガラス板(厚さ2mm)の間に、スズ含有酸化インジウム微粒子を含有するPVB(760μm厚)のシートのみを挟んで、貼合させただけの構成の合わせガラスのスペクトルである。これらの参考例は、鉄イオンを含有するガラス板のみか、熱線吸収性金属化合物微粒子を含有する接着層のみか、または両者を有するものであって、金属層を有していない。いずれも、可視光線から近赤外線領域に至るまで吸収する特性を有しており、反射光がわずかであった。 On the other hand, FIGS. 33, 34, and 35 are spectra of reference examples, respectively. FIG. 33 is a spectrum of a laminated glass having a structure in which only a 380 μm-thick PVB sheet is sandwiched between two iron ion-containing glass plates (thickness 2 mm) and bonded. In FIG. 34, only a sheet of PVB (polyvinyl butyral film, 760 μm thickness) containing tin-containing indium oxide fine particles as an adhesive layer is sandwiched between two soda-lime glass float glass plates (thickness 2 mm). It is a spectrum of the laminated glass of the structure only bonded together. FIG. 35 shows a configuration in which only a sheet of PVB (760 μm thick) containing tin-containing indium oxide fine particles is sandwiched between two iron ion-containing glass plates (thickness 2 mm) and bonded together. It is the spectrum of glass. These reference examples have only a glass plate containing iron ions, only an adhesive layer containing heat-absorbing metal compound fine particles, or both, and do not have a metal layer. All of them had a characteristic of absorbing from visible light to the near infrared region, and reflected light was slight.
 実施例36、実施例37では、金属層だけでは遮蔽が不十分な可視光線に近い近赤外線以上の波長領域において、鉄イオンや熱線吸収性金属化合物微粒子を用いて吸収させることによって、熱線遮蔽係数の改善がなされている。 In Examples 36 and 37, the heat ray shielding coefficient is obtained by absorbing iron ions or heat ray absorbing metal compound fine particles in a wavelength region of near infrared or higher near visible light that is not sufficiently shielded by the metal layer alone. Improvements have been made.
(比較例21)
 易接着PETフィルム(東レ社製、U40、100μm厚さ、以下「PETフィルム」と記載する。)の一方の面に、3層構造の金属層を形成した。具体的には、5×10-5Torrの真空下で、スパッタリング法を用いて、50nm厚さのITO皮膜、11nm厚さのAg皮膜、50nm厚さのITO皮膜をPETフィルムの一面に順次積層して、3層構造の金属層を形成した。
 一方、シリコーンで処理されたセパレータ(三菱樹脂社製、MRQ#38、38μm厚さ、以下「セパレータ」と記載する。)上に組成物Bをアプリケータを用いて塗工した。その後100℃の熱風オーブン中で2分間乾燥させて、約22μm厚さの接着層を形成した。
(Comparative Example 21)
A metal layer having a three-layer structure was formed on one surface of an easy-adhesion PET film (Toray Industries, Inc., U40, 100 μm thickness, hereinafter referred to as “PET film”). Specifically, using a sputtering method under a vacuum of 5 × 10 −5 Torr, a 50 nm thick ITO film, an 11 nm thick Ag film, and a 50 nm thick ITO film are sequentially laminated on one surface of the PET film. Thus, a metal layer having a three-layer structure was formed.
On the other hand, the composition B was applied onto a silicone-treated separator (Mitsubishi Plastics, MRQ # 38, 38 μm thickness, hereinafter referred to as “separator”) using an applicator. Then, it was dried in a hot air oven at 100 ° C. for 2 minutes to form an adhesive layer having a thickness of about 22 μm.
 さらに、上記接着層を、上記PETフィルムの金属層を形成した側の面とラミネートした。7日間放置後、セパレータを剥離し、接着層を3mm厚のアルカリガラス板(以下「ガラス板」と記載する。)に貼り合せて、熱線遮蔽材F1を作製し、各種性能の評価を行った(図24、20B参照)。 Furthermore, the adhesive layer was laminated with the surface of the PET film on which the metal layer was formed. After leaving for 7 days, the separator was peeled off, and the adhesive layer was bonded to a 3 mm thick alkali glass plate (hereinafter referred to as “glass plate”) to produce a heat ray shielding material F1, and various performances were evaluated. (See FIGS. 24 and 20B).
(多層フィルムC、多層フィルムD)
 本実施形態に使用する多層構造を有する透明樹脂層としての多層フィルムには、市販されているものがあり、それらを入手して、実験に用いた。
 厚さ方向に交互に200層積層された多層フィルムとして、3M社製nano90(未粘着品)がある。これは、多層フィルムの厚さが50μmであり、多層構造の1層当たりの平均厚さは250nmである(以下「多層フィルムC」と記載する。)。
 厚さ方向に交互に1000層積層された多層フィルムとして、東レ社製ピカサスGL-30がある。これは、多層フィルムの厚さが100μmであり、多層構造の1層当たりの平均厚さは100nmである(以下「多層フィルムD」と記載する。)。
(Multilayer film C, Multilayer film D)
Some multilayer films as transparent resin layers having a multilayer structure used in the present embodiment are commercially available, and they were obtained and used for experiments.
As a multilayer film in which 200 layers are alternately laminated in the thickness direction, there is nano90 (non-adhesive product) manufactured by 3M. The multilayer film has a thickness of 50 μm, and the average thickness per layer of the multilayer structure is 250 nm (hereinafter referred to as “multilayer film C”).
As a multilayer film in which 1000 layers are alternately laminated in the thickness direction, there is Picasas GL-30 manufactured by Toray. This is because the thickness of the multilayer film is 100 μm, and the average thickness per layer of the multilayer structure is 100 nm (hereinafter referred to as “multilayer film D”).
(比較例22)
 PETフィルムの一方の面に、5×10-5Torrの真空下で、スパッタリング法を用いて、50nm厚さのITO皮膜、11nm厚さのAg皮膜、50nm厚さのITO皮膜を順次積層して、3層構造の金属層を形成した。
 さらに、上記PETフィルムの金属層を形成した方の面上に、組成物Aをバーコーターを用いて塗工し、100℃の熱風オーブン中で2分間乾燥させた。その後、塗工面に高圧水銀灯にて紫外線(積算光量300mJ/cm)を照射することで硬化させ、約4μm厚さのハードコート層を形成した。
(Comparative Example 22)
A 50 nm thick ITO film, an 11 nm thick Ag film, and a 50 nm thick ITO film were sequentially laminated on one surface of the PET film by sputtering under a vacuum of 5 × 10 −5 Torr. A metal layer having a three-layer structure was formed.
Furthermore, the composition A was coated on the surface of the PET film on which the metal layer was formed using a bar coater and dried in a hot air oven at 100 ° C. for 2 minutes. Thereafter, the coated surface was cured by irradiating with ultraviolet rays (integrated light amount 300 mJ / cm 2 ) with a high-pressure mercury lamp, thereby forming a hard coat layer having a thickness of about 4 μm.
 一方、2枚のセパレータ上に組成物Aをアプリケータを用いて塗工した。その後100℃の熱風オーブン中で2分間乾燥させて、2枚の約22μm厚さの接着層を形成した。
 そのうちの1枚の接着層を、上記PETフィルムの金属層とハードコート層を形成していない側の面とラミネートした。
 また、もう1枚の接着層を、多層フィルムCの一方の面とラミネートした。
 7日間放置後、上記PETフィルムのセパレータを剥離し、上記多層フィルムCの接着層を形成していない側の面と貼り合せた。さらに、上記多層フィルムCのセパレータを剥離し、接着層をガラス板に貼り合せて、熱線遮蔽材F3を作製し、各種性能の評価を行った(図24、20B参照)。
On the other hand, composition A was applied onto two separators using an applicator. Thereafter, it was dried in a hot air oven at 100 ° C. for 2 minutes to form two adhesive layers having a thickness of about 22 μm.
One of the adhesive layers was laminated with the surface of the PET film on which the metal layer and the hard coat layer were not formed.
Another adhesive layer was laminated with one surface of the multilayer film C.
After standing for 7 days, the separator of the PET film was peeled off and bonded to the surface of the multilayer film C where the adhesive layer was not formed. Furthermore, the separator of the multilayer film C was peeled off, and the adhesive layer was bonded to a glass plate to produce a heat ray shielding material F3, and various performances were evaluated (see FIGS. 24 and 20B).
(実施例46)
 PETフィルムの一方の面に、5×10-5Torrの真空下で、スパッタリング法を用いて、50nm厚さのITO皮膜、11nm厚さのAg皮膜、50nm厚さのITO皮膜を順次積層して、3層構造の金属層を形成した。
 その後、作製した金属層の上に、溶剤に溶解したレジストをグラビア印刷によって、図19に記載した島状の配置となるように印刷した。ここで、金属皮膜の径は300μmであり、金属皮膜間の距離は33μmであり、開口面積率は19%とした。
 レジストを120℃で乾燥させた後、塩化第二鉄水溶液を用いて、レジストが印刷されていない部分の金属皮膜を溶解・除去した。その後、レジストを水酸化ナトリウムの水溶液を用いて溶解して、金属皮膜表面から剥離した。水洗・乾燥して、上記PETフィルム上に、所定形状の3層構造の金属皮膜が配置された金属層を形成した(以下、「円形千鳥型配置3層金属層」と記載する)。
(Example 46)
A 50 nm thick ITO film, an 11 nm thick Ag film, and a 50 nm thick ITO film were sequentially laminated on one surface of the PET film by sputtering under a vacuum of 5 × 10 −5 Torr. A metal layer having a three-layer structure was formed.
Thereafter, a resist dissolved in a solvent was printed on the produced metal layer by gravure printing so as to have the island-like arrangement shown in FIG. Here, the diameter of the metal film was 300 μm, the distance between the metal films was 33 μm, and the opening area ratio was 19%.
After drying the resist at 120 ° C., the portion of the metal film where the resist was not printed was dissolved and removed using an aqueous ferric chloride solution. Thereafter, the resist was dissolved using an aqueous solution of sodium hydroxide and peeled off from the surface of the metal film. After washing with water and drying, a metal layer in which a metal film having a predetermined three-layer structure was disposed was formed on the PET film (hereinafter referred to as “circular zigzag-arranged three-layer metal layer”).
 一方、セパレータ上に組成物Aをアプリケータを用いて塗工した。その後100℃の熱風オーブン中で2分間乾燥させて、約22μm厚さの接着層を形成した。
 さらに、上記接着層を、上記PETフィルムの金属層を形成した側の面とラミネートした。7日間放置後、セパレータを剥離し、接着層をガラス板に貼り合せて、熱線遮蔽材F4を作製し、各種性能の評価を行った。
On the other hand, the composition A was coated on the separator using an applicator. Then, it was dried in a hot air oven at 100 ° C. for 2 minutes to form an adhesive layer having a thickness of about 22 μm.
Further, the adhesive layer was laminated with the surface of the PET film on which the metal layer was formed. After leaving for 7 days, the separator was peeled off, and the adhesive layer was bonded to a glass plate to produce a heat ray shielding material F4, and various performances were evaluated.
(実施例40)
 金属層を形成したPETフィルムとして、熱線遮蔽材F4において作成した、円形千鳥型配置3層金属層を有するPETフィルムを用いた以外は、熱線遮蔽材F3と同様にして作製した。
 さらに、多層フィルムCのセパレータを剥離し、接着層をガラス板に貼り合せて、熱線遮蔽材F5を作製し、各種性能の評価を行った(図26、20D参照)。
(Example 40)
A PET film having a metal layer was produced in the same manner as the heat ray shielding material F3 except that a PET film having a circular staggered three-layer metal layer created in the heat ray shielding material F4 was used.
Furthermore, the separator of the multilayer film C was peeled off, and the adhesive layer was bonded to a glass plate to produce a heat ray shielding material F5, and various performances were evaluated (see FIGS. 26 and 20D).
(実施例47)
 多層フィルムCの代わりに多層フィルムDを用いた以外は、熱線遮蔽材F5と同様にして作製した。
 さらに、多層フィルムDのセパレータを剥離し、接着層をガラス板に貼り合せて、熱線遮蔽材F7を作製し、各種性能の評価を行った(図26、20D参照)。
(Example 47)
It produced similarly to the heat ray shielding material F5 except having used the multilayer film D instead of the multilayer film C. FIG.
Furthermore, the separator of the multilayer film D was peeled off, and the adhesive layer was bonded to a glass plate to produce a heat ray shielding material F7, and various performances were evaluated (see FIGS. 26 and 20D).
(実施例48)
 PETフィルムの一方の面に、5×10-5Torrの真空下で、スパッタリング法を用いて、40nm厚さのITO皮膜、10nm厚さのAg皮膜、70nm厚さのITO皮膜、12nm厚さのAg皮膜、35nm厚さのITO皮膜を順次積層して、5層構造の金属層を形成した。
 その後、作製した金属層の上に、溶剤に溶解したレジストをグラビア印刷によって、図19に記載した島状の配置となるように印刷した。ここで、金属皮膜の径は360μmであり、金属皮膜間の距離は40μmであり、開口面積率は19%とした。得られた金属層を「円形千鳥型配置5層金属層」と記載する。
 その他の製造条件は、熱線遮蔽材F4と同様にして作製した。7日間放置後、セパレータを剥離し、接着層をガラス板に貼り合せて、熱線遮蔽材F8を作製し、各種性能の評価を行った。
(Example 48)
On one side of the PET film, using a sputtering method under a vacuum of 5 × 10 −5 Torr, a 40 nm thick ITO film, 10 nm thick Ag film, 70 nm thick ITO film, 12 nm thick An Ag film and a 35 nm-thick ITO film were sequentially laminated to form a metal layer having a five-layer structure.
Thereafter, a resist dissolved in a solvent was printed on the produced metal layer by gravure printing so as to have the island-like arrangement shown in FIG. Here, the diameter of the metal film was 360 μm, the distance between the metal films was 40 μm, and the opening area ratio was 19%. The obtained metal layer is referred to as “circular staggered arrangement five-layer metal layer”.
Other manufacturing conditions were produced in the same manner as the heat ray shielding material F4. After leaving for 7 days, the separator was peeled off, and the adhesive layer was bonded to a glass plate to produce a heat ray shielding material F8, and various performances were evaluated.
(実施例41)
 金属層を形成したPETフィルムとして、熱線遮蔽材F8において作成した、円形千鳥型配置5層金属層を有するPETフィルムを用いた以外は、熱線遮蔽材F5と同様にして作製した。
 さらに、多層フィルムCのセパレータを剥離し、接着層をガラス板に貼り合せて、熱線遮蔽材F9を作製し、各種性能の評価を行った(図26、20D参照)。
(Example 41)
A PET film having a metal layer formed thereon was prepared in the same manner as the heat ray shielding material F5 except that a PET film having a circular staggered 5-layer metal layer prepared in the heat ray shielding material F8 was used.
Furthermore, the separator of the multilayer film C was peeled off, and the adhesive layer was bonded to a glass plate to produce a heat ray shielding material F9, and various performances were evaluated (see FIGS. 26 and 20D).
(実施例42)
 下記に記載した内容以外は、熱線遮蔽材F3および熱線遮蔽材F8に記載した製造条件に準じて行った。
 多層フィルムCの一方の面上に、ハードコート層を形成した。さらに、当該多層フィルムCのハードコート層を形成していない側の面に、セパレータ上に形成された接着層をラミネートした。
 熱線遮蔽材F8において作成した、円形千鳥型配置5層金属層を有するPETフィルムの金属層の上に、もう1枚のセパレータ上に形成された接着層をラミネートした。
 7日間放置後、上記多層フィルムCのセパレータを剥離し、上記PETフィルムの接着層を形成していない側の面と貼り合せた。さらに、上記PETフィルムのセパレータを剥離し、接着層をガラス板に貼り合せて、熱線遮蔽材F10を作製し、各種性能の評価を行った(図27、20E参照)。
(Example 42)
Except for the contents described below, the production conditions described in the heat ray shielding material F3 and the heat ray shielding material F8 were used.
A hard coat layer was formed on one surface of the multilayer film C. Furthermore, the adhesive layer formed on the separator was laminated on the surface of the multilayer film C where the hard coat layer was not formed.
The adhesive layer formed on the other separator was laminated on the metal layer of the PET film having the circular staggered five-layer metal layer prepared in the heat ray shielding material F8.
After leaving for 7 days, the separator of the multilayer film C was peeled off and bonded to the surface of the PET film on which the adhesive layer was not formed. Furthermore, the separator of the PET film was peeled off, and the adhesive layer was bonded to a glass plate to produce a heat ray shielding material F10, and various performances were evaluated (see FIGS. 27 and 20E).
(実施例43)
 多層フィルムCの一方の面に、5×10-5Torrの真空下で、スパッタリング法を用いて、47nm厚さのITO皮膜、11nm厚さのAg皮膜、47nm厚さのITO皮膜を順次積層して、3層構造の金属層を形成した。
 その後、作製した金属層の上に、溶剤に溶解したレジストをグラビア印刷によって、図19に記載した島状の配置となるように印刷した。ここで、金属皮膜の径は150μmであり、金属皮膜間の距離は45μmであり、開口面積率は41.0%とした。
 レジストを120℃で乾燥させた後、塩化第二鉄水溶液を用いて、レジストが印刷されていない部分の金属皮膜を溶解・除去した。その後、レジストを水酸化ナトリウムの水溶液を用いて溶解して、金属皮膜表面から剥離した。水洗・乾燥して、上記多層フィルムC上に、所定形状の3層構造の金属皮膜が配置された金属層を形成した。
(Example 43)
A 47 nm thick ITO film, an 11 nm thick Ag film, and a 47 nm thick ITO film are sequentially laminated on one surface of the multilayer film C using a sputtering method under a vacuum of 5 × 10 −5 Torr. Thus, a metal layer having a three-layer structure was formed.
Thereafter, a resist dissolved in a solvent was printed on the produced metal layer by gravure printing so as to have the island-like arrangement shown in FIG. Here, the diameter of the metal film was 150 μm, the distance between the metal films was 45 μm, and the opening area ratio was 41.0%.
After drying the resist at 120 ° C., the portion of the metal film where the resist was not printed was dissolved and removed using an aqueous ferric chloride solution. Thereafter, the resist was dissolved using an aqueous solution of sodium hydroxide and peeled off from the surface of the metal film. It was washed with water and dried to form a metal layer on the multilayer film C in which a metal film having a predetermined three-layer structure was disposed.
 さらに、上記多層フィルムCの金属層を形成した方の面上に、組成物Bをバーコーターを用いて塗工し、100℃の熱風オーブン中で2分間乾燥させた。その後、塗工面に高圧水銀灯にて紫外線(積算光量300mJ/cm)を照射することで硬化させ、約4μm厚さのハードコート層を形成した。 Further, on the surface of the multilayer film C on which the metal layer was formed, the composition B was applied using a bar coater and dried in a hot air oven at 100 ° C. for 2 minutes. Thereafter, the coated surface was cured by irradiating with ultraviolet rays (integrated light amount 300 mJ / cm 2 ) with a high-pressure mercury lamp, thereby forming a hard coat layer having a thickness of about 4 μm.
 一方、セパレータ上に組成物Aをアプリケータを用いて塗工した。その後100℃の熱風オーブン中で2分間乾燥させて、約22μm厚さの接着層を形成した。
 さらに、上記接着層を、上記多層フィルムCの金属層を形成していない側の面とラミネートした。7日間放置後、セパレータを剥離し、接着層をガラス板に貼り合せて、熱線遮蔽材F11を作製し、各種性能の評価を行った(図28、30参照)。
On the other hand, the composition A was coated on the separator using an applicator. Then, it was dried in a hot air oven at 100 ° C. for 2 minutes to form an adhesive layer having a thickness of about 22 μm.
Further, the adhesive layer was laminated with the surface of the multilayer film C where the metal layer was not formed. After leaving for 7 days, the separator was peeled off, and the adhesive layer was bonded to a glass plate to produce a heat ray shielding material F11, and various performances were evaluated (see FIGS. 28 and 30).
(実施例44)
 熱線遮蔽材F5において、多層フィルムCのガラス板側に接着層を設けていない熱線遮蔽シートを作製した。
 一方、2枚のガラス板上にそれぞれ、第2の接着層としての380μm厚のPVB(ポリビニルブチラールフィルム、積水化学工業社製、S-LECTB)のシートを置いた。その後100℃の熱風オーブン中で2分間乾燥させて、ガラス板とPVBとを接着させて、片面に接着層を有するガラス板を2枚作製した。
(Example 44)
In the heat ray shielding material F5, the heat ray shielding sheet which did not provide the contact bonding layer on the glass plate side of the multilayer film C was produced.
On the other hand, a sheet of PVB (polyvinyl butyral film, Sekisui Chemical Co., Ltd., S-LETB) having a thickness of 380 μm as a second adhesive layer was placed on each of two glass plates. Thereafter, it was dried in a hot air oven at 100 ° C. for 2 minutes to bond the glass plate and PVB, and two glass plates having an adhesive layer on one side were produced.
 平らなテーブル上に、接着層を有する1枚のアルカリガラス板を接着層を上側にして置いた。その上に、上記の熱線遮蔽シートを多層フィルムCが貼合された側を上にして置いた。さらにその上に、接着層を有するもう1枚のアルカリガラス板を接着層を下側にして置いた。得られた多層シートを60℃加熱された金属ロールを有するロールラミネーターに通して仮圧着した。その後、仮圧着した多層シートをオートクレーブに入れ、130℃、13気圧、1時間の条件にてオートクレーブすることによって、本圧着して、熱線遮蔽シートが中間に挟まれた合わせガラスを作製した。その後、各種性能の評価を行った(図29、40参照)。 A single alkali glass plate having an adhesive layer was placed on a flat table with the adhesive layer facing upward. On top of this, the heat ray shielding sheet was placed with the side on which the multilayer film C was bonded facing up. Further thereon, another alkali glass plate having an adhesive layer was placed with the adhesive layer on the lower side. The obtained multilayer sheet was temporarily pressure-bonded through a roll laminator having a metal roll heated at 60 ° C. Thereafter, the multilayer sheet that had been temporarily press-bonded was placed in an autoclave and autoclaved under conditions of 130 ° C., 13 atm, and 1 hour, thereby being subjected to main press-bonding to produce a laminated glass having a heat ray shielding sheet sandwiched therebetween. Thereafter, various performances were evaluated (see FIGS. 29 and 40).
(実施例45)
 熱線遮蔽材F9において、多層フィルムCのガラス板側に接着層を設けていない熱線遮蔽シートを作製した。
 他は、実施例38と同様の条件で、熱線遮蔽シートが中間に挟まれた合わせガラスを作製した。その後、各種性能の評価を行った(図29、40参照)。
(Example 45)
In the heat ray shielding material F9, the heat ray shielding sheet which did not provide the contact bonding layer on the glass plate side of the multilayer film C was produced.
Others were produced under the same conditions as in Example 38 to produce a laminated glass with a heat ray shielding sheet sandwiched between them. Thereafter, various performances were evaluated (see FIGS. 29 and 40).
 実施例40~48および比較例21、比較例22で得られた結果を図9、図10に示した。 The results obtained in Examples 40 to 48 and Comparative Examples 21 and 22 are shown in FIGS.
 図36、図37は、第3実施形態と比較例の熱線遮蔽材の透過率・反射率のスペクトル図である。
 T1とR1は、それぞれ多層フィルムCとガラス板を接着層で貼り合せた積層材の透過率・反射率のスペクトル図である。多層フィルムCは、多層構造の1層当たりの厚さは250nmであるが、850~1050nmの波長領域において、特異的に透過率が低く、反射率が高いことが示されている。T2とR2は、それぞれ熱線遮蔽材F4(実施例46)の透過率・反射率のスペクトル図である。円形千鳥型配置3層金属層のみを有する熱線遮蔽材は、可視光線に近い近赤外線の波長領域(800~1200nm)において、透過率が高く、反射率は低いことが示されている。
36 and 37 are spectrum diagrams of transmittance and reflectance of the heat ray shielding materials of the third embodiment and the comparative example.
T1 and R1 are spectral diagrams of transmittance and reflectance, respectively, of a laminated material in which a multilayer film C and a glass plate are bonded together with an adhesive layer. The multilayer film C has a thickness of 250 nm per layer of the multilayer structure, but it is shown that the transmittance is specifically low and the reflectance is high in the wavelength region of 850 to 1050 nm. T2 and R2 are spectrum diagrams of transmittance and reflectance of the heat ray shielding material F4 (Example 46), respectively. It is shown that the heat ray shielding material having only the circular staggered three-layer metal layer has high transmittance and low reflectance in the near infrared wavelength region (800 to 1200 nm) close to visible light.
 T3とR3は、それぞれ熱線遮蔽材F5(実施例40)の透過率・反射率のスペクトル図である。多層フィルムCと円形千鳥型配置3層金属層を組み合わせることによって、可視光線に近い近赤外線の波長領域(800~1200nm)において、透過率が低く抑えられ、反射率を高めていることが示されている。 T3 and R3 are spectrum diagrams of transmittance and reflectance of the heat ray shielding material F5 (Example 40), respectively. The combination of the multilayer film C and the circular staggered three-layer metal layer shows that the transmittance is kept low and the reflectance is increased in the near-infrared wavelength region (800 to 1200 nm) close to visible light. ing.
 図38、図39は、比較例の熱線遮蔽材の透過率・反射率のスペクトル図である。T4とR4は、それぞれ多層フィルムDとガラス板を接着層で貼り合せた積層材の透過率・反射率のスペクトル図である。多層フィルムDは、多層構造の1層当たりの厚さは100nmであるが、多層フィルムCに見られたような可視光線に近い近赤外線の波長領域(800~1200nm)において透過率が低下するという特異的な特性は見られないものであった。 38 and 39 are spectrum diagrams of transmittance and reflectance of the heat ray shielding material of the comparative example. T4 and R4 are spectral diagrams of transmittance and reflectance of a laminated material in which a multilayer film D and a glass plate are bonded with an adhesive layer, respectively. The multilayer film D has a thickness of 100 nm per layer of the multilayer structure, but the transmittance decreases in the near-infrared wavelength region (800 to 1200 nm) close to visible light as seen in the multilayer film C. No specific characteristics were found.
 図9、図10において、実施例40~48の熱線遮蔽材は、島状の金属皮膜を多数配置して形成された金属層と多層構造を有する透明樹脂層(多層フィルム)とを有するものである。いずれも、熱線遮蔽係数が0.60以下と優れており、可視光線透過率、可視光線反射率、日射透過率、日射反射率、日射吸収率、反射光の色度・彩度、電磁波遮蔽率においても、良好な性能を有するものであった。 9 and 10, the heat ray shielding materials of Examples 40 to 48 have a metal layer formed by arranging a large number of island-like metal films and a transparent resin layer (multilayer film) having a multilayer structure. is there. All have excellent heat ray shielding coefficient of 0.60 or less, visible light transmittance, visible light reflectance, solar transmittance, solar reflectance, solar absorption rate, chromaticity / saturation of reflected light, electromagnetic wave shielding rate Also had good performance.
 実施例40と実施例41との対比から分かるように、円形千鳥型配置3層金属層と円形千鳥型配置5層金属層との比較では、5層金属層を有する実施例41の方が、熱線遮蔽係数や可視光線反射率等において優れていた。
 実施例41と実施例42との対比から分かるように、室内側に金属層を有し、室外側に多層構造を有する透明樹脂層を有する構成の方が、熱線遮蔽係数や日射反射率において優れていた。
 実施例43は、第4実施形態に係る実施例である。第3実施形態に係る実施例であり、類似の構成を有する実施例40と対比すると、ほぼ同等の性能を有していた。
As can be seen from the comparison between Example 40 and Example 41, in comparison between the circular staggered arrangement three-layer metal layer and the circular staggered arrangement five-layer metal layer, Example 41 having a five-layer metal layer is more It was excellent in heat ray shielding coefficient and visible light reflectance.
As can be seen from the comparison between Example 41 and Example 42, the configuration having a metal layer on the indoor side and a transparent resin layer having a multilayer structure on the outdoor side is superior in heat ray shielding coefficient and solar reflectance. It was.
Example 43 is an example according to the fourth embodiment. This is an example according to the third embodiment, and has almost the same performance when compared with Example 40 having a similar configuration.
 図9、図10において、実施例44と実施例45は、合わせガラスの構成を有するものであるが、いずれも熱線遮蔽係数が0.60以下と優れており、可視光線透過率、可視光線反射率、日射透過率、日射反射率、日射吸収率、電磁波遮蔽率においても、良好な性能を有するものであった。 9 and 10, Example 44 and Example 45 have a laminated glass structure, and both have excellent heat ray shielding coefficient of 0.60 or less, visible light transmittance, visible light reflection. In terms of rate, solar transmittance, solar reflectance, solar radiation absorption rate, and electromagnetic wave shielding rate, it also had good performance.
 比較例21と比較例22は、金属層が熱線遮蔽材の全面に存在するため、電磁波遮蔽率が過大なものとなっている。実施例46と実施例48は、多層構造を有する透明樹脂層を有しないものであり、実施例40と比べると、熱線遮蔽係数にやや劣っているものであった。実施例47は、島状の金属皮膜を多数配置して形成された金属層と多層構造を有する透明樹脂層(多層フィルムD)とを有するものである。しかし、多層フィルムDの光学特性に起因して、熱線遮蔽係数は相対的に低いものの、可視光線透過率がかなり低く、可視光線反射率が比較的高いものであった。 Comparative Example 21 and Comparative Example 22 have an excessive electromagnetic shielding rate because the metal layer is present on the entire surface of the heat ray shielding material. Example 46 and Example 48 did not have a transparent resin layer having a multilayer structure, and were slightly inferior to the heat ray shielding coefficient as compared with Example 40. Example 47 has a metal layer formed by arranging a large number of island-shaped metal films and a transparent resin layer (multilayer film D) having a multilayer structure. However, due to the optical characteristics of the multilayer film D, although the heat ray shielding coefficient was relatively low, the visible light transmittance was considerably low and the visible light reflectance was relatively high.
(実施例49~52、比較例23~30)
 実施例49~52、比較例23~30はいずれも、実施例23~28、比較例20と同様に、アルカリガラス板に貼り合せることをしないで作製した熱線遮蔽材である。これらは、第1実施形態の変形例に相当する構成のものである。製造方法は、実施例23~28、比較例20に準じて行い、図11に記載された内容の金属層を有する熱線遮蔽材を作製した。但し、金属層に用いるITOの代わりにSZO(スズ含有酸化亜鉛)を用いて製造した。それぞれ各種性能の評価を行った。
 実施例49~52、比較例23~30で得られた結果を図11、図12に示した。
(Examples 49 to 52, Comparative Examples 23 to 30)
As in Examples 23 to 28 and Comparative Example 20, Examples 49 to 52 and Comparative Examples 23 to 30 are heat ray shielding materials prepared without being bonded to an alkali glass plate. These have a configuration corresponding to a modification of the first embodiment. The manufacturing method was performed according to Examples 23 to 28 and Comparative Example 20, and a heat ray shielding material having a metal layer having the contents shown in FIG. 11 was produced. However, it manufactured using SZO (tin containing zinc oxide) instead of ITO used for a metal layer. Each performance was evaluated.
The results obtained in Examples 49 to 52 and Comparative Examples 23 to 30 are shown in FIGS.
 図11、図12から分かるように、本発明の規定を満足する実施例は、熱線遮蔽係数、可視光線透過率、可視光線反射率、電磁波遮蔽率、外観等において、良好な性能を有するものであった。一方、金属皮膜の形状等において本発明の規定を満足しない比較例は、電磁波遮蔽率や外観等において劣るものであった。 As can be seen from FIGS. 11 and 12, the examples satisfying the provisions of the present invention have good performance in heat ray shielding coefficient, visible light transmittance, visible light reflectance, electromagnetic wave shielding rate, appearance, and the like. there were. On the other hand, the comparative example which does not satisfy the provisions of the present invention in terms of the shape of the metal film is inferior in electromagnetic wave shielding rate, appearance and the like.
(実施例53~60、比較例31、比較例32)
 実施例53~60、比較例31、比較例32はいずれも、実施例23~28、比較例20と同様に、アルカリガラス板に貼り合せることをしないで作製した熱線遮蔽材である。これらは、第1実施形態の変形例に相当する構成のものである。製造方法は、実施例23~28、比較例20に準じて行い、図13に記載された内容の金属層を有する熱線遮蔽材を作製した。但し、金属層に用いるITOの代わりにIZO(インジウム含有酸化亜鉛)を用いて製造した。それぞれ各種性能の評価を行った。
 実施例53~60、比較例31、比較例32で得られた結果を図13、図14に示した。
(Examples 53 to 60, Comparative Example 31, Comparative Example 32)
Each of Examples 53 to 60, Comparative Example 31, and Comparative Example 32 is a heat ray shielding material produced without being bonded to an alkali glass plate, as in Examples 23 to 28 and Comparative Example 20. These have a configuration corresponding to a modification of the first embodiment. The manufacturing method was performed according to Examples 23 to 28 and Comparative Example 20, and a heat ray shielding material having a metal layer having the contents shown in FIG. 13 was produced. However, it manufactured using IZO (indium containing zinc oxide) instead of ITO used for a metal layer. Each performance was evaluated.
The results obtained in Examples 53 to 60, Comparative Example 31, and Comparative Example 32 are shown in FIGS.
 図13、図14から分かるように、本発明の規定を満足する実施例は、熱線遮蔽係数、可視光線透過率、可視光線反射率、反射光の色度・彩度、電磁波遮蔽率、外観において、良好な性能を有するものであった。一方、金属層において、島状の金属皮膜を多数配置して形成されていない比較例は、電磁波遮蔽率において劣るものであった。 As can be seen from FIGS. 13 and 14, the examples satisfying the provisions of the present invention are as follows: heat ray shielding coefficient, visible light transmittance, visible light reflectance, chromaticity / saturation of reflected light, electromagnetic wave shielding rate, and appearance. It had good performance. On the other hand, the comparative example in which a large number of island-shaped metal films are not formed in the metal layer is inferior in the electromagnetic wave shielding rate.
 1A、1B、1C、10、20A、20B、20C、20D、30、40 熱線遮蔽材
 2、2a 基材(窓板)
 3、3a 接着層
 4、4a、4b、4c、4d 金属層
 5  基材
 6  ハードコート層
 8、8a 多層構造を有する透明樹脂層
1A, 1B, 1C, 10, 20A, 20B, 20C, 20D, 30, 40 Heat-shielding material 2, 2a Base material (window plate)
3, 3a Adhesive layer 4, 4a, 4b, 4c, 4d Metal layer 5 Base material 6 Hard coat layer 8, 8a Transparent resin layer having a multilayer structure

Claims (11)

  1.  基材と金属層とを備える熱線遮蔽材であって、
     前記金属層が島状の金属皮膜を多数配置して形成されており、
     前記金属皮膜の径が0.05~0.50mmであり、
     前記金属皮膜間の距離が0.02~0.23mmであり、
     前記金属皮膜に被覆されていない部分の面積率が11~80%であり、
     可視光線透過率が45%以上であり、
     電磁波遮蔽率が10dB以下であることを特徴とする熱線遮蔽材。
    A heat ray shielding material comprising a base material and a metal layer,
    The metal layer is formed by arranging a number of island-shaped metal films,
    The diameter of the metal film is 0.05 to 0.50 mm;
    The distance between the metal films is 0.02 to 0.23 mm,
    The area ratio of the portion not covered with the metal film is 11 to 80%,
    Visible light transmittance is 45% or more,
    A heat ray shielding material having an electromagnetic wave shielding rate of 10 dB or less.
  2.  前記基材の一方の面に金属層を備え、他方の面に多層構造を有する樹脂層を備え、前記多層構造の1層当たりの厚さが50~1000nmであることを特徴とする請求項1に記載の熱線遮蔽材。 The metal substrate is provided on one surface of the substrate, the resin layer having a multilayer structure is provided on the other surface, and the thickness per layer of the multilayer structure is 50 to 1000 nm. The heat ray shielding material described in 1.
  3.  前記基材が、多層構造を有する樹脂材であり、前記多層構造の1層当たりの厚さが50~1000nmであることを特徴とする請求項1に記載の熱線遮蔽材。 2. The heat ray shielding material according to claim 1, wherein the base material is a resin material having a multilayer structure, and the thickness per layer of the multilayer structure is 50 to 1000 nm.
  4.  前記基材が2枚あり、当該2枚の基材で前記金属層を挟む構成を有することを特徴とする請求項1に記載の熱線遮蔽材。 The heat ray shielding material according to claim 1, wherein there are two base materials, and the metal layer is sandwiched between the two base materials.
  5.  可視光線反射率が25%以下であることを特徴とする請求項1~4のいずれか1項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 4, wherein the visible light reflectance is 25% or less.
  6.  熱線遮蔽係数が0.9以下であることを特徴とする請求項1~5のいずれか1項に記載の熱線遮蔽材。 6. The heat ray shielding material according to claim 1, wherein the heat ray shielding coefficient is 0.9 or less.
  7.  前記金属層が複数の金属層から構成されていることを特徴とする請求項1~6のいずれか1項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 6, wherein the metal layer is composed of a plurality of metal layers.
  8.  前記金属層が銀を含有することを特徴とする請求項1~7のいずれか1項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 7, wherein the metal layer contains silver.
  9.  熱貫流率が5.9W/mK未満であることを特徴とする請求項1~8のいずれか1項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 8, wherein the heat transmissivity is less than 5.9 W / m 2 K.
  10.  紫外線透過率が5%以下であることを特徴とする請求項1~9のいずれか1項に記載の熱線遮蔽材。 The heat ray shielding material according to any one of claims 1 to 9, wherein the ultraviolet ray transmittance is 5% or less.
  11.  前記金属皮膜の径が0.15~0.50mmであり、
     前記金属皮膜間の距離が0.04~0.23mmであることを特徴とする請求項1~10のいずれか1項に記載の熱線遮蔽材。
    The metal film has a diameter of 0.15 to 0.50 mm;
    The heat ray shielding material according to any one of claims 1 to 10, wherein a distance between the metal films is 0.04 to 0.23 mm.
PCT/JP2014/072056 2013-08-23 2014-08-22 Heat ray shielding material WO2015025963A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015532922A JPWO2015025963A1 (en) 2013-08-23 2014-08-22 Heat ray shielding material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013172894 2013-08-23
JP2013-172894 2013-08-23
JP2014087297 2014-04-21
JP2014-087297 2014-04-21

Publications (1)

Publication Number Publication Date
WO2015025963A1 true WO2015025963A1 (en) 2015-02-26

Family

ID=52483733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072056 WO2015025963A1 (en) 2013-08-23 2014-08-22 Heat ray shielding material

Country Status (2)

Country Link
JP (1) JPWO2015025963A1 (en)
WO (1) WO2015025963A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017056588A (en) * 2015-09-15 2017-03-23 大日本印刷株式会社 Radio wave-transmitting infrared reflective laminate, closing member, and method for manufacturing radio wave-transmitting infrared reflective laminate
JP2018054760A (en) * 2016-09-27 2018-04-05 株式会社日本触媒 Selective light absorbing resin laminate
EP3513964A4 (en) * 2016-10-18 2019-10-16 Samsung Electronics Co., Ltd. Film laminate and window product comprising same
US20210191011A1 (en) * 2018-09-14 2021-06-24 AGC Inc. Radio wave transmissive substrate
EP3738766A4 (en) * 2018-01-12 2021-10-20 Nitto Denko Corporation Electromagnetic wave transmissive metallic luster film
US11383478B2 (en) * 2016-10-24 2022-07-12 Nitto Denko Corporation Metallic lustrous member with electromagnetic wave transmissibility, article using the member, and metal thin film
US11577491B2 (en) * 2018-01-12 2023-02-14 Nitto Denko Corporation Metallic lustrous member with radio wave transmissibility, article using same, and production method therefor
WO2024014417A1 (en) * 2022-07-13 2024-01-18 Agc株式会社 Heat reflective substrate, manufacturing method therefor, and window glass

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187739A (en) * 1989-12-15 1991-08-15 Takiron Co Ltd Heat rays masking shield
JPH08250915A (en) * 1995-02-07 1996-09-27 Saint Gobain Vitrage Conductive-layer including glass for car
JP2002506596A (en) * 1998-04-21 2002-02-26 サン−ゴバン ビトラージュ Transparent sheets, especially windowpanes with coatings and radiation windows
JP2010527816A (en) * 2007-05-23 2010-08-19 スリーエム イノベイティブ プロパティズ カンパニー Light diffusion solar control film
WO2010119797A1 (en) * 2009-04-13 2010-10-21 旭硝子株式会社 Laminate for automobile glass, method for producing same, and windshield glass
JP2012037634A (en) * 2010-08-05 2012-02-23 Asahi Glass Co Ltd Solar radiation control film and film-adhered glass using the same
JP2013006713A (en) * 2011-06-22 2013-01-10 Nissan Motor Co Ltd Laminated glass

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187739A (en) * 1989-12-15 1991-08-15 Takiron Co Ltd Heat rays masking shield
JPH08250915A (en) * 1995-02-07 1996-09-27 Saint Gobain Vitrage Conductive-layer including glass for car
JP2002506596A (en) * 1998-04-21 2002-02-26 サン−ゴバン ビトラージュ Transparent sheets, especially windowpanes with coatings and radiation windows
JP2010527816A (en) * 2007-05-23 2010-08-19 スリーエム イノベイティブ プロパティズ カンパニー Light diffusion solar control film
WO2010119797A1 (en) * 2009-04-13 2010-10-21 旭硝子株式会社 Laminate for automobile glass, method for producing same, and windshield glass
JP2012037634A (en) * 2010-08-05 2012-02-23 Asahi Glass Co Ltd Solar radiation control film and film-adhered glass using the same
JP2013006713A (en) * 2011-06-22 2013-01-10 Nissan Motor Co Ltd Laminated glass

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017056588A (en) * 2015-09-15 2017-03-23 大日本印刷株式会社 Radio wave-transmitting infrared reflective laminate, closing member, and method for manufacturing radio wave-transmitting infrared reflective laminate
JP2018054760A (en) * 2016-09-27 2018-04-05 株式会社日本触媒 Selective light absorbing resin laminate
EP3513964A4 (en) * 2016-10-18 2019-10-16 Samsung Electronics Co., Ltd. Film laminate and window product comprising same
AU2017347218B2 (en) * 2016-10-18 2022-02-03 Samsung Electronics Co., Ltd. Film laminate and window product comprising same
US11285705B2 (en) 2016-10-18 2022-03-29 Samsung Electronics Co., Ltd. Film laminate and window product comprising same
US11383478B2 (en) * 2016-10-24 2022-07-12 Nitto Denko Corporation Metallic lustrous member with electromagnetic wave transmissibility, article using the member, and metal thin film
EP3738766A4 (en) * 2018-01-12 2021-10-20 Nitto Denko Corporation Electromagnetic wave transmissive metallic luster film
US11577491B2 (en) * 2018-01-12 2023-02-14 Nitto Denko Corporation Metallic lustrous member with radio wave transmissibility, article using same, and production method therefor
JP7332298B2 (en) 2018-01-12 2023-08-23 日東電工株式会社 Electromagnetic wave permeable metallic luster film
US20210191011A1 (en) * 2018-09-14 2021-06-24 AGC Inc. Radio wave transmissive substrate
WO2024014417A1 (en) * 2022-07-13 2024-01-18 Agc株式会社 Heat reflective substrate, manufacturing method therefor, and window glass

Also Published As

Publication number Publication date
JPWO2015025963A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
WO2015025963A1 (en) Heat ray shielding material
US10870262B2 (en) Laminated glass
JP6498662B2 (en) Laminated glazing
KR100939747B1 (en) Electromagnetic wave shielding light-transmitting window member, its manufacturing method, and display panel
JP6287533B2 (en) Heat-shielding laminated glass
US20090237782A1 (en) Near Infrared Ray Reflective Substrate And Near Infrared Ray Reflective Laminated Glass Employing That Substrate, Near Infrared Ray Reflective Double Layer Glass
WO2016125823A1 (en) Heat shielding film, and heat shielding laminated glass and method for manufacturing same
KR102605053B1 (en) Electrically controllable device with variable scattering properties due to liquid crystals
JP2014518837A5 (en)
JP2014012373A (en) Glass resin laminate
JP2007148330A (en) Near infrared ray reflective substrate and near infrared ray reflective laminated glass using the same
JP2013006713A (en) Laminated glass
JP6549044B2 (en) Heat shielding laminated glass for automobiles
JP6064869B2 (en) Heat ray shielding film
JP2016144930A (en) Heat-shielding film, heat-shielding laminated glass, method for manufacturing heat-shielding film and method for manufacturing heat-shielding laminated glass
WO2014191234A1 (en) An electrophoretic solar control device
US20200230924A1 (en) Laminated glazing having a functional film
KR102007723B1 (en) The heat insulation film
JP2017185669A (en) Thermal barrier film and thermal barrier laminated glass
JP2014240907A (en) Heat ray shielding film
KR102113225B1 (en) smart window film and manufacturing method thereof
JP6167986B2 (en) Heat ray shielding film
CN111770834A (en) Heat ray-shielding structure, laminated glass comprising heat ray-shielding structure, and methods for producing heat ray-shielding structure and laminated glass
JP2021062991A (en) Window glass for vehicle
JP7255179B2 (en) Heat ray shielding laminated glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838581

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532922

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838581

Country of ref document: EP

Kind code of ref document: A1