JP6297237B1 - Resonator, filter and filter bank - Google Patents

Resonator, filter and filter bank Download PDF

Info

Publication number
JP6297237B1
JP6297237B1 JP2017554418A JP2017554418A JP6297237B1 JP 6297237 B1 JP6297237 B1 JP 6297237B1 JP 2017554418 A JP2017554418 A JP 2017554418A JP 2017554418 A JP2017554418 A JP 2017554418A JP 6297237 B1 JP6297237 B1 JP 6297237B1
Authority
JP
Japan
Prior art keywords
conductor
line
resonator
wavelength
shaped conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017554418A
Other languages
Japanese (ja)
Other versions
JPWO2018225126A1 (en
Inventor
裕之 青山
裕之 青山
石橋 秀則
秀則 石橋
秀浩 吉岡
秀浩 吉岡
米田 尚史
尚史 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6297237B1 publication Critical patent/JP6297237B1/en
Publication of JPWO2018225126A1 publication Critical patent/JPWO2018225126A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/212Frequency-selective devices, e.g. filters suppressing or attenuating harmonic frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators

Abstract

平板状の誘電体基板(4)の一方の面に地導体(3)を配置する。誘電体基板(4)の他方の面に、地導体(3)に対向して線路状導体(1)を設ける。線路状導体(1)と地導体(3)との間に浮遊導体(2)を設ける。線路状導体(1)は、動作周波数において長さが約1/2波長で、その両端部の直線距離を動作周波数において1/8波長以下の距離とするための屈曲部(11)を有する。浮遊導体(2)は、動作周波数において線路状導体(1)の長手方向と平行な方向の長さが約1/4波長となるよう構成されている。The ground conductor (3) is disposed on one surface of the flat dielectric substrate (4). A line-shaped conductor (1) is provided on the other surface of the dielectric substrate (4) so as to face the ground conductor (3). A floating conductor (2) is provided between the line conductor (1) and the ground conductor (3). The line-shaped conductor (1) has a bent portion (11) having a length of about ½ wavelength at the operating frequency and a linear distance between both ends thereof being 1/8 wavelength or less at the operating frequency. The floating conductor (2) is configured such that the length in the direction parallel to the longitudinal direction of the line-shaped conductor (1) is about ¼ wavelength at the operating frequency.

Description

本発明は、主として高周波帯で用いられる共振器と、共振器を用いた高周波フィルタに関するものであり、特に誘電体基板に形成されたストリップ導体を利用した平面フィルタの構成に関する。   The present invention relates to a resonator mainly used in a high frequency band and a high frequency filter using the resonator, and more particularly to a configuration of a planar filter using a strip conductor formed on a dielectric substrate.

近年、マイクロ波やミリ波帯のフィルタとして、基板材料の低損失化と安価に製造できることから誘電体基板上に形成されるストリップ線路を用いた平面フィルタなどがよく用いられている。中でも、ストリップ導体から構成される複数の共振器を互いに電磁結合させた平面フィルタがしばしば用いられる。
上述のような平面フィルタは、例えば、線路の両端を開放または短絡した1/2波長共振器などを複数用いて構成される。そのため、フィルタ全体の大きさや特性を決定する上で、共振器一つ当たりの寸法やその電気特性が大きく影響する。従って、フィルタの小型化、低損失化及び阻止域の広帯域化などの実現のためには、小型、低損失かつスプリアス特性の良い共振器が必要となる。このような条件を満たす共振器として、例えば、線路の一部にインピーダンスステップを設けたステップドインピーダンス(以下SIと記載する)共振器や、線路に屈曲部を設け開放端同士を近接させたヘアピン型1/2波長共振器などがある。中でもSIヘアピン型1/2波長共振器はスプリアス特性が優れ、かつ、小型な共振器として着目されている(例えば、非特許文献1参照)。
In recent years, planar filters using strip lines formed on dielectric substrates are often used as microwave and millimeter wave band filters because of the low loss of substrate material and low cost manufacturing. In particular, a planar filter in which a plurality of resonators composed of strip conductors are electromagnetically coupled to each other is often used.
The planar filter as described above is configured using, for example, a plurality of half-wavelength resonators in which both ends of the line are opened or short-circuited. Therefore, in determining the size and characteristics of the entire filter, the size per resonator and its electrical characteristics are greatly affected. Therefore, in order to realize a reduction in the size of the filter, a reduction in loss, and a broadening of the stop band, a resonator having a small size, a low loss and good spurious characteristics is required. As a resonator satisfying such conditions, for example, a stepped impedance (hereinafter referred to as SI) resonator in which an impedance step is provided in a part of a line, or a hairpin in which a bent part is provided in a line and open ends are brought close to each other There is a type 1/2 wavelength resonator. Among these, the SI hairpin type ½ wavelength resonator has excellent spurious characteristics and has attracted attention as a small resonator (for example, see Non-Patent Document 1).

M. Sagawa, M. Makimoto and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 7, pp. 1078-1085, July 1997.M. Sagawa, M. Makimoto and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 7, pp. 1078-1085, July 1997 .

しかしながら、SIヘアピン型1/2波長共振器において、スプリアス特性を改善するためには、線路の開放端部の線路幅を大きく、線路両端の中央部の線路幅を小さく、かつ、開放端間の距離を小さくする必要がある。そのため、優れたスプリアス特性を持つ共振器を実現するためには、線路の両端部を非常に大きくする必要があり、その結果、共振器の小型化は困難であった。また、開放端同士を非常に小さいギャップを介して結合させるため、線路のエッチング誤差といった加工誤差により、設計した共振器の共振周波数が変動しやすいという課題があった。   However, in the SI hairpin type 1/2 wavelength resonator, in order to improve spurious characteristics, the line width at the open end of the line is increased, the line width at the center at both ends of the line is decreased, and between the open ends. It is necessary to reduce the distance. Therefore, in order to realize a resonator having excellent spurious characteristics, it is necessary to make both ends of the line very large. As a result, it is difficult to reduce the size of the resonator. Further, since the open ends are coupled to each other through a very small gap, there is a problem that the resonance frequency of the designed resonator is likely to fluctuate due to a processing error such as a line etching error.

この発明は、かかる問題を解決するためになされたもので、小型で優れたスプリアス特性を持ち、かつ、加工誤差による特性ばらつきを低減した共振器、フィルタ及びフィルタバンクを提供することを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a resonator, a filter, and a filter bank that are small and have excellent spurious characteristics and have reduced characteristic variations due to processing errors. .

この発明に係る共振器は、平板状の誘電体基板と、誘電体基板の一方の面及び他方の面のうち、少なくとも一つの面に配置された地導体と、動作周波数において長さが約1/2波長の奇数倍で、その両端部の直線距離が動作周波数において1/8波長以下となるよう、その中間点を含む構造対称面に対して対称に屈曲部を有し、かつ、誘電体基板を介して地導体と対向するよう配置された線路状導体と、動作周波数において長さが約1/4波長以下であり、かつ、線路状導体と地導体との間の誘電体基板に設けられた浮遊導体とを備え、浮遊導体が線路状導体の構造対称面を横切るよう配置されたものである。 The resonator according to the present invention has a flat dielectric substrate, a ground conductor arranged on at least one of the one surface and the other surface of the dielectric substrate, and a length of about 1 at the operating frequency. / 2 having an odd multiple of two wavelengths and having a bent portion symmetrically with respect to the structural symmetry plane including the intermediate point so that the linear distance between both ends thereof is 1/8 wavelength or less at the operating frequency, and the dielectric A line-shaped conductor disposed so as to face the ground conductor through the substrate , a length of about ¼ wavelength or less at the operating frequency, and provided on a dielectric substrate between the line-shaped conductor and the ground conductor The floating conductor is arranged so as to cross the plane of symmetry of the line-shaped conductor.

この発明に係る共振器は、線路状導体と地導体との間に線路状導体の構造対称面を横切るよう動作周波数において長さが約1/4波長以下である浮遊導体を設けたものである。これにより、小型化できると共にスプリアス特性を改善することができ、かつ、加工誤差による特性ばらつきを低減させることができる。 In the resonator according to the present invention , a floating conductor having a length of about ¼ wavelength or less at an operating frequency is provided between the line-shaped conductor and the ground conductor so as to cross the structural symmetry plane of the line-shaped conductor. . As a result, it is possible to reduce the size, improve the spurious characteristics, and reduce characteristic variations due to processing errors.

図1Aは本発明の実施の形態1による共振器の平面図、図1Bは断面図である。1A is a plan view of the resonator according to the first embodiment of the present invention, and FIG. 1B is a cross-sectional view. 本発明の実施の形態1による共振器の周波数特性の解析結果を示す説明図である。It is explanatory drawing which shows the analysis result of the frequency characteristic of the resonator by Embodiment 1 of this invention. 図3Aは本発明の実施の形態1による共振器をストリップ線路構造により実現した場合の分解斜視図、図3Bは断面図である。3A is an exploded perspective view when the resonator according to the first embodiment of the present invention is realized by a stripline structure, and FIG. 3B is a cross-sectional view. 図4Aは本発明の実施の形態1による共振器をサスペンデッド線路構造により実現した場合の平面図、図4Bは断面図である。4A is a plan view when the resonator according to the first embodiment of the present invention is realized by a suspended line structure, and FIG. 4B is a cross-sectional view. 図5Aは本発明の実施の形態2による共振器を示す平面図、図5Bは断面図である。FIG. 5A is a plan view showing a resonator according to the second embodiment of the present invention, and FIG. 5B is a cross-sectional view. 図6Aは本発明の実施の形態3による共振器を示す平面図、図6Bは断面図である。6A is a plan view showing a resonator according to the third embodiment of the present invention, and FIG. 6B is a cross-sectional view. 図7Aは本発明の実施の形態3による共振器をサスペンデッド線路構造により実現した場合の平面図、図7Bは断面図である。FIG. 7A is a plan view when the resonator according to the third embodiment of the present invention is realized by a suspended line structure, and FIG. 7B is a cross-sectional view. 図8Aは本発明の実施の形態4による共振器を示す平面図、図8Bは断面図である。8A is a plan view showing a resonator according to the fourth embodiment of the present invention, and FIG. 8B is a cross-sectional view.

以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
図1Aは本実施の形態による共振器の平面図、図1Bは断面図である。
図1A及び図1Bに示す共振器は、マイクロストリップ線路構造の共振器であって、誘電体基板4と、地導体3と、動作周波数において長さが約1/2波長である線路状導体1と、動作周波数において線路状導体1の長手方向と平行な方向の長さが1/4波長以下である浮遊導体2によって構成される。線路状導体1は、その両端部間の直線距離が動作周波数において1/8波長以下の距離となるよう屈曲した構造となっている。図中の屈曲部11が線路状導体1における屈曲部分である。また、線路状導体1は、同一平面XY(図面上下方向をX方向、図面左右方向をY方向とする)内に形成され、かつ平面XYに対して垂直な平面XZに対して構造対称である。さらに、誘電体基板4の一方の面には地導体3が配置され、他方の面には線路状導体1がそれぞれ配置される。浮遊導体2は地導体3と線路状導体1との間の誘電体基板4内部に配置され、かつ、線路状導体1の構造対称面XZを垂直に貫くよう配置さる。さらに、浮遊導体2は平面XY上で線路状導体1の両端部を覆う位置に配置される。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1A is a plan view of the resonator according to the present embodiment, and FIG. 1B is a cross-sectional view.
The resonator shown in FIGS. 1A and 1B is a resonator having a microstrip line structure, which is a dielectric substrate 4, a ground conductor 3, and a line-shaped conductor 1 having a length of about ½ wavelength at an operating frequency. And the floating conductor 2 whose length in the direction parallel to the longitudinal direction of the line-shaped conductor 1 at the operating frequency is ¼ wavelength or less. The line-shaped conductor 1 has a structure that is bent so that the linear distance between both ends thereof is a distance of 1/8 wavelength or less at the operating frequency. A bent portion 11 in the figure is a bent portion in the line-shaped conductor 1. The line-shaped conductor 1 is formed in the same plane XY (the vertical direction in the drawing is the X direction and the horizontal direction in the drawing is the Y direction) and is symmetrical with respect to the plane XZ perpendicular to the plane XY. . Further, the ground conductor 3 is disposed on one surface of the dielectric substrate 4, and the line-shaped conductor 1 is disposed on the other surface. The floating conductor 2 is disposed inside the dielectric substrate 4 between the ground conductor 3 and the line-shaped conductor 1 and is disposed so as to vertically penetrate the structural symmetry plane XZ of the line-shaped conductor 1. Further, the floating conductor 2 is disposed at a position covering both ends of the line-shaped conductor 1 on the plane XY.

次に、実施の形態1の共振器の動作について説明する。
実施の形態1による共振器では、基本的には通常の両端開放1/2波長共振器と同様に、共振器端部での電磁界の反射によって定在波が生じ、共振器の全長が1/2波長、あるいはその整数倍となる周波数において共振器として動作する。また、しばしば一部が屈曲あるいは湾曲した両端開放1/2波長は、ヘアピン型共振器、スプリットリング共振器などと呼称される。
Next, the operation of the resonator according to the first embodiment will be described.
In the resonator according to the first embodiment, basically, a standing wave is generated by reflection of an electromagnetic field at the end of the resonator as in the case of a normal open-ended 1/2 wavelength resonator, and the total length of the resonator is 1. It operates as a resonator at a frequency of / 2 wavelength or an integral multiple thereof. In addition, the half-waves with open ends that are often partially bent or curved are called hairpin resonators, split ring resonators, and the like.

このような共振器において、線路状導体1の全長が1/2波長となる場合の共振モードは基本波と呼ばれる。また、nを2以上の整数とすると、線路状導体の全長がn/2波長となる共振はn次高調波と呼ばれる。
特に基本波では線路状導体1の全長は1/2波長となるため、線路状導体1の表面を流れる高周波電流は線路状導体1の構造対称面XZに対して逆位相となる。このとき、電界は線路状導体1の構造対称面XZに対して非対称となり、構造対称面XZには仮想電気壁がある場合と同じ電磁界分布となる。そのため、浮遊導体2は構造対称面XZにおいて短絡されているとみなせる。これにより、線路状導体1と浮遊導体2との間では、線路状導体1の近傍に接地された導体が存在するため、電界強度が大きくなる。これにより、共振器のキャパシタンスが増加し、基本波の共振周波数を大きく低下させることが可能となる。
In such a resonator, the resonance mode when the total length of the line-shaped conductor 1 is ½ wavelength is called a fundamental wave. Further, when n is an integer of 2 or more, resonance in which the total length of the line-shaped conductor has an n / 2 wavelength is called an nth-order harmonic.
In particular, since the total length of the line-shaped conductor 1 is ½ wavelength in the fundamental wave, the high-frequency current flowing through the surface of the line-shaped conductor 1 has an antiphase with respect to the structural symmetry plane XZ of the line-shaped conductor 1. At this time, the electric field is asymmetric with respect to the structural symmetry plane XZ of the line-shaped conductor 1, and has the same electromagnetic field distribution as that in the case of the virtual electrical wall on the structural symmetry plane XZ. Therefore, it can be considered that the floating conductor 2 is short-circuited on the structural symmetry plane XZ. As a result, between the line-shaped conductor 1 and the floating conductor 2, there is a grounded conductor in the vicinity of the line-shaped conductor 1, so that the electric field strength increases. As a result, the capacitance of the resonator increases, and the resonance frequency of the fundamental wave can be greatly reduced.

一方、2次高調波では線路状導体1の全長は1波長となるため、線路状導体1の表面を流れる高周波電流は線路状導体1の構造対称面XZに対して同相となる。このとき、構造対称面XZには仮想磁気壁があると等価となる。そのため、浮遊導体2は構造対称面XZにおいて開放されているとみなせる。従って、浮遊導体2は接地導体として動作せず、電界強度は浮遊導体2がない場合と比較して大きく変化しないため、2次高調波の共振周波数は浮遊導体2がない場合のそれと概ね等しくなる。   On the other hand, since the total length of the line-shaped conductor 1 is one wavelength at the second harmonic, the high-frequency current flowing through the surface of the line-shaped conductor 1 is in phase with the structural symmetry plane XZ of the line-shaped conductor 1. At this time, it is equivalent if there is a virtual magnetic wall on the structural symmetry plane XZ. Therefore, it can be considered that the floating conductor 2 is open in the structural symmetry plane XZ. Therefore, the floating conductor 2 does not operate as a ground conductor, and the electric field strength does not change greatly compared to the case without the floating conductor 2, so that the resonance frequency of the second harmonic is approximately equal to that without the floating conductor 2. .

このように、共振モードによって浮遊導体2が接地導体として動作することを利用し、共振周波数を低下させることが可能となる。特に両端開放1/2波長共振器では、線路状導体1の全長が1/2波長の奇数倍となる共振モードの共振周波数が低下し、偶数倍となる共振モードの共振周波数は大きく変化しない。   Thus, the resonant frequency can be lowered by utilizing the fact that the floating conductor 2 operates as a ground conductor in the resonance mode. In particular, in a half-wave resonator with both ends open, the resonance frequency of the resonance mode in which the total length of the line-shaped conductor 1 is an odd multiple of a half wavelength is lowered, and the resonance frequency of the resonance mode in which the entire length is an even multiple is not significantly changed.

図2は本実施の形態1の共振器と従来のSIヘアピン型1/2波長共振器の周波数特性の解析結果である。図中、実線が実施の形態1の共振器の周波数特性であり、破線が従来のSIヘアピン型1/2波長共振器の周波数特性である。ここでは、いずれも基本波の周波数が規格化周波数において1となるように設計している。このとき、2次高調波の周波数に着目すると、従来のSIヘアピン型1/2波長共振器は約2.2であるのに対し、実施の形態1の共振器は2.5となった。これより、2次高調波の周波数がより高周波にシフトしており、実施の形態1の共振器が優れたスプリアス特性を有することがわかる。なお、このとき、共振器の専有面積の比は、従来のSIヘアピン型1/2波長共振器を1とすると、実施の形態1の共振器は0.95となった。これより、共振器の小型化がなされていることもわかる。   FIG. 2 shows the analysis results of the frequency characteristics of the resonator according to the first embodiment and the conventional SI hairpin type ½ wavelength resonator. In the figure, the solid line is the frequency characteristic of the resonator of the first embodiment, and the broken line is the frequency characteristic of the conventional SI hairpin type ½ wavelength resonator. Here, both are designed so that the frequency of the fundamental wave is 1 at the normalized frequency. At this time, focusing on the frequency of the second harmonic, the conventional SI hairpin type ½ wavelength resonator is about 2.2, whereas the resonator of the first embodiment is 2.5. From this, it can be seen that the frequency of the second harmonic is shifted to a higher frequency, and the resonator of the first embodiment has excellent spurious characteristics. At this time, the ratio of the area occupied by the resonator is 0.95 for the resonator of the first embodiment, assuming that the conventional SI hairpin type ½ wavelength resonator is 1. This also shows that the resonator has been downsized.

以上より、本実施の形態の共振器は従来の共振器の構造と比較して、より小型でありながら同一の共振周波数を実現できる。また、基本波の周波数を低下させ、かつ、2次高調波の共振周波数は変化しないため、スプリアス特性を改善することができる。   As described above, the resonator of the present embodiment can realize the same resonance frequency while being smaller than the structure of a conventional resonator. Moreover, since the frequency of the fundamental wave is lowered and the resonance frequency of the second harmonic does not change, the spurious characteristics can be improved.

また、従来の共振器では、線路状導体1の両端部を非常に小さい間隙を隔てて近接させることで共振器端部の電界強度を大きくし、スプリアス特性を改善していた。しかし、本実施の形態の共振器は、浮遊導体2を用いることで線路状導体1の両端部間の間隙を小さくすることなく共振器端部の電界強度を大きくすることができ、優れたスプリアス特性を実現できる。そのため、線路状導体1を形成する際の加工誤差によって共振周波数が変動しにくい。   In the conventional resonator, both ends of the line-shaped conductor 1 are brought close to each other with a very small gap, thereby increasing the electric field strength at the end of the resonator and improving the spurious characteristics. However, the resonator according to the present embodiment can increase the electric field strength at the end of the resonator without reducing the gap between the both ends of the line-shaped conductor 1 by using the floating conductor 2, and has excellent spurious characteristics. The characteristics can be realized. Therefore, the resonance frequency is unlikely to fluctuate due to processing errors when forming the line-shaped conductor 1.

従って、本実施の形態の共振器を用いて平面フィルタを構成することで、小型で、かつ、スプリアス特性の優れたフィルタを実現することができる。また、同時に製造誤差に強いフィルタを実現することができ、フィルタの歩留まり改善が可能となる。   Therefore, by forming a planar filter using the resonator according to the present embodiment, it is possible to realize a small filter having excellent spurious characteristics. At the same time, a filter resistant to manufacturing errors can be realized, and the yield of the filter can be improved.

図1に示す構成では、共振器をマイクロストリップ線路構造により実現したが、図3に示すように、複数の誘電体基板4の対向する外側の二つの面にそれぞれ地導体3を設け、誘電体基板4の内層に線路状導体1と浮遊導体2を配置したストリップ線路構造としても良い。ここで、図3Aは共振器の分解斜視図、図3Bは断面図を示している。すなわち、図3に示す共振器は、誘電体基板4及び地導体3を複数設け、複数の地導体3を複数の誘電体基板4を介して対向して設けている。また、複数の誘電体基板4の間に線路状導体1を設け、かつ、浮遊導体2を誘電体基板4と地導体3との間に設けている。   In the configuration shown in FIG. 1, the resonator is realized by a microstrip line structure. However, as shown in FIG. 3, ground conductors 3 are provided on two opposing outer surfaces of a plurality of dielectric substrates 4, respectively. A strip line structure in which the line-shaped conductor 1 and the floating conductor 2 are arranged on the inner layer of the substrate 4 may be used. Here, FIG. 3A is an exploded perspective view of the resonator, and FIG. 3B is a sectional view. That is, the resonator shown in FIG. 3 is provided with a plurality of dielectric substrates 4 and ground conductors 3, and a plurality of ground conductors 3 are provided opposite to each other with the plurality of dielectric substrates 4 interposed therebetween. Further, the line-shaped conductor 1 is provided between the plurality of dielectric substrates 4, and the floating conductor 2 is provided between the dielectric substrate 4 and the ground conductor 3.

さらに、図4に示すように、誘電体基板4の対向する二つの面にそれぞれ線路状導体1と浮遊導体2を設け、浮遊導体2が設けられた誘電体基板4の面の下部に、地導体3の代わりの金属筐体6を配置したサスペンデッド線路構造としてもよい。ここで、図4Aは共振器の平面図、図4Bは断面図を示している。   Further, as shown in FIG. 4, the line-shaped conductor 1 and the floating conductor 2 are provided on the two opposing surfaces of the dielectric substrate 4, respectively, and the lower surface of the dielectric substrate 4 provided with the floating conductor 2 is grounded. It is good also as a suspended line structure which has arrange | positioned the metal housing | casing 6 instead of the conductor 3. FIG. 4A is a plan view of the resonator, and FIG. 4B is a cross-sectional view.

なお、上記例では、説明を簡略化するため、線路状導体1を対称構造とした場合について述べたが、線路状導体1が対称構造である場合に限定されるものではなく、非対称な構造であってもよい。また、線路状導体1は動作周波数において長さが約1/2波長の奇数倍で有ればよい。さらに、上記例では屈曲部11を一つとしたが、複数あっても良い。   In the above example, the case where the line-shaped conductor 1 has a symmetric structure has been described in order to simplify the description. However, the present invention is not limited to the case where the line-shaped conductor 1 has a symmetric structure. There may be. Further, the line-shaped conductor 1 only needs to be an odd multiple of about ½ wavelength at the operating frequency. Furthermore, in the above example, the number of the bent portions 11 is one, but there may be a plurality of them.

以上説明したように、実施の形態1の共振器によれば、平板状の誘電体基板と、誘電体基板の一方の面及び他方の面のうち、少なくとも一つの面に配置された地導体と、動作周波数において長さが約1/2波長の奇数倍で、その両端部の直線距離を動作周波数において1/8波長以下の距離とするための屈曲部を有し、かつ、誘電体基板を介して地導体と対向するよう配置された線路状導体と、線路状導体と地導体との間の誘電体基板に設けられた浮遊導体とを備えたので、小型化できると共にスプリアス特性を改善することができ、かつ、加工誤差による特性ばらつきを低減させることができる。   As described above, according to the resonator of the first embodiment, a flat dielectric substrate, and a ground conductor disposed on at least one of the one surface and the other surface of the dielectric substrate, A bending portion for making the linear distance of both ends thereof an odd multiple of 1/8 wavelength or less at the operating frequency, the length being an odd multiple of about ½ wavelength at the operating frequency, and a dielectric substrate Through which a line-shaped conductor arranged so as to face the ground conductor and a floating conductor provided on the dielectric substrate between the line-shaped conductor and the ground conductor can be miniaturized and improved spurious characteristics. And variation in characteristics due to processing errors can be reduced.

また、実施の形態1の共振器によれば、誘電体基板の一方の面に地導体を配置すると共に、他方の面に線路状導体を配置し、かつ、線路状導体は、動作周波数において長さが約1/2波長であると共に、浮遊導体は、動作周波数において線路状導体の長手方向と平行な方向の長さが約1/4波長であるようにしたので、マイクロストリップ線路構造の共振器として、小型で優れたスプリアス特性を有し、かつ、加工誤差による特性ばらつきを低減させることができる。   Further, according to the resonator of the first embodiment, the ground conductor is disposed on one surface of the dielectric substrate, the line conductor is disposed on the other surface, and the line conductor is long at the operating frequency. And the length of the floating conductor in the direction parallel to the longitudinal direction of the line-shaped conductor at the operating frequency is about ¼ wavelength. As a container, it is small and has excellent spurious characteristics, and can reduce variations in characteristics due to processing errors.

また、実施の形態1の共振器によれば、地導体に代えて金属筐体とし、かつ、金属筐体と浮遊導体を非接触に配置してサスペンデッド線路構造としたので、サスペンデッド線路構造の共振器として、小型で優れたスプリアス特性を有し、かつ、加工誤差による特性ばらつきを低減させることができる。   In addition, according to the resonator of the first embodiment, since the metal casing is used instead of the ground conductor, and the metal casing and the floating conductor are arranged in a non-contact manner to form the suspended line structure, the resonance of the suspended line structure is achieved. As a container, it is small and has excellent spurious characteristics, and can reduce variations in characteristics due to processing errors.

また、実施の形態1の共振器によれば、誘電体基板及び地導体を複数とし、複数の地導体を複数の誘電体基板を介して対向して設け、かつ、複数の誘電体基板の間に線路状導体を設けたストリップ線路構造としたので、ストリップ線路構造の共振器として、小型で優れたスプリアス特性を有し、かつ、加工誤差による特性ばらつきを低減させることができる。   Further, according to the resonator of the first embodiment, a plurality of dielectric substrates and ground conductors are provided, and a plurality of ground conductors are provided to face each other via a plurality of dielectric substrates, and between the plurality of dielectric substrates. Since the strip-line structure is provided with a line-shaped conductor, it has a small and excellent spurious characteristic as a resonator of the strip-line structure, and can reduce characteristic variations due to processing errors.

実施の形態2.
実施の形態2は、線路状導体1を線路幅の異なる複数の導体から構成した例である。
図5Aは実施の形態2による共振器の平面図、図5Bはその断面図である。
図示の共振器は、マイクロストリップ線路構造の共振器であって、誘電体基板4と、地導体3と、動作周波数において長さが約1/2波長である線路状導体1と、動作周波数において長さが1/4波長以下である浮遊導体2によって構成される。ここで、線路状導体1は、全長が約1/8波長の導体1a、1bと全長が約1/4波長の導体1cからなり、導体1cの両端にはそれぞれ導体1aと導体1bが接続される。導体1aと導体1bの線路幅は等しく、かつ導体1cの線路幅は導体1a及び導体1bと比べて小さい値となっている。また、線路状導体1は、その両端部間の直線距離が動作周波数において1/8波長以下の距離となるよう屈曲部11を有する。また、線路状導体1は同一平面XY内に形成され、かつ平面XYに対して垂直な平面XZに対して構造対称である。これ以外の構成は、図1A及び図1Bに示した実施の形態1の構成と同様であるため、対応する部分に同一符号を付してその説明を省略する。
Embodiment 2. FIG.
The second embodiment is an example in which the line-shaped conductor 1 is composed of a plurality of conductors having different line widths.
5A is a plan view of the resonator according to the second embodiment, and FIG. 5B is a cross-sectional view thereof.
The illustrated resonator is a resonator having a microstrip line structure, and includes a dielectric substrate 4, a ground conductor 3, a line-shaped conductor 1 having a length of about ½ wavelength at an operating frequency, and an operating frequency. It is comprised by the floating conductor 2 whose length is 1/4 wavelength or less. Here, the line-shaped conductor 1 is composed of conductors 1a and 1b having a total length of about 8 wavelength and a conductor 1c having a total length of about ¼ wavelength. The conductors 1a and 1b are connected to both ends of the conductor 1c, respectively. The The conductor 1a and the conductor 1b have the same line width, and the conductor 1c has a smaller line width than the conductor 1a and the conductor 1b. Moreover, the line-shaped conductor 1 has the bending part 11 so that the linear distance between the both ends may become a 1/8 wavelength or less distance in an operating frequency. The line-shaped conductor 1 is formed in the same plane XY and is structurally symmetric with respect to a plane XZ perpendicular to the plane XY. Since the configuration other than this is the same as the configuration of the first embodiment shown in FIGS. 1A and 1B, the same reference numerals are given to corresponding portions, and the description thereof is omitted.

以下、実施の形態2の動作について説明する。なお、実施の形態1と重複する内容については記述を省略する。
まず、実施の形態2の共振器の基本波における動作について説明する。基本波では、線路状導体1の全長が1/2波長となり、線路状導体1の表面を流れる高周波電流は線路状導体1の構造対称面XZに対して逆位相となる。そのため、実施の形態1で説明したように、浮遊導体2が構造対称面XZにおいて仮想的に短絡される。このとき、導体1a,1bと浮遊導体2の間には電界が集中するため、導体1a,1bの線路幅が大きければ大きいほど共振器のキャパシタンスが大きくなり、共振周波数は低下する。
Hereinafter, the operation of the second embodiment will be described. Note that description of the same contents as those in Embodiment 1 is omitted.
First, the operation in the fundamental wave of the resonator of the second embodiment will be described. In the fundamental wave, the total length of the line-shaped conductor 1 is ½ wavelength, and the high-frequency current flowing through the surface of the line-shaped conductor 1 has an opposite phase with respect to the structural symmetry plane XZ of the line-shaped conductor 1. Therefore, as described in the first embodiment, the floating conductor 2 is virtually shorted on the structural symmetry plane XZ. At this time, since the electric field concentrates between the conductors 1a and 1b and the floating conductor 2, the larger the line width of the conductors 1a and 1b, the larger the capacitance of the resonator and the lower the resonance frequency.

一方、2次高調波では線路状導体1の全長は1波長であるため、線路状導体1の表面を流れる高周波電流は線路状導体1の構造対称面XZに対して同相となり、このとき、構造対称面XZには仮想磁気壁があるのと等価となる。また、線路状導体1における高周波電流は、線路状導体1の端部から約1/4波長となる位置、すなわち、導体1aと導体1cの接続部付近及び導体1bと1cの接続部付近において最大となる。そのため、導体1a及び導体1bの線路幅が大きければ大きいほど電流密度が小さくなり、共振器のインダクタンスが低下し、共振周波数は高くなる。
そのため、実施の形態2の共振器は実施の形態1の共振器の効果に加えて、さらなるスプリアス特性の改善が可能となる。
On the other hand, since the total length of the line-shaped conductor 1 is one wavelength at the second harmonic, the high-frequency current flowing through the surface of the line-shaped conductor 1 is in phase with the structural symmetry plane XZ of the line-shaped conductor 1, and at this time, the structure This is equivalent to a virtual magnetic wall on the symmetry plane XZ. The high-frequency current in the line-shaped conductor 1 is maximum at a position where the wavelength is about ¼ wavelength from the end of the line-shaped conductor 1, that is, in the vicinity of the connection portion between the conductors 1a and 1c and in the vicinity of the connection portion between the conductors 1b and 1c. It becomes. Therefore, the larger the line width of the conductor 1a and the conductor 1b, the smaller the current density, the lower the inductance of the resonator, and the higher the resonant frequency.
Therefore, the resonator of the second embodiment can further improve the spurious characteristics in addition to the effect of the resonator of the first embodiment.

また、実施の形態2の共振器は、線路状導体1の両端部の間隙が実施の形態1の構成と比べて小さくなっているが、浮遊導体2によって大きなスプリアス改善効果が得られるため、従来のような小さな間隙を用いずとも従来の共振器と同等のスプリアス特性を実現することができる。そのため、線路状導体1を形成する際の加工誤差によって共振周波数が変動しにくい。
従って、実施の形態2の共振器を用いて平面フィルタを構成することで、小型で、かつ、スプリアス特性の優れたフィルタを実現することができる。また、同時に製造誤差に強いフィルタを実現でき、フィルタの歩留まり改善が可能となる。
In the resonator according to the second embodiment, the gap between both ends of the line-shaped conductor 1 is smaller than that of the configuration according to the first embodiment. However, since the floating conductor 2 provides a great spurious improvement effect, The spurious characteristic equivalent to that of the conventional resonator can be realized without using such a small gap. Therefore, the resonance frequency is unlikely to fluctuate due to processing errors when forming the line-shaped conductor 1.
Therefore, by forming a planar filter using the resonator according to the second embodiment, it is possible to realize a small filter with excellent spurious characteristics. At the same time, a filter that is resistant to manufacturing errors can be realized, and the yield of the filter can be improved.

上記例では、共振器をマイクロストリップ線路構造により実現したが、実施の形態1と同様にストリップ線路構造あるいはサスペンデット線路構造としてもよい。
また、実施の形態2では、説明を簡略化するため線路状導体1を対称構造とした場合について述べたが、線路状導体1が対称構造である場合に限定されるものではなく、非対称な構造であってもよい。なお、実施の形態2における導体1a,1b,1cの線路長は一例にすぎず、本実施の形態2の範囲を限定するものではない。
さらに、上記例では線路状導体1の中間部から両端部にかけて線路幅が段階的に大きくなる形状として、導体1a,1b,1cで構成したが、線路状導体1の中間部から両端部に向かって逆テーパ状となる形状であってもよい。
In the above example, the resonator is realized by a microstrip line structure, but it may be a strip line structure or a suspended line structure as in the first embodiment.
In the second embodiment, the case where the line-shaped conductor 1 has a symmetric structure has been described for the sake of simplicity. However, the present invention is not limited to the case where the line-shaped conductor 1 has a symmetric structure, but an asymmetric structure. It may be. The line lengths of the conductors 1a, 1b, and 1c in the second embodiment are merely examples, and do not limit the scope of the second embodiment.
Further, in the above example, the conductors 1a, 1b, and 1c are configured so that the line width gradually increases from the intermediate part of the line-shaped conductor 1 to both ends, but from the intermediate part of the line-shaped conductor 1 to both ends. The shape may be a reverse taper shape.

以上説明したように、実施の形態2の共振器によれば、線路状導体が、線路幅の異なる複数の導体からなり、かつ、線路状導体の中間部から両端部にかけて線路幅が段階的に大きくなる形状であるようにしたので、実施の形態1の効果に加えて、さらなるスプリアス特性の改善が可能となる。   As described above, according to the resonator of the second embodiment, the line-shaped conductor is composed of a plurality of conductors having different line widths, and the line width gradually increases from the middle part to both ends of the line-shaped conductor. Since the shape is increased, the spurious characteristics can be further improved in addition to the effects of the first embodiment.

また、実施の形態2の共振器によれば、線路状導体が、線路状導体の中間部から両端部に向かって逆テーパ状であるようにしたので、実施の形態1の効果に加えて、さらなるスプリアス特性の改善が可能となる。   Further, according to the resonator of the second embodiment, since the line-shaped conductor has a reverse taper shape from the intermediate portion of the line-shaped conductor toward both ends, in addition to the effects of the first embodiment, Further spurious characteristics can be improved.

実施の形態3.
実施の形態3は、浮遊導体2を、地導体3に対向して誘電体基板4に設け、線路状導体1を誘電体基板4の内部に配置するようにした例である。
図6Aは実施の形態3による共振器の平面図、図6Bはその断面図である。
図示の共振器は、マイクロストリップ線路構造の共振器であって、誘電体基板4と、地導体3と、動作周波数において長さが約1/2波長である線路状導体1と、動作周波数において線路状導体1の長手方向と平行な方向の長さが1/4波長以下である浮遊導体2によって構成される。また、線路状導体1は、その両端部間の直線距離が動作周波数において1/8波長以下の距離となるための屈曲部11を有する。さらに、線路状導体1は、同一平面XY内に形成され、かつ平面XYに対して垂直な平面XZに対して構造対称である。一方、誘電体基板4の一方の面には地導体3が配置され、線路状導体1は地導体3と対向するよう誘電体基板4の内層に配置される。また、浮遊導体2は線路状導体1の構造対称面XZを垂直に貫くよう誘電体基板4の他方の面に配置される。
Embodiment 3 FIG.
The third embodiment is an example in which the floating conductor 2 is provided on the dielectric substrate 4 so as to face the ground conductor 3 and the line-shaped conductor 1 is disposed inside the dielectric substrate 4.
6A is a plan view of the resonator according to the third embodiment, and FIG. 6B is a sectional view thereof.
The illustrated resonator is a resonator having a microstrip line structure, and includes a dielectric substrate 4, a ground conductor 3, a line-shaped conductor 1 having a length of about ½ wavelength at an operating frequency, and an operating frequency. It is constituted by the floating conductor 2 whose length in the direction parallel to the longitudinal direction of the line-shaped conductor 1 is ¼ wavelength or less. Moreover, the line-shaped conductor 1 has the bending part 11 for the linear distance between the both ends to become a distance below 1/8 wavelength in an operating frequency. Furthermore, the line-shaped conductor 1 is structurally symmetric with respect to a plane XZ formed in the same plane XY and perpendicular to the plane XY. On the other hand, the ground conductor 3 is disposed on one surface of the dielectric substrate 4, and the line conductor 1 is disposed in the inner layer of the dielectric substrate 4 so as to face the ground conductor 3. The floating conductor 2 is disposed on the other surface of the dielectric substrate 4 so as to penetrate the structural symmetry plane XZ of the line-shaped conductor 1 vertically.

次に、実施の形態3の動作について説明する。なお、実施の形態1と重複する内容については記述を省略する。
まず、実施の形態2の共振器の基本波における動作について述べる。基本波では、線路状導体1の全長が1/2波長となり、線路状導体1の表面を流れる高周波電流は線路状導体1の構造対称面XZに対して逆位相となる。そのため、実施の形態1で説明したように、浮遊導体2が構造対称面XZにおいて仮想的に短絡される。このとき、線路状導体1の端部は浮遊導体2と地導体3に挟まれているため、線路状導体1と浮遊導体2との間、及び線路状導体1と地導体3との間において、電界が集中する。従って、実施の形態1の構成と比較して、線路状導体1と浮遊導体2の間の間隔が同程度であれば、より電界強度が大きくなる。そのため、実施の形態1と同程度の共振周波数を実現しつつ、さらなる小型化が可能となる。
Next, the operation of the third embodiment will be described. Note that description of the same contents as those in Embodiment 1 is omitted.
First, the operation in the fundamental wave of the resonator of the second embodiment will be described. In the fundamental wave, the total length of the line-shaped conductor 1 is ½ wavelength, and the high-frequency current flowing through the surface of the line-shaped conductor 1 has an opposite phase with respect to the structural symmetry plane XZ of the line-shaped conductor 1. Therefore, as described in the first embodiment, the floating conductor 2 is virtually shorted on the structural symmetry plane XZ. At this time, since the end of the line-shaped conductor 1 is sandwiched between the floating conductor 2 and the ground conductor 3, between the line-shaped conductor 1 and the floating conductor 2 and between the line-shaped conductor 1 and the ground conductor 3. , The electric field concentrates. Therefore, as compared with the configuration of the first embodiment, if the distance between the line-shaped conductor 1 and the floating conductor 2 is approximately the same, the electric field strength is further increased. Therefore, it is possible to further reduce the size while realizing a resonance frequency similar to that of the first embodiment.

一方、2次高調波では線路状導体1の全長は1波長であるため、線路状導体1の表面を流れる高周波電流は線路状導体1の構造対称面XZに対して同相となり、このとき、構造対称面XZには仮想磁気壁があると等価となる。そのため、浮遊導体2は接地導体として動作せず、共振周波数は浮遊導体2がない場合のそれと同程度となる。
従って、実施の形態3の共振器は実施の形態1の共振器の効果を有しつつ、より優れたスプリアス特性を実現できる。
On the other hand, since the total length of the line-shaped conductor 1 is one wavelength at the second harmonic, the high-frequency current flowing through the surface of the line-shaped conductor 1 is in phase with the structural symmetry plane XZ of the line-shaped conductor 1, and at this time, the structure It is equivalent if there is a virtual magnetic wall on the symmetry plane XZ. Therefore, the floating conductor 2 does not operate as a ground conductor, and the resonance frequency is approximately the same as that in the case where the floating conductor 2 is not provided.
Therefore, the resonator according to the third embodiment can realize more excellent spurious characteristics while having the effect of the resonator according to the first embodiment.

また、上記例では、共振器をマイクロストリップ線路構造により実現したが、図7A及び図7Bに示すように誘電体基板4の対向する二つの面にそれぞれ線路状導体1、浮遊導体2を設け、また、線路状導体1が設けられた誘電体基板4の一方の面に地導体3の代わりとしての金属筐体6などを配置したサスペンデッド線路構造としてもよい。すなわち、この構成は、実施の形態1の図4A及び図4Bで示した構成において線路状導体1と浮遊導体2との位置関係が逆になっているのと同等である。   In the above example, the resonator is realized by the microstrip line structure. However, as shown in FIGS. 7A and 7B, the line-shaped conductor 1 and the floating conductor 2 are provided on the two opposing surfaces of the dielectric substrate 4, respectively. Moreover, it is good also as a suspended line structure which has arrange | positioned the metal housing | casing 6 instead of the ground conductor 3, etc. in the one surface of the dielectric substrate 4 in which the line-shaped conductor 1 was provided. That is, this configuration is equivalent to the positional relationship between the line-shaped conductor 1 and the floating conductor 2 being reversed in the configuration shown in FIGS. 4A and 4B of the first embodiment.

本実施の形態3では、説明を簡略化するため線路状導体1を対称構造とした場合について述べたが、線路状導体1が対称構造である場合に限定されるものではなく、非対称な構造であってもよい。   In the third embodiment, the case where the line-shaped conductor 1 has a symmetric structure has been described for the sake of simplification, but the present invention is not limited to the case where the line-shaped conductor 1 has a symmetric structure. There may be.

以上説明したように、実施の形態3の共振器によれば、平板状の誘電体基板と、誘電体基板の一方の面に配置された地導体と、動作周波数において長さが約1/2波長であり、かつ、両端部の直線距離が動作周波数において1/8波長以下の距離となるための屈曲部を有する線路状導体と、動作周波数において長さが約1/4波長以下であり、かつ、誘電体基板の他方の面に配置された浮遊導体とを備え、線路状導体は、地導体と浮遊導体との間に地導体と対向して配置されたので、実施の形態1の効果に加えて、さらなる小型化を図ることができる。   As described above, according to the resonator of the third embodiment, the length of the flat dielectric substrate, the ground conductor disposed on one surface of the dielectric substrate, and the length at the operating frequency is about ½. A line-shaped conductor having a bent portion for being a wavelength and having a linear distance at both ends of a distance of 1/8 wavelength or less at the operating frequency, and a length of about 1/4 wavelength or less at the operating frequency, In addition, since the floating conductor is disposed on the other surface of the dielectric substrate, and the line-shaped conductor is disposed between the ground conductor and the floating conductor so as to face the ground conductor, the effect of the first embodiment is achieved. In addition, further downsizing can be achieved.

また実施の形態3の共振器によれば、地導体に代えて金属筐体とし、かつ、金属筐体と線路状導体を非接触に配置してサスペンデッド線路構造としたので、サスペンデッド線路構造の共振器として、さらなる小型化を図ることができる。   Further, according to the resonator of the third embodiment, since the metal casing is replaced with the ground conductor and the metal casing and the line-shaped conductor are arranged in a non-contact manner to form the suspended line structure, the resonance of the suspended line structure is achieved. As a container, further downsizing can be achieved.

実施の形態4.
実施の形態4は、浮遊導体を、長辺が1/16波長以下の複数の浮遊導体小片からなる例である。
図8Aは実施の形態4による共振器の平面図、図8Bはその断面図である。
図示の共振器は、マイクロストリップ線路構造の共振器であって、誘電体基板4と、地導体3と、動作周波数において長さが約1/2波長である線路状導体1と、動作周波数において長辺が1/16波長以下である複数の浮遊導体小片5a〜5iからなる浮遊導体小片群の浮遊導体5によって構成される。線路状導体1は、その両端部間の直線距離が動作周波数において1/8波長以下の距離となるための屈曲部11を有する。また、線路状導体1は、同一平面XY内に形成され、かつ平面XYに対して垂直な平面XZに対して構造対称である。そして、誘電体基板4の一方の面には地導体3が、もう一方の面には線路状導体1がそれぞれ配置される。浮遊導体5は、地導体3と線路状導体1との間の誘電体基板4内部に配置され、かつ線路状導体1の構造対称面XZを垂直に貫くよう配置される。このとき、浮遊導体小片5a〜5iは互いに1/32波長以下の間隔で併設される。
Embodiment 4 FIG.
The fourth embodiment is an example in which the floating conductor is composed of a plurality of floating conductor pieces whose long sides are 1/16 wavelength or less.
8A is a plan view of the resonator according to the fourth embodiment, and FIG. 8B is a sectional view thereof.
The illustrated resonator is a resonator having a microstrip line structure, and includes a dielectric substrate 4, a ground conductor 3, a line-shaped conductor 1 having a length of about ½ wavelength at an operating frequency, and an operating frequency. The floating conductor 5 is composed of a group of floating conductor pieces consisting of a plurality of floating conductor pieces 5a to 5i having a long side of 1/16 wavelength or less. The line-shaped conductor 1 has a bent portion 11 for the linear distance between the both end portions to be a distance of 1/8 wavelength or less at the operating frequency. The line-shaped conductor 1 is structurally symmetric with respect to a plane XZ formed in the same plane XY and perpendicular to the plane XY. The ground conductor 3 is disposed on one surface of the dielectric substrate 4 and the line conductor 1 is disposed on the other surface. The floating conductor 5 is disposed inside the dielectric substrate 4 between the ground conductor 3 and the line-shaped conductor 1 and is disposed so as to vertically penetrate the structural symmetry plane XZ of the line-shaped conductor 1. At this time, the floating conductor pieces 5a to 5i are provided with an interval of 1/32 wavelength or less.

上記実施の形態1〜3は、いずれも線路状導体1の第2次高調波を第1のスプリアス共振と捉え、基本波と第1のスプリアス共振の周波数の比を大きくするためのものである。しかし、実施の形態1〜3において、浮遊導体2の長辺が約1/2波長となる場合に、浮遊導体2上に定在波が発生し、これが共振器として動作する。そのため、しばしばスプリアス特性を改善する上では、浮遊導体2が共振器として動作しないようその寸法を設計する必要がある。例えば、浮遊導体2の寸法を小さくすることで浮遊導体2の基本波をより高くすることができる。しかし、浮遊導体2が小さくすることにより、線路状導体1の基本波において線路状導体1と浮遊導体2との間の電界が集中する箇所の面積が減少し、その共振周波数は高くなってしまう。このように、実施の形態1〜3の共振器では、線路状導体1の基本波の共振周波数を低くさせ、同時に、浮遊導体2の基本波の共振周波数を高くすることを両立させようとするのが課題として残されていた。
実施の形態4の共振器は、上述の課題を解決し、より優れたスプリアス特性を実現することを可能とする。
In the first to third embodiments, the second harmonic of the line conductor 1 is regarded as the first spurious resonance, and the ratio of the frequency of the fundamental wave and the first spurious resonance is increased. . However, in Embodiments 1 to 3, when the long side of the floating conductor 2 has about ½ wavelength, a standing wave is generated on the floating conductor 2 and this operates as a resonator. Therefore, in order to improve the spurious characteristics, it is necessary to design the dimensions so that the floating conductor 2 does not operate as a resonator. For example, the fundamental wave of the floating conductor 2 can be made higher by reducing the size of the floating conductor 2. However, when the floating conductor 2 is made smaller, the area where the electric field between the line-shaped conductor 1 and the floating conductor 2 is concentrated in the fundamental wave of the line-shaped conductor 1 is reduced, and the resonance frequency is increased. . As described above, in the resonators according to the first to third embodiments, the resonance frequency of the fundamental wave of the line conductor 1 is lowered, and at the same time, the resonance frequency of the fundamental wave of the floating conductor 2 is increased. Was left as an issue.
The resonator according to the fourth embodiment can solve the above-described problems and realize more excellent spurious characteristics.

次に、実施の形態4の動作について説明する。なお、実施の形態1と重複する内容については記述を省略する。
まず、実施の形態4の共振器の基本波における動作について述べる。基本波では、線路状導体1の全長が1/2波長となり、線路状導体1の表面を流れる高周波電流は線路状導体1の構造対称面XZに対して逆位相となる。そのため、実施の形態1で説明したように、浮遊導体5が構造対称面XZにおいて仮想的に短絡される。このとき、浮遊導体5における浮遊導体小片5a〜5iの間隔がその周波数に比較して非常に小さければ、線路状導体1と浮遊導体小片5a〜5iの間の電界密度は大きく変化しない。そのため、実施の形態1の共振器構造と比較して、実施の形態4の共振器は同等の共振周波数となる。
Next, the operation of the fourth embodiment will be described. Note that description of the same contents as those in Embodiment 1 is omitted.
First, the operation in the fundamental wave of the resonator of the fourth embodiment will be described. In the fundamental wave, the total length of the line-shaped conductor 1 is ½ wavelength, and the high-frequency current flowing through the surface of the line-shaped conductor 1 has an opposite phase with respect to the structural symmetry plane XZ of the line-shaped conductor 1. Therefore, as described in the first embodiment, the floating conductor 5 is virtually short-circuited on the structural symmetry plane XZ. If the space | interval of the floating conductor pieces 5a-5i in the floating conductor 5 is very small compared with the frequency at this time, the electric field density between the line conductor 1 and the floating conductor pieces 5a-5i will not change a lot. Therefore, compared with the resonator structure of the first embodiment, the resonator of the fourth embodiment has an equivalent resonance frequency.

一方、2次高調波では線路状導体1の全長は1波長であるため、線路状導体1の表面を流れる高周波電流は線路状導体1の構造対称面XZに対して同相となり、このとき、構造対称面XZには仮想磁気壁があると等価となる。そのため、浮遊導体5は接地導体として動作せず、共振周波数は浮遊導体5がない場合のそれと同程度となる。また、浮遊導体小片5a〜5iは、それぞれの長辺が1/16波長以下であるため、浮遊導体小片5a〜5iによる基本波は、線路状導体1の基本波の共振周波数の4倍以上の周波数で発生する。
従って、実施の形態4の共振器は、浮遊導体5による不要共振を高周波帯に移動させることができ、より優れたスプリアス特性を実現できる。
On the other hand, since the total length of the line-shaped conductor 1 is one wavelength at the second harmonic, the high-frequency current flowing through the surface of the line-shaped conductor 1 is in phase with the structural symmetry plane XZ of the line-shaped conductor 1, and at this time, the structure It is equivalent if there is a virtual magnetic wall on the symmetry plane XZ. Therefore, the floating conductor 5 does not operate as a ground conductor, and the resonance frequency is approximately the same as that in the case where the floating conductor 5 is not provided. Moreover, since the floating conductor pieces 5a to 5i each have a long side of 1/16 wavelength or less, the fundamental wave generated by the floating conductor pieces 5a to 5i is at least four times the resonance frequency of the fundamental wave of the line-shaped conductor 1. Occurs at frequency.
Therefore, the resonator according to the fourth embodiment can move unnecessary resonance due to the floating conductor 5 to the high frequency band, and can realize more excellent spurious characteristics.

上記例では、共振器をマイクロストリップ線路構造により実現したが、実施の形態1と同様にストリップ線路構造あるいはサスペンデット線路構造としてもよい。
本実施の形態4では、説明を簡略化するために線路状導体1を対称構造とした場合について述べたが、線路状導体1が対称構造である場合に限定されるものではなく、非対称な構造であってもよい。なお、本実施の形態4における浮遊導体小片5a〜5iの寸法は一例にすぎず、本実施の形態4の範囲を限定するものではない。
In the above example, the resonator is realized by a microstrip line structure, but it may be a strip line structure or a suspended line structure as in the first embodiment.
In the fourth embodiment, the case where the line-shaped conductor 1 has a symmetric structure has been described in order to simplify the description. However, the present invention is not limited to the case where the line-shaped conductor 1 has a symmetric structure, but an asymmetric structure. It may be. Note that the dimensions of the floating conductor pieces 5a to 5i in the fourth embodiment are merely examples, and do not limit the scope of the fourth embodiment.

以上説明したように、実施の形態4の共振器によれば、浮遊導体は、長辺が1/16波長以下の複数の浮遊導体小片からなるようにしたので、実施の形態1の効果に加えて、さらにスプリアス特性を改善することができる。   As described above, according to the resonator of the fourth embodiment, the floating conductor is made up of a plurality of floating conductor pieces whose long sides are 1/16 wavelength or less, so in addition to the effects of the first embodiment. Thus, spurious characteristics can be further improved.

また、上記実施の形態1〜4では共振器について説明したが、いずれかの実施の形態の共振器を一つまたは複数用い、一つまたは複数の共振器に電気的に接続する入出力手段を設けてフィルタとして構成してもよい。このようにすれば、従来に比べてエッチング誤差に強いフィルタを実現することができる。   In the first to fourth embodiments, the resonator has been described. However, the input / output means for electrically connecting to one or a plurality of resonators using one or a plurality of the resonators of any of the embodiments is provided. It may be provided and configured as a filter. In this way, it is possible to realize a filter that is more resistant to etching errors than conventional ones.

さらに、このフィルタを複数とし、かつ、これらフィルタの誘電体基板を同一平面内で接続して一体としたフィルタバンクを構成してもよい。このようにすれば、フィルタの製造歩留まりの改善に寄与することができる。   Furthermore, a plurality of filters may be used, and a filter bank may be configured by connecting the dielectric substrates of these filters in the same plane. In this way, it can contribute to the improvement of the manufacturing yield of the filter.

なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。   In the present invention, within the scope of the invention, any combination of the embodiments, or any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .

以上のように、この発明に係る共振器は、SIヘアピン型1/2波長共振器の構成に関するものであり、マイクロ波やミリ波帯のフィルタに用いるのに適している。   As described above, the resonator according to the present invention relates to the configuration of the SI hairpin type ½ wavelength resonator and is suitable for use in a microwave or millimeter wave band filter.

1 線路状導体、1a,1b,1c 導体、2,5 浮遊導体、3 地導体、4 誘電体基板、5a〜5i 浮遊導体小片、6 金属筐体、11 屈曲部。   DESCRIPTION OF SYMBOLS 1 Line-shaped conductor, 1a, 1b, 1c conductor, 2,5 Floating conductor, 3 Ground conductor, 4 Dielectric substrate, 5a-5i Small piece of floating conductor, 6 Metal housing, 11 Bending part.

Claims (11)

平板状の誘電体基板と、
前記誘電体基板の一方の面及び他方の面のうち、少なくとも一つの面に配置された地導体と、
動作周波数において長さが約1/2波長の奇数倍で、その両端部の直線距離が動作周波数において1/8波長以下となるよう、その中間点を含む構造対称面に対して対称に屈曲部を有し、かつ、前記誘電体基板を介して前記地導体と対向するよう配置された線路状導体と、
動作周波数において長さが約1/4波長以下であり、かつ、前記線路状導体と前記地導体との間の誘電体基板に設けられた浮遊導体とを備え、
前記浮遊導体が前記線路状導体の構造対称面を横切るよう配置されたことを特徴とする共振器。
A flat dielectric substrate;
A ground conductor disposed on at least one of the one surface and the other surface of the dielectric substrate;
Bending part symmetrically with respect to the structural symmetry plane including the intermediate point so that the length at the operating frequency is an odd multiple of about 1/2 wavelength and the linear distance between both ends thereof is 1/8 wavelength or less at the operating frequency. And a line-shaped conductor disposed to face the ground conductor via the dielectric substrate, and
A floating conductor having a length of about ¼ wavelength or less at an operating frequency and provided on a dielectric substrate between the line-shaped conductor and the ground conductor;
A resonator in which the floating conductor is disposed so as to cross a structural symmetry plane of the line-shaped conductor.
前記誘電体基板の一方の面に前記地導体を配置すると共に、他方の面に前記線路状導体を配置し、かつ、前記線路状導体は、動作周波数において長さが約1/2波長であると共に、前記浮遊導体は、動作周波数において前記線路状導体の長手方向と平行な方向の長さが約1/4波長であることを特徴とする請求項1記載の共振器。   The ground conductor is disposed on one surface of the dielectric substrate, the line conductor is disposed on the other surface, and the line conductor has a length of about ½ wavelength at an operating frequency. The resonator according to claim 1, wherein the floating conductor has a length in a direction parallel to a longitudinal direction of the line-shaped conductor at an operating frequency of about ¼ wavelength. 請求項2の地導体に代えて金属筐体とし、かつ、当該金属筐体と前記浮遊導体を非接触に配置してサスペンデッド線路構造としたことを特徴とする請求項2記載の共振器。   3. A resonator according to claim 2, wherein the ground conductor is replaced with a metal case, and the metal case and the floating conductor are arranged in a non-contact manner to form a suspended line structure. 前記誘電体基板及び前記地導体を複数とし、当該複数の地導体を前記複数の誘電体基板を介して対向して設け、かつ、前記複数の誘電体基板の間に前記線路状導体を設けたストリップ線路構造としたことを特徴とする請求項1記載の共振器。   A plurality of the dielectric substrate and the ground conductor are provided, the plurality of ground conductors are provided to face each other via the plurality of dielectric substrates, and the line-shaped conductor is provided between the plurality of dielectric substrates. 2. The resonator according to claim 1, wherein the resonator has a stripline structure. 前記線路状導体が、線路幅の異なる複数の導体からなり、かつ、前記線路状導体の中間部から両端部にかけて線路幅が段階的に大きくなる形状であることを特徴とする請求項1記載の共振器。   The line-shaped conductor is composed of a plurality of conductors having different line widths, and has a shape in which the line width gradually increases from an intermediate portion to both ends of the line-shaped conductor. Resonator. 前記線路状導体が、前記線路状導体の中間部から両端部に向かって逆テーパ状であることを特徴とする請求項1記載の共振器。   The resonator according to claim 1, wherein the line-shaped conductor has a reverse taper shape from an intermediate portion of the line-shaped conductor toward both ends. 平板状の誘電体基板と、
前記誘電体基板の一方の面に配置された地導体と、
動作周波数において長さが約1/2波長であり、かつ、両端部の直線距離が動作周波数において1/8波長以下となるよう、その中間点を含む構造対称面に対して対称に屈曲部を有する線路状導体と、
動作周波数において長さが約1/4波長以下であり、かつ、前記誘電体基板の他方の面に配置された浮遊導体とを備え、
前記浮遊導体が前記線路状導体の構造対称面を横切るよう配置され、かつ、前記線路状導体は、前記地導体と前記浮遊導体との間に前記地導体と対向して配置されたことを特徴とする共振器。
A flat dielectric substrate;
A ground conductor disposed on one surface of the dielectric substrate;
The bending portion is symmetrically formed with respect to the structural symmetry plane including the intermediate point so that the length is about ½ wavelength at the operating frequency and the linear distance between both ends is 1 / wavelength or less at the operating frequency. A line-shaped conductor having,
A floating conductor having a length of about ¼ wavelength or less at an operating frequency and disposed on the other surface of the dielectric substrate,
The floating conductor is disposed so as to cross a structural symmetry plane of the line-shaped conductor, and the line-shaped conductor is disposed between the ground conductor and the floating conductor so as to face the ground conductor. Resonator.
請求項7の地導体に代えて金属筐体とし、かつ、当該金属筐体と前記線路状導体を非接触に配置してサスペンデッド線路構造としたことを特徴とする請求項7記載の共振器。   8. A resonator according to claim 7, wherein the ground conductor is replaced with a metal casing, and the metal casing and the line conductor are arranged in a non-contact manner to form a suspended line structure. 前記浮遊導体は、長辺が1/16波長以下の複数の浮遊導体小片からなることを特徴とする請求項1記載の共振器。   The resonator according to claim 1, wherein the floating conductor is composed of a plurality of floating conductor pieces whose long sides are 1/16 wavelength or less. 請求項1に記載の共振器に電気的に結合する入出力手段を備えたことを特徴とするフィルタ。   A filter comprising input / output means for electrically coupling to the resonator according to claim 1. 請求項10に記載のフィルタを複数有し、それぞれの前記フィルタにおける前記誘電体基板を同一平面内で接続して一体としたことを特徴とするフィルタバンク。   A filter bank comprising a plurality of the filters according to claim 10, wherein the dielectric substrates in each of the filters are integrated in the same plane.
JP2017554418A 2017-06-05 2017-06-05 Resonator, filter and filter bank Expired - Fee Related JP6297237B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020816 WO2018225126A1 (en) 2017-06-05 2017-06-05 Resonator, filter, and filter bank

Publications (2)

Publication Number Publication Date
JP6297237B1 true JP6297237B1 (en) 2018-03-20
JPWO2018225126A1 JPWO2018225126A1 (en) 2019-06-27

Family

ID=61629199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017554418A Expired - Fee Related JP6297237B1 (en) 2017-06-05 2017-06-05 Resonator, filter and filter bank

Country Status (2)

Country Link
JP (1) JP6297237B1 (en)
WO (1) WO2018225126A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262303A (en) * 1990-03-13 1991-11-22 Tokimec Inc Distribution type coupling filter
JPH11205005A (en) * 1998-01-14 1999-07-30 Matsushita Electric Ind Co Ltd Planar filter and planar filter module
JP2006186828A (en) * 2004-12-28 2006-07-13 Ykc:Kk Band pass filter
JP2009055576A (en) * 2007-08-29 2009-03-12 Toshiba Corp Filter circuit having plurality sets of attenuating poles
JP2015142297A (en) * 2014-01-29 2015-08-03 国立大学法人山梨大学 Tunable dual band pass filter
JP2016111671A (en) * 2014-12-09 2016-06-20 国立大学法人山梨大学 Improved tunable dual-band band-pass filter
JP2016171395A (en) * 2015-03-11 2016-09-23 株式会社東芝 Filter characteristic adjustment device, tunable filter device and method of controlling tunable filter device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262303A (en) * 1990-03-13 1991-11-22 Tokimec Inc Distribution type coupling filter
JPH11205005A (en) * 1998-01-14 1999-07-30 Matsushita Electric Ind Co Ltd Planar filter and planar filter module
JP2006186828A (en) * 2004-12-28 2006-07-13 Ykc:Kk Band pass filter
JP2009055576A (en) * 2007-08-29 2009-03-12 Toshiba Corp Filter circuit having plurality sets of attenuating poles
JP2015142297A (en) * 2014-01-29 2015-08-03 国立大学法人山梨大学 Tunable dual band pass filter
JP2016111671A (en) * 2014-12-09 2016-06-20 国立大学法人山梨大学 Improved tunable dual-band band-pass filter
JP2016171395A (en) * 2015-03-11 2016-09-23 株式会社東芝 Filter characteristic adjustment device, tunable filter device and method of controlling tunable filter device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
塩川 教次 ほか: "7GHz帯超電導ヘアピン型共振器", 電子情報通信学会2006年総合大会講演論文集 エレクトロニクス1 PROCEEDINGS OF THE 2006 IEICE GENE, JPN6017030115, 8 March 2006 (2006-03-08), JP, pages 104, ISSN: 0003681298 *

Also Published As

Publication number Publication date
WO2018225126A1 (en) 2018-12-13
JPWO2018225126A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
US7561012B2 (en) Electronic device and filter
US7541896B2 (en) Stacked resonator and filter
US9373876B2 (en) Multiple-mode filter for radio frequency integrated circuits
US7764147B2 (en) Coplanar resonator and filter using the same
JPWO2011114746A1 (en) Structure
KR101154091B1 (en) Meta-material mimo antenna
JP3478219B2 (en) Resonator, resonance element, resonator device, filter, duplexer, and communication device
JP4728994B2 (en) Coplanar resonator and coplanar filter using the same
JP6297237B1 (en) Resonator, filter and filter bank
JP4596266B2 (en) filter
JP6698949B1 (en) Resonator coupling structure and frequency filter
JP2007201764A (en) Filter
JP3723284B2 (en) High frequency filter
JP5081286B2 (en) Signal transmission device, filter, and inter-board communication device
JP6265478B2 (en) Tunable dual-band bandpass filter
US6356168B1 (en) Sheet-metal filter
JP4230467B2 (en) High frequency filter using coplanar line type resonator.
JP3603826B2 (en) Spiral line assembly element, resonator, filter, duplexer and high frequency circuit device
JP5062165B2 (en) Dual mode filter
JP6913505B2 (en) Dual band resonator and dual band passband filter using it
US7525401B2 (en) Stacked filter
JPH07183710A (en) Dielectric resonator and its input/output coupling circuit
EP2790266B1 (en) Filter and resonator
JP2016201584A (en) High-frequency resonator and high-frequency oscillator
JP2008042608A (en) Band pass filter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171016

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171016

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180220

R150 Certificate of patent or registration of utility model

Ref document number: 6297237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees