JP4629617B2 - High frequency coupled line and high frequency filter - Google Patents

High frequency coupled line and high frequency filter Download PDF

Info

Publication number
JP4629617B2
JP4629617B2 JP2006164696A JP2006164696A JP4629617B2 JP 4629617 B2 JP4629617 B2 JP 4629617B2 JP 2006164696 A JP2006164696 A JP 2006164696A JP 2006164696 A JP2006164696 A JP 2006164696A JP 4629617 B2 JP4629617 B2 JP 4629617B2
Authority
JP
Japan
Prior art keywords
strip
conductor
conductors
high frequency
strip conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006164696A
Other languages
Japanese (ja)
Other versions
JP2007336163A (en
Inventor
哲 大和田
英征 大橋
寛 小坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006164696A priority Critical patent/JP4629617B2/en
Publication of JP2007336163A publication Critical patent/JP2007336163A/en
Application granted granted Critical
Publication of JP4629617B2 publication Critical patent/JP4629617B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

この発明は、マイクロ波帯またはミリ波帯で用いられる高周波結合線路及び高周波フィルタに関するものである。   The present invention relates to a high frequency coupling line and a high frequency filter used in a microwave band or a millimeter wave band.

マイクロ波やミリ波といった高周波においてよく用いられるマイクロストリップ線路形結合線路には様々な構造の結合線路があるが、主なものの一つとして、誘電体基板の上面に先端開放の2つのストリップ導体を平行かつ逆向きに配列して構成したものがある。この結合線路は、ストリップ導体の幅及びストリップ導体間の間隔の寸法パラメータW及びSを適切に選ぶことで結合線路インピーダンス(偶モードインピーダンスZeと奇モードインピーダンスZo)の組み合わせが定まり、ストリップ導体が平行に並んだ区間の長さが概ね1/4波長となる周波数を中心に、帯域通過形の周波数特性を呈する。   Microstrip line type coupled lines often used at high frequencies such as microwaves and millimeter waves include various types of coupled lines, but one of the main ones is two strip conductors with open ends on the top surface of a dielectric substrate. Some are arranged in parallel and in opposite directions. In this coupled line, the combination of the coupled line impedance (even mode impedance Ze and odd mode impedance Zo) is determined by appropriately selecting the dimensional parameters W and S of the width of the strip conductor and the distance between the strip conductors, and the strip conductors are parallel. A band-pass type frequency characteristic is exhibited centering on a frequency at which the length of the sections arranged in a line is approximately ¼ wavelength.

このため、例えば、複数個の結合線路を縦続に接続することで帯域通過フィルタを実現することができる。このような回路構成の帯域通過フィルタは構造が簡素であることから、マイクロ波やミリ波の帯域にて極めてよく用いられる(例えば、特許文献1参照)。   For this reason, for example, a band pass filter can be realized by connecting a plurality of coupled lines in cascade. Since the band-pass filter having such a circuit configuration has a simple structure, it is very often used in a microwave or millimeter wave band (see, for example, Patent Document 1).

特開2004−104588号公報JP 2004-104588 A

しかしながら、前述のような結合線路は構成が簡素で容易に製造が可能であることから様々な回路に広く用いられているが、誘電体基板の厚さの寸法パラメータhが変化すると(誘電体基板の厚さのばらつきが生じると)、結合線路インピーダンスが変化し、結合線路としての特性が大きく変動する難点がある。上記特許文献1に記載されているような帯域通過フィルタにおいては、主に、通過帯域の幅が広がったり、狭まったりという特性の変動をきたす。   However, since the above-described coupled line has a simple configuration and can be easily manufactured, it is widely used in various circuits. However, when the dimension parameter h of the thickness of the dielectric substrate changes (dielectric substrate) If the thickness of the coupling line varies, the coupled line impedance changes, and the characteristics of the coupled line greatly vary. In the band pass filter as described in the above-mentioned patent document 1, the characteristic fluctuation is mainly caused such that the width of the pass band is widened or narrowed.

この発明は上記のような問題点を解決するためになされたもので、誘電体基板の厚さのばらつきによる特性変動の少ない結合線路を実現し、回路の歩留まりを向上することを目的とする。   The present invention has been made to solve the above-described problems, and it is an object of the present invention to realize a coupled line with little characteristic variation due to variations in the thickness of a dielectric substrate and to improve circuit yield.

この発明に係る高周波結合線路は、誘電体基板と、前記誘電体基板の一方の主面に設けられた地導体と、前記誘電体基板の他方の主面に形成され、略平行に配列されて相互に電磁界結合する複数のストリップ導体と、前記ストリップ導体に設けた切り抜きにより周囲と絶縁して形成され、前記ストリップ導体と電気的導通無く前記誘電体基板を貫通する接続導体にて前記地導体と電気的に接続された内部ストリップ導体と、前記複数のストリップ導体の少なくとも一端にそれぞれ設けられた入出力端子とを備えたものである。   A high-frequency coupling line according to the present invention is formed on a dielectric substrate, a ground conductor provided on one main surface of the dielectric substrate, and the other main surface of the dielectric substrate, and is arranged substantially in parallel. A plurality of strip conductors that are electromagnetically coupled to each other, and a ground conductor formed by a connection conductor that is formed to be insulated from the surroundings by a cutout provided in the strip conductor and penetrates the dielectric substrate without electrical conduction with the strip conductor. And an input / output terminal provided at at least one end of each of the plurality of strip conductors.

また、他の発明に係る高周波結合線路は、積層してなる2つの誘電体基板と、前記2つの誘電体基板の一方の主面にそれぞれ設けられた2つの地導体と、前記2つの誘電体基板の間に形成され、切り抜きを有すると共に、略平行に配列されて相互に電磁界結合する複数のストリップ導体と、前記ストリップ導体と電気的導通無く上記切り抜きと前記2つの誘電体基板とを貫通して前記2つの地導体の間を電気的に接続する接続導体と、前記複数のストリップ導体の少なくとも一端にそれぞれ設けられた入出力端子とを備えたものである。   In addition, a high frequency coupling line according to another invention includes two dielectric substrates formed by lamination, two ground conductors respectively provided on one main surface of the two dielectric substrates, and the two dielectrics A plurality of strip conductors formed between the substrates, having cutouts and arranged substantially in parallel and electromagnetically coupled to each other, and through the cutouts and the two dielectric substrates without electrical continuity with the strip conductors The connection conductor for electrically connecting the two ground conductors, and the input / output terminals respectively provided at at least one end of the plurality of strip conductors.

また、さらに他の発明に係る高周波結合線路は、積層してなる2つの誘電体基板と、前記2つの誘電体基板の一方の主面にそれぞれ設けられた2つの地導体と、前記2つの誘電体基板の間に形成され、略平行に配列されて相互に電磁界結合する複数のストリップ導体と、前記ストリップ導体に設けた切り抜きにより周囲と絶縁して形成され、前記ストリップ導体と電気的導通無く前記誘電体板の少なくとも一方を貫通する接続導体にて前記2つの地導体の少なくとも一方と電気的に接続された内部ストリップ導体と、前記複数のストリップ導体の少なくとも一端にそれぞれ設けられた入出力端子とを備えたものである。   Furthermore, a high-frequency coupled line according to still another invention includes two dielectric substrates formed by lamination, two ground conductors respectively provided on one main surface of the two dielectric substrates, and the two dielectrics. A plurality of strip conductors formed between the body substrates and arranged in parallel to each other and electromagnetically coupled to each other, and formed by being insulated from the surroundings by cutouts provided in the strip conductors, and without electrical continuity with the strip conductors An internal strip conductor electrically connected to at least one of the two ground conductors by a connection conductor penetrating at least one of the dielectric plates, and an input / output terminal provided at at least one end of the plurality of strip conductors It is equipped with.

また、この発明に係る高周波フィルタは、上記記載の高周波結合線路を用いて構成されたものである。   The high frequency filter according to the present invention is configured using the high frequency coupling line described above.

さらに、他の発明に係る高周波フィルタは、上記記載の高周波結合線路を複数個縦続接続してなるものである。   Furthermore, a high frequency filter according to another invention is formed by cascading a plurality of the high frequency coupling lines described above.

この発明によれば、誘電体基板の厚さのばらつきによる特性変動の少ない結合線路を実現し、回路の歩留まりを向上することができる高周波結合線路及び高周波フィルタを得ることができる。   According to the present invention, it is possible to obtain a high-frequency coupled line and a high-frequency filter that can realize a coupled line with little characteristic variation due to variations in the thickness of the dielectric substrate and can improve the yield of the circuit.

実施の形態1.
図1は、この発明の実施の形態1に係る高周波結合線路を示す斜視図である。また、図2は、図1を上方から見た上面図、さらに、図3は、図2のA−A’線断面図である。これらの図に示されるように、誘電体基板1の一方の主面には地導体2が設けられ、他方の主面には略平行に、かつ互いに逆向きに配列されて電磁界結合するストリップ導体6a,6bが形成されている。ストリップ導体6a,6bは、切り抜き5a,5bを有し、切り抜き5a,5bの内側に、ストリップ導体6a,6bと電気的導通無く短絡しないよう空隙9a,9bを持って配設され、誘電体基板1を貫通する接続導体としてのスルーホール7a−1,7a−2,7b−1,7b−2にて地導体2と電気的に接続された内部ストリップ導体8a,8bが形成されている。なお、4a,4bは入出力端子を示す。また、図3において、W1,W2はストリップ導体6a,6bの幅、Wは従来のストリップ導体の幅、Sはストリップ導体6aと6bの間隔、hは誘電体基板1の厚さを示す。
Embodiment 1 FIG.
1 is a perspective view showing a high-frequency coupling line according to Embodiment 1 of the present invention. 2 is a top view of FIG. 1 as viewed from above, and FIG. 3 is a cross-sectional view taken along line AA ′ of FIG. As shown in these drawings, a ground conductor 2 is provided on one main surface of a dielectric substrate 1, and a strip which is electromagnetically coupled by being arranged substantially parallel to each other and opposite to each other. Conductors 6a and 6b are formed. The strip conductors 6a and 6b have cutouts 5a and 5b, and are disposed inside the cutouts 5a and 5b with gaps 9a and 9b so as not to be short-circuited without electrical continuity with the strip conductors 6a and 6b. Internal strip conductors 8a and 8b electrically connected to the ground conductor 2 are formed at through-holes 7a-1, 7a-2, 7b-1, and 7b-2 as connecting conductors penetrating 1. Reference numerals 4a and 4b denote input / output terminals. 3, W1 and W2 are the widths of the strip conductors 6a and 6b, W is the width of the conventional strip conductor, S is the distance between the strip conductors 6a and 6b, and h is the thickness of the dielectric substrate 1.

本実施の形態1に係る高周波結合線路の説明の前に、まず、従来の高周波結合線路における結合線路インピーダンスと誘電体基板の厚さの関係について述べる。ここで、従来の結合線路として、誘電体基板上に略平行に配列された2つのストリップ導体の幅が等しい、対称構造を有する結合線路を考える。対称構造を有する結合線路では、構造的対称面に磁気壁あるいは電気壁を仮定し、一方のストリップ導体と地導体(もしくは地導体と電気壁)の間の静電容量を求めることで結合線路インピーダンスが概算される。   Before describing the high-frequency coupling line according to the first embodiment, first, the relationship between the coupling line impedance and the thickness of the dielectric substrate in the conventional high-frequency coupling line will be described. Here, as a conventional coupled line, a coupled line having a symmetrical structure in which two strip conductors arranged in parallel on a dielectric substrate have the same width is considered. In a coupled line having a symmetric structure, it is assumed that a magnetic wall or an electrical wall is used as the structural symmetry plane, and the coupled line impedance is obtained by calculating the capacitance between one strip conductor and the ground conductor (or ground conductor and electrical wall). Is estimated.

結合線路インピーダンスには、偶モードインピーダンスと奇モードインピーダンスがある。誘電体基板1の厚さhが変化した場合、特に、偶モードインピーダンスの変動が大きくなる。これは、偶モードインピーダンスが、誘電体基板を介して対向するストリップ導体と地導体との間で生じる静電容量Cgのみから定まるためである。一方の奇モードインピーダンスは、ストリップ導体6が地導体2との間で為す静電容量Cgのほか、ストリップ導体と電気壁の間で生じる静電容量Cwがあり、両者の和がインピーダンスに寄与する。ストリップ導体と電気壁の間で生じる静電容量Cwは基板厚さhの変化により大きく変化することが無いため、トータルの静電容量の変化率は、偶モードインピーダンスのそれよりも奇モードインピーダンスのそれの方が小さくなる。この関係は常に成り立つことから、基板厚による偶モードインピーダンスの変化率の小さい結合線路は、結合線路として特性変動が小さいということになる。   The coupled line impedance includes an even mode impedance and an odd mode impedance. In particular, when the thickness h of the dielectric substrate 1 changes, the even-mode impedance varies greatly. This is because the even mode impedance is determined only by the capacitance Cg generated between the strip conductor and the ground conductor facing each other through the dielectric substrate. On the other hand, the odd mode impedance includes an electrostatic capacity Cg generated between the strip conductor 6 and the ground conductor 2 and an electrostatic capacity Cw generated between the strip conductor and the electric wall, and the sum of the two contributes to the impedance. . Since the capacitance Cw generated between the strip conductor and the electric wall is not greatly changed by the change of the substrate thickness h, the total capacitance change rate is higher than that of the even mode impedance. It becomes smaller. Since this relationship always holds, a coupled line with a small rate of change in even-mode impedance due to the substrate thickness has a small characteristic variation as a coupled line.

次に、本実施の形態1について、従来の結合線路と同様に、結合線路インピーダンスと誘電体基板1の厚さの関係を説明する。図4は、本実施の形態1に係る高周波結合線路の偶モードインピーダンスに関わる静電容量を、図5は、奇モードインピーダンスに関わる静電容量をそれぞれ示す。なお、図4におけるM.W.は磁気壁、図5におけるE.W.は電気壁を示す。本高周波結合線路では、ストリップ導体6の切り抜き5に配置した内部ストリップ導体8とスルーホール7とが、地導体2とほぼ同電位となるために、地導体2と同様な役割を担う。このため、偶モードインピーダンスに関わる静電容量は、ストリップ導体6と地導体2の間の静電容量Cgと、ストリップ導体6と内部ストリップ導体8(及びスルーホール7)の間の静電容量Cpの2種類となる。   Next, regarding the first embodiment, the relationship between the coupled line impedance and the thickness of the dielectric substrate 1 will be described as in the conventional coupled line. 4 shows the capacitance related to the even mode impedance of the high-frequency coupling line according to the first embodiment, and FIG. 5 shows the capacitance related to the odd mode impedance. In FIG. W. Is a magnetic wall, E. in FIG. W. Indicates an electrical wall. In this high-frequency coupled line, the internal strip conductor 8 and the through hole 7 arranged in the cutout 5 of the strip conductor 6 have substantially the same potential as that of the ground conductor 2, and thus play the same role as the ground conductor 2. For this reason, the electrostatic capacity related to the even mode impedance includes the electrostatic capacity Cg between the strip conductor 6 and the ground conductor 2 and the electrostatic capacity Cp between the strip conductor 6 and the inner strip conductor 8 (and the through hole 7). There are two types.

一方、奇モードインピーダンスに関わる静電容量は、上記の静電容量CgとCpに加えて、ストリップ導体6と電気壁E.W.の間の静電容量Cwが加わって、都合3種となる。従来の結合線路と同じ特性を有する結合線路を同じ誘電体基板で実現する場合には、偶奇インピーダンスのそれぞれについて、関係する静電容量の総和が従来の結合線路におけるそれとおおむね一致するよう、寸法を選択することとなる。このとき、本実施の形態1に係る高周波結合線路におけるストリップ導体6と地導体2の間の静電容量は、内部ストリップ導体8とスルーホール7の存在により、従来の結合線路のそれよりも必ず小さくなるため、トータルの静電容量に対して占める比率が小さくなることが判る。また、ストリップ導体6と内部ストリップ導体8(及びスルーホール7)の間の静電容量は誘電体基板1の厚さの変化に対して大きな変化がない。したがって、本実施の形態1に係る高周波結合線路は、誘電体基板1の厚さの変化による結合線路インピーダンスの変動が従来の結合線路にくらべて小さくなる。   On the other hand, the capacitance related to the odd mode impedance includes the strip conductor 6 and the electric wall E.P. in addition to the capacitances Cg and Cp. W. The capacitance Cw between the two is added, so that there are three types. When a coupled line having the same characteristics as a conventional coupled line is realized on the same dielectric substrate, the dimensions of each of the even and odd impedances are set so that the sum of the related capacitances roughly matches that of the conventional coupled line. Will be selected. At this time, the electrostatic capacitance between the strip conductor 6 and the ground conductor 2 in the high-frequency coupling line according to the first embodiment is always greater than that of the conventional coupling line due to the presence of the internal strip conductor 8 and the through hole 7. Since it becomes small, it turns out that the ratio occupied with respect to a total electrostatic capacitance becomes small. Further, the electrostatic capacitance between the strip conductor 6 and the inner strip conductor 8 (and the through hole 7) does not change greatly with respect to the change in the thickness of the dielectric substrate 1. Therefore, in the high-frequency coupling line according to the first embodiment, the fluctuation of the coupling line impedance due to the change in the thickness of the dielectric substrate 1 is smaller than that of the conventional coupling line.

なお、補足になるが、実際には、内部ストリップ導体8と地導体2を接続するスルーホール7にはインダクタンスがあり、また、誘電体基板1の厚さの変化により、スルーホール7の電気長が変化をする。このため、内部ストリップ導体8(及びスルーホール7)がストリップ導体6に与える寄与は、両者の間の静電容量から与えられるリアクタンスと、上記のスルーホール7のインダクタンスの与えるリアクタンスの和の負のリアクタンスから表される。このため、誘電体基板1の厚さが厚くなった場合には、スルーホール7のインダクタンスが増加する影響で、上記の負のリアクタンスが0に近付くため、内部ストリップ導体8とストリップ導体6の間の静電容量がわずかに増加したことと等価となる。即ち、内部ストリップ導体8(及びスルーホール7)とストリップ導体6の間の静電容量は、ストリップ導体6と地導体2の間の静電容量の変化を打ち消す方向に作用することを付け加えておく。   In addition, as a supplement, actually, the through hole 7 connecting the internal strip conductor 8 and the ground conductor 2 has an inductance, and the electrical length of the through hole 7 is changed due to the change in the thickness of the dielectric substrate 1. Changes. For this reason, the contribution that the internal strip conductor 8 (and the through hole 7) gives to the strip conductor 6 is the negative of the sum of the reactance given by the capacitance between the two and the reactance given by the inductance of the through hole 7 described above. Expressed from reactance. For this reason, when the thickness of the dielectric substrate 1 is increased, the negative reactance approaches 0 due to an increase in the inductance of the through hole 7, so that the gap between the internal strip conductor 8 and the strip conductor 6 is increased. This is equivalent to a slight increase in capacitance. That is, it is added that the electrostatic capacitance between the inner strip conductor 8 (and the through hole 7) and the strip conductor 6 acts in a direction to cancel the change in the electrostatic capacitance between the strip conductor 6 and the ground conductor 2. .

設計例として、図6に従来の結合線路の通過特性の計算値を、図7に本実施の形態1に係る高周波結合線路の通過特性の計算値をそれぞれ記す。なお、横軸のfreqは周波数、縦軸のS21は2端子回路のSパラメータを示し、図1の入出力端子4aをポート1,入出力端子4bをポート2としたときのポート1からポート2への伝送通過特性を示す。いずれも、比誘電率er=3.4の同じ誘電体基板1を用いて構成したもので、誘電体基板1の厚さhをパラメータとして、電磁界シミュレータを用いて求めた周波数特性を重ね書きしたものである。特性計算は、結合線路の電気長が90度となる14GHzの周辺で行った。これらの図からも判るように、本実施の形態による結合線路は、誘電体基板の厚さによる特性変動が小さい。   As a design example, FIG. 6 shows the calculated value of the pass characteristic of the conventional coupled line, and FIG. 7 shows the calculated value of the pass characteristic of the high-frequency coupled line according to the first embodiment. The frequency freq on the horizontal axis indicates the frequency, and S21 on the vertical axis indicates the S parameter of the two-terminal circuit. The port 1 to port 2 when the input / output terminal 4a and the input / output terminal 4b of FIG. The transmission pass characteristic to is shown. Both are configured using the same dielectric substrate 1 having a relative dielectric constant er = 3.4, and the frequency characteristics obtained using the electromagnetic simulator are overwritten with the thickness h of the dielectric substrate 1 as a parameter. It is a thing. The characteristic calculation was performed around 14 GHz where the electrical length of the coupled line was 90 degrees. As can be seen from these figures, the coupling line according to the present embodiment has a small characteristic variation due to the thickness of the dielectric substrate.

以上のように、本実施の形態1に係る高周波結合線路によれば、誘電体基板1の厚さhの変動による特性変動の少ない結合線路が得られることから、回路の歩留まり向上と、歩留まり向上によるコスト削減が達成されると言う効果がある。特に、近年の材料技術の進歩により、セラミック系の基板に代わって、低コストな樹脂系の誘電体基板がマイクロ波ミリ波回路に用いられるようになってきているが、樹脂系の誘電体基板はセラミック系の基板にくらべ、誘電体基板厚さのばらつきがやや大きいとされ、従来の結合線路は特性ばらつきが大きいという問題があった。本実施の形態の結合線路であれば、比較的誘電体基板の厚さの誤差の大きい樹脂系の誘電体基板においても特性変動が小さく、特性の安定したマイクロ波ミリ波回路が得られるという効果がある。   As described above, according to the high-frequency coupled line according to the first embodiment, since a coupled line with less characteristic variation due to variation in the thickness h of the dielectric substrate 1 can be obtained, the circuit yield is improved and the yield is improved. There is an effect that the cost reduction by is achieved. In particular, due to recent progress in material technology, low-cost resin-based dielectric substrates have come to be used in microwave millimeter-wave circuits instead of ceramic-based substrates. There is a problem that the thickness of the dielectric substrate is slightly larger than that of the ceramic substrate, and the conventional coupled line has a large variation in characteristics. The coupled line of the present embodiment has an effect that a microwave millimeter wave circuit having stable characteristics can be obtained even with a resin-based dielectric substrate having a relatively large thickness error of the dielectric substrate. There is.

なお、本実施の形態1においては、マイクロストリップ線路構造の結合線路を例として示したが、言うまでもなく、トリプレート線路構造を始め、他の平面回路形線路でも同様な効果が見込める。   In the first embodiment, a coupled line having a microstrip line structure is shown as an example. Needless to say, the same effect can be expected with other planar circuit lines including a triplate line structure.

また、本実施の形態1においては、誘電体基板1の上表面に2つのストリップ導体6a,6bを平行にかつ逆向きに配列して構成した結合線路について述べたが、2つのストリップ導体を同じ向きにならべても同様な効果が得られることは言うまでもない。   In the first embodiment, the coupled line is described in which two strip conductors 6a and 6b are arranged in parallel and in opposite directions on the upper surface of the dielectric substrate 1, but the two strip conductors are the same. It goes without saying that the same effect can be obtained even if the orientation is adjusted.

さらに、本実施の形態1では、ストリップ導体6a,6bに切り抜き5a,5bを一つ設ける構造について説明したが、切り抜きが2つ以上の複数であっても基本的な効果に変わりはない。   Further, in the first embodiment, the structure in which one of the cutouts 5a and 5b is provided in the strip conductors 6a and 6b has been described. However, even if there are two or more cutouts, the basic effect remains unchanged.

さらに、本実施の形態1では、説明を簡単にするため、結合線路の断面構造が左右対称の構造を例に取って説明したが、左右非対称の構造であっても同様な効果を得られることは言うまでもない。   Furthermore, in the first embodiment, for the sake of simplicity, the description has been given by taking the example of the structure in which the cross-sectional structure of the coupled line is bilaterally symmetric. However, the same effect can be obtained even if the structure is bilaterally asymmetric. Needless to say.

実施の形態2.
図8は、この発明の実施の形態2に係るマイクロストリップ線路形帯域通過フィルタを示す斜視図である。図9は、図8を上方から見た上面図である。実施の形態2に係るマイクロストリップ線路形帯域通過フィルタは、実施の形態1で示した結合線路と基本的に同じ構造を有する3つの結合線路を縦続接続して構成したものである。符号1から9については実施の形態1と同様のものを指し示している。
Embodiment 2. FIG.
FIG. 8 is a perspective view showing a microstrip line type bandpass filter according to Embodiment 2 of the present invention. FIG. 9 is a top view of FIG. 8 viewed from above. The microstrip line type bandpass filter according to the second embodiment is configured by cascading three coupled lines having basically the same structure as the coupled line shown in the first embodiment. Reference numerals 1 to 9 indicate the same as those in the first embodiment.

本実施の形態2に係る帯域通過フィルタに用いられている高周波結合線路は、実施の形態1で示したように、誘電体基板1の厚さのばらつきによる結合線路インピーダンスの変化が小さい。すなわち、高周波結合線路の結合係数の変化も小さい。本実施の形態2の帯域通過フィルタでは、帯域幅は結合係数の関数として表される。このため、本実施の形態2に係る帯域通過フィルタは、帯域幅の変動が小さい。   As shown in the first embodiment, the high-frequency coupled line used in the bandpass filter according to the second embodiment has a small change in the coupled line impedance due to the variation in the thickness of the dielectric substrate 1. That is, the change in the coupling coefficient of the high-frequency coupling line is small. In the band pass filter of the second embodiment, the bandwidth is expressed as a function of the coupling coefficient. For this reason, the band pass filter according to the second embodiment has a small variation in bandwidth.

すなわち、本実施の形態2の帯域通過フィルタによれば、誘電体基板1の厚さがばらついても、特性変動の小さい、特に、帯域幅の変動の少ない帯域通過フィルタが得られると言う効果がある。   That is, according to the bandpass filter of the second embodiment, even if the thickness of the dielectric substrate 1 varies, there is an effect that a bandpass filter with small characteristic fluctuation, in particular, with little fluctuation in bandwidth can be obtained. is there.

なお、本実施の形態2では、図8に示す回路構成の帯域通過フィルタを例にとって説明したが、誘電体基板の厚さのばらつきによる特性変動が低減される効果は、回路形式を限定するものではなく、結合線路を用いたあらゆる回路形式のフィルタ、方向性結合器等で効果が期待できることはいうまでもない。   In the second embodiment, the band-pass filter having the circuit configuration shown in FIG. 8 has been described as an example. However, the effect of reducing the characteristic variation due to the variation in the thickness of the dielectric substrate is limited to the circuit type. However, it goes without saying that the effect can be expected with filters of various circuit types, directional couplers, etc. using coupled lines.

また、本実施の形態2では、実施の形態1で示した結合線路と基本的に同じ構造を有する3つの結合線路を縦続接続して構成しているが、必ずしも3つの結合線路のすべてを実施の形態1の結合線路と同様な構造の結合線路としなくともよい。たとえば、3つの結合線路のうち、中央部の一つのみを実施の形態1のものと同様な構造の結合線路とし、残りの2つは従来の結合線路とするなどしてもかまわない。   In the second embodiment, three coupled lines having basically the same structure as the coupled line shown in the first embodiment are cascade-connected, but all three coupled lines are not necessarily implemented. The coupled line having the same structure as the coupled line of the first embodiment may not be used. For example, of the three coupled lines, only one of the central portions may be a coupled line having the same structure as that of the first embodiment, and the remaining two may be conventional coupled lines.

実施の形態3.
図10は、この発明の実施の形態3に係るマイクロストリップ線路形結合線路を示す斜視図である。実施の形態1で示した結合線路と基本的に同じ構造を有しているが、本実施の形態3の結合線路では、開放端を有する2つのストリップ導体を同じ向きに配列したものである。
Embodiment 3 FIG.
FIG. 10 is a perspective view showing a microstrip line type coupled line according to Embodiment 3 of the present invention. Although it has basically the same structure as the coupled line shown in the first embodiment, in the coupled line of the third embodiment, two strip conductors having open ends are arranged in the same direction.

図4及び図5で説明した誘電体基板1の厚さと結合線路インピーダンスの関係は、2つのストリップ導体6の断面構造により決まるものであり、2つのストリップ導体6の配列の向きにはよらない。このため、本実施の形態3の結合線路においても、実施の形態1の結合線路と同様に、誘電体基板1の厚さがばらついても、特性変動の小さい結合線路が得られる。   The relationship between the thickness of the dielectric substrate 1 and the coupled line impedance described with reference to FIGS. 4 and 5 is determined by the cross-sectional structure of the two strip conductors 6 and does not depend on the orientation of the two strip conductors 6. For this reason, also in the coupled line of the third embodiment, similarly to the coupled line of the first embodiment, a coupled line with small characteristic variation can be obtained even if the thickness of the dielectric substrate 1 varies.

実施の形態4.
図11は、この発明の実施の形態4に係るマイクロストリップ線路形結合線路を示す斜視図である。本実施の形態4の結合線路を構成するストリップ導体は両端に入出力端子を備えており、4端子の結合線路となっている。
Embodiment 4 FIG.
FIG. 11 is a perspective view showing a microstrip line type coupled line according to Embodiment 4 of the present invention. The strip conductor constituting the coupled line of the fourth embodiment is provided with input / output terminals at both ends, and is a four-terminal coupled line.

図4及び図5で説明した誘電体基板1の厚さと結合線路インピーダンスの関係は、2つのストリップ導体6の断面構造により決まるものであり、開放端や短絡端の有無にはよらない。このため、本実施の形態4の結合線路においても、他の実施の形態に記された結合線路と同様に、誘電体基板の厚さがばらついても、特性変動の小さい結合線路が得られる。   The relationship between the thickness of the dielectric substrate 1 and the coupled line impedance described with reference to FIGS. 4 and 5 is determined by the cross-sectional structure of the two strip conductors 6 and does not depend on the presence or absence of an open end or a short-circuit end. For this reason, also in the coupled line of the fourth embodiment, similarly to the coupled lines described in the other embodiments, a coupled line with small characteristic variation can be obtained even if the thickness of the dielectric substrate varies.

実施の形態5.
図12は、この発明の実施の形態5に係るトリプレート線路形結合線路を示す斜視図である。また、図13は、図12におけるA−A'線断面図を示している。2つのストリップ導体6a,6bには切り抜き5a,5bが設けられ、この切り抜き5a,5bを貫通して上下の地導体2a,2bを電気的に接続する接続導体としてスルーホール7a−1,7a−2,7b−1,7b−2が設けられている。
Embodiment 5. FIG.
FIG. 12 is a perspective view showing a triplate line type coupled line according to Embodiment 5 of the present invention. FIG. 13 is a cross-sectional view taken along line AA ′ in FIG. Cutouts 5a and 5b are provided in the two strip conductors 6a and 6b, and through holes 7a-1 and 7a- are used as connection conductors that penetrate the cutouts 5a and 5b and electrically connect the upper and lower ground conductors 2a and 2b. 2, 7b-1, 7b-2 are provided.

本実施の形態5の結合線路は、実施の形態1に記した結合線路と同様な動作と効果を呈する。また、本実施の形態5の構造は、2枚の誘電体板1a,1bを積層したあとにスルーホールのための穴を開け、メッキを施すことで貫通スルーホールを形成することができ、内部ストリップ導体を必要としない。このため、横幅の小さい結合線路を構成することができるという効果がある。なお、図4及び図5における内部ストリップ導体とストリップ導体の間の静電容量Cpは、貫通スルーホールとストリップ導体の間の静電容量に相当し、他の実施の形態の結合線路と実質的な作用に差異はなく、得られる効果は同様である。   The coupled line of the fifth embodiment exhibits the same operations and effects as the coupled line described in the first embodiment. Further, the structure of the fifth embodiment can form a through-hole by laminating two dielectric plates 1a and 1b and then forming a through-hole for plating and plating. Does not require strip conductors. For this reason, there exists an effect that a coupling line with a small width can be constituted. 4 and 5, the capacitance Cp between the inner strip conductor and the strip conductor corresponds to the capacitance between the through-hole and the strip conductor, and is substantially the same as that of the coupled line of the other embodiments. There is no difference in the functions, and the obtained effects are the same.

なお、本実施の形態5では、トリプレート線路構造を例に取って説明したが、サスペンデッド線路など、類似の他の線路構造で実現しても同様な効果を得られることは言うまでもない。   In the fifth embodiment, the triplate line structure has been described as an example, but it goes without saying that the same effect can be obtained even when realized by another similar line structure such as a suspended line.

なお、この実施の形態5では、切り抜き5a,5bを貫通して上下の地導体2a,2bを電気的に接続する接続導体としてスルーホール7a−1,7a−2,7b−1,7b−2を設けた例を示したが、これに代えて、実施の形態1の如く、切り抜きの内側にストリップ導体と電気的導通無く空隙を持って配設され、誘電体板の少なくとも一方を貫通する接続導体にて2つの地導体の少なくとも一方と電気的に接続された内部ストリップ導体を設けても良い。   In the fifth embodiment, through holes 7a-1, 7a-2, 7b-1, 7b-2 are used as connecting conductors that penetrate the cutouts 5a, 5b and electrically connect the upper and lower ground conductors 2a, 2b. In place of this, instead of this, as in the first embodiment, a connection is provided inside the cutout with a gap without electrical continuity with the strip conductor and penetrating at least one of the dielectric plates. An internal strip conductor electrically connected to at least one of the two ground conductors by a conductor may be provided.

以上のように、この発明によれば、マイクロストリップ線路やトリプレート線路等の平面回路形の線路構造で構成された結合線路において、ストリップ導体に切り抜きを設け、その内部に、接続導体により地導体と電気的に接続された内部導体を配置した。このため、ストリップ導体の為すトータルの静電容量のうち、ストリップ導体と地導体の間で生じる静電容量の割合が小さくなるため、誘電体基板の厚さのばらつきによる結合線路インピーダンスの変動が低減され、特性変動の小さい結合線路が得られるという効果がある。また、特性変動の減少により、歩留まり向上と製造コスト削減が実現するという効果がある。   As described above, according to the present invention, in a coupled line composed of a planar circuit type line structure such as a microstrip line or a triplate line, a strip conductor is provided with a cutout, and a ground conductor is provided by a connecting conductor inside the strip conductor. And an internal conductor electrically connected to each other. For this reason, the ratio of the capacitance generated between the strip conductor and the ground conductor is reduced in the total capacitance generated by the strip conductor, so that the fluctuation of the coupled line impedance due to the variation in the thickness of the dielectric substrate is reduced. Thus, there is an effect that a coupled line with small characteristic fluctuation can be obtained. In addition, the reduction in characteristic variation has the effect of improving yield and reducing manufacturing costs.

また、誘電体基板の2つの主面の双方に地導体を備えてなるトリプレート線路等の平面回路形線路で構成された結合線路において、ストリップ導体に切り抜きを設け、その内部を貫通して2つの地導体を電気的に接続する接続導体を設けた。切り抜きに内部ストリップ導体を持たない構造のため、結合線路の横幅を小さくすることができ、回路の小形化が図れるという効果がある。   Further, in a coupled line composed of a planar circuit type line such as a triplate line provided with ground conductors on both of the two main surfaces of the dielectric substrate, a cut is provided in the strip conductor, and 2 passes through the inside thereof. A connection conductor for electrically connecting two ground conductors was provided. Since the cutout has no internal strip conductor, the width of the coupled line can be reduced, and the circuit can be reduced in size.

また、一端を開放端あるいは短絡端とし、他端に入出力端子を備えた2つのストリップ導体を平行にならべて構成した結合線路において、誘電体基板の厚さのばらつきによる特性変動の少ない結合線路を得られるという効果がある。   In addition, in a coupled line formed by arranging two strip conductors having one end as an open end or a short-circuited end and an input / output terminal at the other end in parallel, the coupled line has less characteristic fluctuation due to variations in the thickness of the dielectric substrate. There is an effect that can be obtained.

また、一端を開放端、他端に入出力端子を備えた2つのストリップ導体を互いに逆向きに平行にならべて構成したもっとも用途の広い結合線路において、誘電体基板の厚さのばらつきによる特性変動の少ない結合線路を得られるという効果がある。   Furthermore, in the most versatile coupled line, which is composed of two strip conductors with one open end and one input / output terminal at the other end, parallel to each other, the fluctuations in characteristics due to variations in the thickness of the dielectric substrate There is an effect that a coupled line with a small number of lines can be obtained.

また、誘電体基板の厚さのばらつきによる特性変動の小さい結合線路を用いて高周波フィルタを構成しているため、特性変動の小さいフィルタを得られる効果がある。   In addition, since the high-frequency filter is configured using a coupled line having a small characteristic variation due to variations in the thickness of the dielectric substrate, there is an effect that a filter having a small characteristic variation can be obtained.

さらに、最も広く用いられている帯域通過フィルタの構成要素となる結合線路を、誘電体基板の厚さのばらつきによる特性変動の小さい結合線路とした。本帯域通過フィルタの帯域幅は結合線路の結合係数の関数となっているため、誘電体基板の厚さのばらつきによる帯域幅の変動の小さい帯域通過フィルタが得られる効果がある。   Further, the coupled line that is a component of the most widely used bandpass filter is a coupled line that has a small characteristic variation due to variations in the thickness of the dielectric substrate. Since the bandwidth of the present bandpass filter is a function of the coupling coefficient of the coupled line, there is an effect that a bandpass filter having a small variation in bandwidth due to variations in the thickness of the dielectric substrate can be obtained.

この発明の実施の形態1となる結合線路の斜視図である。It is a perspective view of the coupling line used as Embodiment 1 of this invention. この発明の実施の形態1に係る結合線路の上面図である。It is a top view of the coupled line which concerns on Embodiment 1 of this invention. 図2におけるA−A'断面における断面図と主な寸法パラメータを示す図である。FIG. 3 is a cross-sectional view taken along the line AA ′ in FIG. 2 and main dimensional parameters. この発明の実施の形態1に係る結合線路の偶モードインピーダンスに関わる静電容量を示した図である。It is the figure which showed the electrostatic capacitance in connection with the even mode impedance of the coupling line which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る結合線路の奇モードインピーダンスに関わる静電容量を示した図である。It is the figure which showed the electrostatic capacitance in connection with the odd mode impedance of the coupling line which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る結合線路と比較するための従来の結合線路の通過特性を示す図である。It is a figure which shows the passage characteristic of the conventional coupling line for comparing with the coupling line which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る結合線路の通過特性を示す図である。It is a figure which shows the passage characteristic of the coupling line which concerns on Embodiment 1 of this invention. この発明の実施の形態2となる帯域通過フィルタの斜視図である。It is a perspective view of the bandpass filter used as Embodiment 2 of this invention. この発明の実施の形態2となる帯域通過フィルタの上面図である。It is a top view of the band pass filter used as Embodiment 2 of this invention. この発明の実施の形態3となる結合線路の斜視図である。It is a perspective view of the coupling line used as Embodiment 3 of this invention. この発明の実施の形態4となる結合線路の斜視図である。It is a perspective view of the coupling line used as Embodiment 4 of this invention. この発明の実施の形態5となる結合線路の斜視図である。It is a perspective view of the coupling line used as Embodiment 5 of this invention. 図12におけるA−A'断面における断面図を示す図である。It is a figure which shows sectional drawing in the AA 'cross section in FIG.

符号の説明Explanation of symbols

1誘電体基板、2 地導体、3 開放端、4 入出力端子、5 切り抜き、6 信号導体(ストリップ導体)、7 接続導体、8 内部信号導体(内部ストリップ導体)、9 空隙。   1 dielectric substrate, 2 ground conductor, 3 open end, 4 input / output terminal, 5 cutout, 6 signal conductor (strip conductor), 7 connection conductor, 8 internal signal conductor (internal strip conductor), 9 gap.

Claims (9)

誘電体基板と、
前記誘電体基板の一方の主面に設けられた地導体と、
前記誘電体基板の他方の主面に形成され、略平行に配列されて相互に電磁界結合する複数のストリップ導体と、
前記ストリップ導体に設けた切り抜きにより周囲と絶縁して形成され、前記ストリップ導体と電気的導通無く前記誘電体基板を貫通する接続導体にて前記地導体と電気的に接続された内部ストリップ導体と、
前記複数のストリップ導体の少なくとも一端にそれぞれ設けられた入出力端子と
を備えた高周波結合線路。
A dielectric substrate;
A ground conductor provided on one main surface of the dielectric substrate;
A plurality of strip conductors formed on the other main surface of the dielectric substrate and arranged in substantially parallel to each other and electromagnetically coupled to each other;
An internal strip conductor that is formed to be insulated from the surroundings by a cutout provided in the strip conductor, and is electrically connected to the ground conductor by a connection conductor that penetrates the dielectric substrate without electrical continuity with the strip conductor;
A high-frequency coupled line comprising: an input / output terminal provided at at least one end of each of the plurality of strip conductors.
積層してなる2つの誘電体基板と、
前記2つの誘電体基板の一方の主面にそれぞれ設けられた2つの地導体と、
前記2つの誘電体基板の間に形成され、切り抜きを有すると共に、略平行に配列されて相互に電磁界結合する複数のストリップ導体と、
前記ストリップ導体と電気的導通無く上記切り抜きと前記2つの誘電体基板とを貫通して前記2つの地導体の間を電気的に接続する接続導体と、
前記複数のストリップ導体の少なくとも一端にそれぞれ設けられた入出力端子と
を備えた高周波結合線路。
Two dielectric substrates formed by lamination;
Two ground conductors respectively provided on one main surface of the two dielectric substrates;
A plurality of strip conductors formed between the two dielectric substrates, having cutouts and arranged in parallel and electromagnetically coupled to each other;
A connection conductor that passes through the cutout and the two dielectric substrates without electrical continuity with the strip conductor and electrically connects the two ground conductors;
A high-frequency coupled line comprising: an input / output terminal provided at at least one end of each of the plurality of strip conductors.
積層してなる2つの誘電体基板と、
前記2つの誘電体基板の一方の主面にそれぞれ設けられた2つの地導体と、
前記2つの誘電体基板の間に形成され、略平行に配列されて相互に電磁界結合する複数のストリップ導体と、
前記ストリップ導体に設けた切り抜きにより周囲と絶縁して形成され、前記ストリップ導体と電気的導通無く前記誘電体板の少なくとも一方を貫通する接続導体にて前記2つの地導体の少なくとも一方と電気的に接続された内部ストリップ導体と、
前記複数のストリップ導体の少なくとも一端にそれぞれ設けられた入出力端子と
を備えた高周波結合線路。
Two dielectric substrates formed by lamination;
Two ground conductors respectively provided on one main surface of the two dielectric substrates;
A plurality of strip conductors formed between the two dielectric substrates and arranged substantially in parallel and electromagnetically coupled to each other;
A connection conductor that is formed to be insulated from the surroundings by a cutout provided in the strip conductor and penetrates at least one of the dielectric plates without electrical continuity with the strip conductor, and is electrically connected to at least one of the two ground conductors. Connected internal strip conductors;
A high-frequency coupled line comprising: an input / output terminal provided at at least one end of each of the plurality of strip conductors.
請求項1から3までのいずれか1項に記載の高周波結合線路において、
前記複数のストリップ導体は、一端に開放端あるいは短絡端を備え、他端に入出力端子を備えた2つのストリップ導体からなる
ことを特徴とする高周波結合線路。
In the high frequency coupling line according to any one of claims 1 to 3,
The plurality of strip conductors include two strip conductors each having an open end or a short-circuit end at one end and an input / output terminal at the other end.
請求項1から3までのいずれか1項に記載の高周波結合線路において、
前記複数のストリップ導体は、両端に入出力端子を備えた2つのストリップ導体からなる
ことを特徴とする高周波結合線路。
In the high frequency coupling line according to any one of claims 1 to 3,
The plurality of strip conductors include two strip conductors having input / output terminals at both ends.
請求項4に記載の高周波結合線路において、
前記2つのストリップ導体は、略平行で、かつ開放端を互いに逆向きに配列してなる
ことを特徴とする高周波結合線路。
In the high frequency coupling line according to claim 4,
The two strip conductors are substantially parallel and have open ends arranged in opposite directions to each other.
請求項4に記載の高周波結合線路において、
前記2つのストリップ導体は、略平行で、かつ開放端を互いに同じ向きに配列してなる
ことを特徴とする高周波結合線路。
In the high frequency coupling line according to claim 4,
The two strip conductors are substantially parallel and have open ends arranged in the same direction as each other.
請求項1から7までのいずれか1項に記載の高周波結合線路を少なくとも1つ用いて構成された高周波フィルタ。   The high frequency filter comprised using at least 1 the high frequency coupling line of any one of Claim 1-7. 請求項6または7に記載の高周波結合線路を複数個縦続接続してなる高周波フィルタ。   A high frequency filter formed by cascading a plurality of high frequency coupling lines according to claim 6 or 7.
JP2006164696A 2006-06-14 2006-06-14 High frequency coupled line and high frequency filter Expired - Fee Related JP4629617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006164696A JP4629617B2 (en) 2006-06-14 2006-06-14 High frequency coupled line and high frequency filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006164696A JP4629617B2 (en) 2006-06-14 2006-06-14 High frequency coupled line and high frequency filter

Publications (2)

Publication Number Publication Date
JP2007336163A JP2007336163A (en) 2007-12-27
JP4629617B2 true JP4629617B2 (en) 2011-02-09

Family

ID=38935222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006164696A Expired - Fee Related JP4629617B2 (en) 2006-06-14 2006-06-14 High frequency coupled line and high frequency filter

Country Status (1)

Country Link
JP (1) JP4629617B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6135290B2 (en) * 2013-05-08 2017-05-31 三菱電機株式会社 Transmission line

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562674A (en) * 1968-06-17 1971-02-09 Anaren Microwave Inc Broadband microwave phase shifter utilizing stripline coupler
JPS55158702A (en) * 1979-05-28 1980-12-10 Fujitsu Ltd Directional coupler
JPS56117401A (en) * 1980-02-21 1981-09-14 Nec Corp Directional coupler
US4605915A (en) * 1984-07-09 1986-08-12 Cubic Corporation Stripline circuits isolated by adjacent decoupling strip portions
JPH03119802A (en) * 1989-10-02 1991-05-22 Alps Electric Co Ltd Coplanar line filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562674A (en) * 1968-06-17 1971-02-09 Anaren Microwave Inc Broadband microwave phase shifter utilizing stripline coupler
JPS55158702A (en) * 1979-05-28 1980-12-10 Fujitsu Ltd Directional coupler
JPS56117401A (en) * 1980-02-21 1981-09-14 Nec Corp Directional coupler
US4605915A (en) * 1984-07-09 1986-08-12 Cubic Corporation Stripline circuits isolated by adjacent decoupling strip portions
JPH03119802A (en) * 1989-10-02 1991-05-22 Alps Electric Co Ltd Coplanar line filter

Also Published As

Publication number Publication date
JP2007336163A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
US7138887B2 (en) Coupler with lateral extension
EP0885469B1 (en) A high frequency balun provided in a multilayer substrate
US7561012B2 (en) Electronic device and filter
KR100828948B1 (en) Interdigital capacitor, inductor, and transmission line and coupler using them
US9843085B2 (en) Directional coupler
EP2899803B1 (en) Circuit comprising balun and impedance transforming elements
KR20010112378A (en) Low-pass filter
US8106721B2 (en) Multilayer complementary-conducting-strip transmission line structure with plural interlaced signal lines and mesh ground planes
JP4565145B2 (en) Ultra-wideband bandpass filter
US7671707B2 (en) Bandstop filter having a main line and ¼ wavelength resonators in proximity thereto
US20130069736A1 (en) Baluns with imaginary commond-mode impedance
JP4629617B2 (en) High frequency coupled line and high frequency filter
TWI744042B (en) Dielectric waveguide resonator and dielectric waveguide filter
JP5578440B2 (en) Differential transmission line
US7548141B2 (en) High frequency filter
US20090085693A1 (en) Filter
WO2020066621A1 (en) Bandpass filter, communication device, and resonator
JP4602240B2 (en) Short-circuit means, tip short-circuit stub including short-circuit means, resonator, and high-frequency filter
JP2006186828A (en) Band pass filter
JP4757809B2 (en) Low pass filter
US20080079517A1 (en) Stacked filter
WO2017212612A1 (en) Coupled line filter
JP4762930B2 (en) Left-handed track
JP2011146853A (en) Directional coupler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees