JP6877180B2 - Method for manufacturing a base material with an infrared reflective multilayer film and a base material with an infrared reflective multilayer film - Google Patents

Method for manufacturing a base material with an infrared reflective multilayer film and a base material with an infrared reflective multilayer film Download PDF

Info

Publication number
JP6877180B2
JP6877180B2 JP2017034213A JP2017034213A JP6877180B2 JP 6877180 B2 JP6877180 B2 JP 6877180B2 JP 2017034213 A JP2017034213 A JP 2017034213A JP 2017034213 A JP2017034213 A JP 2017034213A JP 6877180 B2 JP6877180 B2 JP 6877180B2
Authority
JP
Japan
Prior art keywords
inorganic film
film
refractive index
infrared
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017034213A
Other languages
Japanese (ja)
Other versions
JP2018141818A (en
Inventor
誠之 島田
誠之 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017034213A priority Critical patent/JP6877180B2/en
Publication of JP2018141818A publication Critical patent/JP2018141818A/en
Application granted granted Critical
Publication of JP6877180B2 publication Critical patent/JP6877180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、赤外線反射多層膜付き基材に関する。 The present invention relates to a substrate with an infrared reflective multilayer film.

近年、外壁、ガラス等の基材の遮熱・省エネ対策として、赤外線カット膜が使用されている。一般に、赤外線カット膜には、赤外線吸収膜と赤外線反射膜がある。赤外線吸収膜は、熱も吸収するタイプであり、遮熱効果は高いが、基材自体の温度が高くなり、基材がガラス等の場合には、熱割れ等の危険性が高くなるため、使用可能な用途が限定されてしまう、という欠点がある。また、赤外線カット膜自体は、樹脂との混合品やフィルム化されているため、表面は絶縁で撥水と汚れやすい構造になっていることが多く、汚れによって吸熱して劣化が早くなり、性能が低下してしまう。 In recent years, an infrared cut film has been used as a heat shield / energy saving measure for a base material such as an outer wall or glass. Generally, the infrared cut film includes an infrared absorbing film and an infrared reflecting film. The infrared absorbing film is a type that also absorbs heat and has a high heat shielding effect, but the temperature of the base material itself becomes high, and if the base material is glass or the like, the risk of heat cracking increases. There is a drawback that the usable applications are limited. In addition, since the infrared cut film itself is a mixture with resin or made into a film, the surface is often insulated and has a structure that is water repellent and easily soiled. Will decrease.

赤外線反射膜としては、表面処理対象物への表面処理に用いる表面処理材であって、前記表面処理対象物に対するバインダーを含まず、熱線反射性金属化合物を成分とする水分散液または水溶液でなることを特徴とする表面処理材(酸化チタン)により表面処理された表面処理ガラス(特許文献1の請求項1、2、9)が、報告されている。 The infrared reflective film is a surface treatment material used for surface treatment of a surface treatment target, and is an aqueous dispersion or an aqueous solution containing a heat ray reflective metal compound as a component without containing a binder for the surface treatment target. Surface-treated glass (claims 1, 2, and 9 of Patent Document 1) surface-treated with a surface-treating material (titanium oxide) is reported.

しかしながら、上記の表面処理ガラスは、バインダーを含まないため、ガラスと表面処理剤との接着力が低く、表面硬度が低い、加えて、実質的に含有される酸化チタンの光触媒作用により、周辺の有機物が劣化してしまい易い、という欠点がある。 However, since the above-mentioned surface-treated glass does not contain a binder, the adhesive force between the glass and the surface-treating agent is low, the surface hardness is low, and in addition, due to the photocatalytic action of titanium oxide contained substantially, the surroundings There is a drawback that organic substances tend to deteriorate.

また、多層構造の赤外線反射膜を利用する基材として、平行な第2の透明基材から間隔を開けて配置された第1の透明基材と、前記第1の透明基材と前記第2の透明基材との間で画定される密閉空間と、前記第1の透明基材と前記第2の透明基材との間に配置された少なくとも1つの赤外線反射多層高分子フィルムと、を含む、断熱ガラスユニットであって、前記赤外線反射多層高分子フィルムが第1のポリマー材料及び第2のポリマー材料の複数の交互性高分子層を有し、前記交互性高分子層の少なくとも1つは複屈折で配向されており、前記交互性高分子層は協働して赤外線を反射する、断熱ガラスユニット(特許文献2の請求項1)が、報告されている。 Further, as a base material using the infrared reflective film having a multilayer structure, a first transparent base material arranged at intervals from a parallel second transparent base material, the first transparent base material, and the second transparent base material. Includes a closed space defined between the transparent substrates and at least one infrared reflective multilayer polymer film disposed between the first transparent substrate and the second transparent substrate. In a heat insulating glass unit, the infrared reflective multilayer polymer film has a plurality of alternating polymer layers of a first polymer material and a second polymer material, and at least one of the alternating polymer layers is A heat insulating glass unit (claim 1 of Patent Document 2), which is oriented by double refraction and in which the alternating polymer layers cooperate to reflect infrared rays, has been reported.

しかしながら、上記断熱ガラスユニットは、ポリマーを使用するため、長期的な耐候性に問題がある、構造が複雑なので、製造工程が長くなり、高コストになる、という問題がある。また、フィルムとして外での使用が考えられていない。 However, since the heat insulating glass unit uses a polymer, there is a problem in long-term weather resistance, and since the structure is complicated, there are problems that the manufacturing process becomes long and the cost becomes high. Moreover, it is not considered to be used outside as a film.

別の多層構造の赤外線反射膜を利用するフィルムとして、透明導電性熱線反射フィルムの少なくとも片面に可視光線反射防止層を積層してなる積層フィルムであって、可視光線反射率が5%以下、赤外線反射率が75%以上であることを特徴とする透明積層フィルムであって、透明導電性熱線反射層が、金属層と誘電体層を積層してなる層であり、該金属層がAu、Ag、CuおよびAlから選ばれる1種以上の金属または合金からなる層であり、かつ該誘電体層がTiO、Ta、ZrO、SnO、SiO、SiO、InおよびZnOから選ばれる1種以上からなる層である透明積層フィルム(特許文献3の請求項1、2)が、報告されている。 As a film using another multilayer structure infrared reflective film, it is a laminated film formed by laminating a visible light antireflection layer on at least one side of a transparent conductive heat ray reflective film, and has a visible light reflectance of 5% or less and infrared rays. A transparent laminated film having a reflectance of 75% or more, wherein the transparent conductive heat ray reflective layer is a layer formed by laminating a metal layer and a dielectric layer, and the metal layers are Au and Ag. , Cu and Al, and the dielectric layer is TiO 2 , Ta 2 O 5 , ZrO 2 , SnO 2 , SiO, SiO 2 , In 2 O 3 and A transparent laminated film (claims 1 and 2 of Patent Document 3), which is a layer composed of one or more kinds selected from ZnO, has been reported.

しかしながら、上記透明積層フィルムは、金属層を含有するため、透明性に劣る、金属層が酸化してしまう、フィルムが、熱可塑性樹脂である(第0008〜0012段落)ため、長期的な耐候性に劣る、という問題がある。つまり屋外使用には、適していない。 However, since the transparent laminated film contains a metal layer, it is inferior in transparency, the metal layer is oxidized, and the film is a thermoplastic resin (paragraphs 0008 to 0012), so that it has long-term weather resistance. There is a problem that it is inferior to. That is, it is not suitable for outdoor use.

同様な熱線反射フィルムとして、耐候性を有する二軸配向ポリエステルフィルムを基材(A)とし、該基材の少なくとも片面に熱線反射層(B)および表面保護層(C)を設けた積層フィルムであって、該積層フィルムの可視光線透過率が50%以上、近赤外線反射率が50%以上、かつヘーズ値が5%以下であることを特徴とする屋外使用に適した熱線反射フィルムであって、熱線反射層(B)が、金属層と誘電体層とを交互に積層してなる層であり、かつ金属層を構成する金属がAu、AgおよびCuから選ばれた1種以上の金属または合金である請求項1記載の屋外使用に適した熱線反射フィルム(特許文献4の請求項1、5)が、報告されている。 As a similar heat ray reflecting film, a laminated film in which a weather-resistant biaxially oriented polyester film is used as a base material (A) and a heat ray reflecting layer (B) and a surface protective layer (C) are provided on at least one surface of the base material. A heat ray reflective film suitable for outdoor use, characterized in that the visible light transmittance of the laminated film is 50% or more, the near infrared reflectance is 50% or more, and the haze value is 5% or less. , The heat ray reflecting layer (B) is a layer formed by alternately laminating metal layers and dielectric layers, and the metal constituting the metal layer is one or more metals selected from Au, Ag and Cu. A heat ray reflecting film (claims 1 and 5 of Patent Document 4) suitable for outdoor use according to claim 1 which is an alloy has been reported.

しかしながら、上記熱線反射フィルムも、金属層を含有するため、透明性に劣る、金属層が酸化してしまう、フィルムが、ポリエステルであるため、長期的な耐候性に劣る、という問題がある。 However, since the heat ray reflecting film also contains a metal layer, there are problems that the transparency is inferior, the metal layer is oxidized, and the film is polyester, so that the long-term weather resistance is inferior.

特開2011−246293号公報Japanese Unexamined Patent Publication No. 2011-246293 特表2009−539648号公報Special Table 2009-539648 特開2001−310407号公報Japanese Unexamined Patent Publication No. 2001-310407 特開2000−117918号公報Japanese Unexamined Patent Publication No. 2000-117918

本発明が解決しようとする課題は、赤外線の反射性が高く、可視光の透明性、断熱性に優れ、放熱効果が高く、さらに硬度が高く、長期の耐候性がある無機物で構成された屋外に使用可能な防汚機能の持つ赤外線反射多層膜を有する基材を提供することである。 The problem to be solved by the present invention is the outdoors composed of an inorganic substance having high infrared reflection, excellent transparency of visible light, excellent heat insulating property, high heat dissipation effect, high hardness, and long-term weather resistance. It is an object of the present invention to provide a base material having an infrared reflective multilayer film having an antifouling function that can be used in the above.

本発明は、以下の構成を有することによって上記問題を解決した赤外線反射多層膜付き基材に関する。
〔1〕基材、赤外線遮断無機膜、低屈折率無機膜、および高屈折率無機膜をこの順に備えることを特徴とする、赤外線反射多層膜付き基材。
〔2〕赤外線遮断無機膜、および低屈折率無機膜が、シリカナノ粒子を含み、高屈折率無機膜が、酸化ニオブナノ粒子およびダイヤモンドナノ粒子を含む、上記〔1〕記載の赤外線反射多層膜付き基材。
〔3〕基材の少なくとも一方の面に、赤外線遮断無機膜を形成するための赤外線遮断無機膜形成用分散液を、湿度:50%以下で、塗布する工程、および赤外線遮断無機膜を形成するための赤外線遮断無機膜形成用分散液が塗布された基材を、温度0〜40℃で乾燥させる工程、
基材に形成された赤外線遮断無機膜に、低屈折率無機膜を形成するための低屈折率無機膜形成用分散液を、湿度:50%以下で、塗布する工程、および低屈折率無機膜を形成するための低屈折率無機膜形成用分散液が塗布された基材を、温度0〜40℃で乾燥させる工程、
基材に形成された低屈折率無機膜に、高屈折率無機膜を形成するための高屈折率無機膜形成用分散液を、湿度:50%以下で、塗布する工程、および高屈折率無機膜形成用分散液が塗布された基材を、温度0〜100℃で乾燥させる工程、
をこの順に含む、上記〔1〕または〔2〕記載の赤外線反射多層膜付き基材の製造方法。
The present invention relates to a base material with an infrared reflective multilayer film that solves the above problems by having the following configuration.
[1] A base material with an infrared reflective multilayer film, which comprises a base material, an infrared blocking inorganic film, a low refractive index inorganic film, and a high refractive index inorganic film in this order.
[2] The group with an infrared reflective multilayer film according to the above [1], wherein the infrared blocking inorganic film and the low refractive index inorganic film contain silica nanoparticles, and the high refractive index inorganic film contains niobium oxide nanoparticles and diamond nanoparticles. Material.
[3] A step of applying an infrared blocking inorganic film forming dispersion liquid for forming an infrared blocking inorganic film on at least one surface of the base material at a humidity of 50% or less, and forming an infrared blocking inorganic film. A step of drying a base material coated with a dispersion liquid for forming an infrared blocking inorganic film at a temperature of 0 to 40 ° C.
A step of applying a dispersion liquid for forming a low refractive index inorganic film for forming a low refractive index inorganic film on an infrared blocking inorganic film formed on a base material at a humidity of 50% or less, and a low refractive index inorganic film. A step of drying a base material coated with a dispersion liquid for forming a low refractive index inorganic film at a temperature of 0 to 40 ° C.
A step of applying a dispersion liquid for forming a high-refractive-index inorganic film for forming a high-refractive-index inorganic film on a low-refractive-index inorganic film formed on a base material at a humidity of 50% or less, and a high-refractive index inorganic film. A step of drying a substrate coated with a film-forming dispersion at a temperature of 0 to 100 ° C.
The method for producing a base material with an infrared reflective multilayer film according to the above [1] or [2], which comprises the above in this order.

本発明〔1〕によれば、赤外線の反射性が高く、可視光の透明性に優れるため、放熱効果が高く、さらに硬度が高く、長期の耐候性がある無機物で構成された赤外線反射多層膜を有する基材を提供することができる。 According to the present invention [1], an infrared reflective multilayer film composed of an inorganic substance having high infrared reflection and excellent visible light transparency, thus having a high heat dissipation effect, high hardness, and long-term weather resistance. A substrate having the above can be provided.

本発明〔3〕によれば、赤外線遮断無機膜、低屈折率無機膜、高屈折率無機膜を有する赤外線反射多層膜付き基材を、低温で、簡便に製造することができる。また、各分散液を水系にすることにより、環境に優しい製造方法で、赤外線反射多層膜付き基材を、低温で、簡便に製造することができる。 According to the present invention [3], a substrate with an infrared reflective multilayer film having an infrared blocking inorganic film, a low refractive index inorganic film, and a high refractive index inorganic film can be easily produced at a low temperature. Further, by making each dispersion liquid water-based, a base material with an infrared reflective multilayer film can be easily manufactured at a low temperature by an environment-friendly manufacturing method.

本発明の赤外線反射多層膜の断面の模式図の一例である。This is an example of a schematic cross-sectional view of the infrared reflective multilayer film of the present invention.

本発明の赤外線反射多層膜付き基材は、基材、赤外線遮断無機膜、および低屈折率無機膜、および高屈折率無機膜をこの順に備えることを特徴とする。ここで、赤外線遮断無機膜は、基材と同じ屈折率に調整し(基材がガラスの場合、例えば、1.51〜1.59、特に、1.52)、基材より低屈折率である低屈折率無機膜の屈折率は、1.29〜1.50であり、1.29〜1.40であると好ましく、基材より高屈折率である高屈折率無機膜の屈折率は、1.6〜2.0であり、1.8〜2.0であると好ましい。この赤外線反射多層膜は、すべて無機材料で構成されており、基材よりも熱伝導率及び熱放射性が高いため、放熱効果が高く、かつ熱膨張率を抑えることができる。このため、特に、基材がガラスであるとき、ガラスの熱割れを抑制することができる。この赤外線反射多層膜で、特定波長域(近赤外線の中の800〜1200nm)の反射率を上げることにより、基材の太陽熱吸収率を下げ、基材の温度上昇を抑制することが可能となる。例えば、市販されているLow−E(Low Emissivity(低放射))複層ガラスと違い、金属膜の酸化が発生しないため、この赤外線反射多層膜は、単板ガラスにも使用可能であり、外壁側にも使用することができる。また、表面が導電性を有し、親水性を示すことから、汚れが付きにくく、汚れが落ちやすい表面を持つことが可能となる。 The base material with an infrared reflective multilayer film of the present invention is characterized by comprising a base material, an infrared blocking inorganic film, a low refractive index inorganic film, and a high refractive index inorganic film in this order. Here, the infrared blocking inorganic film is adjusted to have the same refractive index as the base material (when the base material is glass, for example, 1.51 to 1.59, particularly 1.52), and has a lower refractive index than the base material. The refractive index of a low refractive index inorganic film is 1.29 to 1.50, preferably 1.29 to 1.40, and the refractive index of a high refractive index inorganic film having a higher refractive index than that of the base material is , 1.6 to 2.0, preferably 1.8 to 2.0. Since this infrared reflective multilayer film is entirely made of an inorganic material and has higher thermal conductivity and thermal radioactivity than the base material, it has a high heat dissipation effect and can suppress the coefficient of thermal expansion. Therefore, especially when the base material is glass, thermal cracking of the glass can be suppressed. By increasing the reflectance in a specific wavelength range (800 to 1200 nm in near infrared rays) with this infrared reflective multilayer film, it is possible to reduce the solar heat absorption rate of the base material and suppress the temperature rise of the base material. .. For example, unlike the commercially available Low-E (Low Emissivity) double glazing, the metal film does not oxidize, so this infrared reflective multilayer glass can also be used for single glass, and is on the outer wall side. Can also be used for. In addition, since the surface has conductivity and is hydrophilic, it is possible to have a surface that is hard to get dirty and easy to remove.

図1に、本発明の赤外線反射多層膜の断面の模式図の一例を示す。図1に示すように、本発明の赤外線反射多層膜付き基材1は、基材10、赤外線遮断無機膜20、低屈折率無機膜30、および高屈折率無機膜40をこの順に備えることを特徴とする。 FIG. 1 shows an example of a schematic cross-sectional view of the infrared reflective multilayer film of the present invention. As shown in FIG. 1, the base material 1 with an infrared reflective multilayer film of the present invention includes a base material 10, an infrared blocking inorganic film 20, a low refractive index inorganic film 30, and a high refractive index inorganic film 40 in this order. It is a feature.

本発明の赤外線反射多層膜付き基材は、
基材の少なくとも一方の面に、赤外線遮断無機膜を形成するための赤外線遮断無機膜形成用分散液を、湿度:50%以下で、塗布する工程、および赤外線遮断無機膜を形成するための赤外線遮断膜形成用分散液が塗布された基材を、温度0〜40℃で乾燥させる工程、
基材に形成された赤外線遮断無機膜に、低屈折率無機膜を形成するための低屈折率無機膜形成用分散液を、湿度:50%以下で、塗布する工程、および低屈折率無機膜を形成するための低屈折率無機膜形成用分散液が塗布された基材を、温度0〜40℃で乾燥させる工程、
基材に形成された低屈折率無機膜に、高屈折率無機膜を形成するための高屈折率無機膜形成用分散液を、湿度:50%以下で、塗布する工程、および高屈折率無機膜形成用分散液が塗布された基材を、温度0〜100℃で乾燥させる工程、
をこの順に含む方法により、簡便に製造することができる。
The base material with an infrared reflective multilayer film of the present invention is
A step of applying an infrared blocking inorganic film forming dispersion liquid for forming an infrared blocking inorganic film on at least one surface of a substrate at a humidity of 50% or less, and infrared rays for forming an infrared blocking inorganic film. A step of drying a base material coated with a dispersion liquid for forming a blocking film at a temperature of 0 to 40 ° C.
A step of applying a dispersion liquid for forming a low refractive index inorganic film for forming a low refractive index inorganic film on an infrared blocking inorganic film formed on a base material at a humidity of 50% or less, and a low refractive index inorganic film. A step of drying a base material coated with a dispersion liquid for forming a low refractive index inorganic film at a temperature of 0 to 40 ° C.
A step of applying a dispersion liquid for forming a high-refractive-index inorganic film for forming a high-refractive-index inorganic film on a low-refractive-index inorganic film formed on a base material at a humidity of 50% or less, and a high-refractive index inorganic film. A step of drying a substrate coated with a film-forming dispersion at a temperature of 0 to 100 ° C.
Can be easily produced by a method containing the above in this order.

なお、常温(0〜40℃)での成膜では、各分散液中の溶媒の揮発により、膜厚を厚くすればするほど、膜表面に揮発の気泡の影響が残り、膜強度が脆くなり、クラックが発生しやすくなる傾向がある。低屈折無機膜単体および高屈折無機膜単体の場合には、膜厚が300nmを超えると、膜中にクラックが入りやすくなり、膜強度が低下するが、多層膜化することにより、合計膜厚が1μm以上の状態でも膜強度を高くすることができる。例えば、鉛筆硬度試験で、赤外線遮断無機膜は6H、低屈折無機膜は7H、高屈折無機膜は9Hであり、多層膜層は10H以上である。さらに、特に、カーボンナノファイバー、グラフェンナノ粒子などを膜に含有させると、膜にクラックが発生しにくくなり、より膜厚を厚くすることができる。 In the film formation at room temperature (0 to 40 ° C.), due to the volatilization of the solvent in each dispersion, the thicker the film thickness, the more the influence of volatile bubbles remains on the film surface, and the film strength becomes brittle. , Cracks tend to occur easily. In the case of a low refraction inorganic film alone and a high refraction inorganic film alone, if the film thickness exceeds 300 nm, cracks are likely to occur in the film and the film strength decreases, but the total film thickness is increased by forming a multilayer film. The film strength can be increased even when the thickness is 1 μm or more. For example, in the pencil hardness test, the infrared blocking inorganic film is 6H, the low refraction inorganic film is 7H, the high refraction inorganic film is 9H, and the multilayer film layer is 10H or more. Further, in particular, when carbon nanofibers, graphene nanoparticles and the like are contained in the film, cracks are less likely to occur in the film, and the film thickness can be further increased.

〔基材〕
基材としては、ガラス、ポリカーボネート樹脂、アクリル樹脂、ポリエチレンテレフタレート樹脂、ポリメチルメタクリレート樹脂、塩化ビニル樹脂等が挙げられ、耐候性の観点から、ガラスが好ましい。ただし、赤外線反射多層無機膜自体に紫外線遮断能力があるため、赤外線反射多層無機膜を形成することにより、これらの樹脂の耐候性が向上する。
〔Base material〕
Examples of the base material include glass, polycarbonate resin, acrylic resin, polyethylene terephthalate resin, polymethylmethacrylate resin, vinyl chloride resin and the like, and glass is preferable from the viewpoint of weather resistance. However, since the infrared reflective multilayer inorganic film itself has an ultraviolet blocking ability, the weather resistance of these resins is improved by forming the infrared reflective multilayer inorganic film.

〔赤外線遮断無機膜〕
赤外線遮断無機膜形成用分散液は、シリカナノ粒子および中空ナノシリカを含むと好ましく、さらに、セシウム酸化タングステンナノ粒子、酸化インジウム錫(ITO)ナノ粒子、ATOナノ粒子、金属ルテニウム粒子、Ti0ナノ粒子、ZnOナノ粒子、InZnOナノ粒子、およびCeO2ナノ粒子からなる群より選択される少なくとも1種と、溶媒とを含むと、より好ましい。ここで、ナノ粒子とは、透過型電子顕微鏡で測定した粒子径(n=50)が、20nm未満のものをいう。ナノ粒子の平均粒径は、透過型電子顕微鏡で測定した質量平均粒子径である(n=50)。ただし、中空ナノシリカ粒子のみについては、平均粒径が50〜300nmのものをいう。シリカナノ粒子は、透過型電子顕微鏡で測定したシングルナノ粒子の粒径が、シングルナノ粒子100質量部に対して、1〜9nm:100質量部のものである。ここで、シリカのシングルナノ粒子とは、透過型電子顕微鏡で測定した粒子径(n=50)が、10nm未満のものをいう。10nm以上のシリカのナノ粒子を使用すると、赤外線遮断無機膜の透過率が低くなり易い。アモルファスであることは、X線回折で確認する。中空ナノシリカは、100nm以上のものは、断熱性能は向上する一方、ヘイズが上昇しやすく、硬度も低くなる為、100nm未満の物の方が望ましい。50nmの中空シリカの熱伝導率mp一例は、0.06w/mkである。
[Infrared blocking inorganic film]
Infrared blocking inorganic film forming dispersion, preferably to include silica particles and hollow nanosilica, further, cesium tungsten oxide nanoparticles, indium tin oxide (ITO) nanoparticles oxide, ATO nanoparticles, metallic ruthenium particles, Ti0 2 nanoparticles, It is more preferable to contain at least one selected from the group consisting of ZnO nanoparticles, InZNO nanoparticles, and CeO2 nanoparticles, and a solvent. Here, the nanoparticles refer to those having a particle size (n = 50) measured by a transmission electron microscope of less than 20 nm. The average particle size of the nanoparticles is the mass average particle size measured with a transmission electron microscope (n = 50). However, only the hollow nanosilica particles have an average particle size of 50 to 300 nm. The silica nanoparticles have a particle size of 1 to 9 nm: 100 parts by mass with respect to 100 parts by mass of the single nanoparticles measured by a transmission electron microscope. Here, the silica single nanoparticles refer to those having a particle size (n = 50) measured by a transmission electron microscope of less than 10 nm. When silica nanoparticles of 10 nm or more are used, the transmittance of the infrared blocking inorganic film tends to be low. It is confirmed by X-ray diffraction that it is amorphous. Hollow nanosilica with a diameter of 100 nm or more is preferable to have a hardness of less than 100 nm because the heat insulating performance is improved, the haze is likely to increase, and the hardness is also lowered. An example of the thermal conductivity mp of 50 nm hollow silica is 0.06 w / mk.

セシウム酸化タングステンナノ粒子は、一般式:Cs(式中、0.30≦x/y≦0.33、2.2≦z/y≦3.0)で表されるものが、好ましい。セシウム酸化タングステンナノ粒子の粒径の一例は、20nmであり、酸化インジウム錫ナノ粒子の粒径の一例は、10nmである。ATOナノ粒子の平均粒径の一例は、20nmである。金属ルテニウム粒子の粒径の一例は、4nmである。 Cesium tungsten oxide nanoparticles, the general formula: (wherein, 0.30 ≦ x / y ≦ 0.33,2.2 ≦ z / y ≦ 3.0) Cs x W y O z those represented by ,preferable. An example of the particle size of the cesium tungsten oxide nanoparticles is 20 nm, and an example of the particle size of the indium tin oxide nanoparticles is 10 nm. An example of the average particle size of ATO nanoparticles is 20 nm. An example of the particle size of metallic ruthenium particles is 4 nm.

溶媒としては、水等が挙げられるが、シリカナノ粒子の分散性、塗布後の乾燥速度の観点から、水であると、好ましい。溶媒が水であると、プラズマ処理、UV処理、コロナ処理され、親水性の表面のPET、アクリル、PC等の樹脂に対しても、塗布することが可能になる。任意に、グリコール系等の高沸点溶媒等を少量添加しても良い。 Examples of the solvent include water, but water is preferable from the viewpoint of the dispersibility of the silica nanoparticles and the drying rate after coating. When the solvent is water, it is subjected to plasma treatment, UV treatment, and corona treatment, and can be applied to resins such as PET, acrylic, and PC on a hydrophilic surface. Optionally, a small amount of a high boiling point solvent such as a glycol may be added.

赤外線遮断膜形成用分散液は、さらに、放熱性や導電性の向上、膜のクラック防止のために、カーボンナノファイバー、グラフェンナノ粒子を含むと、好ましい。カーボンナノファイバーやグラフェンを含有させることにより、赤外線遮断膜の透明性を維持したまま、表面抵抗値(測定方法は、後述する)を1×10Ω以下の導通性にすることができ、通電による発熱防曇が可能となる。 It is preferable that the dispersion liquid for forming an infrared blocking film further contains carbon nanofibers and graphene nanoparticles in order to improve heat dissipation and conductivity and prevent cracks in the film. By containing carbon nanofibers and graphene, the surface resistance value (measurement method will be described later) can be made conductive to 1 × 10 3 Ω or less while maintaining the transparency of the infrared blocking film, and energization is possible. Allows heat generation and anti-fog.

カーボンナノファイバーは、特に限定されないが、カーボンナノファイバーは、繊維径が1〜100nmであり、アスペクト比が5以上であり、X線回折により測定されるグラファイト層の[002]面の間隔が0.35nm以下であると、好ましい。上記繊維径とアスペクト比のカーボンナノファイバーは、溶媒中で均一に分散すると共に、相互に十分な接触点を形成することができる。X線回折により測定されるグラファイト層の[002]面の積層間隔が上記範囲内であるカーボンナノファイバーは結晶性が高いため、このカーボンナノファイバーから電気抵抗が小さく高導電の材料を得ることができる。さらに、カーボンナノファイバーの圧密体の体積抵抗率が、1.0Ω・cm以下であると、良好な導電性を発揮することができる。 The carbon nanofibers are not particularly limited, but the carbon nanofibers have a fiber diameter of 1 to 100 nm, an aspect ratio of 5 or more, and an interval of [002] planes of the graphite layer measured by X-ray diffraction is 0. It is preferably .35 nm or less. The carbon nanofibers having a fiber diameter and an aspect ratio can be uniformly dispersed in a solvent and can form sufficient contact points with each other. Since carbon nanofibers having a lamination interval of [002] planes of the graphite layer measured by X-ray diffraction within the above range have high crystallinity, it is possible to obtain a highly conductive material having low electrical resistance from the carbon nanofibers. it can. Further, when the volume resistivity of the compacted body of the carbon nanofiber is 1.0 Ω · cm or less, good conductivity can be exhibited.

カーボンナノファイバーの繊維径は、透過型電子顕微鏡写真(倍率10万倍)を観察して求めた質量平均粒子径である(n=50)。また、カーボンナノファイバーのアスペクト比は、透過型電子顕微鏡写真(倍率10万倍)を観察して、(長軸平均粒子径/短軸平均粒子径)を計算して求める(n=50)。X線回折による測定では、CuKα線を使用する。カーボンナノファイバーの圧密体の体積抵抗率は、三菱化学製ロレスタHP及びダイアインスツルメンツ製粉体測定ユニットを用いて、100kgf/cmで加圧し、測定する。 The fiber diameter of the carbon nanofiber is a mass average particle diameter obtained by observing a transmission electron micrograph (magnification: 100,000 times) (n = 50). The aspect ratio of carbon nanofibers is obtained by observing a transmission electron micrograph (magnification of 100,000 times) and calculating (major axis average particle size / minor axis average particle size) (n = 50). CuKα rays are used in the measurement by X-ray diffraction. The volume resistivity of the compacted body of carbon nanofibers is measured by pressurizing at 100 kgf / cm 2 using a powder measuring unit manufactured by Mitsubishi Chemical Corporation Loresta HP and Dia Instruments.

また、カーボンナノファイバーは、シングルウォールカーボンナノチューブやマルチウォールカーボンナノチューブを含み、分散剤を使用しないで、溶媒中に分散可能なものであれば、さらに好ましい。カーボンナノファイバーを溶媒中に分散可能なものにする処理としては、硫酸等の強酸による処理が挙げられる。また、分散剤を使用していないカーボンナノファイバー分散液も市販されている。 Further, it is more preferable that the carbon nanofibers contain single-walled carbon nanotubes and multi-walled carbon nanotubes and can be dispersed in a solvent without using a dispersant. Examples of the treatment for making carbon nanofibers dispersible in a solvent include treatment with a strong acid such as sulfuric acid. In addition, a carbon nanofiber dispersion liquid that does not use a dispersant is also commercially available.

グラフェンナノ粒子としては、厚さ(c軸方向)が50nm以下で、径方向(a軸方向)の径が2μm以下のグラフェンを水に単分散したものが、挙げられる。 Examples of graphene nanoparticles include graphene nanoparticles having a thickness (c-axis direction) of 50 nm or less and a radial (a-axis direction) diameter of 2 μm or less dispersed in water.

赤外線遮断膜形成用分散液は、さらに、紫外線遮断率の向上のために、TiOナノ粒子、ZnOナノ粒子、InZnOナノ粒子、CeO2ナノ粒子を含むと、さらに好ましい。これらを含有させることにより、赤外線遮断膜の透明性を維持したまま、紫外線遮断率の向上が可能となる。 Infrared shielding film-forming dispersions further in order to improve the ultraviolet blocking ratio, TiO 2 nanoparticles, ZnO nanoparticles, InZnO nanoparticles to include CeO2 nanoparticles, more preferably. By containing these, it is possible to improve the ultraviolet blocking rate while maintaining the transparency of the infrared blocking film.

TiOナノ粒子の平均粒径の一例は、10nmである。ZnOナノ粒子の平均粒径の一例は、20nmである。InZnOナノ粒子の平均粒径の一例は、20nmである。CeO2ナノ粒子の平均粒径の一例は、10nmである。 An example of the average particle size of TiO 2 nanoparticles is 10 nm. An example of the average particle size of ZnO nanoparticles is 20 nm. An example of the average particle size of InZNO nanoparticles is 20 nm. An example of the average particle size of CeO2 nanoparticles is 10 nm.

赤外線遮断無機膜形成用分散液には、本発明の目的を損なわない範囲で、更に必要に応じ、添加剤等を配合することができるが、100℃以下で赤外線遮断無機膜を形成するために、分散剤は含まない方が、好ましい。 Additives and the like can be further added to the dispersion liquid for forming an infrared blocking inorganic film as needed within a range that does not impair the object of the present invention, but in order to form an infrared blocking inorganic film at 100 ° C. or lower. , It is preferable not to contain a dispersant.

赤外線遮断無機膜分散液は、例えば、シリカのシングルナノ粒子、溶媒、およびその他添加剤等を同時にまたは別々に、必要により加熱処理を加えながら、撹拌、溶融、混合、分散させることにより得ることができる。これらの混合、撹拌、分散等の装置としては、特に限定されるものではないが、ライカイ機、ボールミル、プラネタリーミキサー、ビーズミル等を使用することができる。また、これら装置を適宜組み合わせて使用してもよい。 The infrared blocking inorganic film dispersion can be obtained, for example, by stirring, melting, mixing, and dispersing silica single nanoparticles, a solvent, and other additives simultaneously or separately, with heat treatment if necessary. it can. The apparatus for mixing, stirring, dispersing, etc., is not particularly limited, but a Raikai machine, a ball mill, a planetary mixer, a bead mill, or the like can be used. Moreover, you may use these devices in combination as appropriate.

赤外線遮断無機膜は、基材に赤外線遮断無機膜形成用分散液を、湿度:50%以下で、塗布する工程、および赤外線遮断無機膜形成用分散液が塗布された基材を、温度0〜100℃で乾燥させる工程により、形成することができる。 The infrared blocking inorganic film is formed by applying a dispersion liquid for forming an infrared blocking inorganic film to a base material at a humidity of 50% or less, and a base material coated with the dispersion liquid for forming an infrared blocking inorganic film at a temperature of 0 to 0. It can be formed by a step of drying at 100 ° C.

赤外線遮断無機膜形成用分散液の温度が、0℃未満では膜形成用分散液中の水分が凍結するおそれがあり、100℃を超えると、膜形成用分散液の揮発が早くなり、量産時での長時間の塗布中に膜形成用分散液中の固形分濃度が上昇してしまうおそれがある。低屈折率無機膜形成用分散液を塗布するときの湿度が、50%を超えると低屈折率無機膜形成用分散液の塗膜中に雰囲気の水分を取り込みやすくなり、低屈折率無機膜形成用分散液の塗膜が白濁するおそれがある。特に、湿度が60%以上になると、低屈折率無機膜形成用分散液の塗膜が白濁する傾向が強くなる。また、塗布時の雰囲気温度は、常温である温度0〜40℃である。次に、低屈折率無機膜形成用分散液が塗布された基材を乾燥する温度は、常温である温度0〜40℃であり、5〜20℃であると好ましく、10〜15℃であると、より好ましい。なお、成型前の溶液を、超音波撹拌や真空脱泡や遠心分離等を用い、溶液中に溶け込んでいる空気を脱泡することにより、塗膜の硬度及び密着性が向上する。塗布環境下も窒素パージ下の減圧環境で塗布することにより、溶媒の揮発速度の加速および脱泡効果を向上させることが可能になるため、硬度及び密着性が向上する。 If the temperature of the infrared blocking inorganic film-forming dispersion is less than 0 ° C, the water content in the film-forming dispersion may freeze, and if it exceeds 100 ° C, the film-forming dispersion will volatilize faster, during mass production. There is a risk that the solid content concentration in the film-forming dispersion will increase during long-term coating. When the humidity when applying the dispersion liquid for forming a low refractive index inorganic film exceeds 50%, it becomes easy to take in the moisture of the atmosphere into the coating film of the dispersion liquid for forming a low refractive index inorganic film, and the low refractive index inorganic film is formed. The coating film of the dispersion liquid may become cloudy. In particular, when the humidity is 60% or more, the coating film of the dispersion liquid for forming a low refractive index inorganic film tends to become cloudy. The ambient temperature at the time of coating is a room temperature of 0 to 40 ° C. Next, the temperature at which the substrate coated with the dispersion liquid for forming a low refractive index inorganic film is dried is a room temperature of 0 to 40 ° C, preferably 5 to 20 ° C, preferably 10 to 15 ° C. And more preferable. The hardness and adhesion of the coating film are improved by defoaming the air dissolved in the solution by using ultrasonic stirring, vacuum defoaming, centrifugation, or the like for the solution before molding. By coating in a reduced pressure environment under a nitrogen purge also under the coating environment, it is possible to accelerate the volatilization rate of the solvent and improve the defoaming effect, so that the hardness and adhesion are improved.

赤外線遮断無機膜の厚さは、90nm〜5μm、望ましくは200nm〜2μmであると、赤外線遮断無機膜の形成の容易さの観点から、好ましい。なお、上述のように、赤外線遮断無機膜の屈折率は、基材と同程度に調整する必要がある。また、中空シリカを含むことにより、赤外線遮断膜層に断熱効果を付与し、より放射性および熱伝導率の高い、低屈折率無機膜、高屈折率膜を通して、赤外線反射機能及び放熱効果を高くし、より効果的に熱を遮断することが可能となる。 The thickness of the infrared blocking inorganic film is preferably 90 nm to 5 μm, preferably 200 nm to 2 μm, from the viewpoint of ease of forming the infrared blocking inorganic film. As described above, the refractive index of the infrared blocking inorganic film needs to be adjusted to the same level as that of the base material. In addition, by containing hollow silica, a heat insulating effect is imparted to the infrared blocking film layer, and the infrared reflecting function and heat dissipation effect are enhanced through a low refractive index inorganic film and a high refractive index film having higher radioactivity and thermal conductivity. , It becomes possible to block heat more effectively.

〔低屈折率無機膜〕
低屈折率無機膜形成用分散液は、シリカナノ粒子を含み、溶媒を含むと、好ましい。
[Low refractive index inorganic film]
The dispersion liquid for forming a low refractive index inorganic film preferably contains silica nanoparticles and a solvent.

シリカナノ粒子、溶媒については、上述のとおりである。 The silica nanoparticles and the solvent are as described above.

溶媒は、低屈折無機膜形成用分散液100質量部に対して、95〜99質量部であると、95質量部未満では分散液の安定性が悪くなり易く、99質量部を超えると溶媒の揮発速度が遅くなり、常温乾燥しにくくなる場合がある。 If the amount of the solvent is 95 to 99 parts by mass with respect to 100 parts by mass of the dispersion liquid for forming a low refraction inorganic film, the stability of the dispersion liquid tends to deteriorate if it is less than 95 parts by mass, and if it exceeds 99 parts by mass, the solvent of the solvent is used. The volatilization rate becomes slow, and it may be difficult to dry at room temperature.

低屈折率無機膜形成用分散液は、さらに、放熱性や導電性の向上、膜のクラック防止のために、カーボンナノファイバー、グラフェンナノ粒子を含有すると、好ましい。カーボンナノファイバー、グラフェンナノ粒子は、上述のとおりである。 The dispersion liquid for forming a low refractive index inorganic film preferably further contains carbon nanofibers and graphene nanoparticles in order to improve heat dissipation and conductivity and prevent cracks in the film. The carbon nanofibers and graphene nanoparticles are as described above.

低屈折率無機膜形成用分散液は、本発明の目的を損なわない範囲で、更に必要に応じ、添加剤等を配合することができるが、40℃以下で低屈折率無機膜を形成するために、分散剤は含まない方が、好ましい。 The dispersion liquid for forming a low refractive index inorganic film can further contain additives and the like as necessary within a range that does not impair the object of the present invention, but for forming a low refractive index inorganic film at 40 ° C. or lower. It is preferable that the dispersant is not contained.

低屈折率無機膜形成用分散液は、例えば、シリカのシングルナノ粒子、溶媒、およびその他添加剤等を同時にまたは別々に、必要により加熱処理を加えながら、撹拌、溶融、混合、分散させることにより得ることができる。これらの混合、撹拌、分散等の装置としては、特に限定されるものではないが、ライカイ機、ボールミル、プラネタリーミキサー、ビーズミル等を使用することができる。また、これら装置を適宜組み合わせて使用してもよい。 The dispersion liquid for forming a low refractive index inorganic film is prepared by, for example, stirring, melting, mixing, and dispersing silica single nanoparticles, a solvent, and other additives at the same time or separately, with heat treatment if necessary. Obtainable. The apparatus for mixing, stirring, dispersing, etc., is not particularly limited, but a Raikai machine, a ball mill, a planetary mixer, a bead mill, or the like can be used. Moreover, you may use these devices in combination as appropriate.

低屈折率無機膜は、基材の少なくとも一方の面に、上述の低屈折率無機膜形成用分散液を、湿度:50%以下で、塗布する工程、および低屈折率無機膜形成用分散液が塗布された基材を、温度0〜40℃で乾燥させる工程により、形成することができる。 The low refractive index inorganic film is a step of applying the above-mentioned dispersion liquid for forming a low refractive index inorganic film on at least one surface of a base material at a humidity of 50% or less, and a dispersion liquid for forming a low refractive index inorganic film. Can be formed by a step of drying the substrate coated with the above at a temperature of 0 to 40 ° C.

低屈折率無機膜形成用分散液の温度については、赤外線遮断無機膜形成用分散液の場合と、同様である。 The temperature of the dispersion liquid for forming a low refractive index inorganic film is the same as that of the dispersion liquid for forming an infrared blocking inorganic film.

低屈折率無機膜の厚さは、10〜200nmであると、低屈折率無機膜の透過率向上の観点から好ましい。 The thickness of the low refractive index inorganic film is preferably 10 to 200 nm from the viewpoint of improving the transmittance of the low refractive index inorganic film.

〔高屈折率無機膜〕
高屈折率無機膜形成用分散液は、酸化ニオブナノ粒子およびダイヤモンドナノ粒子を含むと好ましく、さらに、グラフェン、カーボンナノチューブ、酸化チタンナノ粒子、酸化タングステンナノ粒子、溶媒とを含むと、より好ましい。溶媒については、上述のとおりである。
[High refractive index inorganic film]
The dispersion liquid for forming a high refractive index inorganic film preferably contains niobium oxide nanoparticles and diamond nanoparticles, and more preferably contains graphene, carbon nanotubes, titanium oxide nanoparticles, tungsten oxide nanoparticles, and a solvent. The solvent is as described above.

高屈折率無機膜形成用分散液に含まれるナノ粒子としては、酸化ニオブ粒子、ダイヤモンド粒子、酸化ジルコニウム粒子、酸化チタン粒子、酸化タングステン粒子、酸化錫粒子、リンドープ酸化錫粒子が挙げられ、酸化ニオブナノ粒子およびダイヤモンドナノ粒子であると、高屈折率無機膜の屈折率、硬度、基材との密着性の観点から、好ましい。ここで、屈折率の測定結果の一例としては、酸化ニオブ粒子:2.3、ダイヤモンド粒子:2.8、酸化ジルコニウム粒子:2.4、酸化チタン粒子:2.7、酸化錫粒子:2.0、リンドープ酸化錫粒子:2.0である。なお、これらの粒子を薄膜にしたときには、屈折率が低下し、薄膜の屈折率の測定結果の一例は、酸化ジルコニウム薄膜:1.73、酸化ニオブ薄膜:1.78、酸化チタン薄膜:1.85、酸化錫薄膜:1.62、ダイヤモンド薄膜:2.0になる。薄膜内に空孔が存在するためである、と考えられる。 Examples of the nanoparticles contained in the dispersion liquid for forming a high refractive index inorganic film include niobium oxide particles, diamond particles, zirconium oxide particles, titanium oxide particles, tungsten oxide particles, tin oxide particles, and phosphorus-doped tin oxide particles. Particles and diamond nanoparticles are preferable from the viewpoint of the refractive index, hardness, and adhesion to the substrate of the high refractive index inorganic film. Here, as an example of the measurement result of the refractive index, niobium oxide particles: 2.3, diamond particles: 2.8, zirconium oxide particles: 2.4, titanium oxide particles: 2.7, tin oxide particles: 2. 0, phosphorus-doped tin oxide particles: 2.0. When these particles are made into a thin film, the refractive index decreases, and examples of the measurement results of the refractive index of the thin film are zirconium oxide thin film: 1.73, niobium oxide thin film: 1.78, and titanium oxide thin film: 1. 85, tin oxide thin film: 1.62, diamond thin film: 2.0. It is considered that this is because there are pores in the thin film.

ナノ粒子の粒径の一例は、酸化ニオブ粒子:6nm、ダイヤモンド粒子:3〜5nm、酸化ジルコニウム粒子:7nm、酸化チタン粒子:10〜15nm、酸化錫粒子:2nmである。 Examples of the particle size of the nanoparticles are niobium oxide particles: 6 nm, diamond particles: 3 to 5 nm, zirconium oxide particles: 7 nm, titanium oxide particles: 10 to 15 nm, and tin oxide particles: 2 nm.

高屈折率無機膜形成用分散液は、さらに、放熱性や導電性の向上、膜のクラック防止のために、カーボンナノファイバー、グラフェンナノ粒子を含むと好ましい。カーボンナノファイバー、グラフェンナノ粒子は、上述のとおりである。 The dispersion liquid for forming a high refractive index inorganic film preferably further contains carbon nanofibers and graphene nanoparticles in order to improve heat dissipation and conductivity and prevent cracks in the film. The carbon nanofibers and graphene nanoparticles are as described above.

高屈折率無機膜形成用分散液には、本発明の目的を損なわない範囲で、更に必要に応じ、添加剤等を配合することができるが、100℃以下で高屈折率無機膜を形成するために、分散剤は含まない方が、好ましい。 Additives and the like can be further added to the dispersion liquid for forming a high refractive index inorganic film as needed within a range that does not impair the object of the present invention, but a high refractive index inorganic film is formed at 100 ° C. or lower. Therefore, it is preferable not to contain a dispersant.

高屈折率無機膜形成用分散液の作製方法は、赤外線遮断無機膜形成用分散液の作製方法と同様である。 The method for producing the dispersion liquid for forming a high refractive index inorganic film is the same as the method for producing the dispersion liquid for forming an infrared blocking inorganic film.

高屈折率無機膜は、基材に形成された低屈折率無機膜に、高屈折率無機膜形成用分散液を、湿度:50%以下で、塗布する工程、および高屈折率無機膜形成用分散液が塗布された基材を、温度0〜100℃で乾燥させる工程により、形成することができる。 The high-refractive-index inorganic film is a step of applying a dispersion liquid for forming a high-refractive-index inorganic film to a low-refractive-index inorganic film formed on a base material at a humidity of 50% or less, and for forming a high-refractive-index inorganic film. The base material coated with the dispersion liquid can be formed by a step of drying at a temperature of 0 to 100 ° C.

塗布するときの湿度、乾燥時の温度の下限については、上述のとおりである。乾燥時の温度は、40℃で高屈折率無機膜の形成は可能であるが、100℃で乾燥することにより、高屈折率無機膜の屈折率を高くすることができる場合がある。 The lower limits of the humidity at the time of application and the temperature at the time of drying are as described above. A high refractive index inorganic film can be formed at a drying temperature of 40 ° C., but the refractive index of the high refractive index inorganic film may be increased by drying at 100 ° C.

高屈折率無機膜の厚さは、20〜200nmであると、高屈折率無機膜の形成の容易さ、高屈折率無機膜の反射率向上の観点から好ましい。 The thickness of the high-refractive-index inorganic film is preferably 20 to 200 nm from the viewpoint of easy formation of the high-refractive-index inorganic film and improvement of the reflectance of the high-refractive-index inorganic film.

高屈折率無機膜には、さらに、光触媒機能を有する酸化タングステン、酸化チタンを含有させることもできる。 The high refractive index inorganic film may further contain tungsten oxide and titanium oxide having a photocatalytic function.

本発明について、実施例により説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において、部、%はことわりのない限り、質量部、質量%を示す。
シリカナノ粒子分散液1には、ジャパンナノコート製性低屈折バインダー(品名:LR−30、2〜9nmのシリカのシングルナノ粒子3質量部と、水97質量部とを混合したもの)を用いた。
シリカナノ粒子分散液2には、日揮触媒化成社製シリカバインダー(品名:Si−550、平均粒径:5nm、固形分:20%)を用いた。
中空ナノシリカ分散液には、KJNANOCOAT社の水分散液(品名:SIO−50、平均粒径50nm、固形分10%)を用いた
酸化ニオブナノ粒子分散液には、ジャパンナノコート製水分散液(品名:酸化ニオブ分散液、平均粒径:6nm、固形分:3%)を用いた。
ダイヤモンドナノ粒子分散液には、ニューメタルス エンド ケミカルズ コーポレーション製水分散液(品名:ナノアマンド、平均粒径:3〜5nm、固形分:5%)を用いた。
酸化チタンナノ粒子分散液には、ジャパンナノコート製UV−TIO2(平均粒径10ナノ固形分10%)を用いた。
セシウム酸化タングステンナノ粒子分散液には、KJNANOCOAT社のIRWPO−15(平均粒径20nm、固形分15%)を用いた。
酸化インジウム錫ナノ粒子分散液には、ジャパンナノコート製ITO−20(平均粒径10nm、固形分20%)を用いた。
グラフェン分散液は、ジャパンナノコート製GF−01(厚み(c軸方向):50nm以下、径方向(あ軸方向):2μ以下、固形分:0.1%)を用いた。
InZnO分散液には、KJNANOCOAT社製InZnO水分散液(平均粒径:20nm、固形分:20%)を用いた。
The present invention will be described with reference to Examples, but the present invention is not limited thereto. In the following examples, parts and% indicate parts by mass and% by mass unless otherwise specified.
As the silica nanoparticle dispersion liquid 1, a low refraction binder made by Japan Nanocoat (product name: LR-30, a mixture of 3 parts by mass of single nanoparticles of silica having a diameter of 2 to 9 nm and 97 parts by mass of water) was used.
As the silica nanoparticle dispersion liquid 2, a silica binder manufactured by JGC Catalysts and Chemicals Co., Ltd. (product name: Si-550, average particle size: 5 nm, solid content: 20%) was used.
KJNANOCOAT's water dispersion (product name: SIO-50, average particle size 50 nm, solid content 10%) was used as the hollow nanosilica dispersion, and Japan Nanocoat's water dispersion (product name: Japan Nanocoat) was used as the niobium nanoparticle dispersion. Niobium oxide dispersion, average particle size: 6 nm, solid content: 3%) was used.
As the diamond nanoparticle dispersion liquid, a water dispersion liquid manufactured by New Metals End Chemicals Corporation (product name: nanoamand, average particle size: 3 to 5 nm, solid content: 5%) was used.
UV-TIO2 (average particle size 10 nanosolid content 10%) manufactured by Japan Nanocoat was used as the titanium oxide nanoparticle dispersion liquid.
IRWPO-15 (average particle size 20 nm, solid content 15%) manufactured by KJNANOCOAT Co., Ltd. was used as the cesium oxide tungsten nanoparticles dispersion liquid.
As the indium tin oxide nanoparticle dispersion liquid, ITO-20 (average particle size 10 nm, solid content 20%) manufactured by Japan Nanocoat was used.
As the graphene dispersion, GF-01 manufactured by Japan Nanocoat (thickness (c-axis direction): 50 nm or less, radial direction (axial direction): 2 μ or less, solid content: 0.1%) was used.
As the InZNO dispersion, an InZNO aqueous dispersion manufactured by KJNANOCOAT (average particle size: 20 nm, solid content: 20%) was used.

透過率の測定は、EDTM社製測定器(型番:Window Energy Profiler WP4500)により、測定した。
屈折率は、島津製作所製分光光度計(型番:SolidSpec−3700DUV)により測定した反射グラフから、計算により求めた。この測定時には、高屈折率薄膜を形成したガラス基材の高屈折率薄膜とは反対の面の50%の面積に、反射率0の板と接触させて表面反射率を測定し、屈折率を計算した。また、曇り度は日本電色工業社製分光ヘーズメーターSH7000SPにて測定した。
表面抵抗値は、太洋電機産業製表面抵抗計(型番:WA−400、2点間抵抗法、プローブ間距離:50mm)で測定した(単位:Ω)。ただし、10の3乗Ω以下のものに関しては、三和電気計器社製デジタルマルチメーター(型番:PM−3、プローブ間距離:50mm)で測定した(単位:Ω)。
鉛筆硬度は、HB〜10Hの硬度の鉛筆を用いて、ガラス基材に形成した膜をひっかき、目視で観察し、膜の欠けがでない最も硬い鉛筆の硬度とした。
テープ剥離試験は、JIS K5400に準拠し、ガラス基材に形成した各種膜に、カッターナイフで1mm×1mmの切り込みを100個入れ、ニチバン製セロファンテープを貼った後、セロファンテープを剥がし、目視で、各種膜の剥離箇所の有無を観察した
親水性試験に関しては、協和界面科学社製ポータブル接触角計(型番:PCA−11)を用い、面接触角を測定した。
The transmittance was measured with a measuring instrument manufactured by EDTM (model number: Windows Energy Profiler WP4500).
The refractive index was calculated from a reflection graph measured by a spectrophotometer manufactured by Shimadzu Corporation (model number: SolidSpec-3700DUV). At the time of this measurement, the surface reflectance was measured by contacting a plate having a reflectance of 0 on an area of 50% of the surface opposite to the high-refractive-index thin film of the glass substrate on which the high-refractive-index thin film was formed, and the refractive index was measured. Calculated. The degree of cloudiness was measured with a spectroscopic haze meter SH7000SP manufactured by Nippon Denshoku Kogyo Co., Ltd.
The surface resistance value was measured with a surface resistance meter manufactured by Taiyo Denki Sangyo (model number: WA-400, two-point resistance method, distance between probes: 50 mm) (unit: Ω). However, for those with 10 3 Ω or less, measurement was performed with a digital multimeter manufactured by Sanwa Electric Instrument Co., Ltd. (model number: PM-3, distance between probes: 50 mm) (unit: Ω).
The hardness of the pencil was determined by scratching the film formed on the glass substrate with a pencil having a hardness of HB to 10H and visually observing the hardness of the hardest pencil without chipping of the film.
The tape peeling test conforms to JIS K5400, and 100 1 mm x 1 mm cuts are made in various films formed on the glass substrate with a cutter knife, Nichiban cellophane tape is attached, and then the cellophane tape is peeled off visually. For the hydrophilicity test in which the presence or absence of peeled parts of various films was observed, the surface contact angle was measured using a portable contact angle meter (model number: PCA-11) manufactured by Kyowa Interface Science Co., Ltd.

〔実施例1〕
〔赤外線遮断無機膜の作製〕
シリカナノ粒子分散液1:30質量部、シリカナノ粒子分散液2:10質量部、中空ナノシリカ分散液:10質量部:、酸化チタンナノ粒子分散液:15質量部、酸化インジウム錫ナノ粒子分散液を固形分10%に希釈した水溶液:10質量部、セシウム酸化タングステンナノ粒子分散液を固形分20%に希釈した水溶液:20質量部、グラフェン分散液:5質量部を混合し、赤外線遮断無機膜形成用分散液を、調製した。
[Example 1]
[Preparation of infrared blocking inorganic film]
Silica nanoparticle dispersion 1:30 parts by mass, silica nanoparticle dispersion 2:10 parts by mass, hollow nanosilica dispersion: 10 parts by mass :, titanium oxide nanoparticle dispersion: 15 parts by mass, indium tin oxide nanoparticles dispersion solid content 10% by mass diluted aqueous solution: 10 parts by mass, cesium oxide tungsten oxide nanoparticle dispersion diluted to 20% solid content: 20 parts by mass, graphene dispersion: 5 parts by mass were mixed and dispersed for forming an infrared blocking inorganic film. The solution was prepared.

基材に対して、15〜20℃の赤外線遮断無機膜形成用分散液を、都ローラー工業製コーティング装置を用いて、雰囲気温度:15〜20℃、湿度:36〜48%で、幅:155mm、長さ:155mmに、塗布した。塗布後のガラス基材(屈折率:1.52)を、温度:15〜20℃で5分間乾燥させ、厚さ:約1μm、屈折率:1.52の赤外線遮断無機膜付きガラス基材を、得た。 A dispersion liquid for forming an infrared blocking inorganic film at 15 to 20 ° C. was applied to a base material using a coating device manufactured by Tokyo Roller Industry Co., Ltd. at an ambient temperature of 15 to 20 ° C., a humidity of 36 to 48%, and a width of 155 mm. , Length: 155 mm. The coated glass substrate (refractive index: 1.52) is dried at a temperature of 15 to 20 ° C. for 5 minutes to obtain a glass substrate with an infrared blocking inorganic film having a thickness of about 1 μm and a refractive index of 1.52. ,Obtained.

得られたガラス基材をEDTM社測定器で測定した結果、可視光透過率:64%、紫外線透過率:0%、赤外線透過率10%であった。また、屈折率:1.52、表面抵抗値:10Ω台、鉛筆硬度:6H、テープ剥離:なし、であった。 As a result of measuring the obtained glass substrate with an EDTM measuring instrument, the visible light transmittance was 64%, the ultraviolet transmittance was 0%, and the infrared transmittance was 10%. The refractive index: 1.52, surface resistivity: 10 5 Omega stand, pencil hardness: 6H, tape peeling were: None.

〔低屈折率無機膜の作製〕
得られた赤外線遮断膜上に、15〜20℃のシリカナノ粒子分散液1を、都ローラー工業製コーティング装置を用いて、雰囲気温度:15〜20℃、湿度:36〜48%で、幅:155mm、長さ:155mmに、塗布した。塗布後のガラス基材を、温度:15〜20℃で5分間乾燥させ、厚さ:140nmの低屈折率無機膜付きガラス基材を得た。
[Preparation of low refractive index inorganic film]
On the obtained infrared blocking film, a silica nanoparticle dispersion liquid 1 at 15 to 20 ° C. was applied to an atmospheric temperature of 15 to 20 ° C., a humidity of 36 to 48%, and a width of 155 mm using a coating device manufactured by Tokyo Roller Industries. , Length: 155 mm. The coated glass substrate was dried at a temperature of 15 to 20 ° C. for 5 minutes to obtain a glass substrate with a low refractive index inorganic film having a thickness of 140 nm.

得られたガラス基材をEDTM社高額測定器で測定した結果、可視光透過率:67%、紫外線透過率:0%、赤外線透過率:13%であった。また、屈折率:1.3、表面抵抗値:10Ω台、鉛筆硬度:7H、テープ剥離:なし、であった。 As a result of measuring the obtained glass substrate with a high-priced measuring instrument manufactured by EDTM, the visible light transmittance was 67%, the ultraviolet transmittance was 0%, and the infrared transmittance was 13%. The refractive index: 1.3, surface resistivity: 10 9 Omega stand, pencil hardness: 7H, tape peeling were: None.

〔高屈折率無機膜の作製〕
酸化ニオブナノ粒子分散液:69質量部、ダイヤモンドナノ粒子分散液:1質量部、グラフェン分散液:30質量部を混合し、高屈折無機膜形成用分散液を調製した。
[Preparation of high refractive index inorganic film]
Niobium oxide nanoparticle dispersion: 69 parts by mass, diamond nanoparticle dispersion: 1 part by mass, graphene dispersion: 30 parts by mass were mixed to prepare a dispersion for forming a highly refractory inorganic film.

得られた低屈折無機膜上に、15〜20℃の高屈折率無機膜形成用分散液を、都ローラー工業製コーティング装置を用いて、雰囲気温度:15〜20℃、湿度:36〜48%で、幅:155mm、長さ:155mmに、塗布した。塗布後のガラス基材を、温度:15〜20℃で5分間乾燥させ、厚さ:140nm高屈折率無機付きガラス基材を得た。 On the obtained low-refractive-index inorganic film, a dispersion liquid for forming a high-refractive-index inorganic film at 15 to 20 ° C. was applied to an atmospheric temperature of 15 to 20 ° C. and a humidity of 36 to 48% using a coating device manufactured by Tokyo Roller Industries. Then, the coating was applied to a width of 155 mm and a length of 155 mm. The coated glass substrate was dried at a temperature of 15 to 20 ° C. for 5 minutes to obtain a glass substrate with a high refractive index inorganic thickness of 140 nm.

得られた赤外線反射多層無機膜付きガラス基材をDTM社光学測定器で測定した結果、可視光透過率:66%、紫外線透過率:0%、赤外線透過率:5%であった。また、屈折率:1.9、表面抵抗値:10Ω台以下、鉛筆硬度:10H、テープ剥離:なし、であった。接触角:5°以下、ヘイズ値:0.5であった。800nmの赤外線反射率は20%以上であった。 As a result of measuring the obtained glass substrate with an infrared reflective multilayer inorganic film with an optical measuring instrument manufactured by DTM, the visible light transmittance was 66%, the ultraviolet transmittance was 0%, and the infrared transmittance was 5%. The refractive index: 1.9, surface resistivity: 10 3 Omega table below, pencil hardness: 10H, tape peeling were: None. The contact angle was 5 ° or less, and the haze value was 0.5. The infrared reflectance at 800 nm was 20% or more.

〔実施例2〕
〔赤外線遮断無機膜の作製〕
シリカナノ粒子分散液:60質量部、中空ナノシリカ分散液:10質量部、InZnOナノ粒子分散液:10質量部、セシウムタングステンナノ粒子20質量部の配合にしたこと以外は、実施例1と同様にして、赤外線遮断無機膜付きガラス基材を、得た。赤外線遮断無機膜の可視光透過率は67%、紫外線透過率は0%、赤外線透過率は10%であった。
[Example 2]
[Preparation of infrared blocking inorganic film]
Silica nanoparticle dispersion: 60 parts by mass, hollow nanosilica dispersion: 10 parts by mass, InZNO nanoparticle dispersion: 10 parts by mass, cesium tungsten nanoparticles 20 parts by mass in the same manner as in Example 1. , A glass substrate with an infrared blocking inorganic film was obtained. The infrared blocking inorganic film had a visible light transmittance of 67%, an ultraviolet transmittance of 0%, and an infrared transmittance of 10%.

〔低屈折率無機膜の作製〕
シリカナノ粒子分散液:100質量部を用い、実施例1と同様にして、低屈折率無機膜付きガラス基材を得た。低屈折率無機膜付き基材の可視光透過率は69%、紫外線透過率は0%、赤外線透過率は12%であった。
[Preparation of low refractive index inorganic film]
Using 100 parts by mass of the silica nanoparticles dispersion liquid, a glass substrate with a low refractive index inorganic film was obtained in the same manner as in Example 1. The visible light transmittance of the substrate with a low refractive index inorganic film was 69%, the ultraviolet transmittance was 0%, and the infrared transmittance was 12%.

〔高屈折率無機膜の作製〕
ニオブナノ粒子分散液100質量部を用いたこと以外は、実施例1と同様にして、高屈折率無機膜付きガラス基材を得た。赤外線反射多層無機膜付きガラス基材の可視光透過率は68%、紫外線透過率は0%、赤外線透過率は5%(赤外線カット率は95%)であった。また、赤外線反射多層無機膜付きガラス基材の鉛筆硬度は10H、テープ剥離はなし、ヘイズ値は0.7、800nm赤外線反射率は20%以上、表面抵抗値は10の10乗台Ωであった。なお、一般的な赤外線遮断機能の規格は、可視光透過率が60%以上、赤外線カット率が90%以上、ヘイズ値が1.0以下である。
[Preparation of high refractive index inorganic film]
A glass substrate with a high refractive index inorganic film was obtained in the same manner as in Example 1 except that 100 parts by mass of the niobium nanoparticle dispersion was used. The visible light transmittance of the glass substrate with the infrared reflective multilayer inorganic film was 68%, the ultraviolet transmittance was 0%, and the infrared transmittance was 5% (infrared cut rate was 95%). In addition, the pencil hardness of the glass substrate with infrared reflective multilayer inorganic film was 10H, the tape was not peeled off, the haze value was 0.7, the infrared reflectance at 800 nm was 20% or more, and the surface resistance value was 10 in the 10th power Ω. .. In addition, the standard of the general infrared ray blocking function is that the visible light transmittance is 60% or more, the infrared ray cut rate is 90% or more, and the haze value is 1.0 or less.

〔比較例1〕
ガラス基材に、低屈折率膜のみを形成した。低屈折率膜は、実施例1で作製したものと同様である。低屈折無機膜付きガラス基材の光学データは、可視光透過率:94%、紫外線透過率:89%、赤外線透過率:94%、鉛筆硬度:7H、屈折率1.3であり、赤外線遮断効果は、観察されなかった。
[Comparative Example 1]
Only a low refractive index film was formed on the glass substrate. The low refractive index film is the same as that produced in Example 1. The optical data of the glass substrate with a low refraction inorganic film is visible light transmittance: 94%, ultraviolet ray transmittance: 89%, infrared transmittance: 94%, pencil hardness: 7H, refractive index 1.3, and infrared ray blocking. No effect was observed.

〔比較例2〕
ガラス基材に、高屈折率膜のみを形成した。高屈折率膜は、実施例1で作製したものと同様である。高屈折無機膜付きガラス基材の光学データは、可視光透過率:86%、紫外線透過率:87%、赤外線透過率:88%、鉛筆硬度:9H、屈折率1.9であり、赤外線遮断効果は、観察されなかった。
[Comparative Example 2]
Only a high refractive index film was formed on the glass substrate. The high refractive index film is the same as that produced in Example 1. The optical data of the glass substrate with a highly refractive inorganic film is visible light transmittance: 86%, ultraviolet ray transmittance: 87%, infrared transmittance: 88%, pencil hardness: 9H, refractive index 1.9, and infrared ray blocking. No effect was observed.

〔比較例3〕
ガラス基材に、赤外線遮断膜と低屈折率膜とを形成し、高屈折率無機膜は形成しなかった。赤外線遮断膜と低屈折率膜は、実施例1で作製したものと同様である。赤外線反射効果、観察されなかった。
[Comparative Example 3]
An infrared blocking film and a low refractive index film were formed on the glass substrate, and a high refractive index inorganic film was not formed. The infrared blocking film and the low refractive index film are the same as those produced in Example 1. Infrared reflection effect, not observed.

〔比較例4〕
ガラス基材に、赤外線遮断膜と高屈折率膜とを形成し、低屈折率無機膜は形成しなかった。赤外線遮断膜と高屈折率膜は、実施例1で作製したものと同様である。比較例4の構成では、可視光域の反射率が向上するため、ぎらつき、ヘイズ値が1.0以上になった。
[Comparative Example 4]
An infrared blocking film and a high refractive index film were formed on the glass substrate, and a low refractive index inorganic film was not formed. The infrared blocking film and the high refractive index film are the same as those produced in Example 1. In the configuration of Comparative Example 4, since the reflectance in the visible light region was improved, the glare and the haze value became 1.0 or more.

〔比較例5〕
ガラス基材に、低屈折率膜と高屈折率膜とを形成し、赤外線遮断膜は形成しなかった。低屈折率膜と高屈折率膜は、実施例1で作製したものと同様である。比較例5の構成では、有効な赤外線遮断機能が観察されなかった。
[Comparative Example 5]
A low refractive index film and a high refractive index film were formed on the glass substrate, and an infrared blocking film was not formed. The low refractive index film and the high refractive index film are the same as those produced in Example 1. In the configuration of Comparative Example 5, no effective infrared blocking function was observed.

本発明は、赤外線の反射性が高く、可視光の透明性に優れ、断熱効果および放熱効果が高く、さらに硬度が高く、長期の耐候性がある無機物で構成された防汚機能付き赤外線反射多層膜を有する基材を提供することができ、透明外装用建材(ガラス、ポリカ、ビニールハウス、PETフィルム等の用途に、非常に有用である。特に、無機膜の形成を水性の分散液を用いて形成することができるため、中東やアフリカ等の赤道付近の熱い地域へ、分散液を簡便に輸送し、現地で簡便に赤外線反射多層膜を形成することが可能である。 The present invention has high infrared reflection, excellent visible light transparency, high heat insulating effect and heat dissipation effect, high hardness, and long-term weather resistant infrared reflective multilayer with antifouling function. It is possible to provide a base material having a film, which is very useful for applications such as transparent exterior building materials (glass, polyca, vinyl house, PET film, etc. In particular, an aqueous dispersion is used to form an inorganic film. Therefore, it is possible to easily transport the dispersion liquid to a hot area near the equator such as the Middle East and Africa, and to easily form an infrared reflective multilayer film on site.

1 赤外線反射多層膜付き基材
10 基材
20 赤外線遮断無機膜
30 低屈折率無機膜
40 高屈折率無機膜
1 Base material with infrared reflective multilayer film 10 Base material 20 Infrared blocking inorganic film 30 Low refractive index inorganic film 40 High refractive index inorganic film

Claims (2)

基材、赤外線遮断無機膜、低屈折率無機膜、および高屈折率無機膜をこの順に備え、赤外線遮断無機膜、および低屈折率無機膜が、シリカナノ粒子を含み、高屈折率無機膜が、酸化ニオブナノ粒子およびダイヤモンドナノ粒子を含むことを特徴とする、赤外線反射多層無機膜付き基材。 A base material, an infrared blocking inorganic film, a low refractive index inorganic film, and a high refractive index inorganic film are provided in this order, and the infrared blocking inorganic film and the low refractive index inorganic film contain silica nanoparticles, and the high refractive index inorganic film contains silica nanoparticles. A substrate with an infrared reflective multilayer inorganic film, which comprises niobium oxide nanoparticles and diamond nanoparticles. 基材の少なくとも一方の面に、赤外線遮断無機膜を形成するための赤外線遮断無機膜形成用分散液を、湿度:50%以下で、塗布する工程、および赤外線遮断無機膜を形成するための赤外線遮断無機膜形成用分散液が塗布された基材を、温度0〜40℃で乾燥させる工程、
基材に形成された赤外線遮断無機膜に、低屈折率無機膜を形成するための低屈折率無機膜形成用分散液を、湿度:50%以下で、塗布する工程、および低屈折率無機膜を形成するための低屈折率無機膜形成用分散液が塗布された基材を、温度0〜40℃で乾燥させる工程、
基材に形成された低屈折率無機膜に、高屈折率無機膜を形成するための高屈折率無機膜形成用分散液を、湿度:50%以下で、塗布する工程、および高屈折率無機膜形成用分散液が塗布された基材を、温度0〜100℃で乾燥させる工程、
をこの順に含む、請求項1記載の赤外線反射多層膜付き基材の製造方法。
A step of applying an infrared blocking inorganic film forming dispersion liquid for forming an infrared blocking inorganic film on at least one surface of a substrate at a humidity of 50% or less, and infrared rays for forming an infrared blocking inorganic film. A step of drying a base material coated with a dispersion liquid for forming a blocking inorganic film at a temperature of 0 to 40 ° C.
A step of applying a dispersion liquid for forming a low refractive index inorganic film for forming a low refractive index inorganic film on an infrared blocking inorganic film formed on a base material at a humidity of 50% or less, and a low refractive index inorganic film. A step of drying a base material coated with a dispersion liquid for forming a low refractive index inorganic film at a temperature of 0 to 40 ° C.
A step of applying a dispersion liquid for forming a high-refractive-index inorganic film for forming a high-refractive-index inorganic film on a low-refractive-index inorganic film formed on a base material at a humidity of 50% or less, and a high-refractive index inorganic film. A step of drying a substrate coated with a film-forming dispersion at a temperature of 0 to 100 ° C.
The included in this order, a manufacturing method of claim 1 Symbol placement of infrared reflecting multilayer film substrate.
JP2017034213A 2017-02-25 2017-02-25 Method for manufacturing a base material with an infrared reflective multilayer film and a base material with an infrared reflective multilayer film Active JP6877180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017034213A JP6877180B2 (en) 2017-02-25 2017-02-25 Method for manufacturing a base material with an infrared reflective multilayer film and a base material with an infrared reflective multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017034213A JP6877180B2 (en) 2017-02-25 2017-02-25 Method for manufacturing a base material with an infrared reflective multilayer film and a base material with an infrared reflective multilayer film

Publications (2)

Publication Number Publication Date
JP2018141818A JP2018141818A (en) 2018-09-13
JP6877180B2 true JP6877180B2 (en) 2021-05-26

Family

ID=63527958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017034213A Active JP6877180B2 (en) 2017-02-25 2017-02-25 Method for manufacturing a base material with an infrared reflective multilayer film and a base material with an infrared reflective multilayer film

Country Status (1)

Country Link
JP (1) JP6877180B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204338A1 (en) * 2019-03-29 2020-10-08 주식회사 엘지화학 Anti-redshift layer
KR102458929B1 (en) * 2019-03-29 2022-10-26 주식회사 엘지화학 Reddening-resistant layer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2352050A (en) * 1999-07-13 2001-01-17 Coherent Optics Interference filters
JP5076896B2 (en) * 2005-08-16 2012-11-21 旭硝子株式会社 Laminated glass for vehicle windows
JP2008037671A (en) * 2006-08-02 2008-02-21 Asahi Glass Co Ltd Glass plate with infrared-ray shielding film
JP2012252137A (en) * 2011-06-02 2012-12-20 Konica Minolta Holdings Inc Method for manufacturing infrared shielding film and infrared shielding body
JPWO2015040896A1 (en) * 2013-09-18 2017-03-02 コニカミノルタ株式会社 LAMINATED REFLECTING FILM, MANUFACTURING METHOD THEREOF, AND INFRARED Shielding Body Containing This
JP6303455B2 (en) * 2013-12-03 2018-04-04 三菱マテリアル株式会社 Composition for forming low refractive index film having infrared cut function and method for forming low refractive index film using the same
JP2015215413A (en) * 2014-05-08 2015-12-03 コニカミノルタ株式会社 Ultraviolet ray-shielding film
JP6451376B2 (en) * 2015-01-20 2019-01-16 三菱マテリアル株式会社 Liquid composition for low refractive index film formation
JP6587574B2 (en) * 2015-08-04 2019-10-09 株式会社神戸製鋼所 Laminated film and heat ray reflective material

Also Published As

Publication number Publication date
JP2018141818A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
KR102015474B1 (en) Substrate with an infrared reflective multilayer film, and method for manufacturing the same
JP5739742B2 (en) Transparent conductive film and touch panel
US20100028634A1 (en) Metal oxide coatings for electrically conductive carbon nanotube films
CN106575005B (en) Infra Red reflective films
JP6956089B2 (en) Coatings and articles
TW201139135A (en) Low emissivity and EMI shielding window films
US20160117004A1 (en) Functional single-layer film and display device having the same
KR20170077217A (en) Anti-reflective coated glass article
WO2020022270A1 (en) Transparent electroconductive film for heater, and heater
JP6877180B2 (en) Method for manufacturing a base material with an infrared reflective multilayer film and a base material with an infrared reflective multilayer film
JPWO2016117436A1 (en) Multilayer substrate
JP6465855B2 (en) Transparent conductive film and touch panel
JP2011138135A (en) Transparent conductive film and display filter including the same
Hossain et al. Hydrophilic antireflection and antidust silica coatings
JP6611471B2 (en) Transparent conductive film
JP3218295U (en) Invisible light shielding structure
JPH10264287A (en) Transparent laminate, dimmer using it and filer for display
JP2014106779A (en) Transparent conductive film and touch panel
JP2018022634A (en) Transparent conductor
KR20150103705A (en) Dispersion liquid for formation of transparent conductive thin film and substrate equipped with transparent conductive thin film
WO2015159805A1 (en) Laminate, conductive laminate, and electronic device
JP2020082660A (en) Gas barrier laminate
KR101242102B1 (en) Transparent conductive thin film and display filter containing the same
WO2015186507A1 (en) Transparent conductive film
JP2018171914A (en) Heat-shielding and heat-insulating film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170502

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210427

R150 Certificate of patent or registration of utility model

Ref document number: 6877180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE

Ref document number: 6877180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250