JP2006186828A - Band pass filter - Google Patents

Band pass filter Download PDF

Info

Publication number
JP2006186828A
JP2006186828A JP2004380072A JP2004380072A JP2006186828A JP 2006186828 A JP2006186828 A JP 2006186828A JP 2004380072 A JP2004380072 A JP 2004380072A JP 2004380072 A JP2004380072 A JP 2004380072A JP 2006186828 A JP2006186828 A JP 2006186828A
Authority
JP
Japan
Prior art keywords
line
coupling
coupled
filter
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004380072A
Other languages
Japanese (ja)
Inventor
Akira Saito
昭 斉藤
Kazuhiko Honjo
和彦 本城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKC KK
University of Electro Communications NUC
Campus Create Co Ltd
Original Assignee
YKC KK
University of Electro Communications NUC
Campus Create Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKC KK, University of Electro Communications NUC, Campus Create Co Ltd filed Critical YKC KK
Priority to JP2004380072A priority Critical patent/JP2006186828A/en
Publication of JP2006186828A publication Critical patent/JP2006186828A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure of a filter for downsizing an apparatus by multilayering. <P>SOLUTION: An interdigital filter is constituted so that a plurality of resonators for folding line resonators, respectively, are arranged in parallel on a dielectric substrate of a strip line construction or a microstrip line construction, wherein broadside joint structures 1U and 1L having a plurality of conductors where both ends of the plurality of resonators are arranged on different surfaces across the dielectric bodies are formed, and edge joint structures 2 with a plurality of conductors where the other is arranged on the same plane is formed. In comparison with the case that all are edge joint structures, the thickness of the dielectric substrate can be reduced to one-third so as to laminate a plurality of filters. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明はマイクロ波帯の帯域通過フィルタに関し、特に帯域通過フィルタの積層小型化のための構造に関する。   The present invention relates to a band-pass filter in a microwave band, and more particularly to a structure for miniaturization of a band-pass filter.

近年移動体通信が普及し、無線回路の小型化が強く要求されている。マイクロ波帯の帯域通過フィルタは、無線回路の重要な回路であるが、一般に無線回路のなかでは最も大きな面積を占め特に小型化が重要である。フィルタの構成に関しては、多数の文献があるがよく用いられるものとして両端開放の1/2波長の共振器を用いたフィルタや、片側短絡、片側開放の1/4波長の共振器を用いた、インターディジタル型の帯域通過フィルタがある(非特許文献1乃至3)。   In recent years, mobile communication has become widespread, and miniaturization of radio circuits is strongly demanded. A band-pass filter in the microwave band is an important circuit of a radio circuit, but generally occupies the largest area in the radio circuit, and particularly downsizing is important. Regarding the structure of the filter, there are many documents, but as a frequently used one, a filter using a half-wave resonator with open both ends, a short circuit with one side, and a quarter-wave resonator with one side open, There are interdigital type band-pass filters (Non-Patent Documents 1 to 3).

SEYMOUR B. COHN "Parallel-Coupled Transmission-Line-Resonator Filters" IRE Transactions ON Microwave Theory AND Techniques, pp.223-231 (1958)SEYMOUR B. COHN "Parallel-Coupled Transmission-Line-Resonator Filters" IRE Transactions ON Microwave Theory AND Techniques, pp.223-231 (1958) G. Matthaei, l.Young, E.M.T.Jones MICROWAVE FILTERS, Impedance-Matching Networks, AND Coupling Structures, Artech House(1985)G. Matthaei, l.Young, E.M.T.Jones MICROWAVE FILTERS, Impedance-Matching Networks, AND Coupling Structures, Artech House (1985) Chi-Yang, Cheng-Chung Chen, AND Hong-Jie Huang "Folded quarter-wave resonator filters with Chebyshev, flat group delay, or quasi-elliptical function response" 2002 IEEE MTT-S pp.1609-1612Chi-Yang, Cheng-Chung Chen, AND Hong-Jie Huang "Folded quarter-wave resonator filters with Chebyshev, flat group delay, or quasi-elliptical function response" 2002 IEEE MTT-S pp.1609-1612

上記フィルタは従来は同一平面上に配線されている。またフィルタの設計上は、通常両端の結合が大きく、中間の共振器は結合を小さくする必要があり、中間の結合線路の間隔は広く、両側の結合線路の線路間隔を狭くする必要がある。しかしプリント基板上や、セラミック基板上にフィルタ導体を作製する場合0.1mm程度が微細化の限界となっている。線路間隔が狭く製作限界を下回ると製作不可能になってしまうので、そのような場合特性を保ちつつ線路間隔を広げる必要がある。   Conventionally, the filter is wired on the same plane. Further, in terms of filter design, coupling at both ends is usually large, and an intermediate resonator needs to have small coupling, an interval between intermediate coupling lines is wide, and a line interval between coupling lines on both sides needs to be narrow. However, when producing a filter conductor on a printed board or a ceramic board, the limit of miniaturization is about 0.1 mm. If the line spacing is narrow and less than the production limit, it becomes impossible to produce. In such a case, it is necessary to widen the line spacing while maintaining the characteristics.

ストリップ線路あるいはストリップ結合線路で構成された回路では誘電体厚みをa倍した場合、線路幅、線路間隔もa倍することで同じ特性が得られるため、誘電体厚みを厚くすることにより最小の線路間隔が0.1mm程度以上となるように設計が行われていた。(マイクロストリップ構造では、式は複雑となるが定性的には誘電体厚みを厚くすることで線路幅、線路間隔を広げて同じ特性得ることができる。)この厚みは通常0.6〜1mm程度となるが、装置の薄型のため基板厚みの上限も0.5〜1mm程度であることが多いためフィルタに関しては多層化して上下に2つのフィルタを配置し面積を小型化することは難しかった。   In a circuit composed of a strip line or a strip-coupled line, when the dielectric thickness is multiplied by a, the same characteristics can be obtained by multiplying the line width and the line spacing by a. Therefore, the minimum line can be obtained by increasing the dielectric thickness. The design has been made so that the interval is about 0.1 mm or more. (In the microstrip structure, the equation is complicated, but qualitatively, by increasing the dielectric thickness, the same characteristics can be obtained by widening the line width and line interval.) This thickness is usually about 0.6 to 1 mm. However, since the apparatus is thin, the upper limit of the substrate thickness is often about 0.5 to 1 mm. Therefore, it has been difficult to reduce the area by multilayering the filter and arranging two filters on the upper and lower sides.

本発明は、上記課題を解決するためになされたもので、多層化することで装置の小型化が実現できるフィルタの構造を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a filter structure that can be downsized by multilayering.

本発明は、ストリップ線路構造またはマイクロストリップ線路構造の誘電体基板にそれぞれ線路共振器を折り曲げて構成した複数の共振器を平行に並べたインターディジタルフィルタにおいて、前記複数の共振器のうち少なくとも両端の共振器は、誘電体を挟んで異なる面に配置された複数の導体を有するブロードサイド結合構造を持ち、他の共振器は、同じ平面内に配置された複数の導体を有するエッジ結合構造を持つものである。   The present invention provides an interdigital filter in which a plurality of resonators configured by bending line resonators on a dielectric substrate having a stripline structure or a microstripline structure are arranged in parallel, and at least at both ends of the plurality of resonators. The resonator has a broad side coupling structure having a plurality of conductors arranged on different surfaces across the dielectric, and the other resonator has an edge coupling structure having a plurality of conductors arranged in the same plane. Is.

好ましくは、前記エッジ結合構造の導体を、前記ブロードサイド結合構造に係る複数の導体のいずれか一方と同じ平面内に配置する。   Preferably, the conductor having the edge coupling structure is disposed in the same plane as any one of the plurality of conductors according to the broad side coupling structure.

前記帯域通過フィルタは、例えば、ストリップ線路構造またはマイクロストリップ線路構造の誘電体基板上に両端開放の1/2波長の長さの線路共振器をヘアピン型に折り曲げたものであり、あるいは、片側が短絡された1/4波長の長さの線路共振器をヘアピン型に折り曲げたものである。   The band-pass filter is, for example, a half-wavelength line resonator having both ends open on a dielectric substrate having a stripline structure or a microstripline structure bent into a hairpin shape. A line resonator having a length of 1/4 wavelength that is short-circuited is bent into a hairpin shape.

ブロードサイド結合構造とは配線の構成方法の1つであり、多層基板の上下2つの層を使って構成する方法である。エッジ結合線も配線の構成方法の1つであり、2本の信号配線を同じ配線層上に横に並べて配置する構成方法である。   The broadside coupling structure is one of the wiring configuration methods, and is a configuration method using two upper and lower layers of a multilayer substrate. An edge coupling line is also a wiring configuration method, in which two signal wirings are arranged side by side on the same wiring layer.

本発明では両側の結合線路の結合に線路が上下に配置されたブロードサイド結合線路を用いることで大きな結合を実現し、他方、中間の結合線路の結合に線路が同一平面に配置されるエッジ結合線路を用いることで小さい結合を実現した。特に高周波の帯域フィルタにおいてそのような結合が求められる。本発明の構造を用いることにより、基板厚みを薄くしつつ最小の線路幅・線路間隔を製作限界の0.1mm以上にできる。従来は、最小の線路幅・線路間隔を0.1mm以上にしようとすると基板の厚みを増さざるを得なかった。基板を薄くすることにより多層化が可能になり、多層化することで装置の小型化を実現できる。   In the present invention, a large coupling is realized by using a broadside coupling line in which the lines are arranged one above the other for coupling the coupling lines on both sides, while on the other hand, the edge coupling in which the lines are arranged on the same plane for the coupling of the intermediate coupling line A small coupling was realized by using a line. Such coupling is particularly required in a high-frequency bandpass filter. By using the structure of the present invention, the minimum line width and line interval can be made 0.1 mm or more, which is the manufacturing limit, while reducing the substrate thickness. Conventionally, if the minimum line width / line interval is set to 0.1 mm or more, the thickness of the substrate has to be increased. By making the substrate thin, it becomes possible to make a multilayer, and by making the multilayer, it is possible to reduce the size of the apparatus.

本発明に係る構造を用いることで最小寸法を大きく保ちながら、基板の厚みを薄くすることができる。そのため基板の多層化が可能となり、占有面積を大幅に縮小することができるようになる。   By using the structure according to the present invention, the thickness of the substrate can be reduced while keeping the minimum dimension large. As a result, the number of substrates can be increased, and the occupied area can be significantly reduced.

本発明の実施の形態について図面を参照して説明を加える。
図1に本発明の実施の形態に係る帯域通過フィルタの構造を示す。図1(a)は前記帯域通過フィルタの上面図、同図(b)は同フィルタのa−a’矢視断面図、同図(c)は同フィルタのb−b’矢視断面図を示す。これらの図において、1はブロードサイド結合の結合線路、2はエッジ結合の結合線路、3は入出力端子、4は接地電極を示す。1Lはブロードサイド結合の結合構造の下層電極、1Uは同じく上層電極を示す。結合線路1L,1Uと接地電極4との間、結合線路2の間、及び、結合線路2と接地電極4の間は誘電体Dで満たされている。見やすくするために、図1(a)においては接地電極4及び誘電体Dの表示を省略している。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the structure of a bandpass filter according to an embodiment of the present invention. 1A is a top view of the bandpass filter, FIG. 1B is a cross-sectional view of the filter taken along the line aa ′, and FIG. 1C is a cross-sectional view of the filter taken along the line bb ′. Show. In these figures, 1 is a broad-side coupled line, 2 is an edge-coupled line, 3 is an input / output terminal, and 4 is a ground electrode. 1L is a lower layer electrode having a broadside bond structure, and 1U is an upper layer electrode. A dielectric D is filled between the coupled lines 1L and 1U and the ground electrode 4, between the coupled line 2 and between the coupled line 2 and the ground electrode 4. For ease of viewing, the display of the ground electrode 4 and the dielectric D is omitted in FIG.

図2は、図1の帯域通過フィルタの斜視図である。見やすくするために、図2においては接地電極4の表示及び誘電体の表示を省略している。
これらの図面から容易にわかるように、発明の実施の形態に係る帯域通過フィルタの両側の結合線路はブロードサイド結合の結合線路、中間の結合線路はエッジ結合の結合線路で構成される。結合線路1Lの上に結合線路1Uが所定の間隔を空けて(この隙間には誘電体Dが存在する)重ねて設けられている。結合線路1Uの長さは結合線路1Lよりも少し長いのでその端は結合線路1Lに重なっていない。その端部に入出力端子3が設けられている。
FIG. 2 is a perspective view of the band-pass filter of FIG. For ease of viewing, the display of the ground electrode 4 and the display of the dielectric are omitted in FIG.
As can be easily seen from these drawings, the coupled lines on both sides of the bandpass filter according to the embodiment of the present invention are composed of broad-side coupled lines, and the intermediate coupled line is composed of edge-coupled coupled lines. A coupling line 1U is provided on the coupling line 1L so as to overlap with a predetermined interval (the dielectric D exists in this gap). Since the length of the coupled line 1U is slightly longer than that of the coupled line 1L, the end thereof does not overlap the coupled line 1L. An input / output terminal 3 is provided at the end thereof.

図1(b)に示すように両端の結合線路1Lと1Uは、上下に配置されたブロードサイド結合線路を構成しており、図1(c)に示すように結合線路2、2は同一面に配置されたエッジ結合の結合線路を構成している。図1(b)、(c)に示すように両側(上下)には接地電極4が配置される。図1(b)に示すように、ブロードサイド結合構造では、上側の接地電極4と結合線路1U、結合線路1Uと1L、結合線路1Lと下側の接地電極4の間隔はいずれも同じである(符号t)。図1(c)に示すように、本発明の実施の形態に係るエッジ結合構造では、上側の接地電極4と結合線路2の間隔(2t)は、結合線路2と下側の設置電極4の間隔(t)の2倍である。これは両端の線路1がブロードサイド結合構造をもち、その一方の導体と同一平面にエッジ結合を形成したためである。   As shown in FIG. 1 (b), the coupled lines 1L and 1U at both ends constitute broadside coupled lines arranged above and below, and the coupled lines 2 and 2 are on the same plane as shown in FIG. 1 (c). The edge-coupled coupling line arranged in the above is configured. As shown in FIGS. 1B and 1C, ground electrodes 4 are disposed on both sides (up and down). As shown in FIG. 1B, in the broadside coupling structure, the distance between the upper ground electrode 4 and the coupled line 1U, the coupled lines 1U and 1L, and the coupled line 1L and the lower ground electrode 4 is the same. (Reference t). As shown in FIG. 1C, in the edge coupling structure according to the embodiment of the present invention, the distance (2t) between the upper ground electrode 4 and the coupling line 2 is the same as that between the coupling line 2 and the lower installation electrode 4. It is twice the interval (t). This is because the line 1 at both ends has a broad side coupling structure, and edge coupling is formed in the same plane as one of the conductors.

発明の実施の形態に係る帯域通過フィルタでは、通常大きな結合が必要な両端の結合線路が本来結合の大きいブロードサイドの結合線路で構成されている。図1の左側を入力とした場合、上側の線路の端3から入力された信号は、ブロードサイドの結合線路に係る上層電極1Uから下層電極1Lに移動するが、そのとき線路長を所望の帯域の中心周波数で波長の1/4の長さに調整することで、その周波数の信号のみが下層の電極に伝送される。下層に伝送された信号は次にエッジ結合の結合線路2,2で同じく所望の周波数のみ伝播し、以下同様に右側の結合線路1L,1Uで周波数が選択され、右側の出力端3から所望の帯域の信号のみが取り出される。   In the band-pass filter according to the embodiment of the invention, the coupled lines at both ends, which normally require large coupling, are constituted by broad-side coupled lines that are inherently coupled. When the left side of FIG. 1 is used as an input, the signal input from the end 3 of the upper line moves from the upper layer electrode 1U related to the broadside coupled line to the lower layer electrode 1L. By adjusting the length to ¼ of the wavelength at the center frequency, only the signal of that frequency is transmitted to the lower electrode. Next, the signal transmitted to the lower layer propagates only at the desired frequency on the edge-coupled coupling lines 2 and 2, and the frequency is selected in the same manner on the right coupled lines 1 L and 1 U. Only the band signal is extracted.

発明の実施の形態に係る構造を用いることで最小寸法を大きく保ちながら、基板の厚みを薄くすることができ、多層化により占有面積を大幅に縮小することが可能である。その理由は以下の実施例の説明に詳述されているが、要するに、両側の結合線路の結合に線路が上下に配置されたブロードサイド結合線路を用いることで大きな結合を実現し、他方、中間の結合線路の結合に線路が同一平面に配置されるエッジ結合線路を用いることで小さい結合を実現し、フィルタの全ての部分について線路幅・線路間隔を製作限界以下にできるからである。   By using the structure according to the embodiment of the invention, it is possible to reduce the thickness of the substrate while keeping the minimum dimension large, and it is possible to greatly reduce the occupied area by multilayering. The reason for this is explained in detail in the description of the embodiment below. In short, a large coupling is realized by using a broadside coupling line in which the lines are arranged one above the other for coupling the coupling lines on both sides, while the middle This is because small coupling is realized by using an edge coupling line in which the lines are arranged on the same plane, and the line width and the line spacing can be made below the production limit for all parts of the filter.

次に、発明の実施の形態に係る構造の具体例及び特性例について説明を加える。説明の便宜上、エッジ結合構造(比較例)、ブロードサイド結合構造(比較例)、両者の組み合わせの順番で説明を加える。
(1)エッジ結合構造のみを用いてフィルタを構成する場合(比較例)
厚みが0.4mmの誘電体上にフィルタを構成する場合を考える。例えば携帯電話のプリント基板では、誘電体厚みは概ね0.8mm程度で製造されており、0.4mmの誘電体内にフィルタを構成することができれば、上下を0.4mmに分割し各々にフィルタを製造することができるため、同一面に作製する場合に比べ半分の面積ですむことになる。エッジ結合でフィルタを作製する場合電極は中央に配置されるので誘電体厚みは、線路導体の上下に0.2mmずつ配置される。今よく用いられる帯域幅10%、リップル0.1dB、3段のフィルタを作製する場合、前述の非特許文献1に従って設計すると、第1の結合線路の偶モードインピーダンスZe、奇モードインピーダンスZoの値はZe=77Ω、Zo=38Ωとなる。第2の結合線路ではZe=58Ω、Zo=44Ωとなる。第3の結合線路は第2の結合線路と同じインイーダンス、第4の結合線路は第1の結合線路のインピーダンスと同じである。結合係数CはC=(Ze−Zo)/(Ze+Zo)で求められ、両端の第1、第4の結合線路の結合係数は0.34、中間の第2、第3の合線路の結合係数は0.14と圧倒的に両端の結合係数が大きくなる。結合係数が大きい場合結合線路の線路間間隔は狭くする必要がある。
Next, specific examples and characteristic examples of the structure according to the embodiment of the invention will be described. For convenience of explanation, description will be added in the order of an edge coupling structure (comparative example), a broadside coupling structure (comparative example), and a combination of both.
(1) When configuring a filter using only an edge coupling structure (comparative example)
Consider a case in which a filter is formed on a dielectric having a thickness of 0.4 mm. For example, a printed circuit board for a mobile phone is manufactured with a dielectric thickness of about 0.8 mm. If a filter can be formed in a 0.4 mm dielectric, the top and bottom are divided into 0.4 mm, and a filter is provided for each. Since it can be manufactured, it takes half the area compared to the case of manufacturing on the same surface. When a filter is manufactured by edge coupling, the electrodes are arranged in the center, so that the dielectric thickness is arranged 0.2 mm above and below the line conductor. When a filter of 10% bandwidth, ripple 0.1 dB, and three stages, which is often used now, is manufactured in accordance with the aforementioned Non-Patent Document 1, the values of the even mode impedance Ze and odd mode impedance Zo of the first coupled line Becomes Ze = 77Ω and Zo = 38Ω. In the second coupled line, Ze = 58Ω and Zo = 44Ω. The third coupled line has the same impedance as the second coupled line, and the fourth coupled line has the same impedance as the first coupled line. The coupling coefficient C is obtained by C = (Ze−Zo) / (Ze + Zo), the coupling coefficient of the first and fourth coupling lines at both ends is 0.34, and the coupling coefficient of the middle second and third coupling lines Is 0.14 and the coupling coefficient at both ends is overwhelmingly large. When the coupling coefficient is large, the interval between the coupled lines needs to be narrowed.

通常電極の金属厚みは非常に薄いので、金属厚みを無限小と近似すると上記の基板厚みで所望のZe,Zoを実現する線路幅、線路間隔は誘電体の比誘電率を指定すれば一意に定まる。誘電率を例えば3.7(市販低損失基板材料の比誘電率)とすると、樹脂基板のときの結合線路の電極幅は0.15mm、線路間隔0.033mmとなり線路間隔が0.1mmより小さいので0.1mmとなるよう基板厚みを3倍にして線路間隔を0.1mmにする必要がある。基板厚みはこのとき1.2mmとなり、上下にフィルタを積層すると2.4mmになる。このような厚い基板は装置が大きくなるため通常使用できない。一方中間の結合線路の線路幅は0.204mmと線路間隔は0.118mmで最小寸法0.1mmでも実現可能である。   Normally, the metal thickness of the electrode is very thin, so if the metal thickness is approximated to infinity, the line width and line spacing to achieve the desired Ze and Zo with the above substrate thickness are unique if the dielectric constant of the dielectric is specified. Determined. For example, when the dielectric constant is 3.7 (relative dielectric constant of a commercially available low-loss substrate material), the electrode width of the coupled line in the case of a resin substrate is 0.15 mm and the line interval is 0.033 mm, and the line interval is smaller than 0.1 mm. Therefore, it is necessary to triple the thickness of the substrate so that the distance is 0.1 mm, so that the line interval is 0.1 mm. The substrate thickness is 1.2 mm at this time, and 2.4 mm when the filters are stacked on the upper and lower sides. Such a thick substrate cannot be used normally because the apparatus becomes large. On the other hand, the line width of the intermediate coupled line is 0.204 mm, the line interval is 0.118 mm, and this can be realized with a minimum dimension of 0.1 mm.

図3(a)は、エッジ結合構造のみを用いてフィルタを構成した場合の特性例を示す。図3(a)はエッジ結合で作製した帯域通過フィルタで誘電体基板を0.4mmと1.2mmとしたものである。0.4mmの線路長は15.9mmで線路幅、線路間隔は実施例に示されている寸法である。前述のように、エッジ結合のみで構成した帯域通過フィルタでは、誘電体厚みを3倍にすることで線路幅の最小寸法は0.099mmとほぼ0.1mmの最小寸法で同じ特性を得ることができるが、最小寸法を0.1mm以上にするためには誘電体厚みを厚くする必要がある。誘電体厚みが1.2mmのものの線路長は15.9mm、誘電体厚みが3倍されているため線路幅、線路間隔は3倍の値になっている。図からわかるとおり2つの特性は全く一致している。しかし、誘電体厚みを3倍にした1.2mmでフィルタを積み重ねると2.4mmになってしまい、携帯電話などに実装することができなくなってしまう。   FIG. 3A shows an example of characteristics when a filter is configured using only the edge coupling structure. FIG. 3A shows a band-pass filter manufactured by edge coupling and having a dielectric substrate of 0.4 mm and 1.2 mm. The line length of 0.4 mm is 15.9 mm, the line width and line interval are the dimensions shown in the examples. As described above, in the bandpass filter configured only by edge coupling, the same characteristic can be obtained with the minimum line width of 0.099 mm and the minimum dimension of approximately 0.1 mm by triple the dielectric thickness. However, in order to make the minimum dimension 0.1 mm or more, it is necessary to increase the dielectric thickness. When the dielectric thickness is 1.2 mm, the line length is 15.9 mm and the dielectric thickness is tripled, so the line width and line spacing are tripled. As can be seen from the figure, the two characteristics are exactly the same. However, if the filters are stacked at 1.2 mm with the dielectric thickness tripled, the thickness becomes 2.4 mm and cannot be mounted on a mobile phone or the like.

(2)ブロードサイド結合構造のみを用いてフィルタを構成する場合(比較例)
次にブロードサイド結合を用いた場合について寸法を求める。ブロードサイド結合線路では誘電体は3層に分かれるので上から例えば0.13mm/0.13mm/0.13mmの誘電体厚みとして全体の厚みを0.39mmとした場合について寸法を求めてみる。このとき上記と同じ比誘電率3.7で線路幅0.144mmのとき、Ze=77Ω、Zo=38Ωが得られ最小寸法0.1mm以上で所望のZe,Zoを実現することができる。ブロードサイド結合線路では上記の基板構成では、中間の結合線路のZe,Zoは結合が小さすぎて実現できない。
(2) When configuring a filter using only the broadside coupling structure (comparative example)
Next, a dimension is calculated | required about the case where a broad side coupling | bonding is used. Since the dielectric is divided into three layers in the broadside coupled line, the dimensions are obtained when the overall thickness is set to 0.39 mm as a dielectric thickness of 0.13 mm / 0.13 mm / 0.13 mm, for example. At this time, when the same dielectric constant is 3.7 and the line width is 0.144 mm, Ze = 77Ω and Zo = 38Ω are obtained, and desired Ze and Zo can be realized with a minimum dimension of 0.1 mm or more. In the broad-side coupled line, with the above substrate configuration, Ze and Zo of the intermediate coupled line cannot be realized because the coupling is too small.

(3)ブロードサイド結合構造とエッジ結合構造の組み合わせ(発明の実施の形態)
上述のように、両端の結合線路にブロードサイド結合構造を適用すれば、その線路幅0.144mmのときZe=77Ω、Zo=38Ωが得られ最小寸法0.1mm以上で所望のZe,Zoを実現することができる。中間の結合線路にエッジ結合構造を適用すれば、その線路幅は0.204mmと線路間隔は0.118mmで最小寸法0.1mmでも実現可能である。したがって、ブロードサイド結合構造とエッジ結合構造の組み合わせにより、基板厚みを薄くしつつ(0.4mm)、最小の線路幅・線路間隔を製作限界の0.1mm以上にできる。この厚みであればフィルタを2つ重ねてもプリント基板の誘電体厚さ(0.8mm)に抑えることができ、携帯電話などに実装可能である。
(3) Combination of broad side coupling structure and edge coupling structure (embodiment of the invention)
As described above, when a broadside coupling structure is applied to the coupled lines at both ends, Ze = 77Ω and Zo = 38Ω are obtained when the line width is 0.144 mm, and desired Ze and Zo are obtained with a minimum dimension of 0.1 mm or more. Can be realized. If the edge coupling structure is applied to the intermediate coupling line, the line width is 0.204 mm, the line interval is 0.118 mm, and the minimum dimension is 0.1 mm. Therefore, the combination of the broad side coupling structure and the edge coupling structure can reduce the minimum line width and line spacing to 0.1 mm or more of the manufacturing limit while reducing the substrate thickness (0.4 mm). With this thickness, even when two filters are stacked, the dielectric thickness of the printed circuit board (0.8 mm) can be suppressed, and the filter can be mounted on a mobile phone or the like.

以上の議論から判るとおり、両側の結合線路はブロードサイド結合を用い、中間の結合線路はエッジ結合を用いることで薄い基板でも所望の同じ特性の帯域通過フィルタを構成することができる。なおこの場合エッジ結合の結合線路は、図1(c)に示すように一方の接地電極4までの距離が0.13mm、もう一方の接地電極4までの距離が0.26mmの非対称な結合線路となるが、中間の結合線路のインピーダンスであるZe=58Ω、Zo=44Ωは線路幅0.155mm、線路間隔0.13mmで実現できこれも0.1mm以上の線路幅、線路間隔で実現できる。   As can be seen from the above discussion, a band-pass filter having the same desired characteristics can be formed even on a thin substrate by using broad-side coupling for the coupling lines on both sides and using edge coupling for the intermediate coupling lines. In this case, as shown in FIG. 1C, the edge-coupled coupled line is an asymmetric coupled line in which the distance to one ground electrode 4 is 0.13 mm and the distance to the other ground electrode 4 is 0.26 mm. However, Ze = 58Ω and Zo = 44Ω, which are the impedances of the intermediate coupling line, can be realized with a line width of 0.155 mm and a line interval of 0.13 mm, which can also be realized with a line width of 0.1 mm or more and a line interval.

図3(b)は本発明の構造による特性の変化例を示す。図3(b)は全てエッジ結合の結合線路で作製した帯域通過フィルタの特性(符号E)と、両側はブロードサイド結合・中間はエッジ結合の結合線路で構成した本発明に係る構造の帯域通過フィルタの特性(符号B+E)を比較したものである。全てエッジ結合構造のフィルタの誘電体厚みは1.2mm、これに対して本発明の実施の形態に係る構造の誘電体厚みは0.39mmである。図からわかるとおり、2つの特性はほとんど一致している。本発明の実施の形態の特性は、エッジ結合のみで構成したものとほとんど同じ特性でありながら、誘電体の厚みはエッジ結合の場合の約1/3で済んでいる。   FIG. 3B shows an example of a change in characteristics due to the structure of the present invention. FIG. 3 (b) shows the characteristics (reference E) of a bandpass filter made of all edge-coupled coupled lines, and the bandpass structure of the present invention composed of broadside coupled on both sides and edge-coupled coupled lines on the middle. This is a comparison of filter characteristics (symbol B + E). The dielectric thickness of all edge-coupled filters is 1.2 mm, whereas the dielectric thickness of the structure according to the embodiment of the present invention is 0.39 mm. As can be seen from the figure, the two characteristics are almost the same. The characteristic of the embodiment of the present invention is almost the same as that of only edge coupling, but the thickness of the dielectric is only about 1/3 that of edge coupling.

以上具体的に述べたとおり、本発明の構造を用いることで、プリント基板上やセラミック基板上にフィルタ導体を作製する場合の微細化の限界(例えば0.1mm)よりも線路幅の最小寸法を大きく保ちながら、基板の厚みを薄くすることができる。より薄い基板が使用可能になるので基板を多層化し、その占有面積を大幅に縮小することが可能である。   As specifically described above, by using the structure of the present invention, the minimum line width is smaller than the limit of miniaturization (for example, 0.1 mm) when a filter conductor is formed on a printed board or a ceramic board. The substrate thickness can be reduced while keeping it large. Since a thinner substrate can be used, the substrate can be multilayered, and the occupied area can be greatly reduced.

図4(a)は発明の実施の形態1の構造を1/4の波長線路のインターディジタルフィルタに適用したものの平面図であり、同図(b)はそのc−c’矢視断面図である。11Lはブロードサイド結合の結合線路(下層電極)、11Uはブロードサイド結合の結合線路(上層電極)、12はエッジ結合の結合線路(上層電極)である。13は下層電極の接地、14は上層電極の接地、15は入出力端子、16はインピーダンス整合のスタブを示す。   4A is a plan view of the structure of the first embodiment of the invention applied to an interdigital filter having a quarter wavelength line, and FIG. 4B is a cross-sectional view taken along the line cc ′. is there. 11L is a broad-side coupled line (lower layer electrode), 11U is a broad-side coupled line (upper layer electrode), and 12 is an edge-coupled coupled line (upper layer electrode). Reference numeral 13 denotes a lower electrode ground, 14 an upper electrode ground, 15 an input / output terminal, and 16 an impedance matching stub.

図4に示すように、片側ショートの1/4の波長の共振器についても同様に薄層化が可能である。
またマイクロストリップ線路構造で構成されたフィルタでも同様に薄層化できることはいうまでもない。
As shown in FIG. 4, it is possible to reduce the thickness of a resonator having a quarter wavelength of one-side short as well.
Needless to say, a filter having a microstrip line structure can also be made thin.

本発明は、以上の実施の形態に限定されることなく、特許請求の範囲に記載された発明の範囲内で、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。   The present invention is not limited to the above embodiments, and various modifications can be made within the scope of the invention described in the claims, and these are also included in the scope of the present invention. Needless to say.

発明の実施の形態に係る(波長)/2線路を用いた帯域通過フィルタの構造を示す図であり、図1(a)はその上面図、図1(b)はそのa−a'断面図、図1(c)はそのb−b’断面図である。It is a figure which shows the structure of the bandpass filter using (wavelength) / 2 line | wire based on embodiment of invention, FIG. 1 (a) is the top view, FIG.1 (b) is the aa 'sectional drawing. FIG. 1C is a sectional view taken along the line bb ′. 図1の帯域通過フィルタの斜視図である。It is a perspective view of the bandpass filter of FIG. 図3(a)はエッジ結合の結合線路で作製した誘電体厚み0.4mmと1.2mmの従来の帯域通過フィルタの特性比較を示し、図3(b)はエッジ結合の結合線路で作製した誘電体厚み1.2mmの従来の帯域通過フィルタと発明の実施の形態に係る構造の誘電体厚み0.39mmの帯域通過フィルタの特性比較を示す。FIG. 3 (a) shows a comparison of characteristics of a conventional bandpass filter having a dielectric thickness of 0.4 mm and 1.2 mm fabricated with edge-coupled coupled lines, and FIG. 3 (b) is fabricated with edge-coupled coupled lines. A characteristic comparison between a conventional band-pass filter having a dielectric thickness of 1.2 mm and a band-pass filter having a dielectric thickness of 0.39 mm having a structure according to an embodiment of the present invention is shown. 発明の実施の形態に係る(波長)/4線路を用いた帯域通過フィルタの構造を示す図であり、図4(a)はその上面図、図4(b)はそのc−c'断面図である。It is a figure which shows the structure of the bandpass filter using (wavelength) / 4 line concerning embodiment of invention, and Fig.4 (a) is the top view, FIG.4 (b) is the cc 'sectional drawing. It is.

符号の説明Explanation of symbols

1 ブロードサイド結合の結合線路
1L 下層電極
1U 上層電極
2 エッジ結合の結合線路
3 入出力端子
4 接地電極
11L ブロードサイド結合の結合線路(下層電極)
11U ブロードサイド結合の結合線路(上層電極)
12 エッジ結合の結合線路(上層電極)
13 下層電極の接地
14 上層電極の接地
15 入出力端子
16 インピーダンス整合のスタブ
DESCRIPTION OF SYMBOLS 1 Broadside coupling coupling line 1L Lower layer electrode 1U Upper layer electrode 2 Edge coupling coupling line 3 Input / output terminal 4 Ground electrode 11L Broadside coupling coupling line (lower layer electrode)
11U Broadside coupled line (upper layer electrode)
12 Edge-coupled coupling line (upper layer electrode)
13 Grounding of lower layer electrode 14 Grounding of upper layer electrode 15 Input / output terminal 16 Stub for impedance matching

Claims (2)

ストリップ線路構造またはマイクロストリップ線路構造の誘電体基板にそれぞれ線路共振器を折り曲げて構成した複数の共振器を平行に並べたインターディジタルフィルタにおいて、前記複数の共振器のうち少なくとも両端の共振器は、誘電体を挟んで異なる面に配置された複数の導体を有するブロードサイド結合構造を持ち、他の共振器は、同じ平面内に配置された複数の導体を有するエッジ結合構造を持つことを特徴とする帯域通過フィルタ。   In an interdigital filter in which a plurality of resonators each formed by bending a line resonator on a dielectric substrate having a stripline structure or a microstripline structure are arranged in parallel, the resonators at least at both ends of the plurality of resonators, It has a broad side coupling structure having a plurality of conductors arranged on different surfaces across a dielectric, and the other resonator has an edge coupling structure having a plurality of conductors arranged in the same plane. Bandpass filter to be used. 前記エッジ結合構造は、前記ブロードサイド結合構造に係る複数の導体のいずれか一方と同じ平面内に配置されたことを特徴とする請求項1記載の帯域通過フィルタ。

The band-pass filter according to claim 1, wherein the edge coupling structure is disposed in the same plane as any one of the plurality of conductors according to the broadside coupling structure.

JP2004380072A 2004-12-28 2004-12-28 Band pass filter Pending JP2006186828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004380072A JP2006186828A (en) 2004-12-28 2004-12-28 Band pass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004380072A JP2006186828A (en) 2004-12-28 2004-12-28 Band pass filter

Publications (1)

Publication Number Publication Date
JP2006186828A true JP2006186828A (en) 2006-07-13

Family

ID=36739575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004380072A Pending JP2006186828A (en) 2004-12-28 2004-12-28 Band pass filter

Country Status (1)

Country Link
JP (1) JP2006186828A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970418B1 (en) 2008-02-22 2010-07-15 가부시키가이샤 엔.티.티.도코모 Dual-band bandpass resonator and dual-band bandpass filter
JP2014225830A (en) * 2013-05-17 2014-12-04 太陽誘電株式会社 High frequency filter and high frequency module equipped with the same
JP6297237B1 (en) * 2017-06-05 2018-03-20 三菱電機株式会社 Resonator, filter and filter bank
JP2021536145A (en) * 2019-08-06 2021-12-23 株式会社アドバンテスト Electric filter structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970418B1 (en) 2008-02-22 2010-07-15 가부시키가이샤 엔.티.티.도코모 Dual-band bandpass resonator and dual-band bandpass filter
JP2014225830A (en) * 2013-05-17 2014-12-04 太陽誘電株式会社 High frequency filter and high frequency module equipped with the same
US9859861B2 (en) 2013-05-17 2018-01-02 Taiyo Yuden Co., Ltd. High frequency filter and high frequency module equipped with same
JP6297237B1 (en) * 2017-06-05 2018-03-20 三菱電機株式会社 Resonator, filter and filter bank
WO2018225126A1 (en) * 2017-06-05 2018-12-13 三菱電機株式会社 Resonator, filter, and filter bank
JP2021536145A (en) * 2019-08-06 2021-12-23 株式会社アドバンテスト Electric filter structure
JP7076540B2 (en) 2019-08-06 2022-05-27 株式会社アドバンテスト Electrical filter structure

Similar Documents

Publication Publication Date Title
JP3520411B2 (en) High frequency components using coupled lines
KR101079015B1 (en) Dual Band High Frequency Amplifier using Composite Right/Left Handed Transmission Line
KR100828948B1 (en) Interdigital capacitor, inductor, and transmission line and coupler using them
JP2008099060A (en) Laminated dielectric band pass filter
KR20010112378A (en) Low-pass filter
JP4598024B2 (en) Band stop filter
JP4807456B2 (en) Microstrip line filter and manufacturing method thereof
JP4140855B2 (en) Band stop filter
JP5278335B2 (en) Stripline filter
JP5094524B2 (en) High frequency coupled line and high frequency filter
US8008995B2 (en) Stripline filter and manufacturing method thereof
JP2006186828A (en) Band pass filter
JP4629617B2 (en) High frequency coupled line and high frequency filter
JP4209352B2 (en) Interdigital filter
JP2715350B2 (en) Dielectric filter
JP2006311492A (en) Filter and filtering apparatus
JP2004266697A (en) Laminated band-pass filter
JP2006253877A (en) High-frequency filter
US20110267156A1 (en) Stripline Filter
CN218275015U (en) High-gradient thin film filter based on interdigital structure
Sieganschin et al. Higher-order filters with folded circular SIW cavities
JP4757809B2 (en) Low pass filter
JP2006238057A (en) Laminated strip line filter
JP3161211B2 (en) Multilayer dielectric filter
JPH0983219A (en) Strip line resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728